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Abstract—In this paper, we review a musical-noise-generation
analysis of nonlinear noise reduction techniques with using
higher-order statistics (HOS). Recently, an objective metric based
on HOS to analyze nonlinear artifacts, i.e., musical noise, caused
by nonlinear noise reduction techniques has been proposed.
Such metric enables us to perform objective comparison of
any nonlinear methods from the perspective of the amount of
musical noise generated. Furthermore, such metric enables us to
control the musical noise generated by nonlinear noise reduction
techniques. In the paper, first, the mathematical principle of
the analysis for the amount of musical noise based on HOS
is described, and analyses and comparison examples of typical
nonlinear noise reduction techniques are demonstrated. Next, it
is clarified that to find a fixed point in HOS leads to no-musical
noise property in noise reduction. Finally, several expansions on
the theory are discussed.

I. INTRODUCTION

Many applications of speech communication systems, such
as hearing aids, mobile phones, and teleconference systems,
have been investigated in recent years. It is, however, well
known that these systems are always suffer from noise condi-
tion. Since noise causes a serious problem of speech quality,
thus noise reduction is an essential technique to achieve high
quality speech communication systems.

Various methods have been presented for noise reduction
techniques and they can be generally classified into two
groups; methods based on single-channel input [1]–[6], and
those based on multichannel input, e.g., microphone array sig-
nal processing [7]. Moreover, methods integrating microphone
array signal processing and nonlinear signal processing have
been actively researched in recently years, e.g., [8], [9]. Above
all, we focus our attention on nonlinear single-channel noise
reduction techniques in this paper.

Spectral subtraction (SS) [1]–[3], Wiener filtering [4], [5],
and minimum mean-square error short-time spectral amplitude
estimator (MMSE-STSA) [6] are commonly used nonlin-
ear single-channel noise reduction techniques. Actually these
methods are powerful noise reduction techniques, but these
methods often cause nonlinear artifacts, so-called musical
noise.

Recently, it was reported that the amount of generated
musical noise is strongly related to the difference between
higher-order statistics (HOS) before and after nonlinear signal
processing [10]. Based on this fact, the authors have proposed
a HOS-based objective metric for the amount of musical
noise generated [10]. This HOS-based objective metric en-
ables us to analyze/optimize nonlinear signal processing from

the viewpoint of musical-noise generation by mathematical
manner. Actually the HOS-based analysis has been applied to
nonlinear signal processing. For instance, generalized spectral
subtraction (GSS) has been analyzed on the basis of the
measure in Ref. [11], and a parameter to reduce the amount
of musical noise generated was clarified as a result of the
analysis. Also the analysis of Wiener filtering family was
performed in Ref. [12]. These analyses provided a new fact
that commonly-used parameters are not appropriate and there
exists more appropriate parameters for less amount of musical-
noise generation. Interestingly, it was also revealed that output
signal of SS with an optimized parameter contains less amount
of musical-noise than that of Winer filtering [12]. The validity
of these results were also confirmed by subjective evaluations
as well as mathematical analyses. Furthermore, in Refs. [13],
[14], one of the author have proposed SS with a special
parameter, which does not cause any musical noise. This
method was established by analyzing the change of HOS
through SS.

As we described, the HOS-based analysis makes it pos-
sible to compare nonlinear noise reduction techniques from
the viewpoint of the amount of musical-noise generation by
objective manner. Moreover, the HOS-based analysis allows us
to control the amount of musical noise generated by nonlinear
signal processing. In this paper, we show the mathematical
manner to analyze the amount of musical noise generated
by typical nonlinear signal processing on the basis of HOS,
and demonstrate a musical-noise-free noise reduction method
that do not yield any musical noise, as an application of the
analysis.

The rest of the paper is organized as follows. In Sect. II,
the metric based on HOS used for the amount of musical
noise generated is described. Following the section, we denote
analysis examples based on HOS in Sect. III, and we give
comparison results based on the results of the analyses in
Sect. IV. In Sect. V, we demonstrate the musical-noise-free
nonlinear signal processing as an application of HOS-based
analysis. Finally we give our conclusion in Sect. VI.

