

 奈良先端科学技術⼤学院⼤学 学術リポジトリ

Nara Institute of Science and Technology Academic Repository: naistar

Title
How we resolve conflict: an empirical study of method-level conflict

resolution

Author(s) Yuzuki, Ryohei; Hata, Hideaki; Matsumoto, Kenichi

Citation
SWAN 2015 : 2015 IEEE 1st International Workshop on Software

Analytics, 2 March 2015, Montreal, QC, Canada

Issue Date 2015

Resource Version author

Rights

© 2015 IEEE. Personal use of this material is permitted. Permission from

IEEE must be obtained for all other uses, in any current or future media,

including reprinting/republishing this material for advertising or

promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component

of this work in other works.

DOI 10.1109/SWAN.2015.7070484

URL http://hdl.handle.net/10061/12738

How We Resolve Conflict: An Empirical Study of
Method-Level Conflict Resolution

Ryohei Yuzuki∗, Hideaki Hata∗, Kenichi Matsumoto∗
∗Graduate School of Information Science

Nara Institute of Science and Technology, Japan
Email: {yuzuki.ryohei.yg6, hata, matumoto}@is.naist.jp

Abstract—Context: Branching and merging are common ac-
tivities in large-scale software development projects. Isolated
development with branching enables developers to focus their
effort on their specific tasks without wasting time on the problems
caused by other developers’ changes. After the completion of
tasks in branches, such branches should be integrated into
common branches by merging. When conflicts occur in merging,
developers need to resolve the conflicts, which are troublesome.
Goal: To support conflict resolution in merging, we aim to
understand how conflicts are resolved in practice from large-scale
study. Method: We present techniques for identifying conflicts
and detecting conflict resolution in method level. Result: From
the analysis of 10 OSS projects written in Java, we found that (1)
44% (339/779) of conflicts are caused by changing concurrently
the same positions of methods, 48% (375/779) are by deleting
methods, 8% (65/779) are by renaming methods, and that (2)
99% (771/779) of conflicts are resolved by adopting one method
directly. Conclusions: Our results suggest that most of conflicts
are resolved by simple way. One of our future works is developing
methods for supporting conflict resolution.

I. INTRODUCTION

Branching enables individual developers or developer
teams to work on their tasks separately from other devel-
opment. Changes in branches will be integrated into other
branches by merging the multiple latest commits. Even if bug
fixing or feature implementation has been completed on a
branch, the task is not considered complete until the change
has reached the other, especially main (master, trunk, or root),
branch successfully.

Although branching has become easy using the recent
distributed version control systems like Git, there remain
difficulties in merging. Merges have multiple parents, which
makes it difficult to understand changes and identify origins.
Because of these difficulties, resolving conflicts and verifying
changes are troublesome. In addition, large merging, which
include many conflicts should be especially high risk.

Phillips et al. conducted a survey composed of questions
about branching and merging for project administrators, then
they obtained the result where 54% of the respondents think
that the most significant problem about merging is conflict
[11]. It is required that we need to know the activity of conflict
resolution to discuss or suggest the means of supporting or
automation of conflict resolution. However, the way how to
resolve conflicts at method-level in practice is unrevealed. Our
goal is to survey how conflicts are resolved in real projects.

The structure of this paper is as follows. First, we introduce
related work in Section II, and our approach in Section III.

Second, we explain about target OSS projects to be surveyed
in Section IV, and obtained results in Section V. Finally, we
discuss in Section VI, and conclude in Section VII.

II. RELATED WORK

There are various studies about conflict detection and
reduction [1]–[3], [9]. For example, Apel suggested Semistruc-
tured Merge, which is independent on programming language
and reduces syntax and semantic errors [1].

Resolution is also one of the most significant problem
on conflict [9] However, previous studies before distributed
version control system becomes the mainstream are mainly
on model-level. There are few empirical studies about conflict
resolution at method-level.

Phillips conducted a survey composed of 21 questions for
about 300 project administrators to reveal how developers treat
branching and merging and what is the successful merging
strategy in practice [11]. They found purpose of use and
problem about branching and merging, and suggested current
status of merging on projects and hypothesisis of successful
parallel devdelopment strategy.

Nan defined Cost-benefit model using dependence pair
which is generated by Semantic Diff and effect of code change
by global variables and ranked method resolution priorities
when conflicts are detected on multi methods [6], [10].

