Characterizing Safety of Integrated Services in
Home Network System

Ben Yan'!, Masahide Nakamura'!, Lydie du Bousquet?, Ken-ichi Matsumoto®
! Nara Institute of Science and Technology (NAIST)
8916-5, Takayama-cho, Ikoma-shi, Nara, 630-0192 Japan
{hon-e, masa-n, matumoto}@is.naist.jp
2 LSR Laboratory, IMAG, Joseph Fourier University (Grenoble I)
BP72, F-38402, Saint-Martin d’Heres Cedex, France
Lydie.du-Bousquet@imag.fr

Abstract. This paper formalizes three kinds of safety to be satisfied by
networked appliances and services in the emerging home network system
(HNS). The local safety is defined by safety instructions of individual
networked appliances. The global safety is specified as required prop-
erties of HNS services, which use multiple appliances simultaneously.
The environment safety is derived from residential rules in home and
surrounding environments. Based on the safety defined, we propose a
modeling/validation framework for the safety. Specifically, we first intro-
duce an object-oriented modeling technique to clarify the relationships
among the appliances, the services and the home (environment) objects.
We then employ the technique of Design by Contract with JML (Java
Modeling Language), which achieves systematic safety validation through
testing.

1 Introduction

The recent ubiquitous/pervasive technologies allow general household appliances
to be connected within the network at home. The home network system (HNS, for
short) is comprised of such networked appliances to provide various services and
applications for home users|[7]. The great advantage of HNS lies in integrating (or
orchestrating) features of multiple appliances, which yields more value-added and
powerful services. We call such services HNS integrated services. For example,
integrating a TV, a DVD player, lights, sound-systems and curtains implements
a DVD Theater service, which allows a user to watch movies in a theater-like
atmosphere just within a single operation.

In developing and providing a HNS integrated service, the service provider
must guarantee that the service is safe for inhabitants, house properties and their
surrounding environment. In the conventional situations where a user operates
(non-networked) appliances one-by-one, the safety has been assured manually
by the human user. That is, every user is supposed to follow safety instructions
typically described in a user manual.

On the other hand, as for the HNS integrated services, we have to consider
the safety more carefully. Since the service is typically implemented as a software
application, appliances are often operated automatically by the application, but
not by the human user. Also, one integrated service operates multiple appliances,
which yields global dependencies among different appliances. Moreover, since
multiple integrated services can be executed, unexpected functional conflicts
may occur among the services. Thus, a single fault in the service application
can cause serious accidents to the user. Unfortunately, no solid study has been
reported for the safety of HNS integrated services.

In order to achieve the safety within the HNS integrated services system-
atically, this paper formalizes three kinds of safety: (a) local safety, (b) global
safety, and (c) environment safety. The local safety is defined by the safety in-
structions of individual networked appliances. The global safety is specified as
required properties of HNS services, which use multiple appliances simultane-
ously. The environment safety is prescribed as residential constraints and rules
in home and surrounding environments.

Based on the safety formulated, we then propose a modeling/validation frame-
work. Specifically, we introduce an object-oriented modeling technique to clarify
the relationships among the appliances, the services and the home (environ-
ment) objects. We then employ the technique of Design by Contract [6] with
JML (Java Modeling Language) [3,9]. The properties of local, global and envi-
ronment safety are represented as JML contracts, and embedded in Java source
code of the appliance, the service and the home objects, respectively. Finally,
the safety properties are validated through testing using related testing tools.
Assuring safety is a crucial issue to guarantee high quality of life in smart home.
We believe that the proposed framework provides a systematic approach to the
safety assurance in the context of pervasive computing in smart home.

2 Preliminaries

2.1 Home Network System

A home network system (HNS) consists of one or more networked appliances
connected within a LAN at home. In general, each appliance has a set of appli-
cation program interfaces (i.e., APIs), by which the users or external software
agents can control the appliance via the network. A HNS typically has a home
server, which manages all the appliances in the HNS. Services and applications
are installed on the home server. A HNS integrated service operates different
multiple appliances together, and achieves a sophisticated and value-added ser-
vice. An integrated service is implemented as a software application that invokes
APIs of the appliances. It is supposed to be installed in the home server.

