DenseZDD:
A Compact and Fast Index for Families of Sets

Shuhei Denzumi!, Jun Kawahara?, Koji Tsuda®#, Hiroki Arimural',

Shin-ichi Minato!*, and Kunihiko Sadakane®

Y Graduate School of IST, Hokkaido University, Japan
?Nara Institute of Science and Technology (NAIST), Japan
3)National Institute of Advanced Industrial Science and Technology (AIST), Japan
YERATO MINATO Discrete Structure Manipulation System Project, JST, Japan
%) National Institute of Informatics (NII), Japan
{denzumi, arim,minato}@ist.hokudai.ac. jp, jkawahara@is.naist. jp,
koji.tsuda@aist.go.jp,sada@nii.ac.jp

Abstract. In many real-life problems, we are often faced with manip-
ulating families of sets. Manipulation of large-scale set families is one
of the important fundamental techniques for web information retrieval,
integration, and mining. For this purpose, a special type of binary de-
cision diagrams (BDDs), called Zero-suppressed BDDs (ZDDs), is used.
However, current techniques for storing ZDDs require a huge amount
of memory and membership operations are slow. This paper introduces
DenseZDD, a compressed index for static ZDDs. Our technique not only
indexes set families compactly but also executes fast membership op-
erations. We also propose a hybrid method of DenseZDD and ordinary
ZDDs to allow for dynamic indices.

1 Introduction

Binary Decision Diagrams (BDD) [1] are a graph-based representation of Boolean
functions and widely used in VLSI logic design and verification. A BDD is con-
structed reducing a binary decision tree, which represents a decision making
process through the input variables. If we fix the order of the input variables
and apply the following two reduction rules, then we obtain a minimal and
canonical form for a given Boolean function:

1. Delete all redundant nodes (whose two children are identical) and
2. Merge all equivalent nodes (having the same index and pair of children).

Among unique canonical representations of Boolean functions, BDDs are
smaller than others such as CNF, DNF, and truth tables for many classes of
functions. BDDs have the following features:

— Boolean functions are uniquely represented like other representations.
— Multiple functions are stored compactly by sharing common subgraphs.
— Fast logical operations are executed on Boolean functions.

Zero-suppressed Binary Decision Diagrams (ZDDs) [8] are variation of tradi-
tional BDDs, used to manipulate families of sets. Using ZDDs, we can implicitly
enumerate combinatorial item set data and efficiently compute set operations
over the ZDDs. In the rest of this section, we use the term BDD to indicate both
the original BDD and the ZDD unless specified because any ZDD is regarded as
a BDD representing some function.

Though BDDs are more compact than other representations of Boolean func-
tion and set families, they are still large; a node of a BDD uses 20 to 30 bytes
depending on implementations [9]. BDDs become inefficient if the graph size is
too large to be held in memory. Therefore the aim of this paper is to reduce the
size (number of bits) used to represent BDDs. We classify implementations of
BDDs into three types:

— Dynamic: The BDD can be modified. New nodes can be added to the BDD.

— Static: The BDD cannot be modified. Only query operations are supported.

— Freeze-dried: All the information of the BDD is stored, but it cannot be used
before restoration.

Most of the current implementations of BDDs are dynamic. There is previous
work on freeze-dried representations of BDDs by Starkey and Bryant [16] and
later, by Mateu and Prades-Nebot [7]. Hansen, Rao and Tiedemann [4] developed
that a technique to compress BDD and reduce the size of the BDD to 1-2 bits
per node. However there is no implementation of BDDs that is specialized for
static type.

This paper is the first to propose a static representation of ZDDs, which we
call DenseZDDs. The size of ZDDs in our representation is much smaller than
an existing dynamic representation [9]. Not only compact, DenseZDD supports
much faster membership operations than [9]. Experimental results show that
DenseZDDs are five times smaller and membership queries are twenty to several
hundred times faster, compared to [9]. Note that our technique can be directly
applied to compress traditional BDDs too.

2 Preliminaries

Let eq,...,e, be items such that e; < e3 < -+ < e,. Let S = {aq,...,a.},
¢ > 0, be a set of items. We denote the size of S by |S| = ¢. The empty set is
denoted by (0. A family is a subset of the power set of all items. A finite family
F of sets is referred to as a set family. ' The join of families F} and F; is defined
as F1|_|F2:{51U52‘51 € F1,55 GFQ}.

In the appendix, we describe existing succinct data structures. The balanced
parenthesis sequence (BP), the Fully Indexable Dictionary (FID), and some basic
structures used in this paper are reviewed. We also explain operations on the
data structures such as rank., select., and so on.

! In the original ZDD paper by Minato, a set is called a combination, and a set family
is called a combinatorial set.

Zero-suppress rule

AL po o
>

Sharing rule Automaton

Fig.1. An example of Fig.2. Reduction rules Fig.3. Worst-case ex-
ZDD. of ZDDs. ample of a straightfor-

ward translation.

