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Abstract—Bug reports play essential roles in many software 

engineering tasks. Since validity and performance of these tasks 

definitely rely on the quality of bug reports, accurate information 

from bug reports is very important. However, as found in 

previous study, significant numbers of reports classified as bug 

are not really a bug. Recent studies proposed techniques to 

automatically classify bug reports into binary classes, yet there is 

still more to desire. These bug reports can be classified into 

multiple classes, which could help to identify what these reports 

are actually about. Moreover, previous study only looks into one 

possibility of topic modeling, that is, Latent Dirichlet Allocation 

(LDA). While LDA has its advantage, parameter tuning is 

required.  In this paper, we propose a nonparametric approach   

to automatically classify bug reports with, another topic 

modeling method, Hierarchical Dirichlet Process (HDP). The 

result indicates that our nonparametric approach performance is 

comparable to the parametric one. We also examine various 

aspects of LDA to provide more thoroughly understanding of this 

process. 

Keywords—bug classification; topic modeling; bug reports; 

Hierarchical Dirichlet Process; Latent Drichlet Allocation; 
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I. INTRODUCTION  

In data mining, good quality of data are a valuable asset. 
This also applies to empirical software engineering as well. 
Since nowadays, mining data from changes and bug databases 
had become common. As bug database is built from bug 
reports, quality of bug reports are crucial to data quality [1]. 
Correctly classified bug reports will greatly help in both 
research validity and modeling performance. More detail bug 
report will also contain more information which could help in 
understanding data. On the contrary, inadequate information 
and misclassified bug reports leads to misleading research and 
misrepresenting model. However, research by Antoniol et al 
found that significant number of bug reports are incorrectly 
classified [2]. Large number of reports classified as bug are not 
actually bug. They are, in fact, referring to other things such as 
a request for new feature, an improvement, or an update to 
documentation. These errors happen mostly due to reporter’s 
misunderstanding and the complicating nature of Bug Tracking 

System (BTS) used for reporting number of other requests 
beside bug [2].  

 In order to correct these miss classification, large amount of 
effort is required, especially for manual inspection [2], [3], [4]. 
For example, Herzig et al. spent totaling 725 hours, 90 days, to 
classify over 7,000 bug reports. For this very reason, a 
technique to automatically classify bug reports is desired.   

 Several studies have been proposed to tackle this problem. 
A word-based automatic classification technique [2], by 
Antoniol et al, creates classification model base on word 
corpus and got a decent classification result. A recent study 
proposed binary classification based on topic modeling 
approach [5]. This method tries to improve bug report 
classification process by substitute word-level document 
corpus with Latent Drichlet Allocation (LDA) [6] topic 
membership vectors. The experiments shown that topic-based 
model outperforms word-based in almost of the evaluated 
cases.  

 Nevertheless, some problems still remain. First is that the 
LDA approach [5] requires a parameter tuning in order to work 
optimally. This means certain amount of effort is needed.   
Second, only one dimension of topic modeling, LDA, has been 
explored. Other dimensions of topic modeling are left 
uncharted. Third, it only works on binary classification this 
abandons some useful information, which otherwise would be 
obtainable with multiclass classification. 

 In this paper, we propose a nonparametric approach to 
automatically classify bug reports with Hierarchical Dirichlet 
Process (HDP) [7] as well as a method for handle multiple 
classes bug reports. In addition, various LDA parameters are 
experimented on in order to optimize this process. All 
experiments are evaluated in term of accuracy, F-measure and 
Roc.  

 The experiments in this paper are done on the combined 
dataset of three software projects based on the previous study 
published datasets [3]. These datasets are HTTPClient, 
Jackrabbit and Lucene. All of them are open-source. Each 
document in these data is categorized in to five classes which 
are bug, improvement, request for enchantment (RFE), task 
and test. 



 The contributions of this paper can be summarized as 
follows:  

 We propose a nonparametric technique to 
automatically classify bug reports base on their 
textual information.  

 Performance between different types of topic 
modeling is compared. 

 We provide a guideline about how to optimize the 
previous LDA method. 

 Multiclass classification method base on topic 
modeling is proposed. 

This paper is organized as follows. In Section II, we discuss 
motivation behind our technique. Section III formalizes our 
method, we aim to solve. Section IV describes our 
methodology. Section V describes our experimental design. 
Experiment Results are reported in Section VI. Section VII 
discusses threats to validity in our research; followed by 
Section VIII that describes our related works. Finally, Section 
IX concludes our research and specifies future work. 