2.2 Example of HNS Integrated Services

We here introduce four example scenarios of HNS integrated services.

Public DVDTheateService {
Digital TV tv = new DigitalTV();
DVDPlayer dvd = new DVDPlayer();
SoundSystem sound =new SoundSystem();
Light light = new Light();
Curtain curtain = new Curtain();

tv.on(); /*Tumnon TV */
tv.setVisuallnput(‘DVD’);

dvd.on(); /* Turn on the DVD Player */
dvd.setSoundOutput(‘5.1");

sound.on(); /* Turn on the Sound System */
sound.setlnputSource(‘DVD’);
sound.setVolumeLevel(25);

curtain.closeCurtain(); /* Close curtain */
light.setBrightnessLevel(1); /* Minimize brightness */
tv.playTv(); I* Play TV */
dvd.playDvd(); I* Play DVD */

Fig. 1. DVD theater service

[SS10 DVD Theater Service] Integrating a TV, a DVD player, a sound
system, a light and a curtain, this service automatically sets up the living room in
a theater configuration. Upon a user’s request, the TV is turned on with the DVD
input, the curtains are closed, the sound system is configured for 5.1ch mode,
the light becomes dark, and finally the DVD player plays back the contents.

[SS20 Relax Service] Integrating a DVD player, a sound system, a light,
an air-conditioner, and an electric kettle, this service helps a user relax in the
living room. When the user starts the service, the DVD player is turned on
with a music mode, a 5.1ch speaker is selected with an appropriate sound level,
the brightness of the light is adjusted, the air-conditioner is configured with a
comfortable temperature, and the kettle is turned on with a boiling mode to
prepare hot water for coffee.

[SS30 Shower Service] Integrating a gas-boiler, a shower valve and an air-
conditioner in the bathroom, this service provides a comfortable setting for tak-
ing shower. Upon the service request, the gas-boiler is turned on with a preset
water temperature. When the user enters the bathroom, the shower valve is au-
tomatically opened to turn on the shower. Also, the air-conditioner is turned on
to keep the user warm.

[SS4: Cooking Preparation Service] Integrating a gas-valve, a ventilator,
a roaster and a kitchen light, and an oven, this service automatically sets up
the kitchen configuration of preparing for cooking. When requested, the kitchen
light is turned on, the gas-valve is opened, the ventilator is turned on, and the
pre-heating of the oven is started.

Fig. 1 shows a Java-like pseudo code which implements the scenario SS1 of
DVD Theater service. In the figure, X.Y() means the invocation of API Y() of
appliance X.

3 Formalizing Safety of HNS Integrated Services

3.1 Safety of HNS
For a HNS integrated service, we define the safety in the broad sense as follows.

Definition 1 (safety in broad sense). A HNS integrated service s is safe
iff s is free from any condition that can cause [injury or death to home users
and neighbors], or [damage to or loss of home equipments and the surrounding
environment|.

Our long-term goal is to establish a solid framework that guarantees the
safety in Definition 1. In general however, it is quite difficult to achieve the
100% safety. Hence, the safety is often evaluated by means of risk. Thus, to assure
the safety to a considerable extent, a set of conditions or guidelines minimizing
the risk (called, safety properties) are usually considered [2]. In the following
subsections, we investigate the safety properties specific to the domain of the
HNS and the integrated services.

3.2 Local Safety Properties for Individual Appliances

For every electric appliance, the manufacturer of the appliance prescribes a set
of safety instructions for proper and safe use of the appliance. Conventionally,
these instructions have been designated for human users. However, in the HNS
integrated service, the instructions must be guaranteed within the software. For
instance, the following shows a safety instruction for an electric kettle.

L1: Do not open the lid while the water is boiling, or there is a risk of
scald.

Any integrated service using the kettle (e.g., SS2 in Section 2.2) must be
implemented so that the service never opens the lid while the kettle is in the
boiling mode. Other safety instructions include the installation issues. That is,
every appliance must be installed in a proper environment described by its spec-
ification, including power voltage, rated current, power consumption, allowable
temperature and humidity, etc.

Note that the safety instructions are a set of properties that are locally spec-
ified for each appliance. Thus we regard them as local safety properties. We
assume that the local safety properties for an appliance are determined by the
vendor of the appliance.

