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ABSTRACT

The construction of acoustic models for speech recogni-
tion systems is a very costly and time-consuming process,
since their robust training requires large amounts of tran-
scribed speech data, which have to be collected and labeled
by humans. This paper describes an approach for cost-
effective construction of task-adapted acoustic models. Ex-
isting speech data(bases) are employed to set up a large train-
ing data pool. Apart from that, only a small amount of task-
specific speech data is required. Based on an algorithm for
utterance-based selective training of acoustic models, train-
ing utterances are selected from the training data pool so that
the likelihood of the acoustic model given the task-specific
speech data is maximized. The proposed method is evaluated
for acoustic models with context-independent and context-
dependent phonetic units. Results are reported for building an
infant (preschool children) acoustic model with speech from
elementary school children and an elderly acoustic model
with adult speech. The proposed approach is already effective
if there are only 20 task-specific utterances available. A rela-
tive improvement in word accuracy of up to 10% is achieved
over conventional acoustic model construction and up to 2.8%
over MAP and MLLR adaptation with the task-specific data.
The gap in performance to an acoustic model trained on large
amounts of task-specific data was reduced up to 76%.

1. INTRODUCTION

The development of applications making use of ASR technol-
ogy requires the construction of a high-performance acoustic
and language model. However, the costs for providing these
models are very high. In this paper the focus is on the acoustic
model. For example, about half of the relative costs to develop
an interactive dialogue system are due to speech database
preparation [1]. This is due to the fact, that at the beginning of
the development cycle large amounts of task-specific speech
data have to be collected and labeled by humans, which is
very costly and time-consuming. It is impractical to provide
enough human-labeled speech data for each possible combi-
nation of the various factors which have an influence on the

recognition performance such as speaker characteristics (e.g.
gender, age, accent), speaking style (e.g. read, spontaneous),
domain (e.g. digits, commands, news, dialogue) and acous-
tic conditions (e.g. background noise, reverberation, micro-
phone).

There are several proposals in literature to reduce the costs
of acoustic modeling. Among them are attempts to build task-
independent acoustic models, which are portable among dif-
ferent applications by combining speech data from multiple
sources [2], employment of active learning [3, 4], unsuper-
vised learning [5, 6] or both [7] to reduce the effort neces-
sary for speech data transcription, and training [4] or adap-
tation [8, 9] methods, which make selective use of existing
speech data resources. The application of active learning re-
vealed, that the best model is not necessarily obtained when
using all available training data but rather a subset and that
a model with equal performance can be constructed with a
smaller amount of carefully selected training data [4, 7].

By employing the above-mentioned methods for active
and unsupervised learning, the costs for transcribing speech
data can be reduced. However, both methods still require
large amounts of task-specific speech data. Furthermore, the
selection of training utterances is restricted either to data with
high confidence (unsupervised training) or data, which are
difficult to recognize (active learning).

In the following, an approach for cost-effective construc-
tion of task-adapted acoustic models is proposed, which can
be effective even in case of only a few task-specific exam-
ple data. Moreover, it provides means to select the desired
training speech data based on a likelihood criterion. Instead
of using all data available from multiple sources for training
[2], a subset which is acoustically close to the task-specific
data is selected. This is realized by the utterance-based selec-
tive training algorithm [10] which automatically chooses the
training utterances from a large data pool so that the model
likelihood given some task-specific example data is maxi-
mized. Unlike [8, 9] the proposed method is not limited to
speaker-based selection and can already be effective with less
(transcribed) task-specific development data than would be
required for active or unsupervised learning.

ITRW on Speech Recognition and
Intrinsic Variatioon (SRIV 2006)

Toulouse, France
May 20, 2006

ISCAArchive
http://www.isca-speech.org/archive



Maxi  mize

DB DB

DB DB DB

Task−Specific
Speech Data

Initial
Model

Task−adapted
Model

Training Data Pool

Select Data

Selective Training
Utterance−Based

Likel  ihood

Fig. 1. Acoustic Model Construction Framework.

This paper is structured as follows: Section 2 explains
the overall approach for cost-effective adaptation of acoustic
models, the criterion for training data selection and the selec-
tion algorithm. Section 3 describes the setup of two evalua-
tion experiments to verify the effectiveness of the proposed
approach. Section 4 shows and discusses the experimental re-
sults. Section 5 summarizes results and mentions future work.

2. PROPOSED APPROACH

2.1. Acoustic Model Construction Framework

Figure 1 depicts the proposed framework for cost-effective
task-adaptation of acoustic models based on selective train-
ing. It is assumed that one or more speech databases are
available, which are combined to a large training data pool.
Furthermore, a set of task-specific speech data is required. Al-
though its size and configuration will depend on the desired
target model complexity, it should be kept small in order to
achieve cost reduction. The aim is to achieve good perfor-
mance with less than 1,000 task-specific utterances. In or-
der to be independent from the characteristics of a few speak-
ers, the task-specific data set should ideally contain utterances
from as many speakers as possible and cover the acoustic
characteristics of the target environment for which the ASR
system is to be built.

