

 奈良先端科学技術⼤学院⼤学 学術リポジトリ

Nara Institute of Science and Technology Academic Repository: naistar

Title Bug report recommendation for code inspection

Author(s) Fujiwara, Shin; Hata, Hideaki; Monden, Akito; Matsumoto, Kenichi

Citation
SWAN 2015 : 2015 IEEE 1st International Workshop on Software

Analytics, 2 March 2015, Montreal, QC, Canada

Issue Date 2015

Resource Version author

Rights

© 2015 IEEE. Personal use of this material is permitted. Permission from

IEEE must be obtained for all other uses, in any current or future media,

including reprinting/republishing this material for advertising or

promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component

of this work in other works.

DOI 10.1109/SWAN.2015.7070481

URL http://hdl.handle.net/10061/12739

Bug Report Recommendation for Code Inspection

Shin Fujiwara∗, Hideaki Hata∗, Akito Monden∗, Kenichi Matsumoto∗
∗Graduate School of Information Science

Nara Institute of Science and Technology, Japan
Email: {fujiwara.shin.fe5, hata, akito-m, matumoto}@is.naist.jp

Abstract—Large software projects such as Mozilla Firefox and
Eclipse own more than ten thousand bug reports that have been
reported but left unresolved. To utilize such a great amount of
unresolved bug reports and accelerate bug detection and removal,
we propose to a way recommend programmers a bug report that
is likely to contain failure descriptions related to a source file
being inspected. We employ the vector space model (VSM) to
make a relevancy ranking of bug reports to a given source file.
The result of an experiment using data of three open source
software projects showed that the accuracies of recommendations
ranged from 21.74% to 60.05% in terms of the percentage of
recommendations that contained relevant bug reports in a top 10
recommended list.

I. INTRODUCTION

Code inspection has been considered as a most cost ef-
fective way to discover bugs in source code. It has been
shown in many articles that inspection can discover and remove
much more bugs per man-hour than other competing methods
such as testing and static code analysis [1]–[3]. On the other
hand, inspection is a hard and brain-exhausting work, and it
eats up busy peoples’ time. Indeed, many companies do not
do many inspections although everybody knows their value
[4]. Therefore, there still exists a great need for an effective
support to make inspections more easy and feasible. To support
inspection processes, various methods have been proposed
including reading techniques [5]–[7], supporting distributed
meetings [8], face-to-face meetings [9] and phased inspections
[10], supporting a decision as to whether or not a detected
defect is really a defect [11], and so on.

As a new way to support inspections, this paper focuses
on accumulated (unresolved) bug reports, which have not been
noticed in past studies, but we consider them to have a great
potential to support finding bugs during inspections. Generally,
in a large software project, many bug reports are posted and
accumulated everyday but most of them remain unresolved
although they may contain useful information to find bugs. For
example, in case of Mozilla Firefox, more than ten thousands
bug reports are reported but still remain resolved.

To utilize such a great amount of unresolved bug reports,
we propose to recommend an inspector a bug report that is
relevant to a source file being inspected. Obviously, finding
bugs becomes much easier if the bug report describes a failure
caused by an existing bug (fault) in the source file. To identify
a relevant bug report, this paper employs the vector space
model (VSM) to represent both bug reports and a source file,
and to make a relevancy ranking of bug reports based on a
query vector of a given source file. We use a standard natural
language processing procedure such as tokenizing, reserved
word removal and stemming.

Bug report recommendation is a proposal of new scenario
of code inspection with related bug reports, but to whom and
when is this technique needed? Currently, bug reports are
consumed with the process of manual selection, assignment,
working on code, reviewing, and so on. On the other hand,
developers work on code in other development tasks, and they
should be familiar with such code. We propose a new bug
report processing cycle by asking such developers to solve
related bug reports.

As a first step to evaluate the feasibility of our proposal, we
conducted an experiment focusing on source files that actually
had a relevant (unresolved) bug report, and evaluated the ac-
curacy of recommendation derived from available unresolved
bug reports. We used data from three open source software
projects, assuming that recommendation takes place every one
month for each project. The results show that our technique
can provide appropriate bug reports for 21.74% to 60.05% of
source codes in the top ten rankings.

