

 奈良先端科学技術⼤学院⼤学 学術リポジトリ

Nara Institute of Science and Technology Academic Repository: naistar

Title ROCAT on KATARIBE: Code Visualization for Communities

Author(s)
Ichinose, Tomohiro; Uemura, Kyohei; Tanaka, Daiki; Hata, Hideaki;

Iida, Hajimu; Matsumoto, Kenichi

Citation

ACIT-CSII-BCD 2016 : 2016 4th Intl Conf on Applied Computing and

Information Technology/3rd Intl Conf on Computational

Science/Intelligence and Applied Informatics/1st Intl Conf on Big

Data, Cloud Computing, Data Science & Engineering, 12-14 Dec.

2016, Las Vegas, NV, USA

Issue Date 2016

Resource Version author

Rights

© 2016 IEEE. Personal use of this material is permitted. Permission from

IEEE must be obtained for all other uses, in any current or future media,

including reprinting/republishing this material for advertising or

promotional purposes, creating new collective works, for resale or

redistribution to servers or lists, or reuse of any copyrighted component

of this work in other works.

DOI 10.1109/ACIT-CSII-BCD.2016.040

URL http://hdl.handle.net/10061/12726

ROCAT on KATARIBE:

Code Visualization for Communities

Tomohiro Ichinose∗, Kyohei Uemura∗, Daiki Tanaka∗, Hideaki Hata∗, Hajimu Iida∗, Kenichi Matsumoto∗

∗Graduate School of Information Science, Nara Institute of Science and Technology

Takayama 8916-5, Ikoma, Nara, 630-0192 Japan

Email: {ichinose.tomohiro.ik1@is, uemura.kyohei.ub9@is, tanaka.daiki.sx4@is, hata@is, iida@itc, matumoto@is}.naist.jp

Abstract—As globally distributed software development has
become generalized, social coding platforms like Github are
becoming increasing needed for team collaboration. To share
and help understand the overview of projects among teams,
source code visualization is useful. In this paper, we present a
new visual software development tool, Rocat, a city-like software
code visualization in virtual reality. In addition, we integrate
Rocat with a GitLabbased code hosting service, Kataribe. By
integrating Rocat into Kataribe, fine-grained code information
can be visualized, and city visualization can be easily shared. We
present our tool and provide the features of Rocat on Kataribe. A
Screencast for demonstration is available at the following URL.
https://www.youtube.com/watch?v=ZQTTO91v4No

I. INTRODUCTION

Since the beginning of software development, the size and

complexity of software have been continuously on the rise. If

the software for a space shuttle 30 years ago was 400,000 lines

of code, nowadays even a smartphone application can easily

exceed that size. Not only has the size of software increased

in terms of LOC, but integration and interaction with external

services has also dramatically increased. However, with the

increase in size and complexity, comprehending the structure

and analytics of software, especially without a good way to

visualize the information has become increasing difficult.

One good way to represent software structure, size, and

modularity is CodeCity [1], which represents classes as build-

ings and packages as districts in 3D, similar to a city. Since

the original CodeCity does not offer a great number of inter-

actions for a developer with a city, there has been some work

to extend it. One interesting approach is CodeMetropolis [2],

where software cities are represented in Minecraft, allowing

for better collaboration within the Minecraft game. Showing

similar data as CodeCity, CodeMetropolis allows the user to

walk around the city and interact closely with the buildings

(this is the source code). The same representation has also

been used to specifically represent the development history of

a city using a bird’s-eye view [3]. Each approach has its own

purpose, but all approaches assist in the understanding of the

software.

The reason we believe these visualization techniques are

good is because of the ease in understanding the structure of

the software, the class size, and the number of packages within

seconds. Furthermore, humans are very good at processing

very large amounts of information in real-world city-like views

quite quickly since we learn and adapt to the environments

Fig. 1. City-like code visualization

we live in. For example, just by glancing at a building, it is

usually possible to tell the age of the building, i.e., whether

it has a modern or classic design, the material it is made of,

the color, and more. That being said, using a visualization

technique that is similar to the real-world allows us to map

the meanings of characteristics from the real-world to some

aspect of the software, processing it with a similar speed as

we would process the meaning of the real-world object.