II. MOTIVATION 

A. Quality of Data 

For most of statistical and data mining tasks, good quality 
of data is essential. Mistake in data, aka noise, can leads to 
misleading and poor performance model. More specifically in 
bug classification task, decision boundary between each class 
can be significantly effect, thus make the classification model 
to be unsuitable for real world data [1]. 

Another aspect of data quality, is how detail it is. For bug 
report data, while binary classes data can contain a good 
amount of information and suitable for many tasks. The 
absence of some important information that otherwise 
obtainable with multiple classes data could be a problem. 
Using multiple classes data allows exact pinpoints of bug 
report purpose. It also allows research into many directions 
which would be impossible with binary one.             

B. Topic Modeling Approachs 

Using topic modeling to preprocess documents for bug 
report classification is advantageous  in many ways. Compared 
with manual classification, it definitely saves a huge amount of 
effort and time. Its performance is also better than bag of 
words approach [5]. There are two reasons for this. First, since 
words that frequently occur together in document corpus are 
grouped into a topic, problems of synonymy and polysemy are 
diminished. Second, it projects a very sparse vector space 
model into a more compact and meaningful form. This 
generally helps classification in both computation time and 
classifying accuracy.   

Topic modeling can be done in many different ways; in this 
paper two of popular methods are experimented. Latent 
Dirichlet Allocation (LDA) [6] is a Bayesian approach of topic 
modeling bug reports. This method views each document as 
mixture of various topics and assumes that topic distribution 

has a Dirichlet prior. Another way is Hierarchical Dirichlet 
Process (HDP) [7]. It is a nonparametric Bayesian model 
which assumes the number of topics from dirichlet process and 
allows mixture components to be shared between groups. Both 
approaches have its merit. While LDA is easier to apply since 
many tools and libraries implement it, the nonparametric nature 
of HDP is also very appealing. Experiments comparing these 
approaches are presented in Section VI.   

III. BUG REPORT MULTICLASS CLASSIFICATION 

We formalize our bug report multiclass classification in this 
section.  

The input for training our method are bug reports and 
corrective dataset that indicates the actual bug report types [2]. 
After training is complete, the output will be classification 
model capable of automatically distinguish bug reports into 
many types.    

Types of bug reports, aka classes, are descripted in Table I.  

TABLE I.  BUG REPORT TYPES (CLASSES) 

Bug Report types 

(Classes) 
Description 

Bug 

Report concerning corrective maintenance tasks 

to resolve incorrect or unexpected result of 

software system 

Request For 

Enchantment (RFE) 

Report concerning a call for a system adjustment 

which involve implement of new functionality 

(request for enhancement, feature request). 

Improvement 

(IMPR) 

Report concerning an improving task that upon 

resolution, would improve the overall 

performance of existing functionality 

Task Report concerning a general development tasks  

Test Report concerning test cases  

IV. METHODOLOGY  

Our bug report classification process is divided into two 
main phases. First is Topic Modeling phase, this phase 
converts bug reports into topics membership vectors. In second 
phase, Classification, data from previous phase are combined 
with its classes then pre-processed and used to build a 
classification models. More detail will be described in 
following subsections.     

A. Topic Modeling phase 

This phase is consist of five steps 

1) Parsing: Our bug reports come in XML format. In 

order to get a more meaningful data from these bug reports, 

we extract three textual sections: title, description and 

comments. These sections are combined into a single text file 

per bug report.    

2) Tokenization: After parsed, stream of text from bug 

reports are tokenized, broken into terms, and unnecessary 

punctuations are removed.     

3) Stemming: In this step, the tokenized terms are mapped 

and converted to their root form. Porter Stemming algorithm 

[8] is used for experiments in this paper.    



4) Removing stop words: Some words in English hold 

little to no meaning alone.  As such, they are removed. We use 

stopwords from mallet 2.0.7 stoplist. The examples of these 

words are a, both, but, by, can, and the. 

5) Topic modeling: Topic modeling is applied in this step 

in order to automatically extract topics from a text corpus. 

Two of well known topic modeling methods are applied in this 

research as we want to experiment on which approach is more 

suitable for topic modeling bug reports. 