II. RELATED WORK

Although the links between source code and bug reports
are not often recored explicitly in repositories, such linking
information is valuable for understanding the context of source
code and bugs. For the purpose of mining software repositories
(MSR), that is, for further research, several techniques have
been proposed to finding such links in the existing source code
and bug repositories [12]–[14]. These techniques are executed
as batch processes. Since all bug reports and source code are
recorded in repositories, various information can be utilized,
such as times, authors (developers), commit messages, and
other meta-data of bug reports.

In the development phase, such linking information is
expected to be beneficial too. IR (information retrieval)-based
bug localization returns relevant source code when users give
bug reports as queries. Relevant source code can be considered
as bug-related source code. Since this task runs with evolving
repositories, it can be online processing, that is, the task runs
with incomplete bug repositories and comments sometimes
without comments. Because of the lacks of complete infor-
mation, TR (text retrieval) techniques have been proposed for
IR-based bug localization. TR techniques are used for finding
similar documents in corpus.

Rao and Kak compared several types of TR techniques
including unigram model (UM), vector space model (VSM),
latent semantic analysis model (LSA), latent Dirichlet alloca-
tion (LDA), and cluster based document model (CBDM), and
reported that simple text models such as UM and VSM are
more effective than other models [15]. Zhou et al. proposed

Source'code'file

	

Split'by'space'
Stemming Measure'similarity'

'
Calculate'

'cosine'similarity'Extract'iden9fy'
Stemming

Vectorize'

Vectorize'

Bug'report'ID

#000001
#000002
#000003

Rank

1
2
3

Fig. 1. Overview of bug report recommendation

BugLocator that ranks files based on the text similarity be-
tween the given bug report and source code with revised vector
space model (rVSM) [16]. The results showed BugLocator can
find relevant buggy files for more than 60% Eclipse bugs in the
top ten ranking. Tantithamthavorn et al. studied the impact of
the granularity on bug localization, and reported that function-
level bug localization outperforms class-level bug localization
and required 7 times less effort to find the first relevant
source code entity [17]. For improving the performance of
TR-based bug localization, recent studies made use of various
information, such as structured information on code constrtucts
[18], segmentation and stack-trace information [19], and API
documentation [20].

In this paper, we propose bug report recommendation,
which is also an online processing task. Similar to bug localiza-
tion, it adopts TR techniques to find links between source code
and bug reports. Bug report recommendation finds relevant
bug reports when a file of source code is given contrary to
bug localization. To the best of our knowledge, this is the first
study to propose the approach of bug report recommendation.

III. BUG REPORT RECOMMENDATION

A. Overview

Given a source code file, bug report recommendation ranks
bug reports based on the textual similarity between the initial
source code and bug reports. Figure 1 shows the overview of
our approach. From both bug reports and source code, text
information is extracted. We collect titles, descriptions and
discussions from bug reports, and split the text by space.
Stop words are removed. We perform lexical analysis for
each source code file, and collect only lexical tokens. After
these preprocessing, both text data are converted to the feature
vectors. Similarities are calculated with feature vectors, and
the ranks of bug reports are presented in descending order of
similarities.

For bug report recommendation, queries of source code
files are selected from the latest versions in selected snapshots,
and relevant bug reports are searched from the groups of bug
reports that has been reported but not been fixed.

B. Similarity Measurement

We use vector space model (VSM) for calculating the
similarities between source code and bug reports since VSM
is reported to be effective in bug localization. In VSM,
each source code file or bug report is represented as an n-
dimensional vector, where n is the number of unique index
terms appearing in all the documents (d) and query (q),
and wt is the weight of the i-th index term in the vector
< w1, w2, ..., wn > defined as follows.

wt∈d = tftd × idft = (log ftd + 1)× log
#docs

nt

In the above Equation, tf refers to the frequency of index
term occurrences in a document and if refers to the frequency
of index term occurrences over the entire collection of doc-
uments. Among many variations of weights, the logarithmic
variant was used because it can lead to better performance. A
typical formula for tf and idf are represented as follows.

tf(t, d) =
ftd

#terms
, idf(t) = log(

#docs

nt
)

where t represents an index term, d represents a particular
document, ftd is the number of term t occurs in document d.
N is the total number of documents, and nt is the number of
documents in which term t occurs. After transforming source
code file and bug reports into vectors, we calculate the degree
of similarity between a given source code file and bug report
corpus as follows.

