

 奈良先端科学技術⼤学院⼤学 学術リポジトリ

Nara Institute of Science and Technology Academic Repository: naistar

Title
Learning to Generate Pseudo-Code from Source Code Using

Statistical Machine Translation (T)

Author(s)
Oda, Yusuke; Fudaba, Hiroyuki; Neubig, Graham; Hata, Hideaki;

Sakti, Sakriani; Toda, Tomoki; Nakamura, Satoshi

Citation
ASE 2015 : 2015 30th IEEE/ACM International Conference on

Automated Software Engineering, 9-13 Nov. 2015, Lincoln, NE, USA

Issue Date 2015

Resource Version author

Rights

© 2015 IEEE. Personal use of this material is permitted. Permission from

IEEE must be obtained for all other uses, in any current or future media,

including reprinting/republishing this material for advertising or

promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component

of this work in other works.

DOI 10.1109/ASE.2015.36

URL http://hdl.handle.net/10061/12734

Learning to Generate Pseudo-code from Source
Code using Statistical Machine Translation

Yusuke Oda, Hiroyuki Fudaba, Graham Neubig, Hideaki Hata,
Sakriani Sakti, Tomoki Toda, and Satoshi Nakamura

Graduate School of Information Science, Nara Institute of Science and Technology
8916-5 Takayama, Ikoma, Nara 630-0192, Japan

{oda.yusuke.on9, fudaba.hiroyuki.ev6, neubig, hata, ssakti, tomoki, s-nakamura}@is.naist.jp

Abstract—Pseudo-code written in natural language can aid
the comprehension of source code in unfamiliar programming
languages. However, the great majority of source code has no
corresponding pseudo-code, because pseudo-code is redundant
and laborious to create. If pseudo-code could be generated
automatically and instantly from given source code, we could
allow for on-demand production of pseudo-code without human
effort. In this paper, we propose a method to automatically
generate pseudo-code from source code, specifically adopting the
statistical machine translation (SMT) framework. SMT, which
was originally designed to translate between two natural lan-
guages, allows us to automatically learn the relationship between
source code/pseudo-code pairs, making it possible to create a
pseudo-code generator with less human effort. In experiments,
we generated English or Japanese pseudo-code from Python
statements using SMT, and find that the generated pseudo-code
is largely accurate, and aids code understanding.

Keywords: Algorithms, Education, Statistical Approach

I. INTRODUCTION

Understanding source code is an essential skill for all
programmers. This is true for programmers at all levels, as it is
necessary to read and understand code that others have written
to, for example, work efficiently in a group or to integrate and
modify open-source software. On a macro level, there are a
variety of tools to aid engineers in comprehending the overall
structure of programming projects. For example, DeLine et al.
proposed a tool that allows programming experts to evaluate
large-scale cooperative software engineering projects [1]. Rah-
man et al. also proposed a system that recommends methods
for fixing source code when it does not work as expected [2].

On a more fine-grained level, when we try to understand the
behavior of source code in detail, we usually need to read each
statement in the source code carefully, and understand what
each statement does. Of course, thoroughly reading and under-
standing source code of existing software is possible (although
time consuming) for veteran programmers. In contrast, this
process is much more difficult for beginner programmers or
programmers who are learning a new programming language.
Such inexperienced readers sometimes do not understand the
grammar and style of the source code at hand, so reading
source code written in such languages imposes a large burden.

On the other hand, in educational texts about programming
and algorithms, it is common to use “pseudo-code,” which
describes the behavior of statements in the program using
natural language (usually in English, or the programmers’
mother tongue) or mathematical expressions. Pseudo-code aids

comprehension of beginners because it explicitly describes
what the program is doing, but is more readable than an
unfamiliar programming language.

Fig. 1 shows an example of Python source code, and En-
glish pseudo-code that describes each corresponding statement
in the source code.1 If the reader is a beginner at Python
(or a beginner at programming itself), the left side of Fig.
1 may be difficult to understand. On the other hand, the
right side of the figure can be easily understood by most
English speakers, and we can also learn how to write specific
operations in Python (e.g. if we want to check if the type of
the variable is not an integer, we can see that we write “if
not isinstance(something, int):”). In other words,
pseudo-code aids the “bottom-up comprehension” [3] of given
source code.

However, in real programming environments, pseudo-code
corresponding to source code rarely exists, because pseudo-
code is not necessary once a programmer has a good grasp
of the programming language and project. In addition, indis-
criminately inserting pseudo-code into existing source code
manually would impose a large burden on programmers. On
the other hand, if pseudo-code could be generated automati-
cally, this burden could be reduced, and pseudo-code could
be created for actual programming projects. If we want to
practically use automatically generated pseudo-code, we can
say that satisfying the following 4 points is required:

• pseudo-code is accurate enough to describe the behav-
ior of the original source code,

• pseudo-code should be provided upon the readers’
request,

• pseudo-code should be automatically generated to
avoid the burden on programmers, and

• the method to generate pseudo-code should be effi-
cient, to avoid making the readers wait.

In this study, we propose a method to automatically gener-
ate pseudo-code from source code. In particular, our proposed
method makes two major contributions:

1While there are many varieties of pseudo-code, in this paper we assume
that pseudo-code is “line-to-line” translation between programming and natural
languages as shown by Fig. 1. This assumption clearly defines the relationship
between source code and pseudo-code and is a convenient first step towards
applying machine translation to this task.

Fig. 1. Example of source code written in Python and corresponding pseudo-code written in English.

• To our knowledge, this is the first method for gen-
erating pseudo-code that completely describes the
corresponding source code. This should be contrasted
with previous work on comment generation, which
aims to help experienced engineers by reducing the
amount of source code to be read, and is described in
§II.

• We propose a framework to perform pseudo-code
generation using statistical machine translation (SMT).
SMT is a technology that can automatically learn how
to translate between two languages, and was designed
for translating between natural languages, such as En-
glish and Japanese. Our proposed method of applying
this to pseudo-code generation has several benefits,
the largest of which being that it is easy to extend the
generator to other combinations of programming and
natural languages simply by preparing data similar to
that in Fig. 1.