First is LDA, which are commonly used and implemented. 

This method is probabilistic generative model and it is 

required for user to specifiy number of topics (N). Since the 

best perform N is depend on the dataset, parameter tuning on 

topic’s number  is needed. Therefore, for any experiment that 

uses LDA topic, several numbers of topics are examined.  

Second is HDP, which can assumed the number of topic 

by itself, hence reducing tuning effort.  However, as second 

level of HDP drawn samples from already drawn subset of 

first level (assuming it is 2-levels HDP), topics drawn from 

HDP are overlap. This is differrent from LDA since LDA’s 

topics are drawn separately from base distribution, thus 

making it less likely to overlap. Though the overlap nature of 

HDP can be advantageous in many situations, it can also make 

data to be harder to separate. 
After topic modeling process, the output of both 

approaches is a set of topic membership vectors. Each vector 

represents a bug report and consists of a set of topics with its 

proportion. These topics comprise of co-occurring words 

throughout the bug report textual corpus and their proportion 

indicates what topics such bug report are related. 

Figure 1 summarizes these steps in topic modeling phase. 

 

 
Figure 1 Diagram of our Topic modeling phase 

B. Classification Phase 

 In this phase, HDP and LDA data are processed separately. 
Each topic membership vectors dataset from previous phase is 
combined with corrective dataset containing bug reports actual 
classes. This process is done to prepare these data for 

classification task. Data from LDA and HDP then proceed 
independently to the following steps.  

Figure 2 summarizes these steps in Classification phase. 

 

 
Figure 2 Diagram of our Classification phase 

 

1) Pre-processing: This step will be described later in 

each experiment results subsection as the process is different 

for each experiment. 

2) Spilting Data: Pre-processed data are then spilt 

randomly into two datasets: train and test dataset. The test data 

are reserved for evaulation, while train data are passes to the 

next step. To validate our result, we employ 10-fold cross-

validation to all experiments in this paper and report average 

value of 10 runs as our result.   

3) Build classifiers: Classification models, aka classifiers, 

are built from train data. All classifiers built in this research 

utilyze multiclass classifer all-against-all, a wrapper based 

type classifier.  The wrapped classifier depends on the 

experiment. For Experiment 1, the base classifier is logistic 

regression. While in Experiment 2, three types of 

classification technique are wrapped: Alternating Decision 

Tree (ADTree), Naive Bayes and Logistic Regression. These 

classification techniques are chosen based on previous 

researches [5], [9]. Their details are described below. 

a) All-against-All: This is a wrapper based type 
classification technique that enables binary classifiers to 

handling multiclass datasets. The wrapper based nature of this 

classifier means it cannot work by itself and needs a base 

classifier to wrap on. Specifically this classifier transforms a K 

classes classification problem into K(K-1)/2 binary 

classification problems of separating between each pair of 

classes, while ignoring the rest of them. Results from these 

classifiers then are combined via voting. We choose this 
method to handle multiclass problem since it is intuitive and 

has a good performance. 

b) Alternating Decision Tree (ADTree): It is a set of 
generalized decision trees that employ boosting algorithm. 

Number of boosting iterations is user specific. For each 

iteration, the weight for each instance will be given differently 



according to the previous iteration results. The correctly 

classified instances are given reduced weight while the 

misclassified are given a larger weight. 

c) Naive Bayes: This classifier applying Bayes' theorem 

with an assumption that each other features aside from class 

are independent. 

d) Logistic Regression: A regression analysis that uses 
probability scores to measure relationship between class and 

features.  

V. EXPERIMENTAL DESIGN 

 
 Our study use combined data from three datasets in 
previous study [3]. The bug report from three open-source 
software projects from Apache: HTTPClient, Jackrabbit and 
Lucene, are combined.  The reason we used combined dataset 
is because we want to evaluate each method in cross-project 
learning environment since it can greatly reduce amount of 
effort required in preparing training data in real world 
implementation. The Class distribution of combined dataset is 
shown in Table II. 

TABLE II.   CLASS DISTRIBUTION OF COMBINED DATASET 

Bug Report 

types 

(Classes) 

Number of Reports in 

 each class 

Percentage of Reports in 

each class 

Bug 2,718 49.96% 

Improvement 

(IMPR) 
2,092 38.46% 

Request For 

Enchantment 

(RFE) 

337 6.19% 

Task 214 3.93% 

Test 79 1.45% 

Total 5,440 100.00% 

 

 Our experiments are divided into two parts: LDA-HDP 
comparison in Experiment 1, then optimization of LDA in 
Experiment 2. All experiments in this paper are evaluated by 
accuracy, F-measure and receiver operating characteristic 
(ROC).  

