

 奈良先端科学技術⼤学院⼤学 学術リポジトリ

Nara Institute of Science and Technology Academic Repository: naistar

Title
Comparing hierarchical dirichlet process with latent dirichlet

allocation in bug report multiclass classification

Author(s) Limsettho, Nachai; Hata, Hideaki; Matsumoto, Ken-ichi

Citation

SNPD 2014 : 15th IEEE/ACIS International Conference on Software

Engineering, Artificial Intelligence, Networking and

Parallel/Distributed Computing, 30 June-2 July 2014, Las Vegas, NV,

USA

Issue Date 2014

Resource Version author

Rights

© 2014 IEEE. Personal use of this material is permitted. Permission from

IEEE must be obtained for all other uses, in any current or future media,

including reprinting/republishing this material for advertising or

promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component

of this work in other works.

DOI 10.1109/SNPD.2014.6888695

URL http://hdl.handle.net/10061/12743

Comparing Hierarchical Dirichlet Process with Latent

Dirichlet Allocation in Bug Report Multiclass

Classification

Nachai Limsettho

Graduate School of Information Science

Nara Institute of Science and Technology

Nara, Japan

E-mail:nachai.limsettho.nz2@is.naist.jp

Hideaki Hata

Graduate School of Information Science

Nara Institute of Science and Technology

Nara, Japan

E-mail: hata@is.naist.jp

Ken-ichi Matsumoto

Graduate School of Information Science

Nara Institute of Science and Technology

Nara, Japan

E-mail: matsumoto@is.naist.jp

Abstract—Bug reports play essential roles in many software

engineering tasks. Since validity and performance of these tasks

definitely rely on the quality of bug reports, accurate information

from bug reports is very important. However, as found in

previous study, significant numbers of reports classified as bug

are not really a bug. Recent studies proposed techniques to

automatically classify bug reports into binary classes, yet there is

still more to desire. These bug reports can be classified into

multiple classes, which could help to identify what these reports

are actually about. Moreover, previous study only looks into one

possibility of topic modeling, that is, Latent Dirichlet Allocation

(LDA). While LDA has its advantage, parameter tuning is

required. In this paper, we propose a nonparametric approach

to automatically classify bug reports with, another topic

modeling method, Hierarchical Dirichlet Process (HDP). The

result indicates that our nonparametric approach performance is

comparable to the parametric one. We also examine various

aspects of LDA to provide more thoroughly understanding of this

process.

Keywords—bug classification; topic modeling; bug reports;

Hierarchical Dirichlet Process; Latent Drichlet Allocation;

multiclass classification

I. INTRODUCTION

In data mining, good quality of data are a valuable asset.
This also applies to empirical software engineering as well.
Since nowadays, mining data from changes and bug databases
had become common. As bug database is built from bug
reports, quality of bug reports are crucial to data quality [1].
Correctly classified bug reports will greatly help in both
research validity and modeling performance. More detail bug
report will also contain more information which could help in
understanding data. On the contrary, inadequate information
and misclassified bug reports leads to misleading research and
misrepresenting model. However, research by Antoniol et al
found that significant number of bug reports are incorrectly
classified [2]. Large number of reports classified as bug are not
actually bug. They are, in fact, referring to other things such as
a request for new feature, an improvement, or an update to
documentation. These errors happen mostly due to reporter’s
misunderstanding and the complicating nature of Bug Tracking

System (BTS) used for reporting number of other requests
beside bug [2].

 In order to correct these miss classification, large amount of
effort is required, especially for manual inspection [2], [3], [4].
For example, Herzig et al. spent totaling 725 hours, 90 days, to
classify over 7,000 bug reports. For this very reason, a
technique to automatically classify bug reports is desired.

 Several studies have been proposed to tackle this problem.
A word-based automatic classification technique [2], by
Antoniol et al, creates classification model base on word
corpus and got a decent classification result. A recent study
proposed binary classification based on topic modeling
approach [5]. This method tries to improve bug report
classification process by substitute word-level document
corpus with Latent Drichlet Allocation (LDA) [6] topic
membership vectors. The experiments shown that topic-based
model outperforms word-based in almost of the evaluated
cases.

