
Exploiting Eye Gaze Information for Operating

Services in Home Network System

Kohei Mitsui1, Hiroshi Igaki2, Masahide Nakamura1,
Ken-ichi Matsumoto1 and Kentaro Takemura3

1 Graduate School of Information Science, Nara Institute of Science and Technology
8916-5 Takayama, Ikoma, Nara 630-0192, Japan
{kohei-m, masa-n, matumoto}@is.naist.jp

2 Department of Information and Telecommunication Engineering, Nanzan University
27 Seirei, Seto, Aichi 489-0863, Japan

igaki@nanzan-u.ac.jp
3 Department of Electrical Engineering, Nara National College of Technology

22 Yata, Yamatokoriyama, Nara 639-1080, Japan
kenta-ta@elec.nara-k.ac.jp

Abstract. This paper presents a system which extensively exploits user’s
eye gaze information for operating services and appliances in the emerg-
ing home network system (HNS). We design and implement the system
called AXELLA, which captures user’s gaze, then invokes a service oper-
ation, and finally announces the response via voice. AXELLA interprets
the gaze information together with supplementary information as a gaze
context, and triggers a service module associated by a service rule. Thus, a
simple gazing activity can be used for various service operations. Service
developers (or even home users) can easily develop context-aware HNS
services with the eye-gaze-based UI. We demonstrate a practical service
called “See and Know” implemented using AXELLA, where a user can
acquire the current status information of every appliance just by looking
at the appliance. It was shown that the proposed system can reduce the
artificial dependency significantly with respect to ease-of-learning and
system scalability.

1 Introduction

With the emerging ubiquitous technologies, various objects have been equipped
with network functionalities. A home network system (HNS) is a major appli-
cation of such ubiquitous technologies. In a HNS, general household appliances,
such as a TV, a DVD/HDD recorder, an air-conditioner, lights, curtains, a ven-
tilator, an electric kettle and sensors, are connected to a LAN at home, in order
to provide sophisticated services for home users. It is expected in the near future
that a great variety of services and appliances for a HNS will be available. Several
products are already on the market (e.g., [3][13][19]). Currently, a user interface
(UI) for the HNS services is supposed to be provided with a hand-held device
(e.g., a handy-phone, a PDA, a proprietary remote controller, etc.) [5][10][14],
or with a built-in control panel operating GUI applications [3][8][13].

2

However, as the number of appliances and services grows, a user will face with
the problem of artificial dependency. Here we mean the artificial dependency by
a set of factors that the user has to comply with, in order to use the HNS services
4. For example, to use a service the user has to be familiar with usage of the
hand-held device (or the control panel). The user also has to learn how to operate
services on the UI, which generally varies from appliance to appliance as well
as service to service. Moreover, the UI must keep up with the new appliances
and services deployed. The problem is that the artificial dependency would be
accumulated exponentially in the number of appliances and services, without
careful consideration. The artificial dependency always exists but can be reduced.
Therefore, we consider it quite important for the future HNS to minimize the
artificial dependency.

In this paper, we introduce user’s eye gaze as a UI for HNS services, which
aims to reduce the artificial dependency especially in the aspects of ease of learn-
ing (adaptability) and system scalability. Specifically, we develop a system called
AXELLA (Adaptive and eXtensible Environment for Legacy and Leading Ap-
pliances), which exploits user’s eye gaze for operating HNS services. We assume
such scenarios that a user can use HNS services easily just by “looking” at some
appliances.

We first point out the following four requirements, which are unique but es-
sential for such an eye-gaze-based UI for a HNS: (a) appliance-wise eye tracking,
(b) context-aware actions, (c) switching to service mode and (d) system response
with non-visual medium. Based on these requirements, we then design and im-
plement four sub-systems for AXELLA. Specifically, as for (a), we introduce an
eye gaze analyzer with a face tracking system, which has been developed in our
previous work. For (b), we propose a context-based service processor. To achieve
(c), we exploit a small wireless device, called trigger button. For (d), we select a
voice-based information presentation using a text-to-speech technology.