3.3 Global Safety Properties for Integrated Services

Since an integrated service orchestrates different multiple appliances simultane-
ously, it is necessary to consider global properties over the multiple appliances.
For instance, SS3:Shower Service in Section 2.2 should guarantee the following
safety property to prevent the user from getting scald or heart attack.

G1: When the service turns on the shower valve, the water temperature
of the gas-boiler must be between 35 and 45 degree.

The next example shows a safety property for SS4:Cooking Preparation Ser-
vice, which avoids carbon monoxide poisoning.

G2: While the gas valve is opened, the ventilator must be turned on.

Note that each of the properties is globally specified over multiple appliances.
These global safety properties are usually service-specific, and are not covered
by the local safety properties of individual appliances. Therefore, we suppose
that the global safety properties are carefully specified by the provider of the
integrated service.

3.4 Environment Safety Properties for House

In general, each house has a set of residential rules for inhabitants and neighbors
to make a safe living. Since the integrated services give various impacts against
the surrounding environment (including the room, the building, the neighbors,
etc), the services must be safe against the environment by conforming to the
residential rules. For instance, most house has a capacity of electricity, which
yields the following safety property.

E1: The total amount of current used simultaneously must not exceed
30A.

Also for emergency, the following safety property should be concerned.
E2: Do not lock doors and windows in case of fire.

The following property may be derived from community rules.
E3: Do not make loud voice or sound after 9 p.m.

We assume that these safety properties are derived from the residential rules,
including the house manual, the emergency procedure, community rules and
policies, etc. We call such properties environment safety properties. Note that
the environment safety properties are specified independently of appliances or
services deployed in the HNS.

3.5 Safety Definition of HNS Integrated Services

Based on the discussion above, we define three kinds of safety as follows.

Definition 2 (safety of integrated service). Let s be a given integrated
service, and

— let App(s) = {di,da, ...,d,} be a set of networked appliances used by s,

let Local Prop(d;) = {lpi1,pi2,...,Ipim} be a set of local safety properties
derived by the safety instructions of d;,

— let Local Prop(s) = Ug,c app(s)Local Prop(d;),

let GlobalProp(s) = {gp1,gp2,-..,gpr} be a set of global safety properties
prescribed by s,

— let EnvProp(s) = {ep1, epa, ..., ep; } be a set of environment safety properties
derived from the environment where s is provided. Then,

Local Safety: s is locally safe iff s satisfies all properties in Local Prop(s).

Global Safety: s is globally safe iff s satisfies all properties in Global Prop(s).

Environment Safety: s is environmentally safe iff s satisfies all properties in
EnvProp(s).

Safety: We say that s is safe iff s is locally, globally and environmentally safe.

We are now ready to formulate the safety validation problem.
Definition 3 (safety validation problem).

Input: A HNS h, an integrated service s, Local Prop(s), Global Prop(s), and
EnvProp(s).
Output: A verdict whether s is safe or not within h.

4 Object-Oriented Modeling for Safety Validation

To conduct the safety validation problem systematically, this section presents
an object-oriented model for the HNS and integrated services. Every networked
appliance has the internal state (power status, driving mode, etc.) and the op-
erational interfaces (i.e., APIs). Hence, it is reasonable to model each appliance
as an object consisting of attributes and methods. Previously [5, 8], has developed
an object-oriented model for networked appliances. In addition to the appliance
object, here we newly introduce a service object for the integrated service and a
home object for the home environment.

Fig. 2 shows the overview of the proposed model described as a UML class di-
agram. The model mainly consists of three kinds of objects (classes): Appliance,
Service, and Home. As specified in the diagram, these classes forms the following
relationships: [R1: a Home has multiple Appliances|, [R2: a Home has multiple
Services|, and [R3: a Service uses multiple Appliances|. These relationships
match well the intuition of the HNS and integrated services.