In this paper, we first refer to related works on automatic
comment generation and clarify the differences and the merits
of our method (§II). Second, we describe the summary of two
SMT frameworks to be used in this study (§III). Next, we
explain how to apply the SMT framework to pseudo-code gen-
eration (§IV), how we gather source code/pseudo-code parallel
data to train our pseudo-code generation system (§V), and the
method to evaluate the generated pseudo-code using automatic
and code understanding criteria (§VI). In experiments, we
apply our pseudo-code generation system to the Python-to-
English and Python-to-Japanese pseudo-code generation tasks,
and we find that providing automatically generated pseudo-
code along with the original source code makes the code
easier to understand for programming beginners (§VII). We
finally mention the conclusion and future directions, including
applications to other software engineering tasks (§VIII).2

II. RELATED WORKS

There is a significant amount of previous work on au-
tomatic comment and document generation. The important
difference between our work and conventional studies is the
motivation. Previous works are normally based on the thought
of “reducing” the amount of code to be read. This is a
plausible idea for veteran engineers, because their objective
is to understand a large amount of source code efficiently,

2Datasets used to construct and evaluate our pseudo-code generators are
available at http://ahclab.naist.jp/pseudogen/

and thus comments are expected to concisely summarize
what the code is doing, instead of covering each statement
in detail. From a technical point of view, however, pseudo-
code generation is similar to automatic comment generation
or automatic documentation as both generate natural language
descriptions from source code, so in this section we outline
the methods used in previous approaches and contrast them to
our method.

There are two major paradigms for automatic com-
ment generation: rule-based approaches, and data-based ap-
proaches. Regarding the former, for example, Sridhara et al.
perform summary comment generation for Java methods by
analyzing the actual method definition using manually defined
heuristics [4], [5]. Buse et al. also proposed a method to
generate documents that include the specification of exceptions
that could be thrown by a function and cases in which
exceptions occur [6]. Moreno et al. also developed a method to
generate summaries that aid understanding, especially focusing
on class definitions [7]. These rule-based approaches use
detailed information closely related to the structure of source
code, allowing for handling of complicated language-specific
structures, and are able to generate accurate comments when
their rules closely match the given data. However, if we need
new heuristics for a specific variety of source code or project,
or to create a system for a new programming language or
natural language, the system creator must manually append
these heuristics themselves. This causes a burden on the main-
tainers of comment generation systems, and is a fundamental
limitation of rule-based systems.

On the other hand, in contrast to rule-based systems, data-
based approaches can be found in the comment generation or
code summarization fields. Wong et al. proposed a method
for automatic comment generation that extracts comments
from entries of programming question and answer sites using
information retrieval techniques [8]. There are also methods
to generate summaries for code based on automatic text
summarization [9] or topic modeling [10] techniques, possibly
in combination with the physical actions of expert engineers
[11]. This sort of data-based approach has a major merit: if
we want to improve the accuracy of the system, we need
only increase the amount of “training data” used to construct
it. However, existing methods are largely based on retrieving
already existing comments, and thus also have significant
issues with “data sparseness;” if a comment describing the
existing code doesn’t already exist in the training data, there
is no way to generate accurate comments.

SMT, which we describe in the next section, combines
the advantages of these approaches, allowing for detailed
generation of text, like the rule-based approaches, while being
learnable from data like the data-based approaches.

III. STATISTICAL MACHINE TRANSLATION

SMT is an application of natural language processing
(NLP), which discovers the lexical or grammatical relation-
ships between two natural languages (such as English and
Japanese), and converts sentences described in a natural lan-
guage into another natural language. SMT algorithms used in
recent years are mainly based on two ideas:

• extract the relationships (usually called “rules”) be-
tween small fragments of new input and output lan-
guages, and

• use these relationships to synthesize the translation
results of a new input sentence using statistical models
to decide which translation is best [12], [13], [14].

SMT frameworks have quickly developed in recent years,
mainly because of the large amount of data available and the
increase in calculation power of computers. In this section, we
describe the foundations of the SMT framework. Especially,
we explain the details of the phrase-based machine transla-
tion (PBMT) and tree-to-string machine translation (T2SMT),
which are major SMT frameworks, used in this work to convert
source code into pseudo-code.

A. Overview of Statistical Machine Translation

At first, we introduce some notation for the formulation of
SMT-based pseudo-code generation. Let s = [s1, s2, · · · , s|s|]
describe the “source sentence,” an array of input tokens, and
t = [t1, t2, · · · , t|t|] describe the “target sentence,” an array
of output tokens. The notation | · | represents the length of
a sequence. In this paper, we are considering source code
to pseudo-code translation, so s represents the tokens in the
input source code statements and t represents the words of
a pseudo-code sentence. For example, in the small Python to
English example in Fig. 2, s is described as the sequence of
Python tokens [“if”, “x”, “%”, “5”, “==”, “0”, “:”], and t
is described as [“if”, “x”, “is”, “divisible”, “by”, “5”], with
|s| = 7 and |t| = 6.

The objective of SMT is to generate the most probable
target sentence t̂ given a source sentence s. Specifically, we do
so by defining a model specifying the conditional probability
distribution of t given s, or Pr(t|s), and find the t̂ that
maximizes this probability:

t̂ ≡ arg max
t

Pr(t|s). (1)

The difference of each SMT framework is guided by the
method for calculating Pr(t|s). This probability is estimated
using a set of source/target sentence pairs called a “parallel
corpus.” For example, Fig. 1 is one example of the type of
parallel corpus targeted in this study, in which have one-by-
one correspondences between each line in the source code and
pseudo-code.

