& SC\SnCQ

\nst,
”"(‘s

; R

yoor®

2 QO
% NAIST® &

¥ REFIRRIZRMAE AT Fif IR K~

Nara Institute of Science and Technology Academic Repository: naistar

Code Review Participation: Game Theoretical Modeling of Reviewers

Title) .
in Gerrit Datasets
Kitagawa, Norihito; Hata, Hideaki; Thara, Akinori; Kogiso, Kiminao;
Author(s) C .
Matsumoto, Kenichi
Citat; CHASE 2016 : 2016 IEEE/ACM Cooperative and Human Aspects of
itation
Software Engineering, 16 May 2016, Austin, TX, USA
Issue Date 2016
Resource Version author

© 2016 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,

including reprinting/republishing this material for advertising or

Rights) , ,
promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.

DOI 10.1109/CHASE.2016.022

URL http://hdl.handle.net/10061/12731

Code Review Participation: Game Theoretical Modeling of
Reviewers in Gerrit Datasets

Norihito Kitagawa

Nara Institute of Science and

Technology, Japan
kitagawa.nori-
hito.ke7@is.naist.jp

Akinori lhara
Nara Institute of Science and
Technology, Japan

akinori-i@is.naist.jp

Kiminao Kogiso
The University of
Electro-Communications,
Japan

Hideaki Hata

Nara Institute of Science and

Technology, Japan
hata@is.naist.jp

Kenichi Matsumoto
Nara Institute of Science and
Technology, Japan

matumoto@is.naist.jp

kogiso@uec.ac.jp

ABSTRACT

Code review is a common practice for improving the qual-
ity of source code changes and expediting knowledge trans-
fer in a development community. In modern code review,
source code changes or patches are considered to be assessed
and approved for integration by multiple reviews. However,
from our empirical study, we found that some patches are
reviewed by only one reviewer, and some reviewers did not
continue the review discussion, which can have negative ef-
fects on software quality. To understand these reviewers’
behaviors, we model the code review situation based on the
snowdrift game, which is used to analyze social dilemmas.
With this game-theoretical modeling, we found that it can
explain reviewers’ behaviors well.

Keywords
Code review; Game Theory; Empirical Study

1. INTRODUCTION

Modern code review is less formal, lightweight, and tool-
assisted code examination process, and is well-established
best practice in both open source and proprietary software
projects. The general process can be summarized as fol-
lows [1]. First, a developer creates a change and submits
it for review. Second, other developers discuss the change
and suggest fixes. The change can be re-submitted multiple
times to deal with the suggested changes. Finally, one or
more reviewers approve the change to be integrated in the
main source code repository, or reject the change. While
finding defects is the main motivation for code review, re-
viewers expect additional benefits, such as knowledge trans-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

CHASE'16, May 16 2016, Austin, TX, USA
© 2016 ACM. ISBN 978-1-4503-4155-4/16/05. .. $15.00
DOL: http://dx.doi.org/10.1145/2897586.2897605

fer, increased team awareness, and creation of alternative
solutions to problems [2].

Rigby and Storey revealed several characteristics of re-
viewers in open source projects, that is, objective analyzer,
expert or fatherly adviser, and enthusiastic supporter or
champion as positive personas; grumpy cynic and frustrat-
edly resigned as negative personas [3]. Since review requests
are broadcasted to a community, there is a concern of dis-
cussion deadlock because of too many stakeholders being
involved. This study reported that bike shed effect, a long
discussion that involves few core developers, does not ap-
pear to be a significant problem. This is because individu-
als with lower status in an open source software community
generally receive little attention from the community. Rigby
and Bird reported that the median number of reviewers is
two in not only open source review, but Google-led projects
(Android and Chromium OS) and Microsoft projects (Bing,
Office, and MS SQL) [1]. Through a case study with Qt,
VTK, and ITK projects, McIntosh et al. found that lack
of reviewer participation has a negative impact on software
quality, and reviews without discussion are associated with
higher post release defect counts [4]. Bosu and Carver re-
vealed that OSS developers’ reputations can have impact
on code review outcome [5]. They reported that core devel-
opers receive quicker first feedback on their review request,
and complete review processes in shorter time. On the other
hand, peripheral developers may have to wait 2 to 19 times
longer than core developers for the review process.