Even though we believe the previously mentioned ap-

proaches are useful for visualizing software, we think that the

full potential of such visualization techniques have not been

fully utilized. These approaches use the concepts of a city to

some extent, but they have not included many other aspects

that real cities have and that can be used to deliver even more

information to software engineers. If we manage to grasp this

potential and use it in a way that is consistent with how we

process information in a real environment, understanding the

elements of a software system will get become faster and less

superficial.

For this reason we want to extend the ways in which

software cities can reflect real cities. We want to provide an

experience where the software engineer is immersed in the

software, exploring and learning (maybe even subconsciously)

about it while walking around, in the same way a person would

explore a real city. We would like to allow the engineer to

naturally interact with the information and source code of the

software so that such an enriched experience could help in

better retention of information, as well as in easier compre-

hension. To realize such system, we present a visualization

tool, Rocat, which shows a city-like code visualization in a

virtual reality environment.

In addition, we would like to introduce a new concept of

code visualization, called code visualization for communities.

Previous visualization tools focused mainly on supporting

developers, a single developer [1] or a team of developers

[2]. However, we think that visualization should be beneficial

for communities too since the effectiveness of social coding

[4] and pull-based development [5] has been made clear. To

address this challenge, we integrated the Rocat visualization

system on Kataribe, our code hosting service. With this

kind of system, communities can share a large amount of

information about the underlying software in a way that is

quick and easy to understand.

II. ROCAT: SOFTWARE VISUALIZATION

To allow and support developers in comprehending source

code and the conditions of projects, we propose Rocat, where

developers can feel the code as if in an actual city, which

will provide richer experiences for the developer by enabling

exploration of the city. If the information represented about

a building (or city) and its meaning is similar with a real-

world city, it will be easy to quickly retrieve the meaning of

what they view. In this section, we provide an overview and

an implementation of Rocat for further usage.

A. Overview and Implementation

Rocat is a visualization tool that can be applied to multiple

software development environments. Figure 2 illustrates a

snapshot of a city-like view in Rocat. Similar to CodeCity

[1], extracted metrics are mapped on the height and the base

size of buildings. The height represents the LOC and the base

size represents the number of comments of the source code

in the current system. Users can explore the city among the

buildings. When one building is selected (for example, the

red building in the figure), its source code can be available on

demand. It is possible to edit this source code with this view.

The color of the building describes the top contributor of the

file corresponds to the building (the color of each contributor

is selected randomly). These colors can be used to find out

which developer understands the software and is responsible

for certain source code file.

Although CodeMetropolis is realized on top of an attractive

popular role-playing game, Minecraft1 [2], we have started

implementation using a cross-platform game engine, Unity2.

This is because we do not want to limit Rocat to specific

purposes, but want to develop a general software development

platform in the future. By using Unity, Rocat can be run on

a web browser or any platform and can adopt Oculus Rift to

using Rocat in virtual reality.

Rocat is not the only visualization possible, but it leads to

a novel software development environment. We describe our

concept with the following related approach.

1https://minecraft.net/
2https://unity3d.com/

B. Concept

1) Virtual Museum: A virtual museum is a digital entity

that draws on the characteristics of a museum in order to

complement, enhance, or augment the museum experience

through personalization, interactivity, and a richness of con-

tent3. torytelling is one of the aims of virtual museums, which

aim to make cultural content more attractive for the public

and, consequently, the learning process easier [6]. This aim is

also important for Rocat.

2) Web Maps: Web maps like Google Maps4 are indis-

pensable for exploring real world cities. Among various useful

features, a zooming feature is one of the most basic and essen-

tial in comprehending the structure of cities. Rocat provides

hierarchical views from a bird’s-eye view to an explorative

view. From bird’s-eye views, developers can glance at the

characteristics of parts of projects or the entire project. With

explorative views, developers can investigate each building as

well as the neighboring buildings.

3) Visual Software Analytics Platform: Software analytics

is an analytics on software data for managers and software

engineers with the aim of empowering individual and team

software developers to gain and share insights from their data

to make better decisions [7] SAMOA is a visual software

analytics platform [8]. Because Rocat is also a software

development environment, it needs help in decision-making,

that is, Rocat can be a visual software analytics system too.

SAMOA is a 2D system with different views: a snapshot view,

an evolution view, and an ecosystem view. Introducing these

kinds of views in 3D environments should be helpful.