B. Phrase-based Machine Translation

One of the most popular SMT frameworks is phrase-
based machine translation (PBMT) [15], which directly uses
the phrase-to-phrase relationships between source and target
language pairs. In software engineering studies, Karaivanov
et al. proposed a method applying the PBMT framework
to programming language conversion, which learns the re-
lationships between parts of statements in two program-
ming languages (e.g. “System.out.println” in Java to
“Console.WriteLine” in C#) [16].

To describe PBMT modeling, we introduce a set of phrase
pairs ϕ = [ϕ1, ϕ2, · · ·ϕ|ϕ|]. Each ϕn =

⟨
s(n) → t(n)

⟩
repre-

sents the n-th subsequence of the source sentence s(n) and
the target subsequence t(n) associated with the corresponding
source subsequence. For example, in Fig. 2, s is separated into
|ϕ| = 4 phrases:

ϕ =

 ⟨ “if” → “if” ⟩
⟨ “x” → “x” ⟩
⟨ “% 5” → “by 5” ⟩
⟨ “== 0 :” → “is divisible” ⟩

 . (2)

ϕ is generated using a “phrase table”, which contains var-
ious phrase-to-phrase relationships with probabilities, and is
extracted from a parallel corpus as explained in §III-D.

Given ϕ, we can generate the target sentence t from
the source sentence by concatenating each t(n). But simply
concatenating t(n) according to their order cannot obtain an
accurate target sentence, because the grammatical characteris-
tics (e.g. ordering of tokens) of the source and target languages
are usually different. For example, if we concatenate the target
side phrases of Equation (2), we obtain the target sentence “if
x by 5 is divisible,” which is not a fluent English sentence.

To avoid this problem, we need to perform “reordering,”
which chooses the proper order of phrases in the target
sentence. To express reordering, we introduce the phrase
alignment a = [a1, a2, · · · , a|ϕ|], where each an is an integer
that represents the order of the n-th phrase pair in the source
sentence. In Fig. 2, we assume that a = [1, 2, 4, 3], which
means that first and second phrase pairs keep their own
positions, and the third and fourth phrase pairs are swapped
before the target sentence is generated.

Formally, the conditional probability Pr(t|s) of the PBMT
model is usually estimated using a log-linear model, that
combines several probabilities calculated over the source and
target sentences [17]:

t̂ ≡ arg max
t

Pr(t|s) (3)

≃ arg max
t,ϕ,a

Pr(t,ϕ,a|s) (4)

≃ arg max
t,ϕ,a

exp(wTf(t,ϕ,a, s))∑
t′

exp(wTf(t′,ϕ,a, s))
(5)

= arg max
t,ϕ,a

wTf(t,ϕ,a, s), (6)

where f(t,ϕ,a, s) represents feature functions calculated dur-
ing the translation process, and w represents the weight vector
of the corresponding features, which defines the importance of
each feature. Intuitively, Equation (6) means that the PBMT

Fig. 2. Example of Python to English PBMT pseudo-code generation.

model finds the sentence which has the highest “score” cal-
culated by the weighted sum of the features: wTf(t,ϕ,a, s).
Some typical examples of these features include:

• Language model Pr(t) measures the fluency of the
sentence t under the target language as described in
§III-E.

• Phrase translation model calculates the product
of the probabilities Pr(t(n)|s(n)) of the individual
phrases in the sentence.

• Reordering model Pr(a|ϕ) calculates the probability
of the arranging each phrase in a particular order.

While PBMT’s mechanism of translating and reordering
short phrases is simple, it also lacks the expressive power
to intuitively model pseudo-code generation. For example,
we intuitively know that the English string including two
wildcards “X is divisible by Y ” corresponds to the source code
“X % Y == 0:,” but PBMT is not capable of using these
wildcards. Thus, ϕ in the example in Fig. 2 uses obviously
“wrong” correspondences such as ⟨“==0:” → “is divisible”⟩.
In addition, source code has an inherent hierarchical structure
which can not be used by explicitly when only performing
phrase-to-phrase translation and reordering.

C. Tree-to-string Machine Translation

As we mentioned in the previous section, PBMT-based
pseudo-code generation cannot take advantage of wildcards
or the hierarchical correspondences between two languages.
T2SMT uses the parse tree of source sentence Ts instead of
the source tokens s to avoid this problem [18], as shown in
Fig. 3.

T2SMT was originally conceived for translating natural
languages such as English, and because natural languages
include ambiguities we obtain the parse tree Ts using a
probabilistic parser that defines the probability Ts given s, or
Pr(Ts|s) [19], [20]. Thus, the formulation of T2SMT can be
obtained by introducing this parsing probability into Equation
(1):

t̂ = arg max
t

Pr(t|s) (7)

≃ arg max
t,Ts

Pr(t|Ts) Pr(Ts|s). (8)

Fortunately, the probability Pr(Ts|s) can be ignored in our
proposed method for pseudo-code generation, because all prac-
tical programming languages have a compiler or interpreter
that can parse the corresponding source code deterministically,
and thus there is only one possible parse tree. So the formu-
lation is less complex:

t̂ ≃ arg max
t

Pr(t|Ts), (9)

Fig. 3 shows the process of T2SMT-based pseudo-code
generation. First, we obtain the parse tree Ts by transforming
the input statement into a token array using tokenization, and
parsing the token array into a parse tree using parsing. The
important point of Fig. 3 is that Ts is defined by the grammar
of the programming language, and is not an “abstract” syntax
tree. This requirement comes from the characteristics of the
inner workings of the T2SMT algorithm, and this topic is
described in detail in §IV.

The probability Pr(t|Ts) is defined similarly to that of
PBMT (usually formulated as a log-linear model) with two
major differences:

• In the T2SMT, we use the “derivation” d =
[d1, d2, · · · , d|d|] instead of the phrase pairs ϕ in
PBMT. Each dn =

⟨
T

(n)
s → t(n)

⟩
represents the

relationship between between a source subtree (the
gray boxes in Fig. 3) and target phrase with wild-
cards. All derivations are connected according to the
structure of original parse tree Ts, and the target
sentence is generated by replacing wildcards with their
corresponding phrases.