 Nevertheless, some problems still remain. First is that the
LDA approach [5] requires a parameter tuning in order to work
optimally. This means certain amount of effort is needed.
Second, only one dimension of topic modeling, LDA, has been
explored. Other dimensions of topic modeling are left
uncharted. Third, it only works on binary classification this
abandons some useful information, which otherwise would be
obtainable with multiclass classification.

 In this paper, we propose a nonparametric approach to
automatically classify bug reports with Hierarchical Dirichlet
Process (HDP) [7] as well as a method for handle multiple
classes bug reports. In addition, various LDA parameters are
experimented on in order to optimize this process. All
experiments are evaluated in term of accuracy, F-measure and
Roc.

 The experiments in this paper are done on the combined
dataset of three software projects based on the previous study
published datasets [3]. These datasets are HTTPClient,
Jackrabbit and Lucene. All of them are open-source. Each
document in these data is categorized in to five classes which
are bug, improvement, request for enchantment (RFE), task
and test.

 The contributions of this paper can be summarized as
follows:

 We propose a nonparametric technique to
automatically classify bug reports base on their
textual information.

 Performance between different types of topic
modeling is compared.

 We provide a guideline about how to optimize the
previous LDA method.

 Multiclass classification method base on topic
modeling is proposed.

This paper is organized as follows. In Section II, we discuss
motivation behind our technique. Section III formalizes our
method, we aim to solve. Section IV describes our
methodology. Section V describes our experimental design.
Experiment Results are reported in Section VI. Section VII
discusses threats to validity in our research; followed by
Section VIII that describes our related works. Finally, Section
IX concludes our research and specifies future work.

II. MOTIVATION

A. Quality of Data

For most of statistical and data mining tasks, good quality
of data is essential. Mistake in data, aka noise, can leads to
misleading and poor performance model. More specifically in
bug classification task, decision boundary between each class
can be significantly effect, thus make the classification model
to be unsuitable for real world data [1].

Another aspect of data quality, is how detail it is. For bug
report data, while binary classes data can contain a good
amount of information and suitable for many tasks. The
absence of some important information that otherwise
obtainable with multiple classes data could be a problem.
Using multiple classes data allows exact pinpoints of bug
report purpose. It also allows research into many directions
which would be impossible with binary one.

B. Topic Modeling Approachs

Using topic modeling to preprocess documents for bug
report classification is advantageous in many ways. Compared
with manual classification, it definitely saves a huge amount of
effort and time. Its performance is also better than bag of
words approach [5]. There are two reasons for this. First, since
words that frequently occur together in document corpus are
grouped into a topic, problems of synonymy and polysemy are
diminished. Second, it projects a very sparse vector space
model into a more compact and meaningful form. This
generally helps classification in both computation time and
classifying accuracy.

Topic modeling can be done in many different ways; in this
paper two of popular methods are experimented. Latent
Dirichlet Allocation (LDA) [6] is a Bayesian approach of topic
modeling bug reports. This method views each document as
mixture of various topics and assumes that topic distribution

has a Dirichlet prior. Another way is Hierarchical Dirichlet
Process (HDP) [7]. It is a nonparametric Bayesian model
which assumes the number of topics from dirichlet process and
allows mixture components to be shared between groups. Both
approaches have its merit. While LDA is easier to apply since
many tools and libraries implement it, the nonparametric nature
of HDP is also very appealing. Experiments comparing these
approaches are presented in Section VI.

III. BUG REPORT MULTICLASS CLASSIFICATION

We formalize our bug report multiclass classification in this
section.

The input for training our method are bug reports and
corrective dataset that indicates the actual bug report types [2].
After training is complete, the output will be classification
model capable of automatically distinguish bug reports into
many types.

Types of bug reports, aka classes, are descripted in Table I.

TABLE I. BUG REPORT TYPES (CLASSES)

Bug Report types

(Classes)
Description

Bug

Report concerning corrective maintenance tasks

to resolve incorrect or unexpected result of

software system

Request For

Enchantment (RFE)

Report concerning a call for a system adjustment

which involve implement of new functionality

(request for enhancement, feature request).