VI. EXPERIMENT RESULTS 

A. Experiment 1: Comparing LDA and HDP performance 

 We want to compare LDA and HDP performance in this 
experiment, so aside from using LDA and HDP, all other 
parameters here are identical.   

 LDA and HDP topic membership vectors from Topic 
Modeling phase are independently processed. After combined 
with corrective dataset, both datasets are pre-processed. Here, 
the values in topic dimensions of each instance are occurrence 
of words from that topic divided by the sum of word 
occurrences from all topics of that instance. Note that this sum 

is not the same as a total word occurrence count for that 
instance as two different topics may have some identical words. 

 The pre-processed datasets are then spilt into train and test 
dataset. Then train datasets are used to build a multiclass 
classification model; in this experiment, All-against-all 
classifiers are built with Logistic Regression as base. 

 The result for Experiment 1 is shown in Table III where 
overall performance is presented in upper table. The first 
column of the upper table is evaluation measures. Other 
consecutive columns are grouped into results from LDA and 
HDP. For LDA, the three columns represent different numbers 
of topics which are 25, 50 and 100 respectively. As for HDP, 
since the number of topics for each run is not identical, we 
report the result from 3 runs of HDP in the following columns. 

  For the lower table, F-measure in each class is shown here. 
Bug report types or classes are in the first column while the 
other columns are identical to the one in the upper table. 

TABLE III.  PERFORMANCE COMPARISON BETWEEN LDA AND HDP 

 Overall Performance 

  LDA HDP 

  
25 50 100 1 2 3 

topics topics topics run run run 

Accuracy 62.94% 64.38% 67.04% 63.57% 63.99% 63.62% 

F-

measure 
0.591 0.611 0.641 0.599 0.604 0.601 

Roc 0.766 0.785 0.807 0.764 0.767 0.768 

Number 

of Topics 
25 50 100 42 46 47 

 F-measure for each Type of Bug Report 

BUG 0.729 0.743 0.767 0.733 0.734 0.732 

IMPR 0.584 0.605 0.639 0.598 0.607 0.603 

RFE 0.006 0.034 0.09 0.006 0 0.006 

TASK 0.026 0.1 0.091 0.052 0.077 0.066 

TEST 0.024 0.1 0.229 0.065 0.068 0.022 

 

 As we see in Table III, LDA with 50 and 100 topics 
perform better than HDP and the trend seems to go up as the 
number of topics is increased. This can be interpreted in two 
ways. First, performance of classifier built from LDA topics 
will increase more and more as the number of topics increased; 
or second, the performance will increase until the number of 
topics reach a certain point then it will start to drop. This 
question is answered in Experiment 2, which indicates that 
second interpretation is right. Therefore we can summarize that 
with proper number of topics tuning, LDA performance is 
better than HDP. While this make HDP seems unsuitable for 
this task, it still has its use, as its performance is still 
comparable with classifier built from LDA and it requires no 
parameter. 

 The F-measure in each class from Table III demonstrates 
that for this dataset both LDA and HDP suffer from lack of 



data and imbalance dataset problems. The F-measure for the 
three minority classes are  terrible. So measure for handling 
this problem is needed, the interesting approaches are sampling 
and cost-sensitive technique. 

B. Experiment 2: Characteristics of LDA and its 

optimization  

 As for Experiment 2, we want to search for an answer for 
two questions. First is whether LDA performance can 
increased unlimitedly with the increase number of topics or it 
will start to drop at some point. Second question is how to 
optimize LDA for the optimum performance. This is achieved 
by varying numbers of topics (N), pre-processing methods and 
classifiers.  

 The numbers of topics in this experiment start from 50 
topics and increase by 50 until it reaches 200. After that, we 
examine on every 100 topics until it reaches 600. 

 Three pre-processing methods are experimented on. First, 
simple count of words occurrences in each topic is used as 
value in topic dimensions.  Second, we use the existence of 
words in the topic, the value will be 1 if for that bug report 
there is an occurrence of words in that topic and will be 0 if a 
word from that topic is not found. Third, the pre-processing 
method used in Experiment 1 is used. 