• The T2SMT translation process does not include ex-
plicit reordering models because the ordering of the
wildcards in the target phrase naturally defines the
target ordering.

D. Extracting SMT Rules

To train the PBMT and T2SMT models, we have to extract
the translation rules, which define the relationship between the
parts of the source and target language sentences, from the
given parallel corpus. To do this, we use a “word alignment”
between both sentences. Word alignments represent the word-
to-word level relationships between both languages, shown
in Fig. 4. In standard SMT training, word aligments are
automatically calculated from the statistics of a parallel corpus
by using a probabilistic model and unsupervised machine
learning techniques [21], [22].

Fig. 3. Example of Python to English T2SMT pseudo-code generation.

Fig. 4. Word alignment between two token strings.

After obtaining the word alignment of each sentence in
the parallel corpus, we assume that the phrases that satisfy
the below conditions can be extracted as a phrase pair for the
PBMT framework:

• some words in both phrases are aligned, and

• no words outside of the phrases are aligned to a word
in either phrase.

For example, Fig. 5 shows one phrase pair extraction ϕ =
⟨“== 0 :” → “is divisible”⟩.

In the case of the T2SMT framework, we use a method
known as the GHKM algorithm [23] to extract tree-to-string
translation rules. The GHKM algorithm first splits the parse
tree of the source sentence into several subtrees according
to alignments, and extracts the pairs of the subtree and its
corresponding words in the target sentence as “minimal rules.”
Next, the algorithm combines some minimal rules according
to the original parse tree to generate larger rules. For example,

Fig. 5. Extracting PBMT translation rules according to word alignment.

Fig. 6. Extracting T2SMT translation rules according to word alignment.

Fig. 6 shows an extraction of a translation rule corresponding
to the phrase with wildcards “X is divisible by Y ” by
combining minimal rules in the bold rectangle, with two rules
corresponding to “x” and “5” being replaced by wildcards
respectively.

Extracted PBMT and T2SMT rules are evaluated using
some measures and stored into the rule table for each frame-
work along with these evaluation scores. These scores are used
to calculate feature functions that are used in the calculation of
probabilities Pr(t|s) or Pr(t|Ts). For example, the frequency
of the rule in the parallel corpus, length of the phrase, and the
complexity of the subtree are often used as features.

E. Language Model

Another important feature function of SMT is the “lan-
guage model,” which evaluates the fluency of the sentence in
the target language. Given the target sentence t, the language
model is defined as the product of probabilities of each word
in t given the previous words:

Pr(t) ≡
|t|∏
i=1

Pr(ti|t1, t2, · · · , ti−1) (10)

≡
|t|∏
i=1

Pr(ti|ti−1
1), (11)

where the notation xj
i = [xi, xi+1, · · · , xj] represents the

subsequence of x containing the i-th to j-th elements. In
addition, to save memory and prevent data sparseness, most

practical language models use “n-gram models:”

Pr(ti|ti−1
1) ≃ Pr(ti|ti−1

i−n+1), (12)

where an n-gram is defined as n consecutive words. This
approximation means that the next word ti is conditioned on
only on the previous (n−1) words. The simplest n-gram model
can be calculated simply from target language text using the
count of appearances of each n-gram:

Pr(ti|ti−1
i−n+1) ≡

count(tii−n+1)

count(ti−1
i−n+1)

(13)

where count(x) is the number of appearances of sequence
x in the given corpus. For example, if the word (1-gram)
“is” appears 10 times and the 2-gram “is divisible” appears
3 times in the same corpus, then we can estimate Pr(ti =
“divisible”|ti−1 = “is”) = 3/10. In addition, we also use a fur-
ther approximation method known as Kneser-Ney smoothing
[24], which smooths probabilities for all n-grams, preventing
problems due to data sparsity, allowing us to calculate the
probability of any sentence accurately.

It should also be noted that n-gram models are easily
applied to any type of sequence data and frequently used for
software engineering, typically to measure the naturalness of
the source code [25], [26] or distinguish the characteristics of
source code [27], [28].

IV. APPLYING SMT TO PSEUDO-CODE GENERATION

In the previous section, we described two SMT frame-
works: PBMT and T2SMT. The important advantage of using
these frameworks is that we need not describe new translation
rules explicitly when we update the pseudo-code generator,
because the SMT framework is a statistical approach and trans-
lation rules from programming language to natural language
can be automatically obtained from training data. This fact
greatly reduces the burden on engineers to create or maintain
pseudo-code generators. If we want to cover a new case in
our generator, we simply search for or create pseudo-code
corresponding to the desired statements, instead of creating
specialized rules for each new case. For example, if we want
to create a rule “if X is an even number” for the source code
“if X % 2 == 0:” instead of “if X is divisible by 2,”
we only need to append a sentence including this example
to our corpus, for example, “if something is an even number”
and “if something % 2 == 0:.” This work is obviously
easier than describing rules explicitly, as this sort of data can
be created by programmers even if they are not familiar with
our particular pseudo-code generating system, and could also
potentially be harvested from existing data.

If we want to construct the SMT-based pseudo-code gen-
erator described in this paper for any programming lan-
guage/natural language pair, we must prepare the following
data and tools.

• Source code/pseudo-code parallel corpus to train the
SMT-based pseudo-code generator.

• Tokenizer of the target natural language. If we con-
sider a language that puts spaces between words (e.g.
English), we can use a simpler rule-based tokenization

Fig. 7. The head insertion process.

method such as the Stanford Tokenizer3. If we are
targeting a language with no spaces (e.g. Japanese), we
must explicitly insert delimiters between each word in
the sentence. Fortunately, tokenizing natural language
is a well-developed area of NLP studies, so we can
find tokenizers for major languages easily.