II. OBJECTIVE METRIC FOR MUSICAL NOISE GENERATED

A. Overview

An objective metric is indispensable for us to perform
objective comparison of noise reduction techniques. Moreover,
it is desirable that the metric can be derived by mathematically-
closed form. Actually, various kinds of objective metric for



Fig. 1. (a) Observed spectrogram, and (b) processed spectrogram

noise reduction techniques have been proposed, for instance,
signal-to-noise ratio (SNR) and cepstral distortion (CD) [15]
are widely-used metrics. These metrics are clearly objective
and mathematically-closed-form metrics. Generally, SNR only
considers power of noise and source signal, and CD considers
speech distortion. Then, the amount of musical noise generated
cannot be measured by these typical metrics. Therefore, an
objective metric designed for the amount of musical noise
generated is needed. In this section, we review the HOS-based
objective metric for the amount of musical noise generated
based on HOS proposed by the authors.

B. Objective metric for musical noise generated based on
higher-order statistics

Generally, nonlinear noise reduction techniques reduce
noise drastically but often provide musical noise at the same
time. This musical noise can be considered as the audible
isolated spectral components generated through such nonlinear
signal processing. Fig. 1(b) shows an example of a spectro-
gram of musical noise in which many isolated components
can be observed. Then, it can be speculated that the amount of
musical noise is strongly related to the number of such isolated
components and their level of isolation. Hence, Uemura et al.
have introduced kurtosis, i.e., 4th-order statistics, to quantify
the isolated spectral components, and they focus their atten-
tion on the changes in kurtosis [10]. Since isolated spectral
components are dominant, they are heard as tonal sounds,
which results in our perception of musical noise. Therefore, it
is expected that obtaining the number of tonal components will
enable us to quantify the amount of musical noise. However,
such a measurement is extremely complicated, so instead they
have introduced a simple statistical estimate, i.e., kurtosis.
This strategy allows us to obtain the characteristics of tonal
components. The adopted kurtosis can be used to evaluate the
width of the probability density function (p.d.f.) and the weight
of its tails, i.e., kurtosis can be used to evaluate the percentage
of tonal components among the total components. A larger
value indicates a signal with a heavy tail in its p.d.f., meaning
that it has a large number of tonal components. Also, kurtosis
has the advantageous property that it can be easily calculated
in a concise algebraic form.

C. Kurtosis

Kurtosis is one of the most commonly used HOS for the
assessment of non-Gaussianity. Kurtosis is defined as

kurtx =
µ4

µ2
2

, (1)

where x is a random variable, kurtx is the kurtosis of x, and
µn is the nth-order moment of x. Here µn is defined as

µn =

∫ +∞

−∞
xnP (x)dx, (2)

where P (x) denotes the p.d.f. of x. Note that this µn is
not a central moment but a raw moment. Thus, (1) is not
kurtosis according to the mathematically strict definition, but
a modified version; however, we refer to (1) as kurtosis in this
study.

D. Kurtosis ratio [10]

Although we can measure the number of tonal components
by kurtosis, it is worth mentioning that kurtosis itself is not
sufficient to measure musical noise. This is because that the
kurtosis of some unprocessed signals such as speech signals
is also high, but we do not perceive speech as musical noise.
Since we aim to count only the musical-noise components,
we should not consider genuine tonal components. To achieve
this aim, we should focus on the fact that musical noise is
generated only in artificial signal processing. Hence, we should
consider the change in kurtosis during signal processing. Con-
sequently, the following kurtosis ratio [10] has been proposed
to measure the kurtosis change:

kurtosis ratio =
kurtproc
kurtinput

, (3)

where kurtproc is the kurtosis of the processed signal and
kurtinput is the kurtosis of the input signal. A larger kurtosis
ratio (� 1) indicates a marked increase in kurtosis as a result
of processing, implying that a larger amount of musical noise
is generated. On the other hand, a smaller kurtosis ratio ('
1) implies that less musical noise is generated. It has been
confirmed that this kurtosis ratio closely matches the amount
of musical noise in a subjective evaluation based on human
hearing [10].

III. THEORETICAL ANALYSIS EXAMPLES BASED ON
HIGHER-ORDER STATISTICS

A. Overview

In this section, we give the way to analyze kurtosis ratio
after nonlinear signal processing thorough analysis examples
of typical nonlinear noise reduction techniques. Particularly,
our analyses include generalized spectral subtraction (GSS)
and Wiener filtering family. GSS is an expansion of SS, and
parametrized by an exponent parameter [3]. GSS involves
the standard power- and amplitude-domain SS. Comparison
results of the analyzed methods based on kurtosis ratio will
be demonstrated in Sect. IV.