2.1 Zero-suppressed Binary Decision Diagrams (ZDDs)

A zero-suppressed binary decision diagram (a ZDD) [8] is a variant of a binary
decision diagram [1], customized to manipulate finite families of sets.

A ZDDis a directed acyclic graph satisfying the following. A ZDD has two
types of nodes, terminal and nonterminal nodes. A terminal node v has as at-
tribute a value value(v) € {0,1}, indicating whether it is a 0-terminal node or
a 1-terminal node, denoted by 0 and 1, respectively. A nonterminal node v has
as attributes an integer index(v) € {1,...,n} called the index, and two children
zero(v) and one(v), called the 0-child and 1-child. The edges from nonterminals
to their 0-child (1-child resp.) are called 0-edges (1-edges resp.). In the figures,
terminal nodes are denoted by squares, and nonterminal nodes are denoted by
circles. 0-edges are denoted by dotted arrow, and 1-edges are denoted by solid ar-
row. We define triple(v) = (index(v), zero(v), one(v)), called the attribute triple
of v. For any nonterminal node v, indez(v) is larger than the indices of its chil-
dren. 2 We define the size of the graph, denoted by |G|, as the number of its
nonterminals.

Definition 1 (set family represented by ZDD). A ZDD G rooted at a
node v € V represents a finite family of sets F'(v) on U, defined recursively as
follows: (1) If v is a terminal node: F(v) = {0} if value(v) =1, and F(v) =0
if value(v) = 0. (2) If v is a nonterminal node, then F(v) is the finite family of
sets F(v) = ({€imdex(v) } U F(one(v))) U F(zero(v)).

The example in Fig. 1 represents a sets family F = { {6, 5,4, 3}, {6,5,4, 2},
(6,5,4,1}, {6,5,4}, {6,5,2}, {6,5,1}, {6,5}, {6,4,3,2}, {6,4,3,1}, {6,4,2,1},

2 In ordinary BDD or ZDD papers, the indices are in ascending order from roots to
terminals. For convenience, we employ the opposite ordering in this paper.

Table 1. Main operations supported by ZDD. The first group are the primitive ZDD
operations used to implement the others, yet they could have other uses.

indez (v) Returns the index of node v.
zero(v) Returns the 0-child of node v.
one(v) Returns the 1-child of node v.

getnode(i, vo,v1) Generates (or makes a reference to) a node v
with index ¢ and two child nodes vo = zero(v) and v = one(v).
topset(v,1) Returns a node with the index i reached by traversing only 0-edges.
If such a node does not exist, return the O-terminal node.

member(v,S) Returns true if S € F'(v), and returns false otherwise.

count(v) Returns |F(v)].

offset(v, 1) Returns v such that F(v) ={S CU,|S € F,e; ¢S }.
onset(v,1) Returns v such that F(v) = { S\{e;} CU,|S € F,e; € S }.
applys(vi,v2) Returns v such that F(v) = F(v1) ¢ F(v2), for o € {U,N,\,®}.

{6,2,1}, {3,2,1}, }. A set S = {aq,...,a.} describes a path in the graph G
starting from the root. At each nonterminal node, the path continues to the
0-child if e; ¢ S and to the 1-child if e; € S. The path eventually reaches the
1-terminal (or O-terminal resp.), indicating that S is accepted (or rejected resp.).

In ZDD, we employ the following two reduction rules to compress the graph:
(a) Zero-suppress rule: A nonterminal node whose 1-child is the 0-terminal node.
(b) Sharing rule: Two or more nonterminal nodes having the same attribute
triple. By applying above rules, we can reduce the graph without changing its
semantics. If we apply the two reduction rules as much as possible, then we
obtain a canonical form for a given family of sets.

We can reduce the size of ZDDs by using a type of attributed edges [11]
named 0-element edges. We have to place a couple of constraints on using 0-
element edges to keep the uniqueness of the graphs: (1) Use the 0-terminal node
only. (2) Do not use 0-element edges at the 0-edge on each node. Each 1-edge of
nonterminal node v has an 0-flag empflag(v) to implement 0O-element edges. If
empflag(v) = 1, the subgraph pointed by the v’s 1-edge includes the empty set
in the family represented by the subgraph. In the figures in this paper, effective
(-flags are denoted as small circles at starting points of 1-edges.

Table 1 summarizes operations of ZDDs. The upper half shows the primitive
operations, while the lower half shows other operations which can be imple-
mented by using the primitive operations. The operations indez(v), zero(v),
one(v), topset(v,i) and member(v,S) do not create new nodes. Therefore they
can be done on a static ZDD. Note that the operation count(v) does not cre-
ate any node; however we need an auxiliary array to memorize which nodes are
already visited.