Similarity(q, d) = cos(q, d) =
V⃗q · V⃗d

|V⃗q||V⃗d|

With this equation, bug reports with the highest scores are
considered as the most textually similar to a given source code
file.

IV. EXPERIMENT

A. Target Projects

We selected three open-source projects for our study:
Eclipse Communication Framework (ecf), Eclipse Pulug-in
Development Enviroment UI (eclipse.pde.ui), Eclipse Java
Development Tools Core (eclipse.jdt.core). All projects are
written in java and have relatively long development histories.
Table I presents the number of commits (from 10k to 21k),
first commit date (from 2001-5 to 2004-12), and the number
of bug report (from 400 to 3k).

TABLE I. TARGET PROJECT

Project #commit First commit date #Bug report
ecf 10786 2004/12/3 1912

eclipse.jdt.core 21055 2001/6/5 51687
eclipse.pde.ui 11270 2001/5/24 14973

B. Data Collection

We collected bug reports from the Eclipse bug tracking
system, and obtained source code from their Git repositories.
Correct links between source code files and bug reports were
identified based on the SZZ algorithm, which is designed to
identify bug-introducing commits by mining version control
repositories and bug report repositories [12]. Linked source
code files were used as the queries of this experiment.

For each month, we collected a set of source code files and
bug reports. Source code files were selected at the first snapshot
of each month. Selected source code files were buggy files to
be fixed later. Candidate bug reports are those that have been
reported before but not fixed at the time of the snapshot.

C. Evaluation Metrics

We used the following two metrics to evaluate the effec-
tiveness of our bug report recommendation.

Mean Reciprocal Rank (MRR) is a statistic for evaluating
a process that produces a list of possible responses to a query.
The reciprocal rank of a query is the multiplicative inverse of
the rank of the first correct answer. The mean reciprocal rank
is the average of the reciprocal ranks of results of a set of
query Q:

µ =
1

|Q|
[∑

q∈Q

1

rq

]

Top N Rank is the number of source code files whose
associated bug reports are ranked in the top N (N = 1, 5, 10) of
the returned results. Given a source code file, if the top N result
contains at least one appropriate bug report, we consider the
bug report can be recommended. The higher the metric value,
the better the bug report recommendation performances.

D. Results

RQ1: How many source code files can be successfully found
relevant bug reports with bug report recommendation?

For each source code, the bug report recommendation
provide the list of relevant bug reports. We checked the ranks
of this list whether there are appropriate bug reports that
are fixed bug reports related to the given source code. We
performed the experiment for all source code files that will be
fixed later, and measured the percentages of source code files
that have been successfully recommended.

TABLE II. RESULT OF RQ1

Project MRR Top1 Top5 Top10 Median of # Bug report
ecf 0.272 15.90% 38.07% 60.05% 230

eclipse.jdt.core 0.108 6.86% 15.80% 21.74% 5860
eclipse.pde.ui 0.182 10.81% 28.15% 39.19% 812

Table II shows the summary of the results. The difficulties
of finding the appropriate bug reports depends on the number
of bug reports. For the ecf project, which has relatively small
number of bug reports, we could recommend more than 60% of
appropriate bug reports in Top 10 lists. For the eclipse.jdt.core
project, which has many bug reports to be searched, the

performance remained 20% in Top10. The result of the project
eclipse.pde.ui was intermediate.

RQ2: How does bug report recommendation perform with
different periods?

Fig. 2. Top 10 performance of every month (eclipse.jdt.core)

Fig. 3. Top 10 performance of every month (eclipse.pde.ui)

The number of target source code as query and the number
of bug reports for search vary depending on the periods. So
there is a question how bug report recommendation works in
different contexts. To answer this question, we measured the
performance of bug report recommendation in every month of
research data.