What most original and significant in AXELLA is that it interprets the gaze
information as a context. Specifically, we use supplementary information includ-
ing time, location and userID together with the gaze. Upon receiving the gaze
context, AXELLA activates a service module associated by a service rule. Thus,
a simple gazing activity can be used for triggering various service operations.
Since the service rule is written in a simple IF-THEN format, the developer (or
even home user) can create and customize context-aware HNS services easily.

As a practical example, we implement an appliance presence service called
“See and Know” using AXELLA. When a user looks at an appliance, the system
speaks its current status, taking the current context into consideration. Through
qualitative discussion, we show that the proposed system can reduce the artificial
dependency significantly with respect to ease-of-learning and system scalability.

4 The original definition of artificial dependency was given in the context of service-
oriented architecture (SOA) [17].

3

APIAPIAPIAPI

APIAPI

APIAPIAPIAPI

APIAPIAPI

APIAPIAPI

APIAPIAPI

APIAPIAPI

APIAPIAPI

APIAPIAPI

APIAPIAPI APIAPIAPI

Home
Server

InternetInternet

Temp.: 22℃
Door: Open
Light: Off

Fig. 1. Example of a home network system

2 Preliminaries

2.1 Home Network System

A home network system (HNS) consists of one or more networked appliances
connected to a local area network at home. In general, every appliance has a set
of device control APIs, by which users or external software agents can control
the appliance via network. Figure 1 shows an example of a HNS, where various
appliances are networked. In this example, a home server manages all the appli-
ances in a centralized manner. It also plays a role as a residential gateway to the
Internet. The communication among the appliances is performed with an un-
derlying HNS protocol. Several HNS protocols are currently being standardized,
such as DLNA [1], UPnP [15], ECHONET [2].

It is natural to regard each appliance in a HNS as a self-contained distributed
object [18], since an appliance generally has an internal state and a set of meth-
ods affecting the state. For instance, let us consider a networked TV. A TV has
a state consisting of attributes as such power, channel and volume. The cur-
rent values of the attributes characterize the (current) state, e.g., [power=ON,
channel=2, volume=15]. The device control APIs correspond to the methods.
Typical methods (APIs) for the TV include ON(), OFF(), selectChannel(),
setVolume(), getState(), etc. For convenience, we denote A.m() to represent
an API invocation m() of an appliance A (e.g., TV.setVolume(20),
Curtain.open(), DVD.getState()).

2.2 HNS Services

A service for a HNS is basically implemented as a software application that
executes the APIs with a pre-defined logic. For instance, invoking getState()
API for every appliance implements an appliance monitoring service, The user
can watch the current status of the appliances at any time and any place (see
Figure 1). Another example is a sleep service that uses OFF() API for a set of
registered appliances. The user can shut down all the appliances at once before

4

leaving home or going to bed. The service applications are usually installed on
the home server [6], which manages all the appliances in the HNS.

2.3 Conventional User Interfaces for HNS Services

The service application of a HNS are provided for a home user through a certain
user interface (UI). As far as we know, most of the UIs currently available adopt
the conventional GUI applications or Web-based interfaces. These UIs are typi-
cally installed on hand-held devices (e.g., a handy-phone, a PDA, a proprietary
remote controller, etc.) [5][10][14] or proprietary control panels built in the house
[3][8][13].

However, the conventional UIs impose a certain extent of the artificial de-
pendency upon users, which is an additional cost to use the HNS services. First
of all, a user is required to use the hand-held device or the control panel. Then,
the user has to learn how to operate services on the UI. In general, such a UI
varies from service to service. Therefore, when a new service becomes available,
the user has to learn the operation for the new service. From the system point
of view, the conventional UIs are not so adaptive (scalable) for evolution of a
HNS. Basically the GUI is designed for known services and appliances, and not
for future ones currently unknown.