Fig.4. The ZDD using
0-element edges that is
equivalent to the ZDD in

CCCCCONNCCONONCCOION
00100100000101100010001101001000

Fig.5. A zero-edge tree
and a dummy node vector
obtained from the ZDD in

1)6
3 ()8
Root]
0
1[2]3]4]5]6]7]8]9]10
3 57161918 lolol10[0

Fig. 6. A one-child array
obtained from the ZDD in
Fig. 4.

Fig. 1.

Fig. 4.

2.2 Problem of existing ZDDs

Let m be the number of nodes of a given ZDD and n be the number of dis-
tinct indices of nodes. Existing ZDD implementations have the following prob-
lems. First, they require too much memory to represent a ZDD. Second, the
member(v, S) operation is too slow, needing ©(n) time in the worst case. In
practice, the size of query sets is usually much smaller than n, and so an O(|S|)
time algorithm is desirable. However it must be impossible to attain this in the
current implementation [9] because the member(v, S) operation is implemented
by using the zero(v) operation repeatedly.

For example, we traverse 0-edges 255 times when we search S = {e;} on the
ZDD for F = {{e1},...,{e2s6}}. If we translate a ZDD to an equivalent automa-
ton by using an array to store pointers (See Fig. 3), we can execute searching
in O(]S]) time. ZDD nodes correspond to labeled edges in the automaton. How-
ever, the size of such automaton via a straightforward translation can be ©(n)
times larger than the original ZDD [2] in the worst case. Therefore, we want to
perform member(v, S) operations in O(|S|) time on ZDDs.

Minato proposed Z-Skip Links [10] to accelerate the traversal of ZDDs of
large-scale sparse datasets. Their method adds one link per node to skip nodes
that are concatenated by 0-edges. Therefore, memory requirement can not be
smaller than original ZDDs. Z-Skip-Links makes the membership operations
much faster than using conventional ZDD operations when handling large-scale
sparse datasets. However, the computation time is probabilistically analyzed only
for average case.

3 Data structure

In this section, we show our data structure DenseZDD which solves the two
problems as described in Section 2.2. We obtain the following results.

Theorem 1. A ZDD with m nodes on n items can be stored in 2u + mlogm +
3m + o(u) bits so that the primitive operations except getnode(i,vg,v1) are done
in constant time, where u is the size of the ZDD that removes the zero-suppress
rule only for nodes pointed by 0-edges. In other words, u is the size of the ZDD
with dummy nodes that is described bellow. The getnode(i,vo,v1) operation is
done in O(logm) time.

Theorem 2. A ZDD with m nodes on n items can be stored in O(m(logm +
logn)) bits so that the primitive operations are done in O(logm) time except
getnode(i,vo,v1). The getnode(i, vy, v1) operation is done in O(log?m) time.

3.1 DenseZDD

A DenseZDD DZ = (U, M, I) is composed of three data structures: a zero-edge
tree U, a dummy node vector M, and a one-child array I.

Zero-edge tree : The spanning tree of ZDD G formed by the 0-edges is called the
zero-edge tree of G and denoted by Tz. In a zero-edge tree, all 0-edges are reversed
and the O-terminal node become the root of the tree. These are equivalent to the
preorder rank of each node. Zero-edge trees are based on the same idea as left
or right trees by Maruyama et al. [6].

An important difference between our structure and theirs is the existence
of dummy nodes. We call nodes in the original ZDD as real nodes. We use the
zero-edge tree with dummy nodes, denoted by 7%. We create dummy nodes on
each 0-edge to guarantee that the depth of every real node v in the zero-edge
tree equals index(v). We define the depth of the 0-terminal node, the root of
this tree, is 0. Let U be the BP of T7,. The length of U is O(mn) because we
create n — 1 dummy nodes for one real node in the worst case. An example of
a zero-edge tree and its BP are shown in Fig. 5. Black circles are dummy nodes
and the number next to each node is its preorder rank. The O-terminal node is
ignored in the BP because we know the root of a zero-edge tree is always it.

Dummy node vector : A bit vector of the same length as U is used to distinguish
dummy nodes and real nodes. We call it the dummy node vector of T, and
denote it by Bp. The i-th bit is 1 if and only if the i-th parenthesis of U is ‘(’
and its corresponding node is a real node in 7%. An example of a dummy node
vector is also shown in Fig. 5. The 0-terminal node is also ignored. Let the FID
of Bp be M. Using M, we can determine whether a node is dummy or real, and
compute preorder ranks among only real nodes. We can also obtain positions of
real nodes on BP from their preorder ranks by the select operation on M.

One-child array : An integer array to represent the 1-child of each node is called
the one-child array and denoted by Cp. This array contains node preorder ranks
of all 1-children in preorder on T. That is, its i-th element is the preorder
rank of the 1-child of the nonterminal node whose preorder rank is i. We also
require one bit for each element of the one-child array to store the (-flag. If
empflag(v) = 1 for a nonterminal node v, the corresponding element in the one-
child array become negative. An example of a one-child array is shown in Fig. 6.
Let I be the compressed representation of Co. In I, one integer is represented
by [log(m + 1)] + 1 bits, including one bit for the }-flag.