• Tokenizer of the source programming language.
Usually, we can obtain a concrete definition of the pro-
gramming language from its grammar, and a tokenizer
module is often provided as a part of the standard
library of the language itself. For example, Python
provides tokenizing methods and symbol definitions
in the tokenize module.

• Parser of the source programming language. Simi-
larly to the tokenizer, a parser for the programming
language, which converts source code into a parse
tree describing the structure of the code, is explicitly
defined in the language’s grammar. Python also pro-
vides a way of performing abstract parsing in the ast
module. However, the output of this module cannot be
used directly, as described in the next section.

A. Surface Modification of Abstract Syntax Tree

As with the Python library ast, parsing methods provided
by standard libraries of programming languages are often
“abstract” parsers, which are defined more by the execution-
time semantics of the language than its written form. As
we mentioned in the previous section, the GHKM heuris-
tics, which extract tree-to-string translation rules, use word
alignments, which are defined over the leaves of the syntax
tree. Abstract syntax trees often use keywords and operators
existing in the source code as internal nodes rather than leaves,
but these surface words could be strongly related to specific
words in the target language (e.g. the token “if” in Python
corresponds to the word “if” in English).

Of course, we could always develop a new parser from
grammar definitions for specific programming languages, but
this is not always easy (e.g. C++ grammar is defined using
hundreds of pages in the official specification document). In
this paper, we apply a more reasonable way to generate a
parse-like tree from an abstract syntax tree using two processes
described below.

1) Head Insertion: First, we append a new edge called
“HEAD” into the abstract syntax tree, which include the label
of inner nodes as their leaves. Fig. 7 shows an example of

3http://nlp.stanford.edu/software/tokenizer.shtml

Fig. 8. Pruning and simplification process.

the head insertion process for a tree generated from the source
code “if x % 5 == 0:” using the ast module in Python.
Applying this process, words that have disappeared in the
process of making the abstract syntax tree such as “if” can
be treated as candidates for word alignment. This process is
simple and easy to be applied to abstract syntax trees of any
programming language if we can generate their trees using
an abstract parser. On the other hand, there is one option
of the head insertion process: where to position the HEAD
nodes in the tree. In this paper, we put all HEAD nodes at the
leftmost child of the parent for English and rightmost child for
Japanese, corresponding to the order of the head word in the
target language.

2) Pruning and Simplification: In expanded trees the num-
ber of their leaves after head insertion becomes significantly
larger than the number of words in the target sentence, and this
could cause noise in automatic word alignment. To fix this, we
apply some pruning and simplification heuristics to reduce the
complexity of trees. We developed 20 hand-written rules to
prune and simplify the head-inserted tree by removing nodes
that don’t seem related to the surface form of the language.
Fig. 8 shows an example after this process was applied to the
result of Fig. 7.

In our method for pseudo-code generation, only these
transformation methods require human engineering. However,
developing these methods is easier than developing a rule-
based system, because they are relatively simple and largely
independent of the language of the pseudo-code.

B. Training Process of Pseudo-code Generator

Up until this section, we described details of each part of
our pseudo-code generation system.

Fig. 9 shows the whole process of our pseudo-code gen-
erator, and Fig. 10 shows the training process of the PBMT
and T2SMT frameworks. In this paper, we compare 4 types
of methods for pseudo-code generation. PBMT is a method
directly using the tokens of programming and natural lan-
guages in the PBMT framework. Raw-T2SMT is a T2SMT-
based method trained by raw abstract syntax trees of the pro-
gramming language without the modifications described in the
previous section. Head-T2SMT is also a T2SMT-based method
trained using modified trees with only the head insertion
process. Reduced-T2SMT is the last T2SMT-based method,
using the head insertion, pruning, and simplification processes.

The algorithms for training SMT systems from a parallel
corpus are too complex to develop ourselves. Fortunately, we

can use open-source tools to assist in constructing the system.
We use following tools in this study: MeCab to tokenize
Japanese sentences [29], pialign to train word alignments [22],
KenLM to train Kneser-Ney smoothed language model [30],
Moses to train and generate target sentences using the PBMT
model [31], and Travatar to train and generate target sentences
using T2SMT models [32].

V. GATHERING A SOURCE CODE TO PSEUDO-CODE
PARALLEL CORPUS

As we described in §III, we need a source code/pseudo-
code parallel corpus to train SMT-based pseudo-code genera-
tors. In this study, we created Python-to-English and Python-
to-Japanese parallel corpora by hiring programmers to add
pseudo-code to existing code.

For the Python-to-English corpus, we contracted one en-
gineer to create pseudo-code for Django (a Web application
framework), and obtained a corpus containing 18,805 pairs
of Python statements and corresponding English pseudo-code.
For Python-to-Japanese, we first hired one engineer to create
Python code for solutions to problems from Project Euler4.
a site with arithmetic problems designed for programming
practice. We obtained 722 Python statements, which include
177 function definitions related to solving arithmetic problems.
These are used to perform human evaluation experiments
described in §VI-B and §VI-C. This code is shown to another
Japanese engineer, who created Japanese pseudo-code corre-
sponding to each statement. It should be noted that in both
cases, this pseudo-code was created by a separate engineer
not involved with this work, demonstrating that no special
knowledge of the proposed system is required to create training
data for it.

Next, we divided this data into separate sets for our
experiments. We split the Python-to-English corpus into 3
parts that include 16,000, 1,000, and 1,805 statements. The
16,000 element set is the “training” data used to extract SMT
rules and train the language model. The next 1,000 is the
“development” data used to optimize the weight vector w of
the log-linear model. The last 1,805 is the “test” data used
to evaluate the trained SMT models. The Python-to-Japanese
corpus is smaller than the Python-to-English corpus, so we
perform 10-fold cross-validation, in which we use 90% of the
data as training data, no development data (w is set as the
default of each SMT framework), and 10% as test data.

