
A Personal Tourism Navigation System to Support Traveling Multiple
Destinations with Time Restrictions ∗

Atsushi Maruyama, Naoki Shibata, Yoshihiro Murata, Keiichi Yasumoto and Minoru Ito
Graduate School of Information Science, Nara Institute
of Science and Technology, Ikoma, Nara 630-0192, Japan

{atsu-mar,n-sibata,yosihi-m,yasumoto,ito}@is.aist-nara.ac.jp

Abstract

In this paper, we propose a personal navigation sys-
tem (called PNS) which navigates a tourist through mul-
tiple destinations efficiently. In our PNS, a tourist can spec-
ify multiple destinations with desired arrival/stay time and
preference degree. The system calculates the route includ-
ing part of the destinations satisfying tourist’s requirements
and navigates him/her. For the above route search problem,
we have developed an efficient route search algorithm using
a genetic algorithm. We have designed and implemented the
PNS as a client-server system so that the portable device
users can use the PNS through the Internet. Experiments
using general map data and PDAs show that our PNS can
calculate a semi-optimal route almost in real-time.

1 Introduction

Recent progress of information technology brought us
high performance potable computing devices, small GPS
units and radio communication devices such as wireless
LANs, PHS and cellular phones. Personal navigation sys-
tems (hereafter, called PNS) on those portable devices have
been attracting people’s attention.
There are a lot of researches on “e-tourism” which

navigates tourists to sightseeing places using portable de-
vices. In Europe, there are several research projects such as
DeepMap [1] and CRUMPET [2]. DeepMap and CRUM-
PET propose frameworks based on multi-agent systems
where each of the components of the PNSs corresponds
to an agent such as a GIS, a tour planning, a travel in-
formation database, and comprehensive interface. CRUM-
PET provides personalized location aware navigation to
users through user-friendly interactions. There are some
other researches on Web based location aware navigation
services[5].
In this paper, we propose a PNS which navigates tourists

∗This work is partly supported by 21st Century COE Pro-
gram”Ubiquitous Networked Media Computing”.

through multiple destinations efficiently, where a time re-
striction and a preference degree are specified to each of
the destinations. In PNSs used for tourism, only showing
the shortest route between two locations like car naviga-
tion systems might be unsatisfactory. Instead, it is desir-
able to treat requirements of tourists such as (1) an efficient
route traveling multiple destinations, (2) time restrictions at
those destinations such as arrival/departure/stay time con-
sidering entertainments, opening hours and so on, (3) a sud-
den route change, e.g., a tourist may want to skip/add some
destinations and delay/shorten the stay time at some des-
tinations. Since the problem of searching routes with the
above requirements is a superclass of TSP (traveling sales-
man problem) which is known to be NP-hard, finding the
exact solution would take very high computation cost. So,
in this paper, we develop a fast route search algorithmwhich
computes semi-optimal solutions using a genetic algorithm
(GA).
[3] proposes a GA-based algorithm which computes

semi-optimal routes with given restrictions so that a tourist
can add some unspecified intermediate destinations. How-
ever, this algorithm basically treats routes between two lo-
cations, and cannot be applied to searching routes including
multiple destinations.
We suppose that tourists use portable computing devices

such as PDAs or cellular phones capable of communication
via the Internet. Since it requires large processing power
to search a route, we have designed and implemented our
PNS as a client-server (C/S) system where our route search
algorithm is implemented on theWWW server. So, portable
device users can use the PNS through the Internet.

2 Outline of our Navigation System

The proposed navigation system consists of the follow-
ing two parts: (1)portable devices with GPS receivers and
capability of communication via the Internet, such as cellu-
lar phones or PDAs, (2)a WWW server on the Internet.
The server executes the route search algorithm, which is

implemented as a Java Servlet. The server has map data
used by the algorithm.
We suppose that our system is used as follows:

1. A user inputs an outline of the tour (corresponds to the
user’s requirements) to the server using a web browser in
advance. The outline is defined as a set of destinations (in-
cluding the start and the end points), where each destina-
tion consists of its name, the timezone during which the
user wants to arrive at the destination, the stay time, and
the preference value indicating how strong the user wants
to visit the destination.
2. The server searches for the route including part of
the destinations which satisfies the user’s requirements and
sends the result to the portable device.
3. The portable device displays the received route with
arrival and departure time for each destination with the cor-
responding map data.
4. During the tour, the portable device continuously re-
trieves the user’s position from its GPS receiver, and dis-
plays current position on the route.
5. When the system detects that the user is departing from
the scheduled route, the portable device automatically com-
municates with the server. Then, the server searches for a
new route, taking into account of the user’s movement until
that time. The new route is transferred to the client and the
user is guided along the new route.
6. The user can also change the outline by adding or delet-
ing destinations after the tour begins.