4 Algorithm

4.1 Convert algorithm

We show how to construct the DenseZDD. We first build the zero-edge tree from
the given ZDD. A pseudo-code is given in Fig. 9 in the appendix. The zero-edge
tree consists of all 0-edges of the ZDD, with their directions being reversed. For
a nonterminal node v, we say that v is a 0"-child of zero(v). To make a zero-edge,
we use a list revzero in each node, which stores 0"-children of the node. The lists
for all the nodes are computed by a depth-first traversal of the ZDD. This is
done in O(m) time and O(m) space, since each node is visited at most twice
and the total size of revzero is the same as the number of nonterminal nodes.

We obtained a zero-edge tree T, but it is not an ordered tree. We de-
fine preorder rank prank(v) for every node v before traversal. The nodes in
revzero are sorted in descending order of their pairs (indez, prank), that is,
index(revzeroli]) > index(revzero[i + 1]) for 1 < i < |revzero(v)|. Then, nodes
with higher indices are visited first. This ordering is useful to reduce the num-
ber of dummy nodes and to implement ZDD operations simply. It seems con-
tradiction to define preorder rank of a node by preorder rank of its child,
but it is possible. Since a ZDD node v satisfy indexz(v) > index(zero(v)) and
index(v) > index(one(v)), we can decide prank for every node by the pseudo
code in Fig. 7, which is a BFS algorithm based on index value starting from
0-terminal. To compute prank efficiently, we construct the temporary BP for the
zero-edge tree. Using the BP, we can compute the size of each subtree rooted by
v in T in constant time and compact space.

Next, we create dummy nodes imaginarily. For a node v, we create ¢ =
max{i € {1,...,n}|i = index(revzero[j]) — 1,1 < j < |revzero(v)| } dummy
nodes di, ..., dq such that triple(d;) = (index(v) +1,d;—1,0),and empflag(d;) =
0,1 <1 < q. For convention, dy denotes v.

The DenseZDD for the given ZDD is composed of these three data struc-
ture. We traverse the zero-edge tree in DFS order as if dummy nodes exist and
construct the BP representation U, the dummy node vector M, and the one-
child array I. The BP and dummy node vector are constructed for the zero-edge
tree with dummy nodes. On the other hand, the one-child array ignores dummy
nodes. Finally, DenseZDD DZ = (U, M, I) is obtained. Pseudo-codes are given
in algorithms in Fig. 8, and 9 in the appendix.

4.2 Primitive ZDD operations

We show how to implement primitive ZDD operations on DenseZDD DZ =
(U, M, I) except getnode. We give an algorithm for getnode in Section 5.

In the zero-edge tree, there are two types of nodes: real nodes and dummy
nodes. Real nodes are those in the ZDD, while dummy nodes have no corre-
sponding ZDD nodes. Real nodes are numbered from 1 to m based on preorders
in the zero-edge tree. Below a node is identified with this number, which we call
its node number. We can convert between the node number ¢ of a node and the
position p in the BP sequence U by p := select;(M, i) and i := rank, (M, p).

The 0-terminal has node number 0 and nonterminal nodes have positive node
numbers. If a node number of a negative value is used, it means a node with an
0-flag.

In addition, we consider an additional primitive operation for DenseZDDs:
chkdum(p). This operation checks if a node at position p on U is a dummy node
or not. If it is a dummy chkdum returns false; otherwise it returns true. This
operation is implemented by simply looking at the p-th bit of M. If the bit is 0,
then the node is dummy; otherwise it is a real node.

index (i) : Since the item of the node is the same as the depth of the node, we
can obtain index (i) := depth(U, select;(M,1)).

one(i) : Because 1-children are stored in preorder of the parents of nodes, we
can obtain one(i) := I[i].

topset(i,d) : The node topset(i,d) is the ancestor of node i in the zero-edge
tree with index d. A naive solution is to iteratively climb up the zero-edge tree
from node 7 until we reach a node with index d. However, as shown above,
the index of a node is identical to its depth. By using the power of the suc-
cinct tree data structure, we can directly find the answer by topset(i,d) :=
rank1 (M, level_ancestor(U, select1 (M, 1),d)).

zero(i) : Implementing the zero operation requires a more complicated tech-
nique. Consider a subtree T' of the zero-edge tree consisting of the node ¢, its
real parent node r, all real children of r, and dummy nodes between those nodes.
As a pre-condition, the zero-edge tree is constructed by Algorithm 9 in the ap-
pendix. That is, for the children of r, the nodes with higher index value have
smaller preorder, and the imaginary parents of the children are dummy nodes
(or i) that are added on the edge between r and the child having the highest
index value. Computing zero(i) is equivalent to finding r. Because the children of
r are ordered from left to right in descending order of their depths, and dummy
nodes are shared as much as possible, the deepest node in T is on the left-
most path from r. Furthermore, the parents of other real children are also on
the leftmost path. This property also holds in the original zero-edge tree. The
dummy node vector Bp stores flags in the preorder in the zero-edge tree. Then
Bplpr] = Bplpi] = 1, where p, and p; are positions of nodes r and ¢ in the BP
sequence U, and Bp[j] = 0 for any p,. < j < p;. Therefore we can find p, by a
rank operation. In summary, zero(i) := ranky (M, parent(U, select;(M,1))).