VI. EVALUATING PSEUDO-CODE GENERATION

Once we have generated pseudo-code, we would like to
evaluate its accuracy and usefulness. To do so, we use an
automatic measure of translation accuracy adopted from the
SMT literature, a manual evaluation of the accuracy of code
generation, and a measure of how much the pseudo-code
can contribute to code understanding. As described in the
following sections, we calculate automatic evaluation measures
for English and Japanese pseudo-code and manual accuracy
and code understanding for Japanese pseudo-code.

4https://projecteuler.net/

Fig. 9. Whole training process of each proposed method (a bold border indicates language-dependent processes).

Fig. 10. Training process of PBMT and T2SMT frameworks.

A. Automatic Evaluation – BLEU

First, to automatically measure the accuracy of pseudo-
code generation, we use BLEU (Bilingual Evaluation Under-
study) [33], an automatic evaluation measure of the generated
translations widely used in machine translation studies. BLEU
automatically calculates the similarity of generated translations
and human-created reference translations. BLEU is defined as
the product of “n-gram precision” and a “brevity penalty.” n-
gram precision measures the ratio of length n word sequences
generated by the system that are also created in the human
reference, and the brevity penalty is a penalty that prevents the
system from creating overly short hypotheses (that may have
higher n-gram precision). BLEU gives a specific real value
with range [0,1] and is usually expressed as a percentage. If
the translation results are completely equal to the references,
the BLEU score becomes 1.

In this study, we evaluated the quality of generated English
and Japanese pseudo-code using BLEU, using the human-
described pseudo-code of each statement as a reference.

B. Human Evaluation (1) – Acceptability

BLEU can automatically and quickly calculate the accuracy
of generated translations based on references. However, it does

TABLE I. DEFINITION OF ACCEPTABILITY

Level Meaning
AA (5) Grammatically correct, and fluent
A (4) Grammatically correct, and not fluent
B (3) Grammatically incorrect, and easy to understand
C (2) Grammatically incorrect, and difficult to understand
E (1) Not understandable or some important words are lacking

not entirely guarantee that each translation result is seman-
tically correct for the source sentence. To more accurately
measure the quality of the translations, we also perform an
evaluation using human annotators according to the accept-
ability criterion [34] shown in TABLE I. We employed 5
Japanese expert Python programmers to evaluate statement-
wise acceptabilities of each generated Japanese pseudo-code.

C. Human Evaluation (2) – Code Understanding

Especially for beginner programmers, pseudo-code may
aid comprehension of the corresponding source code. To
examine this effect, we perform a human evaluation of code
understanding using experienced and unexperienced Japanese
Python programmers through a Web interface.

First, we show a sample of a function definition and

TABLE II. DEFINITION OF UNDERSTANDABILITY

Level Meaning
5 Very easy to understand
4 Easy to understand
3 Not either easy or difficult to understand
2 Difficult to understand
1 Very difficult to understand
0 Do not understand

corresponding pseudo-code as in Fig. 1 to unexperienced
programmers, who read the code. These programmers then
assign a 6-level score indicating their impression of how well
they understood the code for each sample. This impression is
similar to Likert scale described in TABLE II. The evaluation
interface records these scores and elapsed time from proposing
a sample to the programmer submitting the score. This elapsed
time can be assumed to be the time required by the programmer
to understand the sample. Next, we have the programmers
describe the behavior of functions they read in their mother
tongue. We obtained these results from 14 students, in which
6 students had less than 1 year of Python experience (including
no experience), perform this experiment task.

We use 117 function definitions in the Python-to-Japanese
corpus that were split into 3 settings randomly (each split was
different for each subject), which were respectively shown with
different varieties of pseudo-code:

• Code setting that shows only source code itself, with
no pseudo-code.

• Reference setting that shows human-created pseudo-
code (i.e. training data of the pseudo-code generator).

• Automated setting that shows code automatically gen-
erated by our Reduced-T2SMT method.

VII. EXPERIMENTAL RESULTS AND DISCUSSION

First, TABLE III shows the BLEU scores for each of
the proposed methods for Python-to-English and Python-to-
Japanese datasets, and the mean acceptability score of each
method for the Python-to-Japanese dataset.

From these results, we can see that the BLEU scores are
relatively high (except for PBMT on the Python-to-English
data set), suggesting that the proposed method is generating
relatively accurate results for both data sets. For reference, a
current state-of-the-art SMT system achieves a BLEU score
of about 48 in the relatively easy French-to-English pair [35],
suggesting that translation from source code to pseudo-code is
easier than translating between natural languages. This result
can be expected, because SMT systems targeting natural lan-
guage pairs always include the noise caused by ambiguities of
tokenization or parsing for source natural language sentences,
while our pseudo-code generator has no such input ambiguity.

In addition, we can see that BLEU scores for the Python-
to-Japanese dataset are higher than the Python-to-English
dataset. This can be attributed to the characteristics of each
dataset. The Python-to-Japanese dataset’s original source code
was generated by one engineer from arithmetic problems for
programming practice, so all the input code in the set shares a
similar programming style. In contrast, the source code of the
Python-to-English dataset is extracted from Django, which is

TABLE III. BLEU% AND MEAN ACCEPTABILITIES OF EACH
PSEUDO-CODE GENERATOR.

Pseudo-code BLEU% Mean Acceptability
Generator (English) (Japanese) (Japanese)

PBMT 25.71 51.67 3.627
Raw-T2SMT 49.74 55.66 3.812
Head-T2SMT 47.69 59.41 4.039

Reduced-T2SMT 54.08 62.88 4.155

developing many engineers for a variety of objectives, and thus
there is larger variance. The results of PBMT and Head-T2SMT
for Python-to-English reflect these characteristics. As we men-
tioned in §III-B, PBMT-based pseudo-code generators cannot
adequately handle grammatically complicated sentences, likely
the reason for their reduced accuracy. Each T2SMT system
achieves significantly higher BLEU than the PBMT system,
indicating that properly analyzing the program structure before
generating comments is essential to accurately generating
pseudo-code.