We have investigated Gerrit! datasets in Qt and Open-
Stack to see reviewers’ actual activities [6]. Although code
review are expected to be processed by multiple reviewers,
we found that some reviews were conducted solely, and some
reviewers stopped discussion before reaching agreements.
Understanding the mechanism of this phenomenon is im-
portant because lack of reviewer participation has a negative
impact on software quality [4].

To understand reviewer participation, we build game the-
oretical models of code review situation based on the snow-
drift game. The snowdrift game is two-person games with
two strategies, to cooperate and to defect, and can model
social dilemmas similar to the prisoner’s dilemma. In code

"https:/ /www.gerritcodereview.com /index.md

___ Reviewed by
more than 2

(2) Did reviewers immediately reach an agreement?

Reviewed by
only 1

--- Consensus

(3) Did reviewers eventually reach an agreement?

Not
resolved

Resolved

I 1 — —
-- | Merged ”Abandoned” Merged “Abandoned“ Merged “Abandoned“ Merged “Abandonedl

Pattern Pattern Pattern Pattern Pattern Pattern Pattern Pattern
l A B c D E Fo G Ho
Consensus-review Discrepancy-review Solo-review
Figure 1: Code review participation and agreement patterns.
Table 1: Frequencies of review patterns.
Consensus Discrepancy (Resolved) | Discrepancy (Not resolved) Solo
Pattern A B C E F G H
Qt 45,861 (67%) | 1,046 (2%) | 8,345 (12%) 0 (0%) | 4,131 (6%) | 7,911 (12%) 559 (1%) | 259 (<1%)
OpenSrack | 61,356 (71%) | 106 (<1%) | 6,042 (7%) 33 (0%) | 2,109 (2%) | 11,437 (13%) | 1,409 (2%) | 4,057 (5%)

review cases, cooperate means conducting review, and de-
fect means not doing review. Based on theoretical analysis
with this model, we revealed that (i) a reviewer has motiva-
tion to chose defect if the other reviewer choses cooperate.
On the contrary, a reviewer will cooperate if the other will
defect. (ii) a reviewer will cooperate when the benefit of
review (cooperate) is higher than the cost. These expla-
nation match the actual phenomenon. This paper extends
the previous study presented in a national workshop [6], by
formally describing models and deepening data analysis to
validate models.

2. REVIEWER PARTICIPATION

Figure 1 illustrates possible patterns in code review par-
ticipation and agreement. Patterns can be determined ac-
cording to the following four questions:

(1) How many reviewers are involved? We divide reviews
(patches) into two, that is reviewed by only one re-
viewer or by more than two reviewers. Two is the
median number of reviewers in major open source and
proprietary software projects [1].

(2) Did reviewers immediately reach an agreement? Some-
times multiple reviewers will reach an agreement to
positive or negative immediately.

(3) Did reviewers eventually reach an agreement? Even
if initial decisions do not reach consensuses, patch au-
thors and reviewers can discuss and/or improve patches
to reach an agreement.

(4) What was the final decision? Final decision will be
made to accept (will be merged) or reject (abandoned).

With these questions, we can identify eight patterns of code
review participation and agreement (pattern A to H).

We investigated the code review datasets of Qt and Open-
Stack projects used in the previous study [4]. The datasets
contain 70, 765 and 92, 984 review reports respectively, which
have patch IDs from source code repositories, votes of re-
viewers, and reviewer comments.