B. Signal model

We introduce a gamma distribution to model time-frequency
power-domain signal [16], [17]. The p.d.f. of the gamma
distribution PGM(x) for random variable x is defined by

PGM(x) =
1

Γ(α)θα
· xα−1 exp

{
−x

θ

}
, (4)

where x ≥ 0, α > 0, and θ > 0. Here, α is the shape
parameter, θ is the scale parameter, and Γ(·) is the gamma
function. The gamma distribution with α = 1 corresponds
to the chi-square distribution with 2 degrees of freedom.
Moreover, it is well known that the mean of x for a gamma
distribution is E[x] = αθ.

In the following, we mathematically analyze how the distri-
bution of input noise is deformed via nonlinear signal process-
ing. To describe the change of the distribution, we formulate
the mth-order moment of the p.d.f. deformed after the signal
processing. Based on this mth-order moment, kurtosis ratio
and noise reduction rate (NRR) are derived. NRR and SNR
are very similar but NRR indicates SNR improvement.

C. Analysis Example 1: Generalized spectral subtraction

First of all, short-time analysis of input signal is conducted
by frame-by-frame discrete Fourier transform. As a result, we
obtain time-frequency domain observation X(f, τ) where f is
frequency bin, and τ is time frame index.

GSS that is a generalized form of SS can be formulated
as [3]

ŜGSS(f, τ) =
2n

√
|X(f, τ)|2n − β · Eτ [|N̂(f, τ)|2n]ejarg(X(f,τ))

(where |X(f, τ)|2n − β · Eτ [|N̂(f, τ)|2n] > 0),
ρX(f, τ) (otherwise)

(5)

where ŜGSS(f, τ) is a recovered speech signal, and N̂(x, τ)
is an estimated noise signal. Besides Eτ [·] expresses time-
averaging operator. β, ρ, and n are parameters of GSS and
they are oversubtraction parameter, flooring parameter, and
exponent parameter, respectively. GSS with n = 1 corresponds
to power-domain SS and GSS with n = 0.5 corresponds to
amplitude-domain SS. As shown in Fig 2, the p.d.f. of the
observation modeled by the gamma distribution is deformed
via GSS. To calculate kurtosis ratio, the 4th- and the 2nd-
order moment of the deformed p.d.f. is needed. The mth-
order moment of the p.d.f. after performing GSS by (5) can
be derived as [11]

µm = θmMGSS(α, β,m/n, ρ) (6)

where

MGSS(α, β,m/n, ρ)

=
1

Γ(α)

m/n∑
l=0

[{
−β

Γ(α+ n)

Γ(α)

}l
Γ(m/n+ 1)

Γ(l + 1)Γ(m/n− l + 1)

· Γ(α+m− ln, (βΓ(α+ n)/Γ(α))1/n)

]

+
ρ2m

Γ(α)
γ(α+m,βα). (7)

Here, γ(α, z) and Γ(α, z) are lower and upper incomplete
gamma function, respectively. They are defined as

γ(α, z) =

∫ z

0

tα−1 exp(−t)dt, (8)

Γ(α, z) =

∫ ∞

z

tα−1 exp(−t)dt. (9)

From the derived the mth-order moment, kurtosis ratio
between original signal and signal after GSS is designated
as

KRGSS =
MGSS(α, β, 4/n, ρ)/M2

GSS(α, β, 2/n, ρ)

MGSS(α, 0, 4/n, ρ)/M2
GSS(α, 0, 2/n, ρ)

. (10)

Here, note that MGSS(α, 0, 4/n, ρ) means the mth-order
moment of the original observation because oversubtraction
parameter is 0.

