
Bugarium: 3D Interaction for Supporting Large-Scale Bug
Repositories Analysis

Papon Yongpisanpop, Hideaki Hata, Kenichi Matsumoto
Graduate School of Information Science

Nara Institute of Science and Technology, Japan
{papon-y, hata, matumoto}@is.naist.jp

ABSTRACT
Big data became problems not just how to analyze and vi-
sualize but also how to interact with the data. In software
analysis and maintenance, bug tracking system receive feed-
backs of the software project users everyday, which means
that the data is increasing everyday. A large-scale bug track-
ing system that contains large amount of information does
not give end users an easy way to analyze bug information
because it lacks of good interaction system. We present
Bugarium that integrate 3D Motion Controller and data-
driven documents to ease both interaction and visualization
on a large-scale bug repository. Bugarium leads to a sig-
nificant increase in terms of using 3D motion controller to
operate big data in software visualization. An user study
shows that Bugarium made users satisfied while using it to
interact and visualize a large-scale bug tracking system.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

; D.2.8 [Software Engineering]: [complexity measures,
performance measures]

General Terms
Experimentation, Design, Measurement

Keywords
3D Interaction, software visualization, bug tracking, big data

1. INTRODUCTION
Bug tracking system is a software application that is de-

signed to help keep track of reported software bugs. Bug
tracking systems play an important role in software devel-
opment [7, 8] in these days. They are widely used by open
source software projects and industrial software development
organizations. It allows developers, testers and end users to
provide feedback of an incorrect or error or as a request for
enhancement of software. In the other hand, bug tracking

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 - June 7, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2768-8/14/05 ...$15.00.

systems are also used to analyze and maintain software after
release.

Having a bug tracking system is extremely valuable in
software development. According to the research [3], for a
large-scale, widely-used software system, it could receive a
large number of bug reports. In 2010, Eclipse project received
49,422 bug reports which mean that the bugs were reported
around 135 bugs everyday.

Big data can be turned into big insights. But most of
the time it causes complexity and confusion in visualization.
Visualizing a large amount of bug information has always
been a big challenge in software engineering. Many researches
[1, 3, 6, 8] have tried to solve this visualization problem by
developing many tools such as bugmap [3], SourceVis [2],
bug database [6], evolution history [5], and vocabulary [1].

According to the research [9,11], using only mouse and key-
board slow sometimes users down while navigating through
a large-scale data system. we realized that to perfectly visu-
alize data we need both good data representation and good
interaction method.

In this paper, we propose Bugarium, which is a tool that
implements 3D motion controller that allows users to natu-
rally use hands and fingers to interact with data in large-scale
bug tracking systems.

2. THE STRUGGLE TO INTERACT WITH
LARGE-SCALE DATA

The primary challenge in our research is to ease interaction
of a visualization-based data discovery tool and seeks to
derive more value from large-scale data.

Typically, large-Scale data systems use text-based style to
represent the data such as Bugzilla, a bug tracking system
that has been using in many open source software projects.
The major component of Bugzilla is the database that records
information about known bugs such as timestamp, severity,
priority, erroneous program behavior, and details on how to
reproduce bugs.

Normal interface of Bugzilla represents bug information in
text-based style as shown on the left of Figure 1. Many re-
searches that we already mentioned in Section 1 only focused
on how to make meaning out of a big data by developed
visualization-based data discovery tool.

In Figure 1 on the right, we show the relationships between
1197 committers and 1599 bug reports of Eclipse JDT core
project in 2008 using force-directed graph which is one of the
most famous visualizing graph to represent multi-relations
data structure on a 30 inches display, which has the resolu-
tion of 2560x1600. Even we have a large display and new

Figure 1: On the left shows Eclipse JDT core project bug reports in Bugzilla user interface. 2796 bug report
nodes on the right using force-directed graph to show the relationship between committers and bug reports.

visualization technique to represent large-scale data but yet
we still facing the problem that all data can not fit in the
display and it is hard to navigate through the data by using
only mouse.

3. BUGARIUM

3.1 System Architecture
Figure 2 presents an overview of Bugarium architecture.

The system is composed of three layers: view, controller
and model. Each layer serves different purposes and works
independently from each other.

The top layer is view layer. The purpose of this layer is to
display outputs and receive motion inputs from user. Leap
Motion is a small USB peripheral device, which is designed
to be placed on a physical desktop, facing upward. Using
two monochromatic IR cameras and three infrared LEDs,
the device observes a roughly hemispherical area. The LEDs
generate a 3D pattern of dots of IR light and the cameras
generate frames of reflected data, which is then sent to the
computer. The motions are analyzed by the Leap Motion
controller software.

The middle layer is controller. It has two parallel com-
ponents: 3D motion interpreter and data controller run
together.