4.3 Compressing the balanced parentheses sequence

The balanced parentheses sequence U is of length 2u, where u is the number
of ZDD nodes including dummy nodes. This number is equal to the size of the
quasi-ZDD. If a ZDD has m real nodes and the number of items is n, the size u
of its quasi-ZDD is mn in the worst case. Here we compress the BP sequence U.

The BP sequence U consists of at most 2m runs of identical symbols. To see
this, consider the substring of U between the positions for two real nodes. There
is a run “)))..." followed by a run ‘(((...” in the substring. We encode lengths of
those runs using some integer encoding scheme such as the delta-code or the
gamma-code [3]. An integer x > 0 is encoded in O(logz) bits. Because the
maximum length of a run is n, U can be encoded in O(mlogn) bits. The range
min-max tree of U has 2m/ log m leaves. Each leaf corresponds to a substring of
U that contains logm runs. Then any tree operation can be done in O(logm)
time. The range min-max tree is stored in O(m(logn + logm)/logm) bits.

We also compress the dummy node vector Bp. Because its length is 2u < 2mn
and there are only m ones, it can be compressed in m(2 + logm) + o(u) bits by
FID. The operations select; and rank, take constant time. We can reduce the
term o(u) to o(m) by using a sparse array [14]. The operation select; is done in
constant time, while rank; takes O(logm) time.

From the discussions in this section, we can prove Theorem 1 and Theorem 2.
For the proof, see the appendix.

5 Hybrid method

In this section, we show how to implement dynamic operations on DenseZDD.
Namely, we need to implement the getnode(i,vo,v1) operation. Our approach is
to use a hybrid data structure using both the DenseZDD and a conventional dy-
namic ZDD. Assume that initially all the nodes are represented by a DenseZDD.
Let mg be the number of initial nodes.

In a dynamic ZDD, the operation getnode(i, vg, v1) is implemented by a hash
table indexed with the triple (i, vg,v1).

We show first how to check whether the node v := getnode(i,vg, v1) already
exists. That is, we want to find a node v such that indez(v) = 4, zero(v) = vy,
one(v) = v1. If v does not exist, we create a such node by the hash table as well
as a dynamic ZDD. If it exists, in the zero-edge tree, v is a real child node of
vg. Consider again the subtree of the zero-edge tree rooted at vg and having all
real children of vg. All children of vy with index i share the common (possible
dummy) parent node, say w. Because w is on the leftmost path in the subtree, it
is easy to find it. Namely, w := level_ancestor (U, select1 (M, ranki (M, vg)+1),1).
The node v is a child of w with one(v) = vy. Because all children of w are sorted
in the order of one values by the construction algorithms, we can find v by a
binary search. For this, we use degree and child operations on the zero-edge tree.

Theorem 3. The existence of getnode(i,vg,v1) can be checked in O(tlogm)
time, where t is the time complexity of primitive ZDD operations.

Table 2. Comparison of performance, where ¢ denotes the dummy node ratio

data set #items #nodes Fitemsets size (bytes) comp. ratio| §
7 7 DZ DZ. DZ DZ.

grid5 40 584 8512 17520 2350 2196[0.134 0.126(0.28
grid10 180 377107 4.1x10%°| 11313210 1347941 1265773/0.119 0.112|0.20
grid15 420 1.5x10% 2.3x10%%|4342789110 678164945 647843001(0.156 0.149(0.19
webview5 952 2299 11928| 10592760 3871679 1851889(0.365 0.174[0.93
webview(1617 6060 70713 281700 1034471 477299(0.367 0.169/0.93
webview20 2454 30413 634065 912390 290661 140873|0.318 0.154(0.92
webview50 2905 93900 4.4x10° 181800 44846 24596(0.246 0.135/0.88
webview00 3149 353092 2.7x107 68970 11455 7967(0.166 0.115(0.75
webviewALL 3149 465449 3.2x107| 13963470 4964303 2413625|0.355 0.172|0.92
randjoinl28 32696 6751 2.5x108 202530 408149 99117/2.015 0.489/0.99
randjoin2048 | 32768 377492 1.8x10™%| 11324760 2415648 1511658(0.213 0.133]0.82
randjoin8192 | 32768 1.3x10° 3.7x10'®| 38094930 5328502 4386452(0.139 0.115/0.42
randjoin16384| 32768 1.9x10° 2.8x10'%| 56447280 7056418 6113910(0.125 0.108|0.14

If the BP sequence is not compressed, getnode takes O(logm) time. Otherwise
it takes O(log® m) time.

