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Abstract—In this paper, we propose a new theoretical analysis
of amount of musical noise generated in several noise reduction
methods with a decision-directed a priori SNR estimator using
higher-order statistics. In our previous study, a musical noise
assessment based on kurtosis has been successfully applied to
spectral subtraction and Wiener filter. However, this approach
cannot be applied to some high-quality noise reduction methods,
namely, the minimum mean-square error short-time spectral
amplitude estimator, the minimum mean square error log-
spectral amplitude estimator and the maximum a posteriori
estimator, because such methods include the decision-directed a
priori SNR estimator, which corresponds to a nonlinear recursive
(infinite) process for noise power spectral sequences. Therefore,
in this paper, we introduce a computationally efficient higher-
order-moment calculation method based on generalized Gauss-
Laguerre quadrature. We also mathematically clarify the justi-
fication of using a typical decision-directed parameter, namely,
magic number 0.98, in the three types of the decision-directed-
based estimators from a viewpoint of amounts of musical noise
and speech distortion. In addition, we perform comparison be-
tween these noise reduction methods based on the mathematical
analysis and human perception test.

I. INTRODUCTION

Over the past decade, the number of applications of speech
communication systems, such as TV conference systems and
mobile phones, has increased. These systems, however, always
suffer from a problem of deterioration of speech quality
under adverse noise conditions. Therefore, in speech signal
processing, noise reduction is a problem requiring urgent
attention.

Spectral subtraction (SS), Wiener filter (WF) [1] and
Ephraim-Malah’s  minimum mean-square error short-time
spectral amplitude (MMSE STSA) estimator [2] are com-
monly used noise reduction methods that have high noise
reduction performance. However, in these methods, artificial
distortion, so-called musical noise, arises owing to nonlinear
signal processing, leading to a serious deterioration of sound
quality.

Recently, an objective metric to measure how much musical
noise is generated through nonlinear signal processing based
on higher-order statistics has been developed by some of the
authors [3]. Using this metric, we have successfully analyzed

the amount of musical noise generated via SS [4] and WF [5].
However, any theoretical analysis of the amount of musical
noise generated in noise reduction methods with a decision-
directed a priori SNR estimator (hereafter it is referred to
as DD approach), e.g., the MMSE STSA estimator, has not
been reported yet. It is worth mentioning that several studies
on the systematic analysis of the DD approach have been
provided [6], [7], but they did not use the explicit metric of
musical noise generation like higher-order statistics so far.

In this paper, we provide a new theoretical analysis of the
amount of musical noise generated in the MMSE STSA esti-
mator, the minimum mean square error log-spectral amplitude
(MMSE LSA) estimator [8] and the maximum a posteriori
(MAP) estimator [9] with the DD approach based on higher-
order statistics. Since the DD approach corresponds to a
nonlinear recursive process that requires infinite power spectral
sequences, we introduce a computationally efficient higher-
order moment calculation method based on generalized Gauss-
Laguerre quadrature [10]. We also mathematically clarify the
justification of using a typical decision-directed parameter,
namely, magic number 0.98, in the three types of the decision-
directed-based estimators from a viewpoint of amounts of
musical noise and speech distortion. In addition, we perform
comparison between these noise reduction methods based on
the mathematical analysis and human perception test.

II. RELATED WORKS

A. Mathematical Metric of Musical Noise Generation via
High-Order Statistics [3]

We speculate that the amount of musical noise is highly
correlated with the number of isolated power spectral com-
ponents and their level of isolation. In this paper, we call
these isolated components fonal components. Since such tonal
components have relatively high power, they are strongly
related to the weight of the tail of their probability density
function (p.d.f.). Therefore, quantifying the tail of the p.d.f.
makes it possible to measure the number of tonal components.
Thus, we adopt kurtosis, one of the most commonly used
higher-order statistics, to evaluate the percentage of tonal
components among the total components. A larger kurtosis



value indicates a signal with a heavy tail, meaning that the
signal has many tonal components. Kurtosis is defined as

kurt :/,64//1%7 (1)

where kurt is the kurtosis and p,, is the mth-order moment
as

i = / p(2)dz, @)
0

where p(z) is the p.d.f. of a signal z in the power spectral
domain.