Table 1 presents the frequencies of patterns in the two
projects. We can see that 69 — 71% of reviews were pro-
cessed in consensus review. In addition, 7 — 12% of reviews
were initially regarded discrepancy, but resolved after dis-
cussion. Hence, it revealed that 79 — 81% of reviews are
processed as expected. However, there are cases in which
only one reviewer was involved. From manual inspection,
we found that although some reviewers were asked to review
patches, they did not review them in such solo reviews. The
remaining pattern E and F are reviews that are initially dis-
crepancy and not resolved before the final decisions. These
patterns can be considered that some reviewers stopped the
discussion instead of resolving discrepancy.

Although most of the reviews were processed with multi
reviewers and discussed until reaching agreements, some-
times reviewers did not review at all or stopped discussion.
Why does this happens? To discuss this phenomenon, we
introduce game theory for modeling code review situations.

3. GAME THEORETICAL MODELING

3.1 Terms and Definitions

We begin with an (informal) introduction of several game-
theoretic terms and definitions used in this section. We ba-
sically refer to the explanations Chapter 3 of [10].

A (perfect information) strategic form game is the most

Table 2: The utility matrix of code review based on the
snowdrift game

Reviewer B
Review Not review
(Cooperate, C) (Defect, D)
(b—=5b0-3)

(b,b—c) (0,0)

Review (Cooperate, C) (b—¢,b)

Reviewer A
Not review (Defect, D)

familiar representation of strategic interactions in game the-
ory. A natural way to represent games is via n-dimensional
matrix. In general, each row corresponds to a possible action
for player 1, each column corresponds to a possible action for
player 2, and each cell corresponds to one possible outcome
from each player’s action. Each player’s utility for an out-
come is written in the cell corresponding to that outcome,
with player 1’s utility listed first. Finally, we assume that
every player knows all the information, including how much
utility an adversary receives at a cell. That is why we call
this game perfect information.

A pure strategy is the strategy that players select a single
action and play it. We call a choice of pure strategy for each
player a pure-strategy profile.

A mixed strategy is the strategy that players select a single
action based on the action selection probability of co-player.

The Nash equilibrium (NE) is a stable strategy profile:
no player would want to change his strategy if he knew
what strategy the other players were following. In a pure-
strategic form game, players rely on NE to make decisions.
In a mixed-strategic form game, players rely on expected
utility to make decisions.

In this paper, we study both pure and mixed strategic
form games in which there are only two players, namely a
reviewer A and a reviewer B. The games consist of two-
dimensional matrix (in other words, each player has binary
actions).

3.2 Game Description

We model the code review situation based on the snow-
drift game. The snowdrift game is known to be a good model
to analyze social dilemmas [11]. The concept of snowdrift
game can be described as follows. There are two drivers
that are caught in a blizzard and trapped on either side of
a snowdrift. They can either get out and start shoveling
(cooperate) or remain in the car (defect). If both cooperate,
they have the benefit b of getting home while sharing the
labour c. Thus, the utility is b — 5. If both defect, they
do not get anywhere and utility is 0. If only one shovels,
however, they both get home but the defector avoids the
labour cost and gets the utility b, whereas the cooperator
gets the utility b—c. There is an article that claims that the
snowdrift game is a better model for funding of open source
software compared to the well-known Prisoner’s Dilemma 2.

Table 2 shows the utility matrix of the snowdrift game
in code review. In Table 2, the first column corresponds
to a possible action for the reviewer A, and the first row

2Paul Chiusano, The failed economics of our software com-
mons, and what you can about it right now, https://
pchiusano.github.io/2014-12-08 /failed-software-economics

corresponds to a possible action for the reviewer B, and each
cell corresponds to one possible outcome. Each reviewer
chooses either cooperate (C) or defect (D). Each player’s
utility consists of benefit b and cost c. If costs are high (2b >
¢ > b > 0), these utilities recover the Prisoner’s Dilemma,
that is, both player should defect. By contrast, if b > ¢ > 0,
the utilities generate the snowdrift game.

As reported in the previous study [2], knowledge transfer,
increased team awareness, and creation of alternative solu-
tions to problems can be regarded as benefits. The effort of
reviewing code can be regarded as costs. The expected re-
moved effort that will be needed to fix remain bugs if review
fails may be regarded as a benefit of review too.