As the number of services and appliances grows, the problem of the artificial
dependency will become serious. Therefore, it is quite important for the future
HNS to minimize the artificial dependency. This motivated us to investigate new
UIs that can complement the conventional ones.

3 Exploiting Eye Gaze Information for HNS

3.1 Advantage and Drawback

To minimize the artificial dependency problem, our key idea is to introduce
user’s eye gaze as a UI for operating HNS services. More specifically, our goal
is to achieve such an environment that a user can activate (or deactivate) a
service, and can control or monitor appliances by just looking at the networked
appliances.

The primary reason why we chose the eye gaze is that it is quite a simple
and native activity for human beings. It is also known in the cognitive science
that looking at an object reflects a human interest or attraction to the object
[9]. Due to the above reasons, there has been much research work using the eye
gaze for supporting UIs, although application to a HNS is few.

The major advantage in applying the eye gaze to the UI for HNS services is
that it can reduce the artificial dependency drastically in the sense of ease-of-
learning. This is due to the simple and intuitive nature of the eye gaze. Also,
even if the number of appliances (or services) grows, the user can keep the same
manner to operate with HNS services. That is, new appliances and services
never affect the UI. Thus, the artificial dependency can be reduced with respect

5

to system scalability. Thus, the problems caused by the conventional GUIs would
be improved.

However, introduction of the eye gaze brings some new problems. Firstly, the
HNS should be able to capture user’s gaze with certain extent of accuracy. For
this, we cannot force the user to use extra complex devices lest the user should
feel physical and mental stress. Secondly, the activity “looking at an appliance”
is so simple that it is difficult to make a variety of operations for the appliance
solely with the gaze. Thirdly, it is necessary to identify whether the gaze at an
appliance is for service operation or just for seeing the appliance. Finally, since
user’s eyes are occupied for the service operation, the user cannot see the system
response simultaneously.

3.2 System Requirements

To cope with the drawbacks, we propose the following four requirements to be
satisfied by the system with the eye-gaze-based UIs for operating HNS services.

Requirement R1 (appliance-wise eye tracking): The system must be able
to track user’s gaze on every appliance in a HNS. For this, no complex device
should be worn by the user.

Requirement R2 (context-aware actions): The system must have a capa-
bility of mapping the gaze at the same appliance to different actions (oper-
ations). Preferably, the mapping should be performed based on the context
derived from the gaze information.

Requirement R3 (switching to service mode): The system must have a
means that a user can easily switch the system to a service mode, where the
system accepts user’s gaze as an operation to a HNS service or an appliance.

Requirement R4 (system response with non-visual medium): The sys-
tem must notify a user of the response (or result) of a service operation via
non-visual medium.

4 AXELLA — Proposed System

Based on the requirements in Section 3.2, we develop a system called AXELLA
(Adaptive and eXtensible Environment for Legacy and Leading Appliances).

4.1 System Architecture

To satisfy the requirements, AXELLA is composed of the following four compo-
nents (sub systems).

Eye gaze analyzer: To achieve Requirement R1, the eye gaze analyzer iden-
tifies which appliance the user is currently looking at, based on data polled
from an external eye camera. Then, combining the appliance information
with supplementary information (time, location, userID), the analyzer gen-
erates a gaze context.

6

Service Processor
HNS

(4) Gaze Context

Eye Gaze
Analyzer

00 00 0000 00 00

API

(1) GazingUser

Eye
Camera

(2) Switch to
Service Mode

Speech
Engine

Speaker

(3) Detect Gazing

Trigger
Button

API Caller

PC

Context
Repository

Service
Library

Context Interpreter

APIAPI

APIAPI

API

(5) Invoke API
(6) Get Result

(7) Notify
Result

APIAPI

APIAPI

Service Rules
R1: (tc1,lc1,uc1,ac1)→sm1
R2: (tc2,lc2,uc2,ac2)→sm2

・

・

・

Service Rules
R1: (tc1,lc1,uc1,ac1)→sm1
R2: (tc2,lc2,uc2,ac2)→sm2

・

・

・

Fig. 2. Overall system architecture of AXELLA

Service processor: To satisfy Requirement R2, this system collects the eye
gaze context polled from the eye gaze analyzer. Then, the service processor
interprets the context, consults the user-defined service rules, and finally
triggers an operation for the HNS appliances. The service processor also
sends the response of the operation to the speech engine (See below).