These studies don’t mention the method-level knowledge
and concrete resolution action. If the way how developers
changed conflicting method is revealed, we can discuss about
optimal methods of conflict resolution.

In addition, there is a very interesting case on automatic
bug fixing. Weimer fixed program bugs automatically us-
ing genetic programming [8], [12]. However, their method
can generate nonsensical patches by random code mutations.
Therefore, Kim inspected more than 60000 human-written
patches and obtained common fix patterns. Then he fixed
program bugs using pattern-based approach [7]. Kim obtained
more reasonable bug fixing than Weimer’s by leveraging
human-knowledge. In the same way, if human-knowledge is
applyed to conflict resolution, it is possible to obtain high-
quality automation.

III. APPROACH

We analyze with the following procedure to see how
developers resolved conflicts.

1) Finding a merge commit.
2) Finding a pair of conflict commits.
3) Finding conflicted methods in conflict commits.
4) Detecting the causes of conflicts.
5) Detecting the resolutions of conflicts.

A. Merge Commits

A merging commit has at least 2 parent commits. There-
fore, it is enough to obtain such commits as merging commits.

B. Conflict Commits

We think that conflict commits are the commits in branches
that have completed each task of branches. It is natural to
consider the parents of the merge commits as the pair of
conflict commits since they are actually merged. However it is
often the case that developers create additional commits before
merging to resolve conflicts step by step. In such case, the
parent commits are not the original conflict commits.

Among many pairs of commits between two branches, we
assume that conflict commits are the pair with the largest
differences since the differences may increase during the task
completion phases, and the differences may decrease during
the merge preparation phases. In this study, we measure the
number of different methods as the differences.

Fig. 1. The differences in the pair of commits

We obtain two commits whose difference of files is largest
as candidates, and try to merge them actually. For example, in
Fig. 1, C3 and C4 are candidates because their difference of
files is the largest (44 files changed).

C. Conflicted Methods

If we operate merging with the identified conflict commits,
Git will list up conflict files. In this study we adopt Historage
[5], fine-grained version control system, to analyze histories.
Since Historage repositories store methods as files, method-
level histories can be analyzed with similar to file-level histo-
ries.

D. Causes

Git can lists up the different files between two com-
mits. Differences have 3 attributes—ADD, RENAME, and
DELETE, which means added file, renamed file, deleted file.
We compare the differences between merging commits (M),
their conflict commits (C1, C2), and their original commits
(O). The causes can be summarized as follows:

• CHANGE SAME POSITION Same position of the
same methods are modified.

• DELETION One of methods are deleted in one
conflict commit.

• RENAMING One of methods are renamed in one
conflict commit.

E. Resolution

Based on analyzing the contents of conflicted methods, the
resolution can be summarized as follows:

Fig. 2. 1-WAY (medhod exists in 3 commits)

Fig. 3. 1-WAY (medhod exists in 1 or 2 commits)

• 1-WAY The conflict is resolved by adopting one of
contents in conflicted methods.

• OTHER Other solutions including adopting both con-
tents or creating new code.

IV. RESEARCH TARGETS

In this section, we explain the targets of the survey. We
adopted OSS projects which are divided into methods by
Historage to survey the history of each method [5].

Historage divides java files into methods and records
packages, parameters, and body of 1 method as 1 file for each.
Therefore, the differences at method-level can be obtained by
the common way at file-level. Kataribe is a hosting service of
Historage repositories [4]. TABLE I shows the details of the
projects.

TABLE I. DETAILS OF PROJECTS IN KATARIBE

of projects conflict no conflict error other
104 10 54 36 4

“no conflict” includes the projects that any conflicts are
not detected. “error” and “other” includes the projects whose
repository cannot be obtained or part of files cannot be tracked.
We surveyed number of merging commits, conflct commits,
and conflict methods in available 10 “conflict” projects.

V. RESULTS

TABLE II shows the details of 10 “conflict” projects in
TABLE I.