4) Team Collaboration Platform: From an empirical study

of modern code review, Bacchelli and Bird report the motiva-

tions for code review [9]. Although finding defects is still the

main motivation, reviewers can also expect additional benefits

such as knowledge transfer, increased team awareness, sharing

code ownership, and so on. To support these outcomes, Rocat

can also be helpful; that is, Rocat can be a team collaboration

platform too.

III. KATARIBE: FINE-GRAINED CODE HOSTING

Kataribe5 is a hosting service of Historage repositories

[10]. Historage repositories are fine-grained source code

repositories [11], and are converted from file-level Git repos-

itories with a tool, Kenja6. Kenja constructs a directory

structure for the Historage based on the result of syntactic

analysis of all source code files in each commit. Currently,

Kataribe hosts Historage written in C#, Go, Python and

Ruby, since Kenja can only construct on those programming

languages. Kataribe uses Gitlab, which is a well-known

OSS for hosting Git repositories. Users can get Historage

repositories from Kataribe without registration. Registration

at Kataribe enables users to browse Historage repositories

3https://en.wikipedia.org/wiki/Virtual museum
4https://maps.google.com/
5http://sdlab.naist.jp/kataribe/
6http://github.com/niyaton/kenja

Fig. 2. Snapshot of Rocat

on the Web. Gitlab enables users to see logs and graphical

statics of repositories.

Features of Kataribe include importing existing Git reposi-

tories that are provided on Git hosting services such as Github

and also constructing Historage repositories incrementally.

Since a Historage repository created by Kenja is separated

from the original repositories, users of Kataribe can continue

their development regardless of their Historage repositories.

When a developer pushes her/his commits into their original

repositories, Kataribe automatically converts pushed commits

into the corresponding Historage repositories. These features

allow researchers to get the latest fine-grained histories when

they want to start their new research.

IV. ROCAT ON KATARIBE

We integrate Rocat into Kataribe to provide software

analytics for a community. Figure 3 shows a screen capture

of Rocat on Kataribe. With Web browsers, users can see

Rocat visualizations. In addition, the source code of a selected

module is available on the same web page.

Rocat on Kataribe runs by a Unity Web Player7, one of

Unity’s supported platforms for executing the project on a Web

browser. The metrics data for constructing the building are

managed on Kataribe, so updating the city and each building

can be easily performed. In addition, data and source code

shown by Rocat are always updated to the newest version.

7http://unity3d.com/webplayer

Since Kataribe uses Gitlab, in addition to developers, users

without registration are also able to look through the overview

of the project using Rocat. This characteristic of sharing

visualization in public differs from prior studies and tools

which targeted a single developer or project team. Also, by

integrating Rocat to a source code hosting service, the user

will no longer need to do extra work to share the visualization

and can concentrate on their original work. To make better use

of Kataribe, the Historage metrics can be used to construct

the building. The metrics included in Historage helps the user

obtain a more in-depth analysis and extend the possibilities for

a more understandable visualization.

V. DISCUSSIONS AND FUTURE WORK

We strongly believe that visualization is a crucial part of

successful software engineering. Currently topics such as soft-

ware analytics, team collaboration, learning/comprehension,

and knowledge sharing are being studied separately, but we

believe that a visual environment can be the center of these

topics.

This paper presents a code city for multiple software de-

velopment environments, named Rocat. To develop this new

visual software environment, we have also presented Rocat

on Kataribe to provide software analytics for communities.

Now we are developing a system using Rocat that visual-

izes self-admitted technical debt (SATD). Technical debt is a

metaphor that has been used to express non-optimal solutions

Fig. 3. Snapshot of Rocat on Kataribe

of software development, and SATD is a kind of technical debt

that is intentionally introduced into source code with keywords

such as “TODO” or “FIXME” [12]. Figure 4 shows a screen

capture of the system. The green ball and orange bubbles

are markers of SATD. The users can find files that contain

SATD without reading source codes and share information

about which files need refactoring. We would like to evaluate

our system with interviews with OSS developers, and then

analyze their repositories to see the changes after introducing

the system into development.

Furthermore, Rocat can visualize the relationship among

source codes with program structures at the same time. For

example, in the case of call-graph visualization, 2D visualiza-

tion can represent this relationship by using nodes and edges,

but it is difficult to visualize other metrics clearly in the same

view. Rocat, however, can visualize such a relationship with

a bridge between buildings. Developers can understand a call

graph and program structure at the same time. This approach

will be able to accelerate debugging tasks, for example.