3 Route Search Algorithm

3.1 Basic Strategy

It is preferable that the navigation system can search an
alternative route when a sudden change of the plan occurs
during the tour. Thus, we have designed our algorithm to
search an alternative route quickly.
To search a route under the restrictions in sections 1 and

2, we need the following two steps. The first step searches
the shortest path between each pair of destinations. Dijk-
stra’s algorithm and A� algorithm are frequently used for
this purpose in car navigation systems on the market. A�

algorithm is an improved method of Dijkstra’s algorithm. It
searches for a path using straight-line distance between two
destinations, as a heuristic function. We use A� algorithm
to search a path between two destinations.
The time to pass each path is calculated by dividing the

length of the path by the moving speed of the user.
The second step determines the visiting order of the des-

tinations. We use a GA, since it always retains multiple
candidate solutions during search, and it is always possi-
ble to give approximate solutions regardless of search time.
Also, the GA can compute multiple routes, so that the user
can select a desirable route from the returned routes.

3.2 Outline of our algorithm

The input of our algorithm consists of (1) map data, (2) a
set of destination data, and (3) the upper limit of the search
time, denoted search time. The map data is given by a
graph G = (V, E). The set of destination data is denoted
by D = {d1, d2,, dn}. Each destination data di con-
sists of five components, vi, sti, eti, duri and prefi, where
vi : location in the map
sti : starting time of the timezone
eti : ending time of the timezone
duri : stay time
prefi : preference value indicating how strong the

user wants to visit a destination

For the above input, our algorithm outputs a route whose
fitness value (explained later) is as high as possible. Calcu-
lation method of the fitness value is described later.

The algorithm is shown below.

Algorithm MAIN(G, D, ps, pg, B, search time)
1 Begin
2 // G is map data. D is a set of all destinations.
3 // ps, pg are starting point and goal point, respectively.
4 // B is an associative array which is a database of routes

between predefined destinations.
5 // search time is the upper limit of search time.
6 timer := 0;
7 for each (ds, dg) ∈ D × D do
8 if ds = dg then continue;
9 if B[ds][dg] is assigned then
10 path[ds][dg] := B[ds][dg];
11 else
12 path[ds][dg]
13 := srch betw 2dest(G,ds, dg);
14 next ;
15 // Decide the traveling order using GA.
16 return srch rt cmb(D,route,ps,pg , search time);
17 End

Algorithm srch betw 2dest(G, d1, d2)
1 Begin
2 // G is map data. d1 and d2 are destinations.
3 This function searches and returns the shortest path be-

tween d1 and d2 using A� algorithm.
4 End

Algorithm srch rt cmb(D, route, ps, pg, search time)
1 Begin
2 //D is a set of all destinations. route contains the shortest

paths generated by any combinations of destinations inD.
ps, pg are starting point and goal point, respectively.

3 This function searches and returns the route which in-
cludes part of destinations in D and maximizes the fit-
ness function described below as much as possible un-
til search time seconds of time elapses since search
started, using GA.

4 End

3.3 GA-based algorithm for determining travel-
ing order of destinations

In order to add or delete destinations in candidate solu-
tions, a candidate solution is coded as a variable length list
of destinations. The search procedure is as follows.
(1)Predefined number of candidate solutions are gener-

ated randomly. A fitness value is calculated and assigned
to each candidate solution. The evaluation method will be
explained later. (2)The elite individual is selected in al the
candidate solutions. The elite individual is the candidate
solution with the best fitness value. (3)Two candidate so-
lutions are selected using the GA operator called the tour-
nament selection. From these two solutions, two new can-
didate solutions are generated using the GA operator called
the one-point crossover. The crossover point is chosen ran-
domly, and redundant destinations are deleted. (4)A GA
operator called mutation is applied to the newly generated
candidate solutions. Our mutation operator consists of 2-opt
and addition/deletion of a destination. 2-opt is the technique
to swap the positions of two destinations selected at random
in the selected solution. (5)Each candidate solution’s fitness
value is calculated. (6)Steps (2) to (5) are repeated until
search time expires.
Calculation of fitness values by preference values:
To evaluate each candidate route, the sum of the prefer-

ence values of the destinations which satisfy time restric-
tions is calculated. Using this function simply as the fitness
function may result in devious routes. This is because de-
tour is required to satisfy time restrictions of some desti-
nations. Therefore, we have defined the fitness function as
follows.

fitness value = α

k∑

i=1

prefi

−β

∑k−1
i=1 dist[d′i][d

′
i+1]

k
, (prefi ∈ d′i)

Where d′
k is the k-th destination to travel. dist[ds][dg]

is the function to calculate the distance of between ds and
dg, and α and β are constant values (weighted coefficients).
In order to save the search time, we prepared a database
consists of the distances between predefined destinations
in advance. If some input destinations do not exist in the
database, values for these destinations are calculated from
the scratch.

4 Implementation of PNS as a C/S system

We have implemented our PNS as a client-server appli-
cation. Since portable computing devices are poor in re-
sources such as CPU power, battery amount and data stor-
age, it will be difficult to let those devices have the entire
map data or compute the route. Therefore, we have im-
plemented the route search algorithm in a server computer

located on the Internet which also keeps the entire map data
as well as other navigation information. We use a portable
computing device as a client which connects to the server
via the Internet to send requests and to download the route
information computed by the server.
Implementation of Server Program as Java Servlet:
We have implemented the server side program as a Java

servlet. The servlet is invoked by the WWW server when a
user accesses to the specified URL and inputs data in a form.
Then it computes a semi-optimal route and sends back the
result to the client as an HTML file including the following
information: (1)Destinations to visit and their traveling or-
der, (2)Estimated arrival time at each destination, (3)A link
to the map (in JPEG format) around the current user’s loca-
tion where the route to the next destination is drawn.