TABLE II. DETAIL OF MERGING AND CONFLICT

project # of commit # of merging # of conflict
james 13581 12 1
jrobin 493 8 3
maven.plugins 39996 109 5
org.eclipse.ajdt 6563 13 1
org.eclipse.gmp.graphiti 2530 48 2
org.eclipse.jubula.core 2746 345 3
org.eclipse.paho.mqtt.java 47 3 2
org.eclipse.scout.sdk 1035 26 3
org.eclipse.stardust.ui.web 3199 12 3
org.eclipse.uml2 2705 38 7

There are a several conflicts in almost 50–40000 commits.
We need to note that there can be some hidden conflicts,
which cannot be obtained by Git because other version control
systems were mainly used before 2011. There are no noticeable
correlations between the number of commits, merging, and
conflicts.

TABLE III shows the detail of conflict methods in three
conflicts of jrobin. Although there are different types of causes,
almost all of them are resolved by “1-WAY”.

TABLE III. DETAIL OF CONFLICT METHODS OF JROBIN

of conflict
methods Causes Resolutions

CHANGE
SAME

POSITION
DELET-
ION

RENAM-
ING 1-WAY OTHER

1st 1 0 1 0 1 0
2nd 364 137 168 59 363 1
3rd 228 31 194 3 228 0
total 593 168 363 62 592 1

TABLE IV shows the detail of conflict methods of all 10
projects.

TABLE IV. DETAIL CONFLICT METHODS OF 10 OSS PROJECTS

project
of conflict
methods Causes Resolutions

CHANGE
SAME

POSITION
DELET-
ION

RENAM-
ING 1-WAY OTHER

james 115 114 1 0 115 0
jrobin 593 168 363 62 592 1

maven.plugins 34 31 3 0 34 0
org.eclipse.ajdt 2 2 0 0 1 1
org.eclipse.
gmp.graphiti 4 2 1 1 3 1
org.eclipse.
jubula.core 3 3 0 0 3 0
org.eclipse.
paho.mqtt.java 6 0 4 2 6 0
org.eclipse.
scout.sdk 7 4 3 0 6 1
org.eclipse.

stardust.ui.web 9 9 0 0 9 0
org.eclipse.uml2 6 6 0 0 2 4

total 779 339 375 65 771 8

48% (375/779) of conflict methods are caused by be-
ing deleted in one or both parent commits. The ratio of
“DELETION” is higher in jrobin, org.eclipse.jubula.core, and
org.eclipse.paho.mqtt.java. Conversely, the ratio of “CHANGE
SAME POSITION” is higher in james, maven.plugins,
org.eclipse.stardust.ui.web, and org.eclipse.uml2. The ratio of
“CHANGE SAME POSITION” and “DELETION” is al-
most equal in other 2 projects, org.eclipse.gmp.graphiti, and
org.eclipse.scout.sdk. Few of them were caused by renaming.
99% (771/779) of conflict methods are resolved by adopt-

ing the content of one parent method. The ratio of “1-WAY” is
very high in all projects excepting org.eclipse.jubula.core and
org.eclipse.uml2.
Figure 4 shows an example of “OTHER” in

org.eclipse.uml2. Both of methods are conflicted at line
6, and the conflict is resolved by adopting them. Like this,
these methods are resolved by combining conflict code—none
of them by using new code which does not exist in both.

VI. DISCUSSION
When resolving conflicts, developers usually use merge

tools which support resolving them by GUI like kdiff3, or
DiffMerge. Most of them visualize the parts where conflicts
are detected and display them. Developers fix code using those
information. That is the reason why there are no case that new
code which are not written in both are not used. However, in
the case that conflicts are detected in multiple methods, it is
one of the most significant problem that developers must select
which method shoud be resolved at first. It is impossible to
obtain a satisfactory resolution by only such information [10].
Like that, because existing merging tools don’ t give enough
information for conflict resolution, it is considered that they
have no choice but to adopt one.
The proportion of causes is different for each project. This

means that trends of conflicts are affected by characteristics
of projects — especially human elements like number of
developers who are involed in project or difference of commu-
nication shoud be strongly related. We need to analyze some
characteristics of projects to find correlative metrics.
In this study, we use difference of files as metrics to detect

conflict commits. However, it shoud be important to use not
only the number of changed files but also other metrics like the
number of changed code lines. It is also important to survey
transition of gap in log for each merging commit to verify
whether the hypothesis in III-B is correct.
Almost all of the conflict methods are resolved by adopting

one method. If some prediction models are structed from data
obtained from this study and predict which methods tend to
be adopted, it may be possible to extract correlative metrics
and contribute supporting for conflict resolution.