Figure 2 and Figure 3 summarize the performance in each
month. The number of source code (queries) is presented as a
bar. In the bar, successfully recommended bug reports in top
10 (hit) is represented as gray and fails (miss) are represented
as white. In addition, the number of bug reports is plotted as
a line. For eclipse.pde.ui, the number of bug reports is almost
less than 1,000 in all the periods, and we can see that the ratio
of hit is relatively high. On the contrary, for eclipse.jdt.core,
the number of bug reports is more than 1,000 in most periods,

and the performance is relatively low. For large-scale project
with many bug reports, we need to improve our technique of
filtering out irrelevant bug reports.

V. DISCUSSIONS

A. Threats to Validity

The target projects were limited to open-source software
written in Java. For external validity, there is a threat of
generalization of our result. Projects we targeted are only open-
source software projects written in Java.

Collection of correct bug report information has problems.
For construct validity, the main threat is in the phase of
collecting bug information.

B. Future Work

Our result suggests that our technique works relatively
well. Future work includes evaluating our technique in prac-
tical scenario, and improving performance of bug report rec-
ommendation by using the similar techniques of recent bug
localization, such as structured information on code constrtucts
[18], segmentation and stack-trace information [19], and API
documentation [20].

VI. CONCLUSION

This paper proposed a way to recommend to programmers
a prioritized list of unresolved bug reports to accelerate bug
detection in a given source file. Through an empirical eval-
uation using data from three open source software projects,
we confirmed that recommendation is feasible for all three
projects.

The major limitation of our current work is that we put an
assumption that there exist at least one unresolved bug report
related to the given source file. However, in an actual situation,
there is no guarantee that all source files have a related bug
report. Therefore, our future work is to automatically classify
source files into two groups: one having related bug reports,
and the other with no bug reports. If a source file is likely to
have no related bug reports, then we just do not recommend
anything. Otherwise, we conduct recommendation.

ACKNOWLEDGMENT

This study has been supported by JSPS KAKENHI Grant
Number 26540029, and has been conducted as a part of
Program for Advancing Strategic International Networks to
Accelerate the Circulation of Talented Researchers.

REFERENCES

[1] L. A. Franz and J. C. Shih, “Estimating the value of inspections and
early testing for software projects,” HEWLETT PACKARD JOURNAL,
vol. 45, pp. 60–60, 1994.

[2] J. C. Kelly, J. S. Sherif, and J. Hops, “An analysis of defect
densities found during software inspections,” J. Syst. Softw.,
vol. 17, no. 2, pp. 111–117, Feb. 1992. [Online]. Available:
http://dx.doi.org/10.1016/0164-1212(92)90089-3

[3] E. F. Weller, “Lessons from three years of inspection data,” IEEE
Softw., vol. 10, no. 5, pp. 38–45, Sep. 1993. [Online]. Available:
http://dx.doi.org/10.1109/52.232397

[4] R. L. Glass, “Practical programmer: Inspections—some
surprising findings,” Commun. ACM, vol. 42, no. 4, pp. 17–19, Apr.
1999. [Online]. Available: http://doi.acm.org/10.1145/299157.299161

[5] V. Basili, S. Green, O. Laitenberger, F. Lanubile, F. Shull, S. Srumgrd,
and M. Zelkowitz, “The empirical investigation of perspective-based
reading,” Empirical Software Engineering, vol. 1, no. 2, pp. 133–164,
1996. [Online]. Available: http://dx.doi.org/10.1007/BF00368702

[6] T. Thelin, P. Runeson, and C. Wohlin, “An experimental comparison
of usage-based and checklist-based reading,” IEEE Trans. Softw.
Eng., vol. 29, no. 8, pp. 687–704, Aug. 2003. [Online]. Available:
http://dx.doi.org/10.1109/TSE.2003.1223644

[7] M. Halling, S. Biffl, T. Grechenig, and M. Kohle, “Using reading
techniques to focus inspection performance,” in Proc. of 27th Euromicro
Conf., 2001, pp. 248–257.