3.3 Pure Strategic Form Game Analysis

We calculate a NE of the pure strategic form game. We
examine each action profile in turn to find a NE.

(C, C) Each player can increase his utility by choosing an-
other action (D). Thus, this action profile is not a NE.

(C, D) Each player can not increase his utility by choosing
another action. Thus, this action profile is a NE.

(D, C) Each player can not increase his utility by choosing
another action. Thus, this action profile is a NE.

(D, D) Each player can increase his utility by choosing an-
other action (C). Thus, this action profile is not a NE.

Thus, we conclude that the game has two NE, (C,D) and
(D,C). From this result, it is revealed that each reviewer
has motivation to not review (defect) if the other review
(cooperate), but to review if the other does not review.

3.4 Mixed Strategic Form Game Analysis

We calculate an expected utility of the game. First, we
calculate an expected utility of the reviewer A. We assume
the probability that the reviewer B chooses C on ¢ and
chooses D on 1 — ¢g. Then, the expected utility of the re-
viewer A when he chooses Cis (b— §)g+ (b—c)(1—gq). The
expected utility of the reviewer A when he/her chooses D is
bq.

If the following equation hold, the reviewer A is considered
to chose C.

c

(b-3

Ja+ (b—c)(1—q)>bg

This can be summarized as:

where n = 2.

This means that the reviewer A can get more expected
utility by choosing C when n (the ratio of b to ¢) is increased,
that is, the ratio of benefit b to cost c is higher. Similarly,
if the benefit is rather larger than cost, the reviewer B will
choose C (cooperate, review). On the contrary, if the ratio
of b to ¢ is small, each reviewer seems to chose D (defect,
not review).

3.5 Summary

From the NE analysis, we showed that each reviewer has
a motive of choosing different action from co-reviewer. Ac-
tually, reviewers have discarded reviews in 15%-18% review

categories;, and only one reviewer has reviewed in 1%-7%
review categories.

From the expected utility analysis, we showed that both
reviewers have a motive of choosing C as b becomes larger
than ¢ in b > ¢ > 0. Actually, reviewers have reviewed co-
operatively in 78%-79% review categories. Why is the rate
of cooperative reviewer such high? In other words, why is
the benefit much higher than the cost for reviewers? Mcln-
tosh et al. found that poorly reviewed code has a negative
impact on software quality [4], and reviewers seem to know
that. Thus, we consider that the benefit is much higher than
the cost for reviewers, and reviewers cooperatively review.

To explain the distributions of review patterns in Table
1, how much benefits can we expect for reviewers compared
to costs? From the datasets, we found that b =8.3 if c = 1.
Although, the values of expected benefits should vary with
reviewers in real environment, this observation is interesting
since average reviewers seem to expect much higher benefits
compared to the cost of reviews. Further empirical evalua-
tion should be needed and interesting.

4. RELATED WORK

Game theory is a bag of analytical tools designed to help
us understand the phenomena that we observe when decision-
makers interact [9]. A mathematical formulation makes it
easy to define concepts precisely, to verify the consistency of
ideas, and to explore the implications of assumptions. Ba-
con et al. showed the vision of software economics, which
intends to re-imagine the software development process in
terms of decentralized, self-regulating economies [14]. We
will proceed this kind of vision by integrating theoretical
and empirical analysis.

There are some studies introducing game theoretical anal-
ysis into software engineering problems. Bacon et al. pro-
posed a market-based mechanism of bidding for features and
fixes [12]. Rao et al. designed a dynamic model of the soft-
ware engineering ecosystem for incentivizing correcting the
root cause of bugs instead of fixing them superficially [13].
Hata et al. studied the characteristics of sustainable OSS
projects based on leader-follower game modeling and data
mining of GitHub dataset [7]. Sun et al. studied the mech-
anism of indivisible objects exchange, which can be used for
re-scheduling of tasks, such as bug fixing [8].