VII. CONCLUSION
We surveyed how conflict methods are resolved on a

large scale and obtained the proportion of conflict causes and
resolutions — almost all of the conflict methods are resolved
by adopting one then discarding another.
We plan to survey more projects or consider the validity

of our approach, to consider more detailed classification about

Fig. 4. Example of other: org.eclipse.uml2

resolution, to survey some characteristics of projects to find
correlative metrics, and to generate prediction model for sup-
port system for conflict resolution.

ACKNOWLEDGMENT

This study has been supported by JSPS KAKENHI Grant
Number 26540029, and has been conducted as a part of
Program for Advancing Strategic International Networks to
Accelerate the Circulation of Talented Researchers.

REFERENCES
[1] S. Apel, C. Kastner, and C. Lengauer. Language-independent and au-

tomated software composition: The featurehouse experience. Software
Engineering, IEEE Transactions on, Vol. 39, No. 1, pp. 63–79, Jan
2013.

[2] Sven Apel, Olaf Leß enich, and Christian Lengauer. Structured merge
with auto-tuning: Balancing precision and performance. In Proceedings
of the 27th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2012, pp. 120–129, New York, NY, USA, 2012.
ACM.

[3] Sven Apel, Jörg Liebig, Benjamin Brandl, Christian Lengauer, and
Christian Kästner. Semistructured merge: Rethinking merge in revision
control systems. In Proceedings of the 19th ACM SIGSOFT Sympo-
sium and the 13th European Conference on Foundations of Software
Engineering, ESEC/FSE ’11, pp. 190–200, New York, NY, USA, 2011.
ACM.

[4] Kenji Fujiwara, Hideaki Hata, Erina Makihara, Yusuke Fujihara, Naoki
Nakayama, Hajimu Iida, and Ken ichi Matsumoto. Kataribe: A hosting
service of historage repositories. In 11th Working Conference on Mining
Software Repositories (MSR 2014), pp. 380–383, 5 2014. Hyderabad,
India.

[5] Hideaki Hata, Osamu Mizuno, and Tohru Kikuno. Historage: Fine-
grained version control system for java. In Proc. of 12th International
Workshop on Principles on Software Evolution and 7th ERCIM Work-
shop on Software Evolution (IWPSE-EVOL2011), pp. 96–100, 9 2011.
Szeged, Hungary.

[6] D. Jackson and D.A. Ladd. Semantic diff: a tool for summarizing the
effects of modifications. In Software Maintenance, 1994. Proceedings.,
International Conference on, pp. 243–252, Sep 1994.

[7] Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. Au-
tomatic patch generation learned from human-written patches. In Pro-
ceedings of the 2013 International Conference on Software Engineering,
ICSE ’13, pp. 802–811, Piscataway, NJ, USA, 2013. IEEE Press.

[8] Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley
Weimer. A systematic study of automated program repair: Fixing 55
out of 105 bugs for $8 each. In Proceedings of the 34th International
Conference on Software Engineering, ICSE ’12, pp. 3–13, Piscataway,
NJ, USA, 2012. IEEE Press.

[9] T. Mens. A state-of-the-art survey on software merging. IEEE Trans.
Softw. Eng., Vol. 28, No. 5, pp. 449–462, May 2002.

[10] Nan Niu, Fangbo Yang, J.-R.C. Cheng, and S. Reddivari. A cost-benefit
approach to recommending conflict resolution for parallel software
development. In Recommendation Systems for Software Engineering
(RSSE), 2012 Third International Workshop on, pp. 21–25, June 2012.

[11] Shaun Phillips, Jonathan Sillito, and Rob Walker. Branching and
merging: An investigation into current version control practices. In
Proceedings of the 4th International Workshop on Cooperative and
Human Aspects of Software Engineering, CHASE ’11, pp. 9–15, New
York, NY, USA, 2011. ACM.

[12] Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie
Forrest. Automatically finding patches using genetic programming. In
Proceedings of the 31st International Conference on Software Engi-
neering, ICSE ’09, pp. 364–374, Washington, DC, USA, 2009. IEEE
Computer Society.

	matsumoto20181031_Part18
	51_SWAN2015