Trigger button: This is a small wireless device for achieving Requirement R3,
which is supposed to be carried by each user. When the user clicks the
button, AXELLA switches to the service mode where it accepts user’s eye
gaze as an operation.

Speech engine: The speech engine reports the system response to the user via
voice, which copes with Requirement R4. Using the text-to-speech technol-
ogy, the engine dynamically synthesizes the voice from the text sent from
the service processor.

Figure 2 shows overall system architecture of AXELLA. In the figure, a dot-
ted arrow represents an interaction among a user and the system, whereas a
solid arrow denotes the data flow among components. First, (1) a user gazes an
appliance and (2) presses the trigger button to enter the service mode. Then,
(3) the eye gaze analyzer detects the gaze and (4) sends the gaze information
as a gaze context to the service processor. Upon receiving the gaze context, the
service processor interprets it and chooses an appropriate service module based
on a service rule. (5) The service processor invokes APIs as specified in the mod-

7

Fig. 3. Screen shot of eye gaze analyzer

ule, and (6) gets the results. Finally, (7) the result is sent to the speech engine
to announce to the user.

For each of the four components, we give more detailed explanation in the
following subsections.

4.2 Eye Gaze Analyzer

The eye gaze analyzer captures user’s eye gaze information. It identifies which
appliance the user is currently looking at. To implement the analyzer, we employ
the existing face-and-gaze measurement system [11]. The measurement system
consists of a three-dimensional stereo camera and a PC. It captures user’s face
image, and performs an image processing to identify position of every facial
organs. Then, the system calculates the direction and angle of eyes. Finally, the
system identifies the object (i.e, appliance) by detecting the intersection of the
eye direction and the object based on floor plan data prepared in advance. The
system outputs the gaze information in a form of continuous bulk data. To cover
a wider range of the gaze measurement, we assume to deploy multiple eye gaze
analyzers in the HNS.

8

openCurtain {

status s = Curtain.getStatus(); /*Get the current status of curtain*/

if (s == CLOSE) { /*Open the curtain if closed*/

Curtain.open();

TTS.speech("The curtain is opened"); /*Announce the completion*/

}

}

Fig. 4. Service module openCurtain

In this paper, we extend the measurement system so that it can capture a
context from the gaze information. Here we define a gaze context as follows:

Definition (Gaze Context) Suppose that at the time t a user u in a location
l keeps looking at an appliance a during a pre-defined period. Then, we define a
quad-tuple c = (t, l, u, a) as a gaze context.

A gaze context involves information on when, where and who in addition to
the appliance, which is likely to reflect the user’s intention and wish. Also, these
attributes help the system interpret a simple eye gaze activity in different ways.
For instance, a gaze context (7:30, bed, userA, curtain), where user A is
looking at a curtain on the bed, could characterize a wish that user A wants to
open a curtain. For another context (22:30, bed, userA, curtain), user A
may want to close the curtain before sleeping.

The purpose of the pre-defined period in the definition is to distinguish a
gaze from a glance. Our empirical study shows that around 1.5 seconds is its
reasonable value. Figure 3 shows a screen shot of the eye gaze analyzer, where a
user is currently looking at a curtain.

4.3 Service Processor

The service processor activates an appropriate HNS service upon receiving a
gaze context, which plays a key role of AXELLA. It consists of five components
as shown in Figure 2.

The service library is a collection of service modules which are reusable com-
ponents to construct HNS services. More specifically, a service module is a pro-
gram module that wraps invocations of appliance APIs with a certain control
flow. Each service module corresponds to a self-contained action that a user per-
forms against a HNS. Figure 4 shows an example of the service module, written
in a C++-like pseudo code. This module invokes two curtain APIs to achieve
user’s action “open the curtain”. The result is notified to the user with API of
the speech engine (see Section 4.5).