4.1 Appliance Object

An appliance object models a networked appliance. The proposed model involves
a super class Appliance and concrete appliance classes that inherit Appliance.
The Appliance aggregates attributes and methods commonly contained in any
kinds of electric appliances. It also has a Specification, which stores static
specification information such as power voltage, rated current, size, allowable

DigitalTV Light DVDTheaterService RelaxService ||C i Curtain
channel -brightnessLevel -dvdSoundLevel |-dvdinputSource -windLevel -beginTime -speedLevel
volumeLevel e L evel -waterTemperature [+setSpeed()
-soundinputMode |+ getLightstatus() -tvChannel | kettleMode E - L+closeCurtain()
soundor - - +callService() +callService() [+openCurtain()
visualinputMode)) +getC))| [+getc)
V'SUE‘O“S‘PU'MD"E +getTheateSerStatus() | [+getRelaxSerStatus() | S —
|workingStatus
[FseleciChannel) ElectricKettle
+selecwclumeLevel()3 <<USES>> 6 e r:edrg:us,;vature

- L idStatus
[setSoundoutputMode() Appliance Service J environmentRequirment L heatingMode
) e -currentEnvironment —
[setVisual 0 i -workingState +getCurrentStatus() [+setTemperature()
[playTv() i i ice() 0 +openLid()
[+stopTv() _[> -powerStatus +cancelService() [rcloseLid()
+PauseTv() foo] B 0 [getkettleStatus()
+upChannel() [resetSenvice(Specification e —
*dﬂy“ch’d””e‘() +getApplianceSpecification() PPl DVDPlayer
[1uP OUm‘e() +getCurrentConsumption() volumeLevel
rdownVolume() - getPowerStatus())
[+getTvStatus() getApp
J
[palyspeed
SoundSystem | -soundOutputMode
-musicMode isualOt
BathAirC
-volumeLevel amAir AirC y
-soundinputSource 'Of"rTrlme -onTime l+setSoundOutputMode()
rofifime -offTime [+setVisualOutoutMode()
+setMusicMode() Ventilator HotWaterSystem [randLevel windLevel [FsetvolumeLevel()
evel() t+playDvd()
+setinputSource() -windLevel -waterTemperature fmode -mode l+stopDvd()
+playMusic() 'O;‘rTr‘me Gasvalve '5‘2"7"“9 [+setOnTime() +setOnTime() l+pauseDvd()

) -offTime -endTime [+setOffTime() +setOffTime() [+fastForward()
+pasueMusic() +setOnTime() T 0 [+setWindLevel() +setWindLevel() [+astRewind()
+upVolume() +setOffTime() +openGas() +setStartTime() L+setTe 0 et) .)
+downVolume() +setWindLevel() +closeGas() +setEndTime()) N

)) 0 | o 0| [+o onstatus() | [+getairconstatus() | [+getbvdstatus()

Fig. 2. Object-oriented model of HNS

temperature and humidity. Typical methods involve the power switch (on(),
off ()), acquisition of current power consumption (getCurrentConsumption()),
and query for the specification (getApplianceSpecification()).

On the other hand, operations specific to each kind of appliance are speci-
fied in the individual sub-classes. Such methods include TV.selectChannel (),
DVD.playDvd() and Kettle.openLid (). When a method of an appliance is ex-
ecuted, values of some attributes are changed, which updates the current state
(i.e., the tuple of the current values of all attributes) of the appliance. Preferably,
every appliance should have a mothod such as TV.getTvStatus() so that the
current state can be referred by external objects.

4.2 Service Object

A service object models an integrated service, which uses several appliance ob-
jects depending on contents of the service. Similar to Appliance, there is a su-
per class Service which aggregates common operations such as startService ()
and cancelService (). The concrete service scenarios are specified in sub-classes
that inherit Service. For instance, DVDTheaterService (see SS1 in Section 2.2)
uses appliances DigitalTV, DVDPlayer, SoundSystem, Light, and Curtain.

4.3 Home Object

A home object models the house that involves environmental attributes, which
is is represented as a singleton object Home. The attributes of Home include the
current energy consumption, sound level, brightness, temperature and humidity.

We assume that these attributes can be obtained or computed from the current
states of appliances and services. For instance, the current temperature is sup-
pose to be obtained via Home.currentEnvironment.getTemperature(). The
current electricity consumption is supposed to be computed from specifications
and states of appliances that are currently on.