Improvement

(IMPR)

Report concerning an improving task that upon

resolution, would improve the overall

performance of existing functionality

Task Report concerning a general development tasks

Test Report concerning test cases

IV. METHODOLOGY

Our bug report classification process is divided into two
main phases. First is Topic Modeling phase, this phase
converts bug reports into topics membership vectors. In second
phase, Classification, data from previous phase are combined
with its classes then pre-processed and used to build a
classification models. More detail will be described in
following subsections.

A. Topic Modeling phase

This phase is consist of five steps

1) Parsing: Our bug reports come in XML format. In

order to get a more meaningful data from these bug reports,

we extract three textual sections: title, description and

comments. These sections are combined into a single text file

per bug report.

2) Tokenization: After parsed, stream of text from bug

reports are tokenized, broken into terms, and unnecessary

punctuations are removed.

3) Stemming: In this step, the tokenized terms are mapped

and converted to their root form. Porter Stemming algorithm

[8] is used for experiments in this paper.

4) Removing stop words: Some words in English hold

little to no meaning alone. As such, they are removed. We use

stopwords from mallet 2.0.7 stoplist. The examples of these

words are a, both, but, by, can, and the.

5) Topic modeling: Topic modeling is applied in this step

in order to automatically extract topics from a text corpus.

Two of well known topic modeling methods are applied in this

research as we want to experiment on which approach is more

suitable for topic modeling bug reports.

First is LDA, which are commonly used and implemented.

This method is probabilistic generative model and it is

required for user to specifiy number of topics (N). Since the

best perform N is depend on the dataset, parameter tuning on

topic’s number is needed. Therefore, for any experiment that

uses LDA topic, several numbers of topics are examined.

Second is HDP, which can assumed the number of topic

by itself, hence reducing tuning effort. However, as second

level of HDP drawn samples from already drawn subset of

first level (assuming it is 2-levels HDP), topics drawn from

HDP are overlap. This is differrent from LDA since LDA’s

topics are drawn separately from base distribution, thus

making it less likely to overlap. Though the overlap nature of

HDP can be advantageous in many situations, it can also make

data to be harder to separate.
After topic modeling process, the output of both

approaches is a set of topic membership vectors. Each vector

represents a bug report and consists of a set of topics with its

proportion. These topics comprise of co-occurring words

throughout the bug report textual corpus and their proportion

indicates what topics such bug report are related.

Figure 1 summarizes these steps in topic modeling phase.

Figure 1 Diagram of our Topic modeling phase

B. Classification Phase

 In this phase, HDP and LDA data are processed separately.
Each topic membership vectors dataset from previous phase is
combined with corrective dataset containing bug reports actual
classes. This process is done to prepare these data for

classification task. Data from LDA and HDP then proceed
independently to the following steps.

Figure 2 summarizes these steps in Classification phase.

Figure 2 Diagram of our Classification phase

1) Pre-processing: This step will be described later in

each experiment results subsection as the process is different

for each experiment.

2) Spilting Data: Pre-processed data are then spilt

randomly into two datasets: train and test dataset. The test data

are reserved for evaulation, while train data are passes to the

next step. To validate our result, we employ 10-fold cross-

validation to all experiments in this paper and report average

value of 10 runs as our result.

3) Build classifiers: Classification models, aka classifiers,

are built from train data. All classifiers built in this research

utilyze multiclass classifer all-against-all, a wrapper based

type classifier. The wrapped classifier depends on the

experiment. For Experiment 1, the base classifier is logistic

regression. While in Experiment 2, three types of

classification technique are wrapped: Alternating Decision

Tree (ADTree), Naive Bayes and Logistic Regression. These

classification techniques are chosen based on previous

researches [5], [9]. Their details are described below.

a) All-against-All: This is a wrapper based type
classification technique that enables binary classifiers to

handling multiclass datasets. The wrapper based nature of this

classifier means it cannot work by itself and needs a base

classifier to wrap on. Specifically this classifier transforms a K

classes classification problem into K(K-1)/2 binary

classification problems of separating between each pair of

classes, while ignoring the rest of them. Results from these

classifiers then are combined via voting. We choose this
method to handle multiclass problem since it is intuitive and

has a good performance.

b) Alternating Decision Tree (ADTree): It is a set of
generalized decision trees that employ boosting algorithm.