Once user interacts with the data in view layer, user in-
terface will pass 3D motion data from Leap Motion to 3D
motion interpreter to interpret and send it to data controller.
Data controller communicate with data layer to get provided
JSON data structure that fed from Bugzilla. Data controller
uses D3.js, which is a JavaScript library for manipulating
documents based on data to bring data back to user with
powerful visualization components.

3.2 User Interaction with LEAP MOTION
We tried to replace mouse by using motion interaction.

Bugarium allows users to swipe, zoom-in and out, select,
grab or even using the basic hand signs to interact with
the data. In this paper we show two interactions, which
user can categorize bug reports by selecting priority of the
reports using hand signs as shown in Figure 3 and selection
comparison for bug reports using fingers shown in Figure 4.

In Figure 3 on the left shows the big picture of the relation-
ships between Eclipse JDT core bug reports and committers
in 2008 which have more than 3000 nodes liking together.
What if you would like to view only bug reports that have

User Interface

3D Motion
Intepreter

Data Model (JSON)

<receive event input>

<feed data>

Data Controller (D3.js)

BUGARIUM

Controller

Model

View

Figure 2: The structure of Bugarium

priority = 5? The problem is even Bugarium has shown a
proper graph to represent the multiple relation in bugs but
it is not easy to visualize at all when having such a big data.

Normally to select bug reports based on the priority using
Bugzilla, users need to click on the selection box to select
the level of priority. Or even other visualizing tools need
to provide interface option for users to use a mouse to click
on it. But Bugarium allows you to use just the basic hand
signs to select bug reports as shown in Figure 3 based on
the priority without any additional interface component such
as checkbox or drop down menu.

Figure 4 shows the benefit of using two hands and fingers
to select 2 bug reports for the comparison, which using mouse
can not do something like this.

4. AN EXPERIMENT ON ECLIPSE
We sampled 40,000 bug reports from Eclipse JDT core

project from 2001 to 2008 and use them as an example to
illustrate the usage of our tool. We set up experiments to
evaluate the satisfaction of Bugarium overall usage. We se-
lected ten participants from our software engineering lab.,
which have variety roles in software development process in-
cluding programmers, testers and end users to use Bugarium
to visualize and navigate through the bug reports.

ImmediateHighestHighNormalLowLowest

Hand Signs

3D Motion sensor
(Leap Motion)

Figure 3: On the left shows the relationships between committer node and bug report nodes of Eclipse JDT
core project bug reports in 2008 using force-directed graph. On the right shows how to use hand sign to
classify bug reports based on their priority level. We use 5 fingers to represent level 5 of the bug reports.
On the bottom shows all the hand signs that use for select bug reports by priority.

We setup two tasks for participants to complete. 1) Select
bug reports based on priority. 2) Select two bug reports to
compare the data inside. After completed the tasks, we
gave a questionnaire for participants to rate our overall
usage compare it with Bugzilla. As shown in Figure 5,
the questionnaire contains five simple questions. The first
question is to see how easy to visualize bug reports. The
result shows that using Bugarium is a lot easier to visualize
both big picture and specific bug reports.

Second question is to see how quick user can access needed
information. The result also shows that Bugarium is better
than Bugzilla. participants said that Bugarium allow to use
hand signal to interact with data which provide more options
than using just mouse to click and keyboard to type to access
the information.

Next question is how easy to manipulate data. The result
shows that Bugarium and Bugzilla scores are almost the
same. “To input data, Bugarium still have to use keyboard
to type” one participant said.

The last two questions are how easy to use and learn.
Many participants said “It is not hard at all to use Bugarium.
The interface and hand signs are based on human common
sense.”

5. RELATED WORK
In the past, many software visualization techniques have

been proposed. For example, Kuhn et al. proposed a tool [1],
which in the position of a software artifact reflects its vocab-
ulary, and distance corresponds to similarity of vocabularies.
D’Ambros et al. [6] proposed a system to visualize a bug
database by using radiography technique to display bug in-
formation in the system level and introduced a “Bug Watch”
to visualize a specific bug. Wettel et al. proposed Software
Systems as Cities [10], which represents large-scale software

Figure 4: Using two hands to selection bug reports
for comparison.

systems as a city metaphor.
In 2002 the movie called Minority Report, in the scene

that Tom Cruise manipulates data on a series of large screen
with hands has inspired researchers that visualization is not
just the way to represent the data but also how we interact
and manipulate it. Computer scientist started to develop
new type of user interface and input devices that not only
existing in science fiction but now in reality [9].

Another research area that tries to use hand gestures is
in medical field. Jacob et al. [4] proposed a technique to
collaborate with a robotic scrub nurse which allow surgeons
use hand gestures and/or voice commands without interrupt-
ing the natural flow of a procedure to command rot hand to
passes instruments, sutures, and sponges during surgery.

6. DISCUSSIONS

!"