Finally, we derive the NRR of GSS. As we mentioned, NRR
indicates SNR improvement, which is defined by

NRR [dB] = 10 log10
E[s2out]/E[n

2
out]

E[s2in]/E[n
2
in]

, (11)

where sin and sout are input and processed target signal
components, respectively. Besides, nin and nout are input and
processed noise signals, respectively. In (11), the denominator
corresponds to input SNR and the numerator is the output
SNR. If we assume that the amount of noise reduction is
much larger than that of speech distortion in nonlinear noise
reduction techniques, i.e., E[s2out] ' E[s2in], then

NRR [dB] ' 10 log10
E[n2

in]

E[n2
out]

. (12)

Therefore, NRR can be approximated by using 1st-order
moment. This can be written as

NRRGSS = 10log10
MGSS(α, 0, 1/n, ρ)

MGSS(α, β, 1/n, ρ)
. (13)

D. Analysis Example 2: Standard Wiener filtering
In the following, we denote analyses of Wiener filtering

family. Generally, Wiener filtering is defined under assumption
that a target signal is stationary, as

Ŝ(f, τ) = G|X(f, τ)|ejarg(X(f,τ)), (14)

where Ŝ(f, τ) is an estimated target signal, and G is a spectral
gain formulated by [4], [5]

G =
Pss

Pss + Pnn
=

Pxx − Pnn

Pxx
. (15)



Fig. 2. Deformation of p.d.f. via GSS in the case that flooring parameter ρ = 0.

Here Pss, Pnn, Pxx are power spectral density of target, noise,
and observed signal, respectively.

As for an actual speech enhancement problem, an instanta-
neous observation is utilized to consider nonstationarity of a
target speech signal. The spectral gain of this type of Wiener
filtering is formulated as

G(f, τ) =


(
|X(f, τ)|2 − β · Eτ [|N̂(f, τ)|2]

)
/|X(f, τ)|2

(|X(f, τ)|2 − β · Eτ [|N̂(f, τ)|2] > 0),
0 (otherwise)

,

(16)

where β is a parameter to control the amount of noise
reduction. We refer to this type of Wiener filtering as standard
WF. Anyway, there exists an alternative approach decision-
directed a priori SNR estimator [4], [5] to estimate a priori
SNR Pss/Pnn. In the approach, a priori SNR Pss/Pnn is
estimated by using an estimated target speech in the previous
frame. Although we do not treat this decision-directed a priori
SNR estimator in this paper, but Refs. [18], [19] have analyzed
this type of Wiener filtering.

The mth-order moment of the p.d.f. after performing the
standard WF can be represented by [12]

µ(SWF)
m =θmMSWF(α, β,m), (17)

where

MSWF(α, β,m) =

1

Γ(α)

∫ ∞

βα

(t− βα)2mtα−m−1 exp(−t)dt. (18)

Based on this mth-order moment, kurtosis ratio after applying

the standard WF to observation can be written by

KRSWF =
MSWF(α, β, 4)/M2

SWF(α, β, 2)

MSWF(α, 0, 4)/M2
SWF(α, 0, 2)

. (19)

Also NRR of the standard WF can be formulated by using
1st-order moment, as

NRRSWF = 10log10
MSWF(α, 0, 1)

MSWF(α, β, 1)
. (20)

E. Analysis Example 3: Square-root Wiener filtering
Unlike the standard WF mentioned in the previous subsec-

tion, there exists an different kind of Wiener filtering defined
as

G(f, τ) =


(
|X(f, τ)|2 − β · Eτ [|N̂(f, τ)|2]

) 1
2

/|X(f, τ)|
(|X(f, τ)|2 − β · Eτ [|N̂(f, τ)|2] > 0),

0. (otherwise)

.

(21)

We refer to this type of Wiener filtering as square-root WF.
This is very similar to the standard WF, but the difference is
taking square root to determine its spectral gain.

Similarly in the previous subsection, the mth-order moment
of the p.d.f. after performing the square-root WF can be given
by

µ(SRWF)
m =θmMSRWF(α, β,m), (22)

where

MSRWF(α, β,m)

=
1

Γ(α)

m∑
l=0

(−βα)
l Γ(m+ 1)Γ(α+m− l, βα)

Γ(l + 1)Γ(m− l + 1)
.