 Three type classifiers used as base in this experiment. They 
are describes below. 

 The results for Experiment 2 are shown in Table IV, V and 
VI. The Table IV shows accuracy, Table V shows weight F-
measure and Table VI show Roc. Each table aligns in similar 
way. First column, N is the Number of LDA topics; the rest of 
columns are grouped base on their preprocessing. Count is 
simple count of words occurrence, Exist use the existence of 
word and Ratio is the pre-processing method used in 
Experiment 1. Each pre-processing column consists of three 
sub-columns that indicate used classification techniques, 
ADTree for Alternating Decision Tree, NB for Naive Bayes 
and LR for Logistic Regression. The black cell means that 
experiment on that cell position take too long to finish, thus left 
blank. The best result for each sub-column is marked with grey 
color.  

TABLE IV.  ACCURACY OF THE LDA TOPIC-BASED CLASSIFIER 

 

Count [integer,0-N] Exist [boolean,0/1] Ratio [double,0-1] 

N 

AD 

Tree NB LR 

AD 

Tree NB LR 

AD 

Tree NB LR 

50 0.62 0.24 0.61 0.60 0.53 0.61 0.62 0.34 0.64 

100 0.62 0.32 0.63 0.61 0.52 0.63 0.64 0.35 0.67 

150 0.62 0.50 0.63 0.59 0.51 0.62 0.63 0.39 0.67 

200 0.61 0.50 0.63 0.60 0.50 0.63 0.62 0.40 0.67 

300 0.62 0.51 0.62 0.60 0.50 0.61 0.61 0.42 0.63 

400 0.61 0.52 0.62 0.61 0.51 NA 0.62 0.46 0.63 

500 0.61 0.51 NA 0.60 0.51 NA 0.60 0.49 0.60 

600 0.60 0.52 NA 0.60 0.50 NA 0.61 0.49 NA 

AVG 0.61 0.45 0.62 0.60 0.51 0.62 0.62 0.43 0.65 

TABLE V.  F-MEASURE OF THE LDA TOPIC-BASED CLASSIFIER 

 

Count [integer,0-N] Exist [boolean,0/1] Ratio [double,0-1] 

N 

AD 

Tree NB LR 

AD 

Tree NB LR 

AD 

Tree NB LR 

50 0.59 0.29 0.56 0.56 0.53 0.58 0.58 0.40 0.61 

100 0.58 0.36 0.60 0.57 0.52 0.60 0.60 0.41 0.64 

150 0.59 0.43 0.61 0.56 0.52 0.60 0.60 0.44 0.65 

200 0.57 0.44 0.61 0.57 0.51 0.62 0.59 0.45 0.65 

300 0.59 0.45 0.59 0.56 0.51 0.60 0.58 0.47 0.62 

400 0.58 0.46 0.62 0.57 0.51 NA 0.59 0.49 0.63 

500 0.58 0.45 NA 0.56 0.53 NA 0.57 0.52 0.61 

600 0.56 0.46 NA 0.56 0.51 NA 0.58 0.52 NA  

AVG 0.58 0.42 0.60 0.56 0.52 0.60 0.59 0.47 0.63 

TABLE VI.  ROC OF THE LDA TOPIC-BASED CLASSIFIER 

 

Count [integer,0-N] Exist [boolean,0/1] Ratio [double,0-1] 

N 

AD 

Tree NB LR 

AD 

Tree NB LR 

AD 

Tree NB LR 

50 0.74 0.59 0.75 0.72 0.69 0.74 0.74 0.68 0.79 

100 0.75 0.59 0.78 0.73 0.70 0.76 0.76 0.66 0.81 

150 0.75 0.59 0.77 0.72 0.70 0.77 0.76 0.69 0.81 

200 0.74 0.59 0.77 0.72 0.71 0.78 0.75 0.66 0.81 

300 0.74 0.59 0.74 0.72 0.71 0.76 0.73 0.67 0.78 

400 0.74 0.59 0.76 0.73 0.71 NA 0.75 0.66 0.79 

500 0.73 0.60 NA 0.72 0.73 NA 0.73 0.68 0.78 

600 0.72 0.60 NA 0.72 0.72 NA 0.73 0.68 NA  

AVG 0.74 0.59 0.76 0.72 0.71 0.76 0.74 0.67 0.80 

 

 From ADTree and Logistic Regression columns of these 
tables, we can see that the performance of LDA topic-based 
classification model does not increase with the number of LDA 
topics. Instead, the performance will increase until reach the 
certain point depending on dataset, then it starts to drop. This is 
because too much increase in number of topics will lead to too 
sparse dataset and a lot of uninformative feature. As for some 
Naive Bayes columns that the best perform number of topics 
are 500 and 600, this is due to slower increase trend of Naive 
Bayes—which means that they have not yet reach the optimum 
performance.    