#"

$"

%"

&"

'(")*+",-./"

0*"12.3-425,"

637"8,9*80."

#(")*+"

:32;<"3.,8"

;-="-;;,.."

=,,>,>"

?(")*+",-./"

0*"

@-=2934-0,"

>-0-"

$(")*+",-./"

0*"3.,"

A(")*+",-./"

0*"4,-8=" B37-823@"

B375244-"

Figure 5: Participant ratings of Bugarium and
Bugzilla. The result has shown that participants
seemed to satisfy with the overall usage of Bugar-
ium.

• What is the new idea? We propose a system that
uses 3D Motion Controller to help interact with big
data. We implemented a tool called Bugarium which
allows users to ease interaction and visualization on
large-scale bug repositories.

• Why is it new idea? Many researches have tried to
propose new techniques to represent a large-scale of
data in software engineering field. But none of them
did not consider further more on how to interact with
big data. To our best knowledge, it is novel to interact
and visualize bug reports with 3D interaction.

• Who gain the benefit from our tool? Bugarium
is designed for everyone who involves with software
development process to gain the benefit from new user
interface and 3D interaction.

• Why better than use mouse? Basically human can
use hands and fingers to do things in everyday life such
as writing, holding, lifting or even talking with hand
signs. Using mouse just like limit users to only have
one hand and a finger. In Bugarium, we allow users
to use theirs hands and fingers freely to interact with
data inside. Users can zoom in, zoom out, grab and
select objects with their hands and fingers.

• What is the limitation? Bugarium still need to use
keyboard to input data into the system. In the future
we will try to integrate voice recognition for users to
input data by just speak into the microphone.

7. CONCLUSIONS
We have pointed out that to solve problems on a large-scale

and complex data by just delivery users visualization tools
and techniques are not enough. In this paper, we propose
a system called Bugarium, which combine visualization and
interaction methods together by using data-driven documents
and 3D motion controller to help users fully manipulate data
on a large-scale bug repositories. Using Bugarium could
benefit everyone in software development process, it allow
users to easily interact with the bug reports in big and specific
picture by just using both hands and fingers to interact with
the data.

In future, we would like to improve the performance of
Bugarium by adding these following features.

Remote collaboration We would like to enable remote
collaboration in Bugarium for some analysis tasks that users
need to collaborate together.

Input technology We think that keyboard is not going
to get replaced for a really long time, because it is really
good at text. But we would like to provide another text
input option by using microphone and voice recognition in
Bugarium.

Data representation We will make the most meaning
out of large-scale data visualization by research more on
visualize technique to represent the specific data structure
and appropriate motions that can be used to interact with
the data.

8. ACKNOWLEDGMENTS
This study has been supported by JSPS KAKENHI Grant

Number 25880015.

9. REFERENCES
[1] P. L. A. Kuhn and O. Nierstrasz. Consistent layout for

thematic software maps. In Proceedings of the Working
Conference on Reverse Engineering, pages 209–218,
2008.

[2] C. Anslow, S. Marshall, and R. Biddle. Sourcevis:
Collaborative software visualization for co-located
environments. In Proceedings of the 1th IEEE Working
Conference on Software Visualization (VisSoft), pages
1–10, 2013.

[3] J. Gong and H. Zhang. Bugmap: A topographic map of
bugs. In Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, pages 647–650,
2013.

[4] M. G. Jacob, Y.-T. Li, G. A. Akingba, and J. P. Wachs.
Collaboration with a robotic scrub nurse. Commun.
ACM, 56(5), May 2013.

[5] R. Koschke. Software visualization in software
maintenance, reverse engineering, and re-engineering.
Journal of Software Maintenance, 15(2):87–109, 2003.

[6] M. P. M. D’Ambros, M. Lanza. A bug’s life” visualizing
a bug database. In Proceedings of the 4th IEEE
International Workshop on Visualizing Software for
Understanding and Analysis, pages 113–120, 2007.

[7] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two
case studies of open source software development:
Apache and mozilla. ACM Trans. Softw. Eng.
Methodol., 11(3):309–346, July 2002.

[8] C. R. Reis and R. P. de Mattos Fortes. An overview of
the software engineering process and tools in the
mozilla project. In In The Open Source Software
Development Workshop, pages 155–175, 2002.

[9] N. Savage. More than a mouse. Commun. ACM,
56(11):15–16, Nov. 2013.

[10] R. Wettel, M. Lanza, and R. Robbes. Software systems
as cities: A controlled experiment. In Proceedings of the
33rd International Conference on Software Engineering,
pages 551–560, 2011.

[11] Z. Zhang, Y. Wu, Y. Shan, and S. Shafer. Visual panel:
Virtual mouse, keyboard and 3d controller with an
ordinary piece of paper. In Proceedings of the 2001
Workshop on Perceptive User Interfaces, pages 1–8,
2001.