We can also note that the Head-T2SMT system has a lower
score than Raw-T2SMT for the Python-to-English dataset.
This result is likely caused by the variance of human-created
pseudo-code and word alignment. The head insertion process
introduces many new tokens into the syntax tree and some of
these tokens have no information to express the relationship
between programming and natural language, causing problems
in automatic word alignment. However, this problem did not
rise to the surface for the Python-to-Japanese dataset, because
it has less variance in the data. The Reduced-T2SMT system
achieves the highest BLEU score for all settings in both
languages, indicating that this method can avoid this problem
by reducing redundant structures in head-inserted syntax trees.

To evaluate statistical significance, we performed a pair-
wise bootstrap test [36] for 10,000 sets of evaluation sentences
randomly extracted from these results. Based on this we
obtained a statistical significance under p < 0.001 for all
T2SMT systems against the PBMT system, and p < 0.001
for the Reduced-T2SMT system against all other systems.

We can also see in TABLE III that the acceptability scores
of the pseudo-code for the Python-to-Japanese dataset is also
improved in correlation to the BLEU improvement. Especially,
Reduced-T2SMT achieves a mean acceptability over 4, which
means that a large amount of the pseudo-code generated by
the most advanced method Reduced-T2SMT was judged as
grammatically correct by evaluators.

Fig. 11 shows the acceptability distribution of each system.
We can see that all systems can generate grammatically correct
and fluent pseudo-code for 50% of the statements. Further, we
can see that each T2SMT-based system generates less pseudo-
code with “intermediate acceptability.” This is an interesting
result, but it is intuitively understandable that T2SMT-based
systems can generate accurate pseudo-code if their rule tables
cover the input statements, because these systems explicitly
use the grammatical information through syntax trees of the
programming language.

Finally, TABLE IV shows the results of the code under-
standing experiment. In this table, we show 3 results calculated
by different evaluator groups. The Experienced group includes
8 of 14 evaluators who have more than 1 year of experience

Fig. 11. Acceptability distribution of each system.

TABLE IV. MEAN UNDERSTANDABILITY IMPRESSIONS AND MEAN
TIME TO UNDERSTAND.

Group Setting Mean Impression Mean Time
Code 2.55 41.37

Experienced Reference 3.05 35.65
Automated 2.71 46.48

Code 1.32 24.99
Inexperienced Reference 2.10 24.97

Automated 1.81 39.52
Code 1.95 33.35

All Reference 2.60 30.54
Automated 2.28 43.15

in programming Python, The Inexperienced group includes the
remaining 6 evaluators (with less than 1 year of experience
of Python), and All includes all evaluators. From the results,
we can see that the result of the Reference setting achieves
the highest understandability and the fastest reading time of
all settings. This means that proposing correct pseudo-code
improves the ease and efficiency of code reading when readers
try to read the whole source code in detail. The result of the
Automated setting also achieves a better impression than that
of the Code setting. However, the reading time becomes longer
than other settings. We assume that this is the result of the few
strange lines of pseudo-code generated from our generator (e.g.
pseudo-code scored 1 in acceptability) that confuse the readers
in their attempt to interpret source code. Reducing generation
errors in the Automated method can reduce this time-loss, in
principle, similarly to the results of Reference.

Fig. 12 shows 3 sets of examples from the proposed meth-
ods. We can see that each T2SMT-based systems (especially
Reduced-T2SMT) generates more accurate sentences in English
than the PBMT system.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a method for pseudo-code
generation that is, to our knowledge, the first of its type. Our
method is based on statistical machine translation (SMT) tech-
niques, especially phrase-based machine translation (PBMT)
and tree-to-string machine translation (T2SMT), which allow
us to automatically learn statement-wise pseudo-code gener-
ators and require less human effort to create and update our
generators. Experiments showed that our proposed methods
generate grammatically correct pseudo-code for the Python-
to-English and Python-to-Japanese programming/natural lan-
guage pairs, and distinguished that proposing pseudo-code with
source code improves code comprehension of programmers for
unfamiliar programming languages. To use SMT frameworks,
we prepared a parallel corpus, which includes sentence (or

Fig. 12. Examples of generated pseudo-code from each system.

syntax tree) pairs related to each other, and described several
algorithms to adjust the parallel corpus to be in a format
appropriate for SMT.

In the future work, we are planning to develop a pseudo-
code generator uses the proposed SMT framework to handle
multiple statements, close to the standard setting of automatic
comment generation. To do so, we must find or create a
high-quality parallel corpus of source code and comments
corresponding to multiple statements in the source code,
which is a less well-formed problem than creating line-to-
line comments, and is thus an interesting challenge for future
work. We also plan to investigate the use of automatic pseudo-
code generation by experienced programmers in large software
project environments. For example, automatically generated
pseudo-code could be used by programmers to confirm that
the code that they wrote is actually doing what they expect
it to be doing, or to help confirm when existing (single-line)
comments in the source code have gone stale and need to be
updated.

ACKNOWLEDGMENT

Part of this work was supported by the Program for
Advancing Strategic International Networks to Accelerate the
Circulation of Talented Researchers. We also thank Mr. Aki-
nori Ihara, who also gave us useful advice regarding this work.

REFERENCES

[1] R. DeLine, G. Venolia, and K. Rowan, “Software development with
code maps,” Commun. ACM, vol. 53, no. 8, pp. 48–54, 2010.

[2] M. M. Rahman and C. K. Roy, “Surfclipse: Context-aware meta search
in the ide,” in Proc. ICSME, 2014, pp. 617–620.

[3] M.-A. Storey, “Theories, tools and research methods in program com-
prehension: Past, present and future,” Software Quality Journal, vol. 14,
no. 3, pp. 187–208, 2006.

[4] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker,
“Towards automatically generating summary comments for java meth-
ods,” in Proc. ASE, 2010, pp. 43–52.