 When comparing performance by varying pre-processing 
methods, the Ratio method is the most promising one. Both 
ADTree and Logistic Regression perform best with this pre-
processing while Naive Bayes on the other hand, prefers Exist 
method.    

 From these three classification techniques, Logistic 
Regression achieves the best evaluation scores in all three 
measurements: accuracy, F-measure and Roc. Though when 
the number of topics is exceed 300, its run time increases 
tremendously. In this regard, ADTree runtime is doing a lot 
better. Its runtime is more reasonable with large number of 
topics and its classifying performance is still comparable to the 
best performs logistic regression. As for Naive Bayes, although 



it got the fastest run time, its classifying performances is 
significantly worse than the other two techniques.    

 Therefore, for these mentioned reasons. We recommend 
using Ratio for pre-processing, using all-against-all with 
Logistic Regression as base for classification when the size of 
dataset is small while using ADTree with bigger dataset. As for 
the appropriate number of topics, it depends on the dataset but 
start from smaller N value is generally better for both Logistic 
Regression and ADTree. 

VII. THREATS TO VALIDITY 

  This research experiments on published dataset from 
previous study. Although data we use are manual inspected 
with a fixed set of rules, some errors might still occur. The 
rules for manual inspection is also depend on individual 
perspective which could be different for each person. These 
might cause data to change thus cause our classifier to produce 
different results. 

 Some of processes in our research involve random value. 
For example, HDP and 10-fold cross-validation are both 
random process. Thus, although we try to repeat our 
experiment as much as possible to ensure the validity of our 
results, we cannot guarantee that our results are optimal. 

 Experiments are done on limited research subject. All 
bug reports in our combined dataset come from projects written 
in Java and using JIRA bug tracker which might not be 
representative for other programming language or bug tracker 
system.  

VIII. RELATED WORKS 

Many software engineering tasks use data mining to mine 
important knowledge from bug reports. The task, such as bug 
prediction [10], [11] uses bug reports, machine-learning and 
statistical analysis to identify pieces of code likely to contain 
bugs. Triaging reported bugs [12], [13] is another important 
task using bug reports. Since quality of data definitely affect 
the performance of data mining task, quality of bug report is 
crucial. However, significant number of bug reports is actually 
misclassified which will affect validity of research that works 
on these reports. Several researches [2], [3], [5] are try to 
address this misclassification problem. Some of them use 
manual inspection to identify misclassified reports [2], [3]. 
While the most recent one [5] employs topic modeling to 
extract textual information from bug reports, build 
classification model from correctly classified reports then uses 
this model to automatically classify uncorrected or  
unclassified reports. While this topic modeling method could 
work on binary classification, we notice that actual report from 
bug tracking system contain more than one types of report; 
thus, some information is lost when reports are transformed to 
binary class. Moreover, even though the process is automatic, 
some parameter tuning is required for number of topics. Our 
paper addresses these problems and tries to give a guideline for 
optimizing the process.     

IX. CONCLUSION 

In this paper, we proposes a method for automatically 
classify bug reports base on its textual information without the 
need to do a parameter tuning. This further reduces time and 
effort needs to process these bug report. The result from our 
experiment demonstrates that this nonparametric method 
performance is comparable, though lowers, to the parametric 
one. We also experiment on how to optimize the bug report 
classification process that use parametric method to topic 
modeling bug reports. The experiment are done on vary topic 
numbers, pre-processing methods and classification technique. 
The result could serve as a guideline to efficiently employ this 
bug report classification process. For future work, we plan to 
tackle lack of data and imbalanced dataset, the problems found 
in multiclass bug report corpus. We also want to improve the 
nonparametric method classification method performance. 
Last, we aim generalized our result by experiment on other 
project written in other programming language and different 
bug tracking systems.  
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