(23)



Then, kurtosis ratio of the square-root WF is

KRSRWF =
MSRWF(α, β, 4)/M2

SRWF(α, β, 2)

MSRWF(α, 0, 4)/M2
SRWF(α, 0, 2)

, (24)

and we can derive NRR of square-root WF by

NRRSRWF = 10log10
MSRWF(α, 0, 1)

MSRWF(α, β, 1)
. (25)

F. Analysis Example 4: Quasi-parametric Wiener filtering

There exists one more alternative type of Wiener filtering,
i.e., quasi-parametric WF. Generally, it is difficult to know a
priori SNR in (15). Therefore the quasi-parametric WF uses a
posteriori SNR |X(f, τ)|2/Pnn instead of a priori SNR [20].
The spectral gain of this type of Wiener filtering can be
designated as

G(f, τ) =
|X(f, τ)|2

|X(f, τ)|2 + Pnn
. (26)

Moreover, the generalized form of this type of Wiener filtering
is defined by [20]

G(f, τ) =

(
|X(f, τ)|ξ

|X(f, τ)|ξ + βEτ [|N̂(f, τ)|ξ]

)η

, (27)

where ξ is an exponent parameter for signal, and η is an
exponent parameter for gain.

The mth-order moment for the quasi-parametric WF is
formulated by [12]

µ(QPWF)
m =θmMQPWF(α, β,m, η), (28)

where

MQPWF(α, β,m, ξ, η)

=
1

Γ(α)

∫ ∞

0

t(ξη+1)m+α−1{
t
ξ
2 + β

Γ(α+ ξ
2 )

Γ(α)

}2mη exp(−t)dt (29)

This leads to the kurtosis ratio of the quasi-parametric WF,
which can be designated as [12]

KRQPWF =
MQPWF(α, β, 4, ξ, η)/M2

QPWF(α, β, 2, ξ, η)

MQPWF(α, 0, 4, ξ, η)/M2
QPWF(α, 0, 2, ξ, η)

.

(30)

Besides, NRR of the quasi-parametric WF can be formulated
as [12]

NRRQPWF = 10log10
MQPWF(α, 0, 1, ξ, η)

MQPWF(α, β, 1, ξ, η)
. (31)

Unfortunately we cannot give no detailed derivation of these
kurtosis ratio and NRR of GSS and Wiener filtering family due
to the limitation of the paper space, but Refs. [11], [12] would
help you to understand detailed derivation.

Fig. 3. Theoretical behavior of NRR and log kurtosis ratio for standard WF,
square-root WF, and quasi-parametric WF.

Fig. 4. Theoretical behavior of NRR and log kurtosis ratio for various exponent
parameters in quasi-parametric WF.

IV. COMPARISON BASED ON HIGHER-ORDER STATISTICS

A. Comparison 1: Wiener filtering family

Hereinafter, we demonstrate some comparison results based
on the derived kurtosis ratio and NRR in the previous section.
Also we show results of objective and subjective evaluations
in addition to the theoretical comparison results.

In this subsection, we compare Wiener filtering family from
the perspective of the amount of musical noise generated. The
analyses in the previous sections make us possible to compare
the amount of musical noise generated among Wiener filtering
family under the same amount of noise reduction.

Figures 3 and 4 depict the theoretical behavior of the
kurtosis ratio and NRR of Wiener filtering family with various
parameter values [12]. In these figures, the shape parameter α
corresponding to noise type was set to 1.0, and the processing
strength parameter β was adjusted so that the target speech
NRR is achieved. The target NRR was configured from 0.0
dB to 12.0 dB. Note that we utilized logarithmic kurtosis ratio



Fig. 5. Objective evaluation results: (a) Log kurtosis ratio, and (b) cepstral
distortion of processed signals.

in the figures because the kurtosis exponentially increases with
β [10]. We call this log kurtosis ratio hereinafter. As for the
quasi-parametric WF, the signal exponent parameter ξ was set
to 2.0, 1.0, and 0.5, and the gain exponent parameter η was
set to 2.0/ξ, 1.0/ξ, and 0.5/ξ.

From Fig. 3, we can see that large amount of musical noise
is generated when we use standard WF and square-root WF.
However, it also shows that a smaller amount of musical noise
is generated when we use quasi-parametric WF with a lower
gain exponent parameter. Figure 4 shows that a small amount
of musical noise is generated when either of the exponent
parameters, ξ or η, is set to a lower value. Consequently, we
can achieve high sound quality upon setting lower exponent
parameters in the quasi-parametric WF.