Number of boosting iterations is user specific. For each

iteration, the weight for each instance will be given differently

according to the previous iteration results. The correctly

classified instances are given reduced weight while the

misclassified are given a larger weight.

c) Naive Bayes: This classifier applying Bayes' theorem

with an assumption that each other features aside from class

are independent.

d) Logistic Regression: A regression analysis that uses
probability scores to measure relationship between class and

features.

V. EXPERIMENTAL DESIGN

 Our study use combined data from three datasets in
previous study [3]. The bug report from three open-source
software projects from Apache: HTTPClient, Jackrabbit and
Lucene, are combined. The reason we used combined dataset
is because we want to evaluate each method in cross-project
learning environment since it can greatly reduce amount of
effort required in preparing training data in real world
implementation. The Class distribution of combined dataset is
shown in Table II.

TABLE II. CLASS DISTRIBUTION OF COMBINED DATASET

Bug Report

types

(Classes)

Number of Reports in

 each class

Percentage of Reports in

each class

Bug 2,718 49.96%

Improvement

(IMPR)
2,092 38.46%

Request For

Enchantment

(RFE)

337 6.19%

Task 214 3.93%

Test 79 1.45%

Total 5,440 100.00%

 Our experiments are divided into two parts: LDA-HDP
comparison in Experiment 1, then optimization of LDA in
Experiment 2. All experiments in this paper are evaluated by
accuracy, F-measure and receiver operating characteristic
(ROC).

VI. EXPERIMENT RESULTS

A. Experiment 1: Comparing LDA and HDP performance

 We want to compare LDA and HDP performance in this
experiment, so aside from using LDA and HDP, all other
parameters here are identical.

 LDA and HDP topic membership vectors from Topic
Modeling phase are independently processed. After combined
with corrective dataset, both datasets are pre-processed. Here,
the values in topic dimensions of each instance are occurrence
of words from that topic divided by the sum of word
occurrences from all topics of that instance. Note that this sum

is not the same as a total word occurrence count for that
instance as two different topics may have some identical words.

 The pre-processed datasets are then spilt into train and test
dataset. Then train datasets are used to build a multiclass
classification model; in this experiment, All-against-all
classifiers are built with Logistic Regression as base.

 The result for Experiment 1 is shown in Table III where
overall performance is presented in upper table. The first
column of the upper table is evaluation measures. Other
consecutive columns are grouped into results from LDA and
HDP. For LDA, the three columns represent different numbers
of topics which are 25, 50 and 100 respectively. As for HDP,
since the number of topics for each run is not identical, we
report the result from 3 runs of HDP in the following columns.

 For the lower table, F-measure in each class is shown here.
Bug report types or classes are in the first column while the
other columns are identical to the one in the upper table.

TABLE III. PERFORMANCE COMPARISON BETWEEN LDA AND HDP

 Overall Performance

 LDA HDP

25 50 100 1 2 3

topics topics topics run run run

Accuracy 62.94% 64.38% 67.04% 63.57% 63.99% 63.62%

F-

measure
0.591 0.611 0.641 0.599 0.604 0.601

Roc 0.766 0.785 0.807 0.764 0.767 0.768

Number

of Topics
25 50 100 42 46 47

 F-measure for each Type of Bug Report

BUG 0.729 0.743 0.767 0.733 0.734 0.732

IMPR 0.584 0.605 0.639 0.598 0.607 0.603

RFE 0.006 0.034 0.09 0.006 0 0.006

TASK 0.026 0.1 0.091 0.052 0.077 0.066

TEST 0.024 0.1 0.229 0.065 0.068 0.022

 As we see in Table III, LDA with 50 and 100 topics
perform better than HDP and the trend seems to go up as the
number of topics is increased. This can be interpreted in two
ways. First, performance of classifier built from LDA topics
will increase more and more as the number of topics increased;
or second, the performance will increase until the number of
topics reach a certain point then it will start to drop. This
question is answered in Experiment 2, which indicates that
second interpretation is right. Therefore we can summarize that
with proper number of topics tuning, LDA performance is
better than HDP. While this make HDP seems unsuitable for
this task, it still has its use, as its performance is still
comparable with classifier built from LDA and it requires no
parameter.