9

A service rule specifies an association between a gaze context and a service
module, in terms of a simple IF-THEN format.

Definition (Service Rule) A service rule r is defined as

r : (tc, lc, uc, ac) → sm

where tc, lc, uc, ac are guard conditions on time, location, user and appliance,
respectively. These conditions are combined with AND semantics, which forms
a guard over gaze contexts. A guard (tc, lc, uc, ac) is evaluated to be true or
false for a given gaze context (t, l, u, a). sm is a corresponding action, which is
given as a reference (name) to a service module. The service module sm is to be
activated when the guard is satisfied.

Each of the guard conditions is supposed to be given in a logical formula.
Considering that even home users can define their own service rules, our system
currently supports a small set of constructs, including identifiers and operators *
(don’t care) and [from .. to] (range). For instance, the following oc1 defines
a service rule such that “from 6:00 to 11:00 if any user looks at curtain on the
bed, then open the curtain (with openCurtain in Figure 4)”.

oc1: ([6:00 .. 11:00], bed, *, curtain) -> openCurtain

Corresponding to various operations using eye gaze, the service processor can
have multiple service rules.

The context repository is a database that stores gaze contexts polled from
the eye gaze analyzer. Upon a new gaze context c arrives, the context interpreter
looks up the service rules to find a rule whose guard is satisfied by c 5. If a
service rule is found, the context interpreter passes the name of the corresponding
service module to the API caller. Based on the name, the API caller loads a
corresponding service module from the library, and executes it. The results of
the API invocations can be redirected to the speech engine to notify the user
via voice.

4.4 Trigger Button

The trigger button tells the system that a user initiates to execute the HNS
services by the eye gaze. The button should be small and be capable of wireless
communication. We assume that every user has a trigger button with a unique
signature. AXELLA recognizes the signature as a user ID, and uses it in the
gaze context.

Currently, we are using a small wireless mouse as the triggering button. When
the user click the button, AXELLA enters to a service mode and waits for the
eye gaze operation by the user. After a preset period (currently we set it 10
seconds), AXELLA automatically reverts to the normal mode in which user’s
eye gaze is not interpreted as an operation.
5 Our implementation returns only the first match found, even if there exist multiple

rules matching c. This is to avoid the feature interaction problem [7], which is a
functional conflict among multiple service modules.

10

4.5 Speech Engine

As for the non-visual medium mentioned in Requirement R4, we choose voice
announcement. When the service processor passes the API results in a text
format, the speech engine synthesizes the voice from the text, and plays back to
the user. For the task, the speech engine exhibits a speech API to the network.
With the speech API, the speech engine can be used within HNS services in a
similar fashion to the ordinary networked appliances.

According to a voice-based interaction guideline [4], the text-to-speech is
suitable for system output, especially when (1) a user uses eyes for interactions,
(2) the user frequently moves from one place to another, or (3) the user cannot
easily access the PC monitor. Thus, our application reasonably fits the guideline.
Compared with visual information, information delivered by voice tends to stay
longer in human memory, but its information capacity is limited. Therefore, it
should be careful not to send long sentences at a time to the speech engine.

5 Implementation

5.1 AXELLA

We have implemented AXELLA using the following components.

Eye Gaze Analyzer: Dell – Optiplex (Vine Linux3.2+gcc),
Pointgrey Research – Frea x 2 (for the eye camera)

Service Processor: minipc.jp CF700 (Windows XP, JDK1.5.0 06)
Trigger Button: Logicool – V200 Bluetooth Mouse
Speech Engine: minipc.jp CF700 (Windows XP, JDK1.5.0 06, Apache Tom-

cat5.5.12, Apache Axis1.3), PENTAX VoiceTEXT (for text-to-speech en-
gine).