Fig. 4. Visualization for self-admitted technical debt

ACKNOWLEDGMENTS

This work has been supported by JSPS KAKENHI Grant

Number 16H05857 and the JSPS Program for Advancing

Strategic International Networks to Accelerate the Circulation

of Talented Researchers: Interdisciplinary Global Networks

for Accelerating Theory and Practice in Software Ecosystem

(G2603). We would like to thank Yusuke Saito and Shin

Fujiwara for their initial work on Rocat, and Takao Nakagawa

and Stevche Radevski for their suggestions and advices.

REFERENCES

[1] R. Wettel, M. Lanza, and R. Robbes, “Software systems as cities: A
controlled experiment,” in Proc. of 33rd Int. Conf. on Softw. Eng., ser.
ICSE ’11. New York, NY, USA: ACM, 2011, pp. 551–560. [Online].
Available: http://doi.acm.org/10.1145/1985793.1985868

[2] G. Balogh and A. Beszedes, “Codemetropolis - code visualisation in
minecraft,” in Proc. of 13th IEEE Int. Work. Conf. on Source Code
Analysis and Manipulation, ser. SCAM ’13, Sept 2013, pp. 136–141.

[3] F. Steinbrückner and C. Lewerentz, “Representing development history
in software cities,” in Proc. of 5th Int. Symp. on Softw. Visualization,
ser. SOFTVIS ’10. New York, NY, USA: ACM, 2010, pp. 193–202.
[Online]. Available: http://doi.acm.org/10.1145/1879211.1879239

[4] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in
github: Transparency and collaboration in an open software repository,”
in Proc. of 2012 ACM Conf. on Comput. Supported Cooperative Work,
ser. CSCW ’12. New York, NY, USA: ACM, 2012, pp. 1277–1286.
[Online]. Available: http://doi.acm.org/10.1145/2145204.2145396

[5] G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study of the
pull-based software development model,” in Proc. of 36th Int. Conf. on
Softw. Eng., ser. ICSE ’14. New York, NY, USA: ACM, 2014, pp. 345–
355. [Online]. Available: http://doi.acm.org/10.1145/2568225.2568260

[6] E. Pietroni and A. Adami, “Interacting with virtual reconstructions in
museums: The etruscanning project,” J. Comput. Cult. Herit., vol. 7,
no. 2, pp. 9:1–9:29, 2014.

[7] T. Menzies and T. Zimmermann, “Software analytics: So what?” IEEE
Softw., vol. 30, no. 4, pp. 31–37, Jul. 2013. [Online]. Available:
http://dx.doi.org/10.1109/MS.2013.86

[8] R. Minelli and M. Lanza, “Samoa – a visual software analytics platform
for mobile applications,” in Proc. of 29th IEEE Int. Conf. on Softw.
Maintenance, ser. ICSM ’13, Sept 2013, pp. 476–479.

[9] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of
modern code review,” in Proc. of 35th Int. Conf. on Softw. Eng., ser.
ICSE ’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 712–721.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2486788.2486882

[10] K. Fujiwara, H. Hata, E. Makihara, Y. Fujihara, N. Nakayama,
H. Iida, and K. Matsumoto, “Kataribe: A hosting service of historage
repositories,” in Proc. of 11th Work. Conf. on Mining Softw. Repositories,
ser. MSR ’14. New York, NY, USA: ACM, 2014, pp. 380–383.
[Online]. Available: http://doi.acm.org/10.1145/2597073.2597125

[11] H. Hata, O. Mizuno, and T. Kikuno, “Historage: Fine-grained

version control system for Java,” in Proc. of 3rd Joint Int.
and Annual ERCIM Workshops on Principles of Softw. Evolution
and Softw. Evolution Workshops, ser. IWPSE-EVOL ’11. New
York, NY, USA: ACM, 2011, pp. 96–100. [Online]. Available:
http://doi.acm.org/10.1145/2024445.2024463

[12] A. Potdar and E. Shihab, “An exploratory study on self-admitted
technical debt,” in Software Maintenance and Evolution (ICSME), 2014
IEEE International Conference on, Sept 2014, pp. 91–100.

	matsumoto20181031_Part6
	33_ACIT2016