In this study, we apply such a kurtosis-based analysis to
a noise-only time-frequency period of subject signals for the
assessment of musical noise. Thus, this analysis should be
conducted during, e.g., periods of silence during speech. This
is because we aim to quantify the tonal components arising in
the noise-only part, which is the main cause of musical noise
perception, although musical noise is not conspicuous in the
target-speech-dominant part.

Although kurtosis can be used to measure the number of
tonal components, note that the kurtosis itself is not sufficient
to measure the amount of musical noise. This is obvious since
the kurtosis of some unprocessed noise signals, such as an
interfering speech signal, is also high, but we do not recognize
speech as musical noise. Hence, we turn our attention to the
change in kurtosis between before and after signal processing
to identify only the musical-noise components. Thus, we adopt
the kurtosis ratio as a measure to assess musical noise [3]. This
measure is defined as

kurtosis ratio = kurtproc/kurtorg, 3)

where kurtp,. is the kurtosis of the processed signal and
kurte is the kurtosis of the observed signal. This measure
increases as the amount of generated musical noise increases.
In Ref. [3], it was reported that the kurtosis ratio is strongly
correlated with the human perception of musical noise.

B. Analysis of Amount of Noise Reduction [4]

We analyze the amount of noise reduction via processing.
Hereafter, we define the noise reduction rate (NRR) as a
measure of the noise reduction performance, which is defined
as the output SNR in dB minus the input SNR in dB. The
NRR is

NRR = 10log,o(E[s2,,]/E[nd..))/(E[si.]/E[n,]), @)

where sj, and so,t are the input and output speech signals,
and nj, and ne,t are the input and output noise signals,
respectively. If we assume that the amount of noise reduction
is much larger than that of speech distortion in processing,
ie., B[s2,] ~ E[s2], then

NRR = 10log;oE[nf,]/E[ng,] = 10logiopu /py,  (5)

where pq is the 1st-order moment of observed signal power
spectra, and p} is the 1lst-order moment of processed signal
power spectra.

C. Noise Reduction Methods with DD Approach

In this subsection, we briefly introduce the MMSE STSA
estimator, the MMSE LSA estimator and the MAP estimator.
We apply short-time Fourier analysis to the observed signal,
which is a mixture of target speech and noise, to obtain the
time-frequency signal X (f,7) = S(f,7) + N(f,7), where
X(f,7) is the observed signal, f denotes the frequency
subband, and 7 is the frame index. S(f, 7) and N(f, ) denote
the input speech and noise signals. The signal processing
procedures of the MMSE STSA estimator, the MMSE LSA
estimator and the MAP estimator are generally formulated as

Y(f7 T) = G(f7 T)|X(f’ 7')|exp(jarg(X(f, T)))) (6)

where Y (f,7) is the enhanced target speech signal, G(f,7)
is the gain function of each method. The gain function of the
MMSE STSA estimator is defined as
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and that of the MAP estimator is defined as

sl E(fm) &) + (L+ () 5D
AL T 2L +E(f.7) ’
9

where Iy and I; are the modified Bessel functions of zero and
first order, and v(f,7) = v(f, 7)&(f,7)/(1 + &(f,7)). Also,
&(f,7) and ~(f,7) are a priori and a posteriori SNRs, which
are defined as

§(f,m) =E[S(f,7)PI/EIN(f, I, (10
v(f,7) =X (£, 7)P/EIN(f,7)*). (11)

In (10) and (11), we can commonly estimate E[|N(f, 7)|?]
by averaging the noise power spectra in the speech absent time
period, or by using other estimation methods [2], [7]. However,
since we cannot estimate E[|S(f,7)|?] in advance, a priori
SNR £(f, 7) is approximately calculated via the following DD
approach;

g(f’ T) :a’Y(fvT_l)GQ(fvT_l) +

(1_a)F[7(fv T)_l]v
(12)

where « is a forgetting factor and F'[-] is a flooring function.

The forgetting factor v of around 0.98, namely, 0.97 ~ 0.99,
is mostly used in the past studies. These values are, however,
decided experimentally, and there is no theoretical proof for
the justification of using such magic number. One of the main
purposes in this paper is to justify the optimal forgetting factor
via theoretical analysis.