Then, we deployed AXELLA in an existing HNS developed in our previous
work [12]. The HNS is composed of legacy infrared-based appliances each of
which is networked with Web services. The networked appliances include a PDP
(Plasma Display Panel), a DVD/HDD recorder, two lights, an air cleaner, an
air circulator, a curtain, a door, a thermometer, an illuminometer, a sound-level
meter, and an airflow meter.

Figure 5 shows a picture and a floor plan of our experimental laboratory. As
seen in the floor plan, we deployed two sets of the eye gaze analyzer, in order
to capture the gaze contexts in different locations. The person in the bottom of
the picture is operating HNS services using his eye gaze.

5.2 See and Know: Appliance Presence Service

As a practical application of AXELLA, we have implemented an interesting
service, named See and Know. This service allows a user to acquire the current
state information (i.e., presence) of every appliance in a HNS, just by looking at
the appliance.

11

Eye Camera

Eye Gaze Analyzer

PDP

DVD Player

Loca

SpeechEngine

Appliance
Manager

Curtain

SpeakerUser

HUB

Light

Eye
Camera

Eye Gaze Analyzer

User

(a) Floor plan

(b) Picture

Fig. 5. Our experimental laboratory for HNS and AXELLA

12

As seen in Section 2.1, a state of each appliance generally consists of multiple
attributes. However, it is not smart to present all the attributes every time,
since the status information a user wants may vary depending on the context.
For instance, suppose a situation that a user wants to check if a PDP is surely
switched off before leaving a room. Thus, nearby the door the user is interested
in only power attribute of the PDP. On the other hand, when looking at the
same PDP at a sofa, the user would be interested in input attribute to check
which contents the PDP is currently showing. In this case, the user does not
need the power attribute, since the power status is obvious at the sofa in front
of the PDP.

Our See and Know service achieves the location-based information filtering
by extensively using the gaze context of AXELLA. Figure 6 shows a list of
service rules implementing the See and Know service. In the figure, notify X Y
represents a service module that obtains the current state of appliance Y through
network, and then tells the status (current value) of attribute X via voice. In this
service, we assume the following use case scenarios.

UC1: On the sofa in a living room, the user checks a working status specific to
each appliance by looking at the appliance.

UC2: Near the exit door, the user checks power status for each appliance, to
confirm that the appliance is surely turned off before leaving the room.

UC3: At any place, the user checks temperature upon looking at the thermome-
ter.

In this implementation, when a user gazes at the PDP at the door and the
PDP is off, AXELLA speaks “PDP is now power off”. This is as specified in sk6
to achieve the use case UC2. Another example is that AXELLA speaks “DVD
recorder still have 40GB of free space” when the user looks at the DVD recorder
on the sofa. This is by sk2 involved in the use case UC1.

Through a simple usability evaluation, we have confirmed that See and Know
service was quite intuitive, efficient, and easy to learn. In a cognitive sense, gazing
an object and checking the object are tightly coupled with each other. Therefore,
few artificial dependencies were imposed to the user. With the conventional UIs,
the user would have taken more time and expertise to use the same service.

6 Discussion

6.1 Qualitative Evaluation

As seen in the example of See and Know service, AXELLA can significantly
reduce the artificial dependency, especially with respect to the ease-of-learning.
Note also that AXELLA is able to cope with the addition of new services and
appliances quite easily, in the context of the UI. For this, the service developer
just adds new lines of service rules, without re-engineering the UI. As for the
user, even if new service rules are added, the operation is basically the same,

13

See and Know Service Rules

rule: (When, Where, Who, Appliance) -> service_module

at sofa in living room...

sk1: (*, sofa, *, PDP) -> notify_input_PDP

sk2: (*, sofa, *, DVD) -> notify_remainingfreespace_DVD

sk3: (*, sofa, *, LIGHT) -> notify_brightness_LIGHT

sk4: (*, sofa, *, AIRCLEANER) -> notify_drivemode_AIRCLEANER

sk5: (*, sofa, *, CIRCULATOR) -> notify_flowlevel_CIRCULATOR

at exit door...