 The F-measure in each class from Table III demonstrates
that for this dataset both LDA and HDP suffer from lack of

data and imbalance dataset problems. The F-measure for the
three minority classes are terrible. So measure for handling
this problem is needed, the interesting approaches are sampling
and cost-sensitive technique.

B. Experiment 2: Characteristics of LDA and its

optimization

 As for Experiment 2, we want to search for an answer for
two questions. First is whether LDA performance can
increased unlimitedly with the increase number of topics or it
will start to drop at some point. Second question is how to
optimize LDA for the optimum performance. This is achieved
by varying numbers of topics (N), pre-processing methods and
classifiers.

 The numbers of topics in this experiment start from 50
topics and increase by 50 until it reaches 200. After that, we
examine on every 100 topics until it reaches 600.

 Three pre-processing methods are experimented on. First,
simple count of words occurrences in each topic is used as
value in topic dimensions. Second, we use the existence of
words in the topic, the value will be 1 if for that bug report
there is an occurrence of words in that topic and will be 0 if a
word from that topic is not found. Third, the pre-processing
method used in Experiment 1 is used.

 Three type classifiers used as base in this experiment. They
are describes below.

 The results for Experiment 2 are shown in Table IV, V and
VI. The Table IV shows accuracy, Table V shows weight F-
measure and Table VI show Roc. Each table aligns in similar
way. First column, N is the Number of LDA topics; the rest of
columns are grouped base on their preprocessing. Count is
simple count of words occurrence, Exist use the existence of
word and Ratio is the pre-processing method used in
Experiment 1. Each pre-processing column consists of three
sub-columns that indicate used classification techniques,
ADTree for Alternating Decision Tree, NB for Naive Bayes
and LR for Logistic Regression. The black cell means that
experiment on that cell position take too long to finish, thus left
blank. The best result for each sub-column is marked with grey
color.

TABLE IV. ACCURACY OF THE LDA TOPIC-BASED CLASSIFIER

Count [integer,0-N] Exist [boolean,0/1] Ratio [double,0-1]

N

AD

Tree NB LR

AD

Tree NB LR

AD

Tree NB LR

50 0.62 0.24 0.61 0.60 0.53 0.61 0.62 0.34 0.64

100 0.62 0.32 0.63 0.61 0.52 0.63 0.64 0.35 0.67

150 0.62 0.50 0.63 0.59 0.51 0.62 0.63 0.39 0.67

200 0.61 0.50 0.63 0.60 0.50 0.63 0.62 0.40 0.67

300 0.62 0.51 0.62 0.60 0.50 0.61 0.61 0.42 0.63

400 0.61 0.52 0.62 0.61 0.51 NA 0.62 0.46 0.63

500 0.61 0.51 NA 0.60 0.51 NA 0.60 0.49 0.60

600 0.60 0.52 NA 0.60 0.50 NA 0.61 0.49 NA

AVG 0.61 0.45 0.62 0.60 0.51 0.62 0.62 0.43 0.65

TABLE V. F-MEASURE OF THE LDA TOPIC-BASED CLASSIFIER

Count [integer,0-N] Exist [boolean,0/1] Ratio [double,0-1]

N

AD

Tree NB LR

AD

Tree NB LR

AD

Tree NB LR

50 0.59 0.29 0.56 0.56 0.53 0.58 0.58 0.40 0.61

100 0.58 0.36 0.60 0.57 0.52 0.60 0.60 0.41 0.64

150 0.59 0.43 0.61 0.56 0.52 0.60 0.60 0.44 0.65

200 0.57 0.44 0.61 0.57 0.51 0.62 0.59 0.45 0.65

300 0.59 0.45 0.59 0.56 0.51 0.60 0.58 0.47 0.62

400 0.58 0.46 0.62 0.57 0.51 NA 0.59 0.49 0.63

500 0.58 0.45 NA 0.56 0.53 NA 0.57 0.52 0.61

600 0.56 0.46 NA 0.56 0.51 NA 0.58 0.52 NA

AVG 0.58 0.42 0.60 0.56 0.52 0.60 0.59 0.47 0.63

TABLE VI. ROC OF THE LDA TOPIC-BASED CLASSIFIER

Count [integer,0-N] Exist [boolean,0/1] Ratio [double,0-1]