6 Experimental results

We ran experiments to evaluate the compression, construction, and operation
times of DenseZDDs. We implemented the algorithms described in Sec. 3 and 4 in
C/C++ languages on top of the SAPPORO BDD package [9]. The package uses
30 bytes per ZDD node. We show the characteristics of the ZDDs in Table 2. The
experiments are performed on a 3.09 GHz AMD Opteron with 512 GB memory
running SuSE 10.

As real data sets, for N = 5,10, 20, 50, 100, the source ZDD webview N was
constructed from the data set BMS-Web-View-23 by using mining algorithm
LCM over ZDD [12] with minimum support N. For artificial data sets, the ZDD
grid N represents all self-avoiding paths on a N x N grid graph from the top
left corner to the bottom right corner [5]*. Finally, randjoinN is a ZDD that
represents the join C; U --- U Cy of four ZDDs for random families Cy,...,Cy
consisting of NV sets of size one drawn from the set of n = 32768 items.

In Table 2 we show the sizes of the original ZDD, the DenseZDD, and their
compression ratio. We compressed FID for dummy node vector if the dummy
node ratio is more than 75%. We observe that the DenseZDD is from five to ten
times smaller than an original ZDD, and the compressed DenseZDD is half the
size of the DenseZDD. For most of our data sets, the ratio § of the number of
dummy nodes to the size of DenseZDD is roughly 90%, except for grid N and
randjoinl 6384 .

3 http://fimi.ua.ac.be
4 An algorithm animation: http://www.youtube.com/watch?v=Q4gTV4r0zRs

Table 3. Converting time and random searching time

data set conversion time (sec) traverse time (sec) | search time (sec)

read convert const. comp.| Z DZ DZ. Z DZ DZ.
grid5 0.001 0.001 0.009 0.000f 0.000 0.001 0.006| 0.029 0.038 0.229
grid10 0.461 0.634 0.449 0.060| 0.075 0.247 1.388| 0.005 0.013 0.056
grid1l5 124.887 407.502 112.379 8.186|41.214 102.673 398.397| 0.006 0.011 0.064
webviewd 0.256 0.690 1.361 0.055| 0.066 0.154 0.250| 1.966 0.045 0.099
webview0 0.217 0.226 0.564 0.041| 0.017 0.042 0.073| 1.901 0.043 0.100
webview20 0.066 0.036 0.313 0.022| 0.005 0.014 0.027| 1.875 0.046 0.101
webview50 0.013 0.019 0.050 0.004| 0.002 0.020 0.005| 1.314 0.273 0.102

webview00 0.004 0.002 0.017 0.001| 0.000 0.004 0.007| 0.777 0.129 0.376
webviewALL 0.551 0.927 1.644 0.108| 0.091 0.207 0.346| 1.706 0.049 0.105
randjoinl28 0.004 0.053 0.149 0.008| 0.001 0.002 0.003| 0.527 0.044 0.095
randjoin2048 0.243 0.742 0.946 0.029| 0.093 0.126 0.145| 8.071 0.044 0.098
randjoin8192 0.858 2.573 1.259 0.043| 0.338 0.240 0.304|15.604 0.039 0.092
randjoin16384| 1.270 5.016 1.471 0.070| 0.676 0.353 0.447|19.501 0.040 0.093

In Table 3, we show the conversion times from ZDD to DenseZDD, traversal
times, and search times on ZDD and DenseZDD. Conversion time is composed
of four parts: time to read a file containing a stored ZDD and reconstruct the
ZDD, convert it to raw parentheses, bits, and integers, construct succinct rep-
resentation of them, and compress the BP of the zero-edge tree. The conversion
time appears almost linear in the input size showing its scalability for large
data. Traverse operation used zero(v) and one(v), while membership operation
used topset(v,i) and one(v). We observed that the DenseZDD has almost twice
longer traverse time and more than 10 times shorter search time than an original
ZDD. These results show the efficiency of our implementation of the topset(v, i)
operation on DenseZDD using level ancestor operations.

From the above results, we conclude that DenseZDDs are more compact
than ordinary ZDDs unless the dummy node ratio is extremely high, and the
membership operations for DenseZDDs are much faster if the number of items
is large or the dummy node ratio is small. We observed that in DenseZDDs,
traversal time is approximately double and search time approximately one-tenth
compared to the original ZDDs.

7 Conclusion

In this paper, we have presented a compressed index for static ZDDs named
DenseZDD. We also proposed a hybrid method for dynamic operations on DenseZDD
so that we can manipulate DenseZDD and conventional ZDD together. For fu-
ture work, the one-child array should be stored in more compact space. We
will implement the hybrid method on our ZDD package. We expect that our
technique can be extended to other variants of BDDs.

References

10.

11.

12.

13.

14.

15.

16.

Randal E. Bryant. Graph-based algorithms for Boolean function manipulation.
IEEFE Transactions on Computers, C-35(8):677-691, August 1986.