We also conducted objective and subjective evaluations to
confirm the validity of the theoretical comparison. In the
evaluation experiments, observed signals were generated by
adding noise signal to target clean speech signals with a
SNR of 0 dB. The target speech signals were utterances of
4 speakers (4 sentences), and the noise signal was white
Gaussian noise. The length of the each signal was 7 s, and
each signal was sampled at 16 kHz. FFT size was 1024, and
the frame shift length was 256. In the experiment, we assumed
that noise prototype, i.e., |N̂(f, τ)|, was perfectly estimated.

Figure 5 illustrates the log kurtosis ratio and cepstral distor-
tion [12]. These values were calculated from the observed and
processed signal by standard WF, square-root WF, and quasi-
parametric WF with (ξ, η) = (0.5, 1.0). It can be confirmed
that the result of the log kurtosis ratio is almost consistent
with the theoretical behavior, and cepstral distortion is reduced
when quasi-parametric WF is used.

In the subjective evaluation, we presented 3 equi-SNR
signals processed by the standard WF, the square-root WF,
and the quasi-parametric WF in random order to 10 subjects,
who selected which signal they considered to contain least
musical noise. The result is shown in Fig. 6 [12]. It can be
found that musical noise is less perceptible when the quasi-
parametric WF with lower exponent parameter is utilized. This
result is also consistent with the theoretical comparison result.

Fig. 6. Subjective evaluation result of various types of Wiener filtering family

Fig. 7. Theoretical behavior of NRR and log kurtosis ratio in various exponent
parameters in GSS and quasi-parametric WF for Gaussian noise (α = 1.0)

B. Comparison 2: GSS vs. quasi-parametric WF

It is revealed that quasi-parametric WF is preferable from
the viewpoint of sound quality from experiments in the pre-
vious subsection. In this subsection, we show the comparison
result of GSS analyzed in Sect. III-C and quasi-parametric WF
analyzed in Sect. III-F.

Figure 7 shows the theoretical behavior of GSS and quasi-
parametric WF under same noise reduction performance [11].
Here parameters for quasi-parametric WF were (ξ, η) =
(2, 0.5), and exponent domain for GSS was selected from
2n = 2.0, 1.0, 0.5, or 0.1. The oversubtraction parameter β
for GSS was adjusted so that the target NRR is achieved as
same as the simulation in the previous subsection.

From the result, the power- or amplitude-domain SS causes
a larger amount of musical noise than that by quasi-parametric
WF. On the other hand, GSS in lower exponent domain gener-
ates less amount of musical noise than that by quasi-parameter
WF. This implies that GSS with an appropriate configuration
achieves preferable noise reduction rather than Wiener filtering
from the viewpoint of the amount of musical noise generated.
The validity of the result is also confirmed by a subjective
evaluation. The result of the subjective evaluation is shown in
Fig. 8 [11]. In the subjective evaluation, we presented 4 equi-
NRR signals processed by generalized spectral subtraction
and Wiener filtering in random order to 10 examinees, who
selected which signal they considered to contain least musical



Fig. 8. Subjective evaluation results for (a) white Gaussian noise, and (b)
speech noise. We presented four equi-NRR signals processed by generalized
spectral subtraction and Wiener filtering in random order to 10 examinees,
who selected which signal they considered to contain least musical noise.

noise. It can be confirmed that musical noise is less perceptible
in the signal originating from GSS with exponent parameter
2n = 0.1. This result also supports the result of the theoretical
analysis.

C. Summary

In this section, we gave theoretical comparison results
based on the HOS-based analytic results described in the
previous section. In addition to the theoretical comparison,
we performed objective and subjective evaluations.

According to our results,
1) there is no theoretical justification for using power-

or amplitude-domain SS, nevertheless about 90% re-
searchers utilize power- or amplitude-domain SS accord-
ing to Ref. [11]. Instead, generalized spectral subtraction
with a lower exponent parameter is advantageous for
achieving high-quality noise reduction.

2) With an appropriate parameter, GSS can achieve higher
quality noise reduction than that by any Wiener filtering.

The validity of the result is also confirmed by subjective
evaluations.

As we described in this section and Sect. III the HOS-based
analysis enables us to analyze the amount of musical noise
generated by mathematical manner. Actually, the analysis
based on HOS reveals new facts mentioned in the section, and
their results are also supported by subjective evaluations. Thus,
it can be regarded that the HOS-based analysis would become
an useful tool to analyze noise reduction techniques based on
the perspective of the amount of musical noise generated.