N

AD

Tree NB LR

AD

Tree NB LR

AD

Tree NB LR

50 0.74 0.59 0.75 0.72 0.69 0.74 0.74 0.68 0.79

100 0.75 0.59 0.78 0.73 0.70 0.76 0.76 0.66 0.81

150 0.75 0.59 0.77 0.72 0.70 0.77 0.76 0.69 0.81

200 0.74 0.59 0.77 0.72 0.71 0.78 0.75 0.66 0.81

300 0.74 0.59 0.74 0.72 0.71 0.76 0.73 0.67 0.78

400 0.74 0.59 0.76 0.73 0.71 NA 0.75 0.66 0.79

500 0.73 0.60 NA 0.72 0.73 NA 0.73 0.68 0.78

600 0.72 0.60 NA 0.72 0.72 NA 0.73 0.68 NA

AVG 0.74 0.59 0.76 0.72 0.71 0.76 0.74 0.67 0.80

 From ADTree and Logistic Regression columns of these
tables, we can see that the performance of LDA topic-based
classification model does not increase with the number of LDA
topics. Instead, the performance will increase until reach the
certain point depending on dataset, then it starts to drop. This is
because too much increase in number of topics will lead to too
sparse dataset and a lot of uninformative feature. As for some
Naive Bayes columns that the best perform number of topics
are 500 and 600, this is due to slower increase trend of Naive
Bayes—which means that they have not yet reach the optimum
performance.

 When comparing performance by varying pre-processing
methods, the Ratio method is the most promising one. Both
ADTree and Logistic Regression perform best with this pre-
processing while Naive Bayes on the other hand, prefers Exist
method.

 From these three classification techniques, Logistic
Regression achieves the best evaluation scores in all three
measurements: accuracy, F-measure and Roc. Though when
the number of topics is exceed 300, its run time increases
tremendously. In this regard, ADTree runtime is doing a lot
better. Its runtime is more reasonable with large number of
topics and its classifying performance is still comparable to the
best performs logistic regression. As for Naive Bayes, although

it got the fastest run time, its classifying performances is
significantly worse than the other two techniques.

 Therefore, for these mentioned reasons. We recommend
using Ratio for pre-processing, using all-against-all with
Logistic Regression as base for classification when the size of
dataset is small while using ADTree with bigger dataset. As for
the appropriate number of topics, it depends on the dataset but
start from smaller N value is generally better for both Logistic
Regression and ADTree.

VII. THREATS TO VALIDITY

 This research experiments on published dataset from
previous study. Although data we use are manual inspected
with a fixed set of rules, some errors might still occur. The
rules for manual inspection is also depend on individual
perspective which could be different for each person. These
might cause data to change thus cause our classifier to produce
different results.

 Some of processes in our research involve random value.
For example, HDP and 10-fold cross-validation are both
random process. Thus, although we try to repeat our
experiment as much as possible to ensure the validity of our
results, we cannot guarantee that our results are optimal.

 Experiments are done on limited research subject. All
bug reports in our combined dataset come from projects written
in Java and using JIRA bug tracker which might not be
representative for other programming language or bug tracker
system.