III. THEORETICAL ANALYSIS OF NOISE REDUCTION
METHODS WITH DD APPROACH

A. Higher-Order Moment

In this section, we analyze the MMSE-STSA estimator,
the MMSE LSA estimator and the MAP estimator based
on the higher-order-statistics analysis. More specifically, we
mathematically derive the higher-order moments of output
power spectra for each method. As described in Sects. II-A
and II-B, the 1st-order moment is used to calculate the NRR
(amount of noise reduction), and the 2nd- and 4th-order
moments are used for getting the kurtosis ratio (amount of
musical noise generation).

Hereafter, random variables  and y represent the power
spectra of noise N(f,7) and its processed output Y (f,7),
respectively. Signal processing in the MMSE or the MAP
estimator with the DD approach can be interpreted as stochas-
tic variable transform from z to y, and more importantly,
this is a nonlinear recursive (infinite) process for x because
the DD approach requires infinite number of samples of the
past N(f,7) (t = 719,7-1,...,T—00) to output the specific
Y (f, 7o) at the time 7p. Thus, assuming that X is independent
and identically distributed (i.i.d.), we can write the mth-order
moment of Y as

oo
fom = / y"'p(y)dy
0
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drodxy - drs, (13)
where the transformation function y = h(zg,21,...,%00)
is defined to represent the relation among |Y'(f,79)* and

{IN(f,70)|% -, IN(f,T—o)|?} in MMSE STSA estimator
as calculated via (6), (7) and (12), in the MMSE LSA estimator
via (6), (8) and (12), or in the MAP estimator via (6), (9) and
(12).

B. Numerical Calculation of Higher-Order Moment

In this subsection, a practical calculation method of the
higher-order moments is described. Since the higher-order
moment (13) cannot be expressed by an analytical form,
we should introduce some approximations and a numerical
integration technique for calculating the higher-order moment.
First, we truncate the infinite time sequences within the past
T samples, which is long enough to maintain the calculation
accuracy. Next, instead of the multiple integrals, a numerical
integral formula is applied in the range of z; from 0 to €.
For example, we can use the Newton-Cotes method that is
a commonly used numerical integral formula with equally
sampled function values, which is given by

c (& C
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where c is the number of sample points in the integrand, k; =
1,2,...,¢, zg, = (ki — 1)Q2/(c — 1), and wy, is a weight for
the numerical integral.

The biggest problem in this calculation is a huge compu-
tational cost. For instance, T'= 14 and ¢ =11 were required
in our preliminary experiment to maintain the calculation ac-
curacy, resulting in ¢(”+1) multiply and accumulation (MAC)
for the weight wy,. This roughly corresponds to 4 Peta MAC
in floating-point arithmetic, and is obviously impossible to be
processed by normal computers except supercomputer.

C. Computationally Efficient Calculation Method

To solve the problem due to huge number of MAC, we
propose to introduce computationally efficient calculation of
higher-order moments based on the parametric p.d.f. model
and generalized Gauss-Laguerre quadrature [10]. In the fol-
lowing, we describe the detail of the proposed method and its
advantage on the computational cost.

First, the p.d.f. of the noise power spectra is modeled by
the gamma distribution as

pla) = a"lexp(—x/0) /6" /T (1),

where T'(n) is the gamma function, 7 is the shape parameter
corresponding to the type of noise, and 6 is the scale parameter
of the gamma distribution. If the input signal is Gaussian noise,
the p.d.f. of its power spectra obeys the chi-square distribution
with two degrees of freedom, which corresponds to the gamma
distribution with n = 1. Also, if the input signal is super-
Gaussian noise, the p.d.f. of its power spectra obeys the gamma
distribution with a@ < 1.