5. CONCLUSION

This paper studied the participations of reviewers in OSS
code review by theoretical and empirical analysis. We mod-
eled the reviewing situation based on the snowdrift game
in which a reviewer cooperates and defects with each other.
Based on game-theoretical models, we revealed two motiva-
tions of reviewers (i) a reviewer has a motive of choosing
different action from other reviewer (ii) a reviewer cooper-
ates with other reviewers when the benefit of review is higher
than the cost.

In this paper, we revealed motivations of reviewers based
on a strategic form game. However, we do not consider a
situation that a reviewer knows the other reviewer’s action.
In a real code review scenario, it is natural a reviewer can see
other reviewers’ actions. To consider this situation, we will
use a extensive form game in our future work. An extensive
form game is represented as a tree, which is also known
as a game tree. Each non-terminal node in a game tree

corresponds to the moment of the choice of one player, and
each edge from a node corresponds to an action possible for
the player at the moment. Each terminal (or leaf) node
represents a final outcome, under which each player receives
a utility. With this model, we can analyze the motivations
of reviewers at the situation that a reviewer knows the other
reviewer’s action.

6. ACKNOWLEDGEMENTS

This study has been supported by JSPS KAKENHI Grant
Number 26540029, and has been conducted as a part of JSPS
Program for Advancing Strategic International Networks to
Accelerate the Circulation of Talented Researchers.

7. REFERENCES

[1] P. C. Rigby and C. Bird, “Convergent contemporary
software peer review practices,” in ESEC/FSE ’13,
2013, pp. 202-212.

[2] A. Bacchelli and C. Bird, “Expectations, outcomes,
and challenges of modern code review,” in ICSE ’13,
2013, pp. 712-721.

[3] P. C. Rigby and M.-A. Storey, “Understanding
broadcast based peer review on open source software
projects,” in ICSE ’11, 2011, pp. 541-550.

[4] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan,
“The impact of code review coverage and code review
participation on software quality: A case study of the
qt, vtk, and itk projects,” in MSR ’14, 2014, pp.
192-201.

[5] A. Bosu and J. C. Carver, “Impact of developer
reputation on code review outcomes in 0ss projects:
An empirical investigation,” in ESEM ’14, 2014, pp.
33:1-33:10.

[6] N. Kitagawa, H. Hata, A. Thara, K. Kogiso, and
K. Matsumoto, “Cooperation in code review: A
theoretical and empirical study,” in FOSE ’15, 2015,
pp- 203-212. (in Japanese)

[7] H. Hata, T. Todo, S. Onoue, and K. Matsumoto,
“Characteristics of sustainable oss projects: A
theoretical and empirical study,” in CHASE ’15, 2015,
pp. 15-21.

[8] Z. Sun, H. Hata, T. Todo, and M. Yokoo, “Exchange
of indivisible objects with asymmetry,” in IJCAI ’15,
2015, pp. 97-103.

[9] M. Osborne and A. Rubinstein, A Course in Game
Theory. MIT Press, 1994.

[10] Y. Shoham and K. Leyton-Brown, Multiagent
systems: Algorithmic, game-theoretic, and logical
foundations. Cambridge University Press, 2008.

[11] C. Hauert and M. Doebeli, “Spatial structure often
inhibits the evolution of cooperation in the snowdrift
game,” Nature, vol. 428, no. 6983, pp. 643-646, 2004.

[12] D. F. Bacon, Y. Chen, D. Parkes, and M. Rao, “A
market-based approach to software evolution,” in
OOPSLA 09, 2009, pp. 973-980.

[13] M. Rao, D. C. Parkes, M. Seltzer, and D. F. Bacon,
“A Framework for Incentivizing Deep Fixes,” in
WIT-EC ’14, 2014.

[14] D. F. Bacon, E. Bokelberg, Y. Chen, I. A. Kash, D. C.
Parkes, M. Rao, and M. Sridharan, “Software
economies,” in FoSER, 10, 2010, pp. 7-12.

	matsumoto20181031_Part11
	40_CHASE2016