The procedure to build the task-adapted model is as fol-
lows: First, an initial acoustic model is build from the training
data pool. Next, automatic selection of training utterances
is carried out. The central idea is to select those utterances
from the data pool, which maximize the likelihood of the task-
specific data. Finally, the selected training data and the task-
specific data are employed to build the task-adapted acoustic
model, e.g. retraining the initial model with the selected data
and optional adaptation with the task-specific data.

2.2. Utterance-based Selective Training Algorithm

In the following, the selection criterion and the selection al-
gorithm as proposed in [10] are described briefly. A (sub-
optimal) maximum likelihood estimate for the parameters of

an HMM/GMM-based acoustic model can be obtained iter-
atively with the Expectation-Maximization (EM) algorithm
[11]. The estimation is carried out so that the model likeli-
hood given the training data is maximized. Here, the idea is
to maximize the model likelihood given the task-specific data
by selecting an appropriate subset for parameter estimation.
Fast calculation of the likelihood is possible via the auxiliary
Q-function using sufficient statistics. The Q-function is de-
fined as follows:

Q(Θ, Θ̂) =
∑

~s

P (~s|D,Θ) log P (~s,D|Θ̂) (1)

~s denotes the (Gaussian) mixture and (HMM) state index se-
quence, D are the task-specific development data. In case of
an HMM-based acoustic model with Gaussian mixture densi-
ties the output density part of Q can be written as

∝
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where the sufficient statistics SD of the task-specific data D
are given by the variables yqm (occupancies), oqm (means)
and zqm (second-order moments). The new model parameters
µ̂qm (mean), σ̂2

qm (variance) and ŵqm (mixture weights) can
be written as a function of the sufficient statistics ST of the
training data T , which are decomposable w.r.t. the training
utterances ui. q and m denote the state and mixture index, re-
spectively. An increase of the Q-function implies an increase
of the likelihood P (D|Θ̂).

Since there are extremely many possibilities to select an
utterance subset from a large data pool, a heuristic selection
strategy has to be employed. The delete scan (ST DelScan) al-
gorithm, a greedy search technique, examines each utterance
in the training data pool only once. An utterance is discarded
if its independent deletion results in a likelihood increase.

The main steps of the ST DelScan algorithm are:

1. Calculate and store the sufficient statistics ST ,SD,Si for
the whole training T , the whole task-specific data D and
each training utterance ui.

2. Calculate the initial model likelihood l given the task-
specific data D via the Q-function based on the sufficient
statistics ST and SD.

3. For each utterance ui in the training data pool T do:

a. Exclude ui from T temporarily.

b. Calculate the likelihood l′ of the model trained on the
remaining utterances in T based on ST , Si and SD.

c. If the model likelihood increases, i.e. l′ > l, ui should
not be used for training.
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Fig. 2. Illustration of utterance-based selective training.

d. Otherwise ui has to be used for training to prevent a
likelihood decrease.

e. Put ui back into the data pool T .

4. Retrain the initial acoustic model for one or more iterations
only with the utterances for which a likelihood decrease
was observed.

See Figure 2 for a graphical illustration of the algorithm.
In practice, a threshold for the minimum number of examples
required per phone model and/or a threshold for the maximum
relative change of the Q-function allowed must be set in order
to prevent overfitting.

Other selection strategies are possible, e.g. floating search
by deleting or adding one or more utterances while updating
the set of selected training utterances immediately. However,
drawbacks are a longer computation time, the impossibility
of parallel computation and that the selection results depends
on the order of processing utterances. Furthermore, previ-
ous experiments [10] could not show, that the floating search
technique is superior to the greedy search technique.

3. EXPERIMENTAL SETUP

3.1. Speech Data

For experiments, spontaneous Japanese speech from the Take-
maru database is employed. Takemaru-kun [12] is a speech-
oriented dialogue system intended to provide the user infor-
mation on the weather, news, the surrounding environment,
public transportation system, Internet pages, a.s.o. The sys-
tem is very popular among children, because it is based on an
animated character. It is a working system installed in a public
place in Nara, Japan. Speech data is collected automatically
since November 2002 from users who speak to the system.
All data recorded from the first two years (about 120 hours)

Table 1. The objective of experiment (1) is to build an in-
fant (preschool children) model using speech from elemen-
tary school children. In experiment (2), adult speech is em-
ployed to build an elderly acoustic model. (# sentences / time)

Speech (1) School Children (2) Adults
Data Sets → Infant Model → Elderly Model
Data Pool 29,776 / 17 hrs 17,874 / 9 hrs
Task Data 500 / 17 min 53 / 2 min
Evaluation 1,554 / 53 min 400 / 12 min

is completely transcribed, labeled with tags (e.g. noise) and
classified subjectively into one of five speaker groups: infants
(preschool children), elementary school children, junior-high
school children, adults and elderly persons. The transcribed
part of the database contains more than 250,000 utterances
(including speech and non-speech inputs) in total.