[5] G. Sridhara, L. Pollock, and K. Vijay-Shanker, “Automatically detecting
and describing high level actions within methods,” in Proc. ICSE, 2011,
pp. 101–110.

[6] R. P. Buse and W. R. Weimer, “Automatic documentation inference for
exceptions,” in Proc. ISSTA, 2008, pp. 273–282.

[7] L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and K. Vijay-
Shanker, “Automatic generation of natural language summaries for java
classes,” in Proc. ICPC, 2013, pp. 23–32.

[8] E. Wong, J. Yang, and L. Tan, “Autocomment: Mining question and
answer sites for automatic comment generation,” in Proc. ASE, 2013,
pp. 562–567.

[9] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On the use
of automated text summarization techniques for summarizing source
code,” in Proc. WCRE, 2010, pp. 35–44.

[10] B. P. Eddy, J. A. Robinson, N. A. Kraft, and J. C. Carver, “Evaluating
source code summarization techniques: Replication and expansion,” in
Proc. ICPC, 2013, pp. 13–22.

[11] P. Rodeghero, C. McMillan, P. W. McBurney, N. Bosch, and S. D’Mello,
“Improving automated source code summarization via an eye-tracking
study of programmers,” in Proc. ICSE, 2014, pp. 390–401.

[12] P. Koehn, Statistical Machine Translation. Cambridge University Press,
2010.

[13] A. Lopez, “Statistical machine translation,” ACM Computing Surveys,
vol. 40, no. 3, pp. 8:1–8:49, 2008.

[14] P. F. Brown, V. J. D. Pietra, S. A. D. Pietra, and R. L. Mercer, “The
mathematics of statistical machine translation: Parameter estimation,”
Computational Linguistics, vol. 19, no. 2, pp. 263–311, 1993.

[15] P. Koehn, F. J. Och, and D. Marcu, “Statistical phrase-based translation,”
in Proc. NAACL-HLT, 2003, pp. 48–54.

[16] S. Karaivanov, V. Raychev, and M. Vechev, “Phrase-based statistical
translation of programming languages,” in Proc. Onward!, 2014, pp.
173–184.

[17] F. J. Och and H. Ney, “The alignment template approach to statistical
machine translation,” Computational Linguistics, vol. 30, no. 4, pp. 417–
449, 2004.

[18] L. Huang, K. Knight, and A. Joshi, “Statistical syntax-directed trans-
lation with extended domain of locality,” in Proc. AMTA, vol. 2006,
2006, pp. 223–226.

[19] D. Klein and C. D. Manning, “Accurate unlexicalized parsing,” in Proc.
ACL, 2003, pp. 423–430.

[20] S. Petrov, L. Barrett, R. Thibaux, and D. Klein, “Learning accurate,
compact, and interpretable tree annotation,” in Proceedings of COLING-
ACL, 2006, pp. 433–440.

[21] P. F. Brown, V. J. D. Pietra, S. A. D. Pietra, and R. L. Mercer, “The
mathematics of statistical machine translation: Parameter estimation,”
Computational Linguistics, vol. 19, no. 2, pp. 263–311, Jun. 1993.

[22] G. Neubig, T. Watanabe, E. Sumita, S. Mori, and T. Kawahara, “An
unsupervised model for joint phrase alignment and extraction,” in Proc.
ACL-HLT, Portland, Oregon, USA, 6 2011, pp. 632–641.

[23] M. Galley, M. Hopkins, K. Knight, and D. Marcu, “What’s in a
translation rule?” in Proc. NAACL-HLT, 2004, pp. 273–280.

[24] R. Kneser and H. Ney, “Improved backing-off for m-gram language
modeling,” in Proc. ICASSP, 1995, pp. 181–184.

[25] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the
naturalness of software,” in Proc. ICSE, 2012, pp. 837–847.

[26] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “A
statistical semantic language model for source code,” in Proc. FSE,
2013, pp. 532–542.

[27] Z. Tu, Z. Su, and P. Devanbu, “On the localness of software,” in Proc.
FSE, 2014, pp. 269–280.

[28] A. T. Nguyen and T. N. Nguyen, “Graph-based statistical language
model for code,” in Proc. ICSE, 2015.

[29] T. Kudo, K. Yamamoto, and Y. Matsumoto, “Applying conditional
random fields to Japanese morphological analysis.” in Proc. EMNLP,
vol. 4, 2004, pp. 230–237.

[30] K. Heafield, I. Pouzyrevsky, J. H. Clark, and P. Koehn, “Scalable
modified Kneser-Ney language model estimation,” in Proc. ACL, Sofia,
Bulgaria, August 2013, pp. 690–696.

[31] P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico,
N. Bertoldi, B. Cowan, W. Shen, C. Moran, R. Zens, C. Dyer, O. Bojar,
A. Constantin, and E. Herbst, “Moses: Open source toolkit for statistical
machine translation,” in Proc. ACL, 2007, pp. 177–180.

[32] G. Neubig, “Travatar: A forest-to-string machine translation engine
based on tree transducers,” in Proc. ACL, Sofia, Bulgaria, August 2013,
pp. 91–96.

[33] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: A method for
automatic evaluation of machine translation,” in Proc. ACL, 2002, pp.
311–318.

[34] I. Goto, K. P. Chow, B. Lu, E. Sumita, and B. K. Tsou, “Overview of the
patent machine translation task at the ntcir-10 workshop,” in NTCIR-10,
2013.

[35] O. Bojar, C. Buck, C. Federmann, B. Haddow, P. Koehn, J. Leveling,
C. Monz, P. Pecina, M. Post, H. Saint-Amand, R. Soricut, L. Specia, and
A. Tamchyna, “Findings of the 2014 workshop on statistical machine
translation,” in Proc. WMT, 2014, pp. 12–58.

[36] P. Koehn, “Statistical significance tests for machine translation evalua-
tion,” in Proc. EMNLP, 2004, pp. 388–395.

	matsumoto20181031_Part14
	44_ASE2015