Then, application of the gamma distribution model to the
moment calculation (13) enables us to use generalized Gauss-
Laguerre quadrature [10], which is a computationally efficient
numerical integral formula with unequally sampled function
values. In the case of noise with the shape parameter 7 (the
scale parameter 6 can be set to 1 without loss of generality),
the mth-order moments are given by
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where ¢’ is the number of sample points in the integrand and
ki = 1,2,...,c. The sampling abscissas IEZ] are defined as

the roots of the generalized Gauss-Laguerre polynomial

==V exp(x) d

[n—1] _ 4+n—1
LI () = i - C,{eXp )z 1,
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Also, the weight w[n] is calculated as
d
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Fig. 1. Theoretical behavior and experimental results for MMSE STSA
estimator: (a) noise reduction rate, and (b) log kurtosis ratio.

Hereafter, we discuss the computational cost in the proposed
calculation. Generally speaking, a ¢’-point generalized Gauss-
Laguerre quadrature can yield an exact result for polynomials
of up to 2¢/ — 1 degrees, although a c-point Newton-Cotes
method does for polynomials of up to ¢ — 1 degrees. Thus, we
can set ¢/ = ¢/2. This greatly reduces the number of MAC
by (1/27+1)-fold in (16), compared with (14). For example, a
use of ¢’ = 5 in (16) results in simple 30 Giga (~ 5'%) MAC,
which can be processed by personal computers.

IV. EXPERIMENT

A. Experimental Conditions

We calculated the NRR and kurtosis ratio using (16). The
shape parameter ) of the noise p.d.f. is set to 1.0, 0.8 and 0.6.
The number of sampling points in the numerical integral, ¢’ in
(16), is set to 5, and the number of frames corresponding to
T+1 is set to 14 in the MMSE STSA estimator, and set to 15
in the MMSE LSA estimator and the MAP estimator. Since the
kurtosis of processed signal changes exponentially, we depict
the logarithm of the kurtosis ratio, which is referred to as the
log kurtosis ratio. If the log kurtosis ratio is large, it means
that much musical noise generated. If the log kurtosis ratio
equals zero, it means that there is no musical noise generated.

In addition, we conducted a real noise reduction experiment
and subjective evaluation experiment in order to confirm the
validity of our proposed theoretical analysis. The NRR and
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Fig. 2. Theoretical behavior and experimental results for MMSE LSA esti-
mator: (a) noise reduction rate, and (b) log kurtosis ratio.

log kurtosis ratio are calculated from actual noise reduction
results obtained by the observed signals and processed signals.
In the evaluation experiment, the noisy observed signals were
generated by adding noise signals to target speech signals
with an SNR of O dB. The target speech signals were the
utterances of six speakers (6 sentences). The length of each
signal was 15 s, and each signal was sampled at 16 kHz.
The FFT size is 1024, and the frame shift length is 256.
In these experiments, we calculated the noise prototype, i.e.,
the average of [N (f,7)|2, in the first 10 s frames, where the
speech signal is absent.

B. Objective Evaluation

Figs. 1, 2 and 3 are the results of the theoretical calculations
using (16) and objective evaluations for each of noise reduction
methods. We can confirm that the theoretical values derived
by our analysis is well consistent with those of experimental
results obtained by actual noise reduction.

Regarding the detailed behavior of the NRR, the MMSE
STSA estimator, the MMSE LSA estimator and the MAP
estimator show the same tendency in that the NRR becomes
higher as the larger forgetting factor « is used (see Figs. 1(a),
2(a) and 3(a)). In contrast, regarding the log kurtosis ratio,
it is of great interest that the kurtosis ratio suddenly drops
after « = 0.97 in the MMSE STSA estimator and the MMSE
LSA estimator, and after = 0.98 in the MAP estimator (see
Figs. 1(b), 2(b) and 3(b)). From the results, we can speculate
that the kurtosis-ratio drop is the key factor of less musical
noise property in these three types of estimators, and we will
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Fig. 3. Theoretical behavior and experimental results for MAP estimator: (a)
noise reduction rate, and (b) log kurtosis ratio.
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Fig. 4. Cepstral distortion for MMSE STSA estimator, MMSE LSA estimator
and MAP estimator.

discuss this issue in the next subsection.