5 Experiments

We have carried out several experiments to investigate
(1) route search time and optimality of the output route, (2)
re-computation time and (3) response time including com-
munication.
server: The server including the route search algorithm
is implemented as a Java servlet, and runs on an ordinary
personal computer with Pentium4 2.4GHz CPU, 512MByte
memory, GNU/Linux, Tomcat4.2 Servlet, and Apache.
client: We used SHARP Zaurus SL-C700 PDA and PHS
card “b-mobile” as a client. Its actual data transmission
speed is 20.71kbps on upload, 48.38kbps on download.

5.1 Route search algorithm

We have carried out some experiments with our system
under the conditions shown in Table 1 where we used a map
data with 3800 nodes.
Setting: We designated 12 and 13 destinations. Time re-
strictions were specified to four of those destinations. We
searched the optimal route with setting described above. It
took 30 minutes to search the optimal route with 12 des-
tinations, and 390 minutes for the optimal route with 13
destinations.
We measured computation time of our route search algo-

rithm which does not include communication time.
Results: The execution time, evaluation value of the out-
put route and the evaluation value of the optimal route are
shown in Table 1. Here, note that it takes extra time to com-
pute the distance between two destinations which is not in
the database. The entire route obtained by the algorithm is
shown in Figure 1.
The average time spent in the route search is about 8.5

seconds if all destinations are contained in the database.
When the user designated 17 destinations in the database
and 3 destinations not in the database, the search time is

num. of designated dest. num. of dest out of database Fitness value Optimal value Error(%)) Search Time
12 0 3284 3438 5.5 8.5(sec.)
12 1 3284 3438 5.5 14.0(sec.)
12 3 3284 3438 5.5 27.4(sec.)
13 0 3231 3440 6.1 8.5(sec.)
20 0 - - - 8.5(sec.)
20 1 - - - 16.3(sec.)
20 3 - - - 47.3(sec.)

Table 1. Condition and result

about 47.3 seconds. In this case most of the time differ-
ence was spent by A� algorithm. Route search using A�

algorithm is basically only required in the route calcula-
tion before tour, and not needed in re-computing unless the
user specifies new destinations which is not contained in the
database. Thus, we believe that these results are sufficient
for practical use.

Figure 1. Output route of 6 destinations by
our algorithm

5.2 Whole system with Internet

Next, we show the result of an experiment using the
server and client.
In this experiment, the client sends a request of 2KB data

size and receives 3KB of data as a response from the server.
It took 16.5 sec in average to get the response after send-

ing a request in HTML. The time consists of route search
(8.5 sec.) and data transmission (8 sec.). We believe that
this response time would be sufficient for practical use. The
transmission speed of the latest communication devices is
faster than our PHS card. We can improve response time of
our system by using other devices such as cellular phones.

6 Conclusion

In this paper, we proposed a personal navigation system
which efficiently guides tourists to multiple touring destina-

tions so that the tourists can visit each of primal destinations
in a preferred timezone.
Our system consists mainly of the fast route search al-

gorithm and the navigation functions. We developed a GA-
based algorithm which searches for a semi-optimal route
with multiple destinations. Our system was implemented as
a C/S system: the route search algorithm is executed on a
server, and each user is supposed to carry a portable device.
We evaluated our system using a digital map used for

car navigation systems. As a result, we confirmed that our
system can search a semi-optimal route in practical time.
We used a digital map for car navigation systems, and

only treated moves by car. We are planning to extend our
route search algorithm to handle multiple transports such as
railroads, buses, and walks.

7 Acknowledgements

We thank the Navigation System Researchers’ Associa-
tion for providing the digital road-map format.

References

[1] Malaka, R. Zipf, A. “DEEP MAP - Challenging IT research
in the framework of a tourist information system.” ENTER
2000, Barcelona, Spain, pp. 15–27, 2000.

[2] IST, ”CRUMPET Creation of User-friendly Mobile services
Personalised for Tourism”, http://www.ist-crumpet.org/

[3] Kanoh, H. Nakamura, N. “Route Guidance with Unspeci-
fied Staging Posts using Genetic Algorithm for Car Naviga-
tion Systems”, IEEE Conference on Intelligent Transportation
Systems (ITSC 2000), pp. 119–124, 2000.

[4] Korf, R. ”Real-Time Heuristic Search”, Artificial Intelli-
gence, Vol. 42, No. 2–3, pp. 189–211, 1990.

[5] Zipf, A. Malaka, R. ”Developing Location Based Services
(LBS) for tourism - The service providers view”, Information
and Communication Technologies in Tourism 2001. Proceed-
ings of ENTER 2001, 8th International Conference. Mon-
treal. Springer Computer Science. Wien, NewYork. pp. 83–
92, 2001.