V. MUSICAL-NOISE-FREE NOISE REDUCTION BASED ON
HIGHER-ORDER STATISTICS

A. Overview

In this section, we provide a new nonlinear noise reduction
method that do not cause any musical noise. This method
is based on the analysis by HOS discussed in the previous

Fig. 9. Relation between NRR and kurtosis ratio from theoretical analysis with
increasing β for (a) Gaussian noise case (α0 = 1) and (b) super-Gaussian
noise case (α0 = 0.2).

sections. Hereinafter, we call noise reduction method without
musical-noise generation musical-noise-free noise reduction
method.

The method is based on iterative SS [21] that iteratively
performs weak SS. We found ‘musical-noise-free’ condition
while analyzing this iterative SS. Although the amount of noise
reduction generally becomes smaller with a larger flooring pa-
rameter ρ in SS, but the remained noise components approach
the noise in the original observation. This phenomenon is
demonstrated in Fig. 9. In the figure, we performed single shot
SS with various oversubtraction parameters, then interestingly
we can see a musical-noise-free condition that is a point
NRR > 0 but KR = 1. This means a special condition of SS
can achieve noise reduction without musical-noise generation.
Then, we can achieve musical-noise-free noise reduction by
iteratively performinig SS with parameters satisfy the musical
noise free condtion.

B. Derivation of musical-noise-free condition [14]

To derive the musical-noise-free condition is equal to find-
ing a fixed-point condition of kurtosis via SS. Although the
parameters to be optimized are a flooring parameter ρ and an
oversubtraction parameter β, we hereafter show the optimal η
given a fixed β for ease of closed-form analysis.

First, we rewrite the kurtosis after performing SS using (6)



and (7) as,

kurt(α0, β, ρ) =
S(α0, β, 4) + ρ8F(α0, β, 4)

(S(α0, β, 2) + ρ4F(α0, β, 2))
2 , (32)

where

S(α0, β,m) =
m∑
l=0

(−βα0)
lΓ(m+1)Γ(α0+m−l, βα0)

Γ(α0)Γ(l+1)Γ(m−l+1)

(33)

F(α0, β,m) =
γ(α0+m,βα0)

Γ(α0)
. (34)

Here supposed n = 1, which is the exponent parameter of
GSS, and α0 is a shape parameter of a noise signal in an
observation. The fixed-point kurtosis condition corresponds to
the kurtosis being equal to before and after SS, thus,

S(α0, β, 4) + ρ8F(α0, β, 4)

(S(α0, β, 2) + ρ4F(α0, β, 2))
2 =

(α0 + 3)(α0 + 2)

(α0 + 1)α0
. (35)

Let H = ρ4 and then (35) yields the following quadratic
equation in H.(

F(α0, β, 4)(α0+1)α0−F2(α0, β, 2)(α0+3)(α0+2)
)
ρ2

−2S(α0, β, 2)F(α0, β, 2)(α0+3)(α0+2)ρ

+S(α0, β, 4)(α0+1)α0−S2(α0, β, 2)(α0+3)(α0+2)=0.
(36)

Therefore, we can derive a closed-form estimate of H from
the given oversubtraction parameter as

H ={F(α0, β, 4)(α0+1)α0−F2(α0, β, 2)(α0+3)(α0+2)}−1[
S(α0, β, 2)F(α0, β, 2)(α0+3)(α0+2)

±
[
{S(α0, β, 2)F(α0, β, 2)(α0+3)(α0+2)}2

−
{
F(α0, β, 4)(α0+1)α0−F2(α0, β, 2)(α0+3)(α0+2)

}
{
S(α0, β, 4)(α0+1)α0−S2(α0, β, 2)(α0+3)(α0+2)

} ] 1
2

]
(37)

Finally, ρ = H1/4 is the resultant flooring parameter that satis-
fies the fixed-point kurtosis condition. It is worth mentioning
that this is just the fixed-point kurtosis condition but is not
the musical-noise-free condition. This is because (37) do not
consider NRR.

To derive the musical-noise-free condition, we take NRR
growth condition into account. From (7) and (13), the NRR
growth condition can be expressed by

10 log10
α0

S(α0, β, 1) + ρ2F(α0, β, 1)
> 0. (38)

Since ρ > 0 we can solve this inequality as

0 < ρ <

√
α0 − S(α0, β, 1)

F(α0, β, 1)
(39)

Overall, we can choose the appropriate parameters sat-
isfying the fixed-kurtosis point condition and NRR growth

Fig. 10. Example of oversubtraction parameter β and flooring parameter ρ to
satisfy musical-noise-free condition.

condition using (37) and (39). Figure 10 illustrates examples
of parameters to satisfy the musical-noise-free condition.