C. Discussion on Optimal Forgetting Factor

In this subsection, we discuss the optimality on the for-
getting factor for each noise reduction method. As shown in
Figs. 1(b), 2(b) and 3(b), the kurtosis ratio falls after o = 0.97
or 0.98 while higher NRRs are kept, suggesting that o should
be more closer to 1.0 from the viewpoint of less musical
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3

Log kurtosis ratio
- n
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Fig. 5. Relation between a noise reduction methods and theoretical value of
log kurtosis ratio under equi-NRR conditions.
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Fig. 6. Subjective evaluation results for (a) white Gaussian noise, and (b)
babble noise.

noise. This suggestion is, however, misleading because we
did not take speech distortion into account. Fig. 4 shows
the cepstral distortion for each method, where we can see a
monotonic increase in speech distortion along with larger o.. In
conclusion, our theoretical analysis proves that the forgetting
factor « in these noise reduction methods with DD approach
have its sweet spot placed from 0.97 to less than 1, namely,
0.97 ~ 0.99, for achieving less musical noise (kurtosis-ratio
drop) as well as low speech distortion.



D. Comparison Among Three Methods

In this subsection, we compare the MMSE STSA estimator,
the MMSE LSA estimator and the MAP estimator. From
Figs. 1(b), 2(b) and 3(b), we can theoretically confirm that
musical noise is the least perceptible when a signal is pro-
cessed by the MMSE STSA estimator, and musical noise is
the most perceptible when processed by the MAP estimator.
Thus, this result suggests that the MMSE STSA estimator is
the best noise reduction method from the viewpoint of less
musical noise property. On the other hand, it is suggested that
the MMSE STSA estimator achieves the least amount of noise
suppression and the MAP estimator achieves the most amount
of noise suppression from Figs. 1(a), 2(a), 3(a). Hence, there is
a trade-off between amounts of noise suppression and musical
noise on which method we used.

Next, we compare the log kurtosis ratio of each noise reduc-
tion method under equi-NRR conditions. We use theoretical
values of the log kurtosis ratio with the same NRR; this value
was taken when we use the forgetting factor o = 0.98 in
the MMSE STSA estimator in Figs. 1, 2 and 3. In other
words, three methods take different values of the forgetting
factor «, but NRR is the same. The result is shown in Fig. 5.
From Fig. 5, we can confirm that musical noise is the least
perceptible when processed by the MMSE STSA estimator,
and more perceptible when the MAP estimator is used for
white Gaussian noise. Further more, it is found that when
the noise shape parameter 7 is smaller, the values of the log
kurtosis ratio in all methods become close. This predicts that
we hardly discriminate the difference of the amount of musical
noise among three methods when noise is super-Gaussian.

E. Subjective Evaluation

We next conducted a subjective evaluation. In this subjective
evaluation, we presented equi-NRR (15 dB for white Gaussian
noise, 13 dB for babble noise) signals processed by the MMSE
STSA estimator, the MMSE LSA estimator and the MAP
estimator in random order to 11 examinees, who selected
which signal they considered to contain the least musical noise.
The result of the experiment is shown in Fig. 6. It is found
that musical noise is the least perceptible when processed by
the MMSE STSA estimator, and musical noise is the most
perceptible when the MAP estimator is used. In particular, this
tendency is remarkable for white Gaussian noise but slightly
ambiguous for babble noise. Actually, the shape parameter
of babble noise is smaller than that of white Gaussian noise.
Thus, this tendency is well consistent with our prediction based
on the proposed theoretical analysis as described in Sect. IV-D,
confirming the validity of the proposed method for theoretical
analysis.

V. CONCLUSION

In this study, we performed a theoretical analysis of the
amount of musical noise generated in the MMSE STSA
estimator, the MMSE LSA estimator and the MAP estimator
based on higher-order statistics. Particularly, we calculated
higher-order statistics with computationally low cost and high

accuracy by using generalized Gauss-Laguerre quadrature.
From mathematical analysis and evaluation experiments, we
clarified the justification of using the magic number 0.98 in
the MMSE STSA estimator from a viewpoint of amounts of
musical noise and speech distortion. In addition, we compared
three methods with DD approach and we clarified that there
is the trade-off of amounts of noise suppression and musical
noise on which method we used. Finally, we conducted the
subjective evaluation and confirmed that the MMSE STSA
estimator is the most preferred method from view point of
less musical noise property.
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