sk6: (*, door, *, PDP) -> notify_power_PDP

sk7: (*, door, *, DVD) -> notify_power_DVD

sk8: (*, door, *, LIGHT) -> notify_power_LIGHT

sk9: (*, door, *, AIRCLEANER) -> notify_power_AIRCLEANER

sk10: (*, door, *, CIRCULATOR) -> notify_power_CIRCULATOR

for temperature

sk11: (*, *, *, THERMOMETER) -> notify_temperature_THERMOMETER

Fig. 6. Service rules for See and Know service

i.e., looking at appliances. This fact shows that AXELLA achieves the system
scalability.

According to the architecture of AXELLA (see Figure 2), a gaze context and a
service module are originally independent. Therefore, the service developer can
develop and deploy new service modules without assuming any link to user’s
gaze contexts. A gaze context and a service module are connected explicitly by
a service rule. Thus, it is actually the service rules that implement a concrete
AXELLA service. Due to its simple syntax, we believe that even home users can
customize existing rules or define new rules. This fact implies that the users can
create their own services easily.

Introducing more powerful logic in the service rules (e.g., a temporal order
in guard conditions, dependency among service modules) would realize more so-
phisticated services. However, this increases the complexity of the service rule
description, which is a trade-off against the easy service creation. We will inves-
tigate this issue in our future work.

A limitation in our current implementation is that gaze contexts can be
captured only in the position where the eye camera is placed. This is due to the
limitation of the eye camera of the eye gaze analyzer. To cover a wider range,
we have to deploy many cameras in the room. However, we believe that this
problem will likely be alleviated as the technology matures.

6.2 Comparison to Conventional UIs

We do not consider that AXELLA with the eye-gaze-based UI completely re-
places the conventional UIs for a HNS. The point is that it is important to make
an appropriate choice of AXELLA and/or the conventional GUIs, taking the
nature of target services into account.

14

According to its eye-gaze-based UI, we consider that AXELLA is well suitable
for implementing HNS services that have the following characteristics:

A1: Daily routines or operations frequently used (e.g., open/close curtains,
switch on/off lights).

A2: Simple operations over multiple appliances (e.g., turn on and play TV and
DVD together, group shutdown)

A3: Information presentation intuitively linked to gazing (e.g., See and Know).

On the other hand, due to the simple and intuitive nature of gazing, AXELLA
is not good for dealing with the following kinds of services.

B1: Services that requires many parameter inputs and stateful operations (e.g.,
information search, HDD recorder setting).

B2: Operations not intuitively connected to concrete appliances (e.g., showing
stock prices).

For these services, we consider it difficult to achieve solely with AXELLA. It
should be complemented by the conventional or new other UIs. Further investi-
gation on suitable applications of AXELLA is left for our future work.

6.3 Related Work

There have been a few existing research that uses the eye gaze to control ap-
pliances, although they are not for the purpose of HNS services. Takemura et
al. proposed an application called universal remote controller [11]. In this appli-
cation, the eye gaze is basically used to select an appliance that a user wants
to control. Actual operations are issued by a user on a PC using a mouse or a
keyboard. Since the user cannot see the PC monitor while gazing, the operations
are limited to relatively simple ones. Also, it does not consider the gaze contexts
or the link from a gaze to any service operation, as AXELLA does.

Vertegaal et al. developed a series of appliances called media eyepliances [16].
Each eyeplliance provides features strongly coupled with the gazing activity of
human beings. For instance, an eyeplliance, called Attentive Television, plays
the contents only while a user is looking at the TV. Otherwise TV pauses the
contents. The approach is quite device-centric, and a relationship between a gaze
and an action is fixed. This is quite different from our service-centric approach.