[8] V. Mashayekhi, J. M. Drake, W.-T. Tsai, and J. Riedl, “Distributed,
collaborative software inspection,” IEEE Softw., vol. 10, no. 5, pp. 66–
75, Sep. 1993. [Online]. Available: http://dx.doi.org/10.1109/52.232404

[9] L. Brothers, V. Sembugamoorthy, and M. Muller, “Icicle:
Groupware for code inspection,” in Proc. of 1990 ACM Conf.
on Comput. supported Cooperative Work, ser. CSCW ’90. New
York, NY, USA: ACM, 1990, pp. 169–181. [Online]. Available:
http://doi.acm.org/10.1145/99332.99353

[10] J. C. Knight and E. A. Myers, “An improved inspection technique,”
Commun. ACM, vol. 36, no. 11, pp. 51–61, Nov. 1993. [Online].
Available: http://doi.acm.org/10.1145/163359.163366

[11] K. El Emam, O. Laitenberger, and T. Harbich, “The application
of subjective estimates of effectiveness to controlling software
inspections,” J. Syst. Softw., vol. 54, no. 2, pp. 119–136, Oct. 2000.
[Online]. Available: http://dx.doi.org/10.1016/S0164-1212(00)00032-7

[12] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes?” in Proc. of 2nd Int. Workshop on Mining Softw. Repositories,
ser. MSR ’05. New York, NY, USA: ACM, 2005, pp. 1–5. [Online].
Available: http://doi.acm.org/10.1145/1082983.1083147

[13] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung, “ReLink: recovering
links between bugs and changes,” in Proc. of 8th Joint Meeting
of the European Softw. Eng. Conf. and the ACM SIGSOFT
Symp. on the Found. of Softw. Eng., ser. ESEC/FSE ’11. New
York, NY, USA: ACM, 2011, pp. 15–25. [Online]. Available:
http://doi.acm.org/10.1145/2025113.2025120

[14] A. T. Nguyen, T. T. Nguyen, H. A. Nguyen, and T. N. Nguyen,
“Multi-layered approach for recovering links between bug reports and
fixes,” in Proc. of 20th ACM SIGSOFT Int. Symp. on Found. of Softw.
Eng., ser. FSE ’12. New York, NY, USA: ACM, 2012, pp. 63:1–63:11.
[Online]. Available: http://doi.acm.org/10.1145/2393596.2393671

[15] S. Rao and A. Kak, “Retrieval from software libraries for bug
localization: A comparative study of generic and composite text
models,” in Proc. of 8th Work. Conf. on Mining Softw. Repositories,
ser. MSR ’11. New York, NY, USA: ACM, 2011, pp. 43–52.
[Online]. Available: http://doi.acm.org/10.1145/1985441.1985451

[16] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed? -
more accurate information retrieval-based bug localization based on
bug reports,” in Proc. of 34th Int. Conf. on Softw. Eng., ser. ICSE
’12. Piscataway, NJ, USA: IEEE Press, 2012, pp. 14–24. [Online].
Available: http://dl.acm.org/citation.cfm?id=2337223.2337226

[17] C. Tantithamthavorn, A. Ihara, H. Hata, and K. Matsumoto, “Impact
analysis of granularity levels on feature location technique,” in Proc.
of 1st Asia Pacific Requirements Engineering Symposium, ser. APRES
’14, 4 2014, pp. 135–149.

[18] R. Saha, M. Lease, S. Khurshid, and D. Perry, “Improving bug localiza-
tion using structured information retrieval,” in Proc. of 28th IEEE/ACM
Int. Conf. on Automated Softw. Eng., Nov 2013, pp. 345–355.

[19] C. Wong, Y. Xiong, H. Zhang, D. Hao, L. Zhang, and H. Mei, “Boosting
bug-report-oriented fault localization with segmentation and stack-trace
analysis,” in Proc. of 30th IEEE Int. Conf. on Softw. Maintenance and
Evolution, ser. ICSME ’14, October 2014, pp. 181–190.

[20] X. Ye, R. Bunescu, and C. Liu, “Learning to rank relevant files
for bug reports using domain knowledge,” in Proc. of 22nd ACM
SIGSOFT Int. Symp. on Found. of Softw. Eng., ser. FSE 2014. New
York, NY, USA: ACM, 2014, pp. 689–699. [Online]. Available:
http://doi.acm.org/10.1145/2635868.2635874

	matsumoto20181031_Part19
	52_SWAN2015