Table 1 gives details about the part of the speech data
employed in experiments. The aim is to build one acoustic
model each for infants (preschool children) and elderly peo-
ple. Since it is comparably difficult to collect speech data
from these two speaker groups, model construction by select-
ing training data from elementary school children and adult
speakers is examined, respectively. Although speech data
has been collected for more than two years, the Takemaru
database contains only very few utterances from elderly peo-
ple.

3.2. Acoustic and Language Model

The acoustic feature vector is 25-dimensional including ∆E,
12 MFCC and 12 ∆ MFCC. A monophone and a PTM acous-
tic model is built from scratch with all utterances in the corre-
sponding data pool using HTK [13]. The monophone model
consists of 3-state HMMs with up to 16 Gaussians densities
(diagonal covariance matrix) per state. There is one HMM for
each of the 40 phonemes in the standard Japanese phoneme
set plus three silence HMMs (utterance begin, utterance end
and short pause). Evaluation is also carried out for phonetic
tied-mixture (PTM) models [14], which share one codebook
of 32 Gaussians per state among state-clustered triphones
with the center phone in common, but with mixture weights
untied. Information about the complexity of each PTM acous-
tic model employed in experiments (1) and (2) is given in Ta-
ble 2. PTM acoustic models enable fast decoding with the
open-source LVCSR engine Julius [15] while maintaining a
high recognition performance.

For decoding the infant test set (1,554 sentences / 5,742
words), a task-specific 4k language model trained on tran-
scriptions of infant utterances, and for decoding the elderly
test set an (400 sentences / 1,609 words) an open 40k word
language model trained on utterance transcriptions from the
Takemaru database as well as texts from e-mails and Internet



Table 2. The total number of physical HMMs, the number
of distinct HMM states and the total number of parameters
(means, covariances, weights and transition probabilities).

Nr. AM Type # phys. models # states # params
(1) PTM 765 785 210k
(2) PTM 572 628 200k

pages is employed.

4. EXPERIMENTAL RESULTS

4.1. Infant-adapted Acoustic Model

The word accuracy of the initial monophone and PTM model
built with all utterances in the data pool (containing only
speech from elementary school children) is 46.9% and 53.0%,
respectively. When applying selective training using 200 in-
fant utterances for likelihood computation, the accuracy in-
creases up to 10% relative for the monophone (51.7%) and
5.5% relative for the PTM model (55.9%). At the same time
the gap in performance to a high-cost PTM model trained on
10,000 infant utterances is reduced by 76%. 35% of the utter-
ances in the data pool were selected.

4.2. Elderly-adapted Acoustic Model

The word accuracy of the initial monophone and PTM model
built with all utterances in the data pool (containing only adult
speech) is 73.6% and 76.7%, respectively. 53 utterances from
elderly people are employed for likelihood-based utterance
selection. There is a relative improvement of recognition ac-
curacy of up to 3.1% for the monophone (75.9%) and up to
2.0% for the PTM model (78.2%). The selection rate of train-
ing utterances in the data pool was 44%.

4.3. Retraining with the Selected Data

Table 3 shows the relationship between the number of EM
training iterations to train the initial acoustic model with the
selected speech data and the recognition performance. Ex-
cept for the context-independent monophone model for el-
derly people (peak after the second iteration), the recognition
accuracy has the tendency to increase with a growing number
of training iterations. Retraining of the initial acoustic model
with the whole data pool did not improve the performance of
the initial model.

4.4. Variation of the Task-Specific Data

The performance in case of larger and smaller task-specific
speech data sets for experiment (1) is depicted in Figure 3. It
is clear that selective training is already effective with only

Table 3. Relationship between the number of EM training
iterations with the selected training data and the recognition
performance (word accuracy in %).

Training Iteration
Monophone init 1 2 3 5 8
(1) Infant 46.9 50.2 49.7 50.2 51.7 51.7
(2) Elderly 73.6 75.1 75.9 75.1 75.0 74.7
PTM AM init 1 2 3 5 8
(1) Infant 53.0 55.5 55.9 55.9 55.7 55.3
(2) Elderly 76.7 77.9 77.5 77.7 77.7 78.2

20 task-specific utterances. Maximum performance seems to
be reached with about 100-200 utterances. Furthermore, it
is apparent that selective training can provide a better model
than standard adaptation methods such as MAP adaptation of
means or MLLR adaptation of means and variances if there
are only few task-specific data available. The combination of
selective training and MLLR adaptation was not effective for
the monophone model, but there were improvements for the
PTM model.

Table 4 shows that the number of utterances selected from
the data pool increases with the size of the task-specific data
set, although not at the same rate. Even in case of only 20
utterances the selected training data suffice to train the initial
acoustic model robustly.

Table 4. Relationship between the number of task-specific
data and the number of utterances selected from the data pool.

# Task-specific Experiment / Acoustic Model
Utterances Infant/Mono Infant/PTM

10 8,715 (29%) 9,108 (31%)
20 9,426 (32%) 9,544 (32%)
50 9,609 (32%) 9,825 (33%)

100 10,300 (35%) 10,434 (35%)
200 10,252 (34%) 10,311 (35%)
500 10,852 (36%) 10,793 (36%)

4.5. Comparison to High-Cost Models

This section compares the performance of the low-cost acous-