5 Safety Validation Framework with Design by Contract

5.1 Key Idea: Using Design by Contract (DbC)

In order to achieve the safety validation, we apply a software design strategy,
called design by contract (DbC, for short) [3,6], to the object-oriented model
presented in Section 4. For a given program, the DbC describes properties, con-
ditions and invariants as a set of contracts between calling and called objects.
The contracts are verified during runtime of the program under testing. During
the execution, if a contract is violated, an exception is thrown or an error is
reported. There are three kinds of contracts in the DbC.

Pre-Condition: A pre-condition of a method m is a condition that must be
satisfied before executing m, which characterizes a premise of m.

Post-Condition: A post-condition of a method m is a condition that must be
satisfied after executing m, which characterizes a consequence of m.

Class Invariant: A class invariant of a class c is a condition that must be guar-
anteed (i.e., kept unchanged) no matter which methods in ¢ are executed.

Our key idea is to cope with the safety validation problem (see Definition 3)
by first describing Local Prop(s), Global Prop(s) and EnvProp(s) as the DbC
contracts, and then embedding them into the proposed object-oriented model.
For this, we must consider carefully which object (Appliance, Service, or Home)
should be responsible for Local Prop(s), Global Prop(s) and EnvProp(s).

5.2 Describing Local Safety Properties

Since the local safety properties are defined for individual appliance, Appliance
or its sub classes should be responsible for Local Prop(s). For instance, the local
safety property L1 in Section 3.2 should be specified in ElectricKettle class,
which can be encoded as the following contract:

Contractor: ElectricKettle.openlLid() method
Pre-condition: heatingMode != ’boiling’
Post-condition: lidStatus == ’open’ && heatingMode!=’boiling’

The pre-condition is saying that; any service that executes the method Electric
Kettle.openLid() must assure the kettle is not in the boiling status before
executing the method. On the other hand, the post-condition prescribes that;
the method must be implemented so that when completed, the lid is opened
and the status does not change to boiling mode. Once the contract is broken, an
exception is thrown to the HNS to conduct an appropriate action.

5.3 Describing Global Safety Properties

The global safety properties depend on the contents of each integrated service.
Hence, it is reasonable to specify Global Prop(s) as DbC contracts in Service or
its sub classes. For example, the global safety property G2 in Section 3.3 can be
encoded as the following contract embedded in CookingPrepatationService:

Contractor: CookingPreparationService class
Class Invariant: GasValve.workingStatus==’open’
->Ventilator.powerStatus==’0N’

The above contract prescribes a condition that; at any time when the gas valve
is opened, the ventilator must be turned on. This contract is a class invariant,
which must be guaranteed no matter what operations are executed within the
integrated service.

5.4 Describing Environment Safety Properties

Since the environment safety properties are derived from residential issues, Home
class should be in charge of EnvProp(s). For instance, the environment safety
property E1 in Section 3.4 can be encoded as follows:

Contractor: Home class
Class Invariant:
home.currentEnvironment.getTotalConsumption()<=30

The method getTotalConsumption() is supposed to return the current total
consumption of electricity, which is computed from the appliances that are being
turned on. This contract is also an invariant, which must be assured whatever
services or appliances are operated.

5.5 Implementing Safety Validation by JML

If the proposed model is implemented in the Java language, we can use the
JML (Java Modeling Language) [3,9] extensively for implementing the safety
validation. The JML is a specification language that can be used to describe
the DbC contracts in the form of Java comments, called JML annotations. The
source code with the JML annotations is compiled by the JML compiler into in-
strumented bytecode implementing assertion-based checking routines of the DbC
contracts.

Fig. 3 shows a JML annotation describing the contract mentioned in Section
5.2. In the figure, the contract is described as the annotation just above the
method openLid(). The line starting with requires (or ensures) represents
the pre-condition (or post-condition, respectively) of the contract. The word
spec_public is for exporting the subsequent attribute to be used in the JML
annotation.