C. Evaluations

We conducted objective and subjective evaluations to show
the efficacy of the iterative SS based on musical-noise-free
theory.

First, we compared the proposed musical-noise-free iterative
SS and a traditional non-iterative SS on the basis of NRR
and kurtosis ratio. In the experiment, observed signals were
generated by adding noise signal to target clean speech signals
with a SNR of 0 dB. The target speech signals were utterances
of four speakers (4 sentences). The noise were white Gaussian
and babble noise. The result are illustrated in Fig. 11 [14]. All
the scores are the averages in terms of four target speakers.
From this result, we can see that the proposed musical-noise-
free iterative SS can keep kurtosis ratio mostly closed to
1.0 by NRR = 10 dB. This fact means that the proposed
musical-noise-free iterative SS causes extremely less amount
of musical noise.

Next, we made a comparison of the proposed musical-noise-
free iterative SS and commonly used noise reduction methods
on the basis of subjective evaluation. In the evaluation, noisy
signals were generated by adding noise signal to target clean
speech signals with a SNR of -5, 0, 5, and 10 dB. The
noise here we used are white Gaussian, babble noise, real-
recorded railway-station noise, real-recorded museum noise,
and real-recorded factory noise. Also we chose 4 speakers
(4 sentences) for target speakers as same as the previous
evaluation. We presented a pair of 10-dB-NRR signals pro-
cessed by the proposed method and commonly used noise
reduction methods, i.e., non-iterative SS, Wiener filtering, and
MMSE-STSA estimator, in random order to 10 examinees,
who selected which signal they preferred from the viewpoint
of total sound quality, e.g., less musical noise, less distortion,
etc. In all methods, noise estimation was done by minimum
statistics [22].

The result is depicted in Fig. 12 [14]. From this result, it
is revealed that resultant signal of the proposed iterative SS is



Fig. 12. Subjective evaluation results for (a) white Gaussian noise, (b) babble noise, (c) railway station noise, (d) museum noise and (e) factory noise.

Fig. 11. Relation between NRR and kurtosis ratio obtained from experiment
with noisy speech data for (a) white Gaussian noise case (α0 = 0.97), and
(b) babble noise case (α0 = 0.21).

preferred to those of commonly used noise reduction methods.

Although this musical-noise-free iterative SS is one example
of an optimization of nonlinear noise reduction techniques
based on higher-order statistics, it shows a great possibility of
using HOS to analyze or optimize noise reduction techniques
from the perspective of sound quality as well as the amount
of noise reduction.

VI. CONCLUSION

In the paper, we first introduced a HOS-based objective
measure for the amount of musical noise generated on the
basis of HOS. This objective metric enables us to measure
how amount of musical noise generated. Next, we described
the theoretical analysis of typical nonlinear noise reduction
techniques, i.e., generalized SS and Winer filtering family,
by using the HOS-based objective measure. As a result of
the analyses, we revealed which method or, which parameter
is appropriate for less amount of musical-noise generation.
Finally, we demonstrated the musical-noise-free iterative SS
that theoretically causes no musical noise. As a result of
a subjective evaluation, the output signal of the proposed
musical-noise-free iterative SS is surely preferred to those of
commonly used noise reduction techniques.

There exists researches using HOS to optimize sound qual-
ity, as well as we described in the paper. In Refs. [23]–[25],
analyses for the method integrating microphone array and
nonlinear noise reduction technique were conducted. Also, an
analysis for Wiener filtering with decision-directed a priori
SNR estimator has been performed in Ref. [18], [19]. Further-
more, the HOS-based analysis has been applied to prediction
of speech recognition performance in Ref. [26].

As described in the paper, the analysis based on higher-
order statistics can be applied to various applications to ana-



lyze/optimize the method from the viewpoint of sound quality.
Therefore it can be regarded that the HOS-based analysis
would become the useful tool to analyze noise reduction
techniques in addition to typical objective metrics, e.g., SNR,
cepstral distortion.
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