Shuhei Denzumi, Ryo Yoshinaka, Hiroki Arimura, and Shin-ichi Minato. Notes on
sequence binary decision diagrams: Relationship to acyclic automata and complex-
ities of binary set operations. In Proceedings of the Prague Stringology Conference
2011 (PSC’11), pages 147-161, Czech Technical University in Prague, 2011.
Peter Elias. Universal codeword sets and representation of the integers. IEEE
Transactions on Information Theory, IT-21(2):194-203, March 1975.

Esben Rune Hansen, S. Srinivasa Rao, and Peter Tiedemann. Compressing binary
decision diagrams. In Proceedings of the 2008 conference on ECAI 2008: 18th
European Conference on Artificial Intelligence, pages 799-800, 2008.

Donald E. Knuth. The Art of Computer Programming, volume 4, fascicle 1, Bitwise
Tricks & Techniques; Binary Decision Diagrams. Addison-Wesley, 2009.

Shirou Maruyama, Masaya Nakahara, Naoya Kishiue, and Hiroshi Sakamoto. ESP-
index: A compressed index based on edit-sensitive parsing. Journal of Discrete
Algorithms, in press, January 2013.

P. Mateu-Villarroya and J. Prades-Nebot. Lossless image compression using or-
dered binary-decision diagrams. Electronics Letters, 37:162-163, 2001.

Shin-ichi Minato. Zero-suppressed BDDs for set manipulation in combinatorial
problems. In Proceedings of DAC 1993, pages 272—277, 1993.

Shin-ichi Minato. SAPPORO BDD package. Division of Computer Science,
Hokkaido University, 2012. unreleased.

Shin-ichi Minato. Z-skip-links for fast traversal of zdds representing large-scale
sparse datasets. In Proceedings of ESA 20183, volume LNCS 8125, pages 731-742.
Springer, 2013.

Shin-ichi Minato, Nagisa Ishiura, and Shuzo Yajima. Shared binary decision di-
agram with attributed edges for efficient boolean function manipulation. In Pro-
ceedings of DAC 1990, pages 52-57, 1990.

Shin-ichi Minato, Takeaki Uno, and Hiroki Arimura. LCM over ZBDDs: Fast
generation of very large-scale frequent itemsets using a compact graph-based rep-
resentation. In Proceedings of PAKDD 2008, volume LNAI 5012, pages 234—246.
Springer, 2008.

Gonzalo Navarro and Kunihiko Sadakane. Fully-functional static and dynamic
succinct trees. ACM Transactions on Algorithms, 2012. Accepted. A preliminary
version appeared in SODA 2010.

Daisuke Okanohara and Kunihiko Sadakane. Practical entropy-compressed rank/
select dictionary. In Proceedings of Workshop on Algorithm Engineering and Ex-
periments (ALENEX), 2007.

Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct indexable
dictionaries with applications to encoding k-ary trees, prefix sums and multisets.
ACM Trans. Algorithms, 3(4):43:1-43:25, November 2007.

Mike Starkey and Randy Bryant. Using ordered binary-decision diagrams for com-
pressing images and image sequences. Technical report, Carnegie Mellon Univer-
sity, CMU-CS-95-105, January 1995.

A Succinct data structures

A.1 Succinct data structures for rank/select

Let B be a binary vector of length u, that is, B[i] € {0,1} for any 0 < i < u.
The rank value rank.(B,i) is defined as the number of ¢’s in B[0..i], and the
select value select (B, j) is the position of j-th ¢ (j > 1) in B from the left. Note
that rank.(B, select.(B, 7)) = j holds if j < rank.(B,n — 1), the number of ¢’s
in B. The predecessor pred.(B,i) is defined as the position j of the rightmost
¢ = B[j] to the left of B[i]. The predecessor is computed by pred . (B,i) :=
select.(B, rank.(B,1)).

The Fully Indexable Dictionary (FID) is a data structure for computing rank
and select on binary vectors [15].

Theorem 4 (Raman et al. [15]). For a binary vector of length u with n ones,
its Fully Indexable Dictionary uses (Z) + O(uloglogu/logu) bits of space and
computes rank.(B,1) and select.(B,1) in constant time on the 2(log u)-bit word
RAM.

This data structure uses asymptotically optimal space because any data struc-
ture for storing the vector uses [(;‘Lﬂ bits in the worst case. Such a data structure
is called a succinct data structure.

A.2 Succinct data structures for trees

An ordered tree is a rooted unlabeled tree such that children of each node have
some order. A succinct data structure for an ordered tree with n nodes uses
2n + o(n) bits of space and supports various operations on the tree such as
finding the parent or i-th child, computing the depth or the preorder of a node,
etc., in constant time [13]. An ordered tree with n nodes is represented by a string
of length 2n called a balanced parentheses sequence (BP), defined by a depth-
first traversal of the tree. Starting from the root, we write an open parenthesis
‘(" if we arrive at a node from above, and a close parenthesis ‘)’ if we leave from
a node upward.