Fig. 4 depicts the proposed framework of the safety validation. For given
implementations of the appliance, service and home objects, a validator first

public class ElectricKettle {
private /*@spec_public@*/ LidStatus lid;
private /*@spec_public@*/ HeatingMode hstate;

/I IML Contract for openLid() [L1]
[*@ requires hstate != “boiling” ;
@ ensures lid = “open” && hstate != “boiling”;
@*/
public void openLid() {
... Il Implementation

Fig. 3. Safety description as JML contract (L1)

Java Source Code with JML Annotation

Services m Appliances m Home

\

0

[Test Case Generation] [JML Compiler
Test Suites Java Instrumented Byte Code
X III Services m Appliances Home
[Test Driver (J-Unit) J
s chal Globgl Envi_ronment
Safety Safety Safety

Fig. 4. Procedure of safety validation for HNS

describes safety properties to be validated in the JML annotation. Next, the
annotated source codes are automatically compiled into instrumented bytecodes
with the JML compiler. The validator also generates test suites against the HNS
and the integrated services. For this, the validator develops the suites based on
the logic and parameter values either manually or using test-case generation tools
(e.g., TOBIAS [1,4]). Finally, the instrumented bytecodes are validated against
the generated test suites by the test driver. During the test, if any JML contract is
broken, the test fails. The testing can be automated using any testing framework,
e.g., JUnit [10]. Thus, the safety validation for the local, global and environment
properties is achieved. Note that quality and efficiency of the validation process
deeply depend on the test suites. Generating good test suites is beyond this paper
and left for our future work.

6 Conclusion

In this paper, we have formalized the concept of safety in the context of HNS
integrated services. Three kinds of safety are defined: local safety, global safety
and environment safety. We have then proposed an object-oriented model and
safety validation framework based on the DbC with JML. The properties of
the local, global and environment safety are described as DbC contracts embed-
ded in Appliance, Service and Home objects, respectively. Thus, the proposed
framework can assist the HNS service vendors to develop safe integrated services,
systematically.

In the future work, we will conduct experimental evaluation of the safety
validation against the actual HNS. We also plan to examine effective test case
generation techniques in the context of the HNS integrated services. The safety
validation counting the feature interaction problem is also a challenging issue
for our future research.

References

1. L. du Bousquet, Y. Ledru, O. Maury, and P. Bontron, ” A case study in JML-based
software validation, ” Proceedings of 19th Int. IEEE Conf. on Automated Software
Engineering (ASE’04), Linz, pages 294-297. IEEE Computer Society Press, Sep.
2004.

2. International Electrotechnical Commission, ”Household and similar electrical ap-
pliances — Safety,” TEC 60335-1, Sep.2006.

3. G. T. Leavens and Y. Cheon,”Design by Contract with JML, ”Java Modeling
Language Project,Internet: http://www.jmlspecs.org, 2003.

4. Y. Ledru, L. du Bousquet, O. Maury, and P. Bontron, ” Filtering TOBIAS combina-
torial test suites,” In Proceedings of ETAPS/FASE’04 - Fundamental Approaches
to Software Engineering, LNCS 2984, Springer-Verlag, Mar.2004.

5. P. Leelaprute, M. Nakamura, T. Tsuchiya, K. Matsumoto, and T. Kikuno, ”De-
scribing and Verifying Integrated Services of Home Network Systems,” In Proc
of 12th Asia-Pacific Software Engineering Conference (APSEC 2005), pp.549-558,
Dec.2005.

6. B. Meyer, ” Applying Design by Contract,”IEEE Computer,vol.25, no.10, pp.40-51,
Oct.1992.

7. M. Nakamura, A. Tanaka, H. Igaki, H. Tamada, K. Matsumoto, ” Adapting Legacy
Home Appliances to Home Network Systems Using Web Services,” Proc. of Int’l
Conf. on Web Services (ICWS 2006), pp.849-858, Sep.2006.

8. M. Nakamural H. IgakilJ and K. Matsumoto, ”Feature Interactions in Integrated
Services of Networked Home Appliances -An Object-Oriented Approach-,” Proc.
of Int’l. Conf. on Feature Interactions in Telecommunication Networks and Dis-
tributed Systems (ICFI’05), pp.236-251, Jul. 2005

9. ”The Java Modeling Language - JML,” http://www.cs.iastate.edu/ leavens/JML/

10. ”JUnit, Testing Resources for Extreme Programming,” http://www.junit.org/