7 Conclusion

In this paper, we proposed a system AXELLA, which exploits user’s eye gaze
information extensively for services in the future home network systems (HNS).
We first investigated system requirements for eye-gaze-based UIs for the HNS
services. Then, based on the requirements, we designed and implemented four
components: the eye gaze analyzer, the service processor, the trigger button, the
speech engine. Introducing a notion of the gaze context, AXELLA allows service

15

developers (or even home users) to create context-aware services with the eye
gaze information. As a practical application, we have implemented a practical
service – See and Know. Finally, we discussed and evaluated the proposed system
to see its advantage and limitation.

Our future work is to analyze and enhance the expressive power of the service
rule description. We also plan to clarify the service domain that makes the best
use of AXELLA. Investigating human activities other than eye gaze for HNS
services is also an interesting issue.

Acknowledgement

This research was partially supported by: the Ministry of Education, Science,
Sports and Culture, Grant-in-Aid for Young Scientists (B) (No.18700062), Grant-
in-Aid for 21st century COE Research (NAIST-IS — Ubiquitous Networked Me-
dia Computing), and Pache Research Subsidy I-A-2,2006 of Nanzan University.

References

1. Digital Living Network Alliance
http://www.dlna.org/home/.

2. ECHONET Consortium
http://www.echonet.gr.jp/english/.

3. Matsushita Electric Industrial Co., Ltd. kurashi-net:http://
national.jp/appliance/product/kurashi-net/. (in Japanese)

4. Mayhew, D.J.:“Principles and Guidelines in Software User Interface Design,” En-
glewood Cliffs NJ: Prentice-Hall

5. NANO Media Inc., “App-rimo-con”,
http://www.nanomedia.jp/english/service/s02.html

6. OSGi Alliance
http://www.osgi.org/.

7. Reiff-Marganiec, S., Ryan, M.D., editors., Proceedings of 8th International Con-
ference on Feature Interactions in Telecommunications and Software Systems. IOS
Press. 2005

8. Rich, C., Sidner, C., Lesh, N., Garland, A., Booth, S., Chimani, M.: “Diamond-
Help: A New Interaction Design for Networked Home Appliances,” Personal and
Ubiquitous Computing, Springer-Verlagm ISSN: 1617-4909, Vol. 10, Issue 2, pp.
187-190, January 2006.

9. Selker, T.:“Visual attentive interfaces,” BT Technology Journal, Volume 22, No 4,
pp.146-150, Oct. 2004.

10. SUGIYAMA ELECTRON Co., Ltd. Remocon Sauser:
http://www.sugi-ele.co.jp/remoconsaucer.htm.

11. Takemura, K., Minamide, H., Matsumoto, Y., Ogasawara, T.: “What You Look at
Is What You Control:A Universal Remote Control Based on Gaze Measurement
Technology,” 1st IEEE Technical Exhibition Based Conference on Robotics and
Automation (TExCRA2004), 2004

12. Tanaka, A., Nakamura, M., Igaki, H., Matsumoto, K.: “Adapting Conventional
Home Appliances to Home Network Systems Using Web Services,” Technical Re-
port of IEICE, IN, 2005. in Japanese

16

13. Toshiba Consumer Marketing Corp., “FEMINITY” :
http://www3.toshiba.co.jp/feminity/feminity eng/.

14. Toshiba Consumer Marketing Corp., “Life Remote Controller” :
http://www3.toshiba.co.jp/feminity/feminity eng/keitai/keitai 01.html.

15. UPnP Forum
http://www.upnp.org/.

16. Vertegaal, R., Cheng, D., Sohn, C., Mamuji, A.: “Media EyePliances: Using Eye
Tracking For Remote Control Focus Selection of Appliances,” In Extended Ab-
stract of ACM CHI 2005 Conference on Human Factors in Computing Systems.
Portland, OR: ACM Press, 2005.

17. W3C “Web Services Glossary” :
http://www.w3.org/TR/ws-gloss/.

18. W3C “Web Services Architecture” :
http://www.w3.org/TR/ws-arch/.

19. ZOJIRUSHI CORPORATION “iPot” :
http://www.mimamori.net/.