In this paper, the following operations are used. Let P denote the BP se-
quence of a tree. A node is identified with the position of the open parenthesis
in P representing the node.

— depth(P,1): the depth of a node at position 7. (The depth of a root is 0.)

— preorder(P,i): the preorder of a node at position i.

— level_ancestor(P, i,d): the position of the ancestor with depth d of node .

— parent(P,): the position of the parent of node ¢ (identical to level_ancestor(P,
i, depth(P,i) — 1)).

— degree(P,i): the number of children of node i.

— child(P,i,d): the d-th child of node i.

The operations take constant time.

A brief overview of the data structure is the following. The BP sequence is
partitioned into equal-length blocks. The blocks are stored in leaves of a rooted
tree called range min-max tree. In each leaf of the range min-max tree, we store
the maximum and the minimum values of node depths in the corresponding
block. In each internal node, we store the maximum and the minimum of val-
ues stored in children of the node. By using this range min-max tree, all tree
operations are implemented efficiently.

B Pseudo codes

Global vaiables: Li,..., L, are list which are empty initially. \
ALGORITHM Compute_Preorder (L)
Input: Lo: a list stores only ({0}, [0, stsize(0) — 1]);

1: fori=0,...,n

2: for each (A, [l,r]) € L; in arbitrary order % A is a set of nodes

3: for each v € A in descending order of (prank(one(v)), empflag(v))
4: prank(v) < l++;
5: for each j € {j|w € revzero(v),j = index(w) } in descending
order
6: A+ {w]|w € revzero(v), index(w) = j };
7 r < 1+ sum{ stsize(w) |w € B };
8: append (B, [l,7]) to Ly;
% That is, the prank of descendants of nodes in B are in [I, r].
9: L+ 1r+1;

QO: return; J

Fig. 7. An algorithm which computes the preorder rank prank(v) of each node
v. Sets of nodes are implemented by arrays or lists in this code. The prank(0)
is 0.

C Proof

Following is the proof for Theorem 1 and 2.

Proof. We first prove Theorem. 1. From the above discussion, the BP U of zero-
edge tree costs 2u = O(mn) bits where u is the size of corresponding quasi-ZDD.
The one-child array needs m log m bits for 1-children and m bits for #-flags. Using
FID, the dummy node vector is stored in m(2 + logm) + o(u) bits. Therefore,
the DenseZDD can be stored in 2u + mlogm + 3m + o(u) bits and primitive
operations except getnode are done in constant time because the rankq, selecty,

ALGORITHM Convert_ZDD_BitVectors (v, paren, dummy, onechild)\
Input: ZDD node v, list of parentheses paren,
list of bits dummy, list of integers onechild

[y

i = index(v);

2: for each w € revzero(v) in ascending order of prank(w);
3: while i+ 1 < indez(w)

4 append ‘(’ to paren, and ‘0’ to dummy;

5 ++i;

6: append ‘(’ to paren, and ‘1’ to dummy;

7: append prank(one(w)) - (—1 - empflag(w)) to onechild,
8 Convert_ZDD_BitVectors(w, paren, dummy, onechild);
9: append ‘)’ to paren, and ‘0’ to dummy;

10: while ¢ > indez(v)

11: append ‘)’ to paren, and ‘0’ to dummy;

12 ——3;

&3: return; /

Fig. 8. Algorithm for obtaining the BP representation of the zero-edge tree,
the dummy node vector, and the one-child array.

and any tree operations take constant time. Since the getnode finds a target node
by binary search, it takes O(logm) (described in Sec. 5).

Next, we prove Theorem 2. When we compress U, it can be stored in O(m logn)
bits and the min-max tree is stored in O(m(logn + logm)/logm) bits. The
dummy node vector can be compressed in m(2+logm) + o(m) bits by FID with
sparse array. But, the time order of any tree operations and the rank; operation
is changed from constant time to O(logm) time. Therefore, the DenseZDD can
be stored in O(m(logm + logn)) bits and primitive operations take O(logm)
times larger than the above time because all of them use tree operations or rank
on M.

/ALGORITHM Construct_DenseZDD (W: list of ZDD root)
Output: DenseZDD DZ

: for each v € V compute revzero fields for all descendants of v;
: compute stsize field for all 0"-decsendants;

: Compute_Preorder({({0}, [0, stsize(0) — 1])});

: create empty lists paren, dummy, onechild;

: append ‘(" to paren, and ‘0’ to dummy;

: Convert_ZDD BitVectors(0, paren, dummy, onechild);
: append ‘)’ to paren, and ‘0’ to dummy;

: make BP U from paren;

: make FID M from dummy;

: make compressed representation I of onechild;

: return DZ + (U, M, I);

-
—= O © 00 O UL ik WN -

~

Fig. 9. Algorithm for constructing the DenseZDD from a source ZDD.