VIII. RELATED WORKS

Many software engineering tasks use data mining to mine
important knowledge from bug reports. The task, such as bug
prediction [10], [11] uses bug reports, machine-learning and
statistical analysis to identify pieces of code likely to contain
bugs. Triaging reported bugs [12], [13] is another important
task using bug reports. Since quality of data definitely affect
the performance of data mining task, quality of bug report is
crucial. However, significant number of bug reports is actually
misclassified which will affect validity of research that works
on these reports. Several researches [2], [3], [5] are try to
address this misclassification problem. Some of them use
manual inspection to identify misclassified reports [2], [3].
While the most recent one [5] employs topic modeling to
extract textual information from bug reports, build
classification model from correctly classified reports then uses
this model to automatically classify uncorrected or
unclassified reports. While this topic modeling method could
work on binary classification, we notice that actual report from
bug tracking system contain more than one types of report;
thus, some information is lost when reports are transformed to
binary class. Moreover, even though the process is automatic,
some parameter tuning is required for number of topics. Our
paper addresses these problems and tries to give a guideline for
optimizing the process.

IX. CONCLUSION

In this paper, we proposes a method for automatically
classify bug reports base on its textual information without the
need to do a parameter tuning. This further reduces time and
effort needs to process these bug report. The result from our
experiment demonstrates that this nonparametric method
performance is comparable, though lowers, to the parametric
one. We also experiment on how to optimize the bug report
classification process that use parametric method to topic
modeling bug reports. The experiment are done on vary topic
numbers, pre-processing methods and classification technique.
The result could serve as a guideline to efficiently employ this
bug report classification process. For future work, we plan to
tackle lack of data and imbalanced dataset, the problems found
in multiclass bug report corpus. We also want to improve the
nonparametric method classification method performance.
Last, we aim generalized our result by experiment on other
project written in other programming language and different
bug tracking systems.

REFERENCES

[1] N. Bettenburg, S. Just, A. Schr¨oter, C. Weiss, R. Premraj, and T.

Zimmermann, “What makes a good bug report?” in Proc. SIGSOFT
’08/FSE-16, 2008, pp. 308–318.

[2] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G. Gu´eh´eneuc,

“Is it a bug or an enhancement?: a text-based approach to classify
change requests,” in Proc. CASCON ’08, 2008, pp. 23:304–23:318.

[3] K. Herzig, S. Just, and A. Zeller, “It’s not a bug, it’s a feature: how

misclassification impacts bug prediction,” in Proc. ICSE ’13, 2013, pp.
392–401.

[4] F. Thung, S. Wang, D. Lo, and L. Jiang, “An empirical study of bugs in
machine learning systems,” in Proc. ISSRE, 2012, pp. 271–280.

[5] N. Pingclasai, H. Hata, and K. Matsumoto, “Classifying Bug Reports to

Bugs and Other Requests Using Topic Modeling,” in Proc. APSEC’ 20,
2013 pp. 13–18.

[6] D. M. Blei and J. D. Lafferty, ”In Text Mining: Classification,

Clustering, and Applications”, Topic Models, 2009, pages 71-94.

[7] Y. W. Teh, M. I. Jordan, M. J. Beal,and D. M. Blei, “Hierarchical
dirichlet processes,” Journal of the American Statistical Association,

2004.

[8] M. F. Porter, “Readings in information retrieval,”ch. An algorithm for
suffix stripping, 1997, pp. 313–316.Report 653, Department Of

Statistics, UC Berkeley, 2003.

[9] C. Hsu and C. Lin, “A comparison of methods for multiclass support
vector machines,”in IEEE TRANSACTIONS ON NEURAL

NETWORKS, volume 13, 2002. pp 415–425.

[10] E. Shihab, A. Mockus, Y. Kamei, B. Adams, and A. E. Hassan, “High-

impact defects: a study of breakage and surprise defects,” in Proc.
ESEC/FSE ’11, 2011, pp. 300–310.

[11] H. Hata, O. Mizuno, and T. Kikuno, “Bug prediction based on fine-

grained module histories,” in Proc. ICSE ’12, 2012, pp. 200–210.

[12] A. Tamrawi, T. T. Nguyen, J. Al-Kofahi, and T. Nguyen, “Fuzzy set-
based automatic bug triaging: Nier track,” in Proc. ICSE’ 11, 2011, pp.

884–887.

[13] D. Cubranic and G. C. Murphy, “Automatic bug triage using text
categorization,” in Proc. SEKE, 2004, pp. 92–97.

	matsumoto20181031_Part23
	56_SNPD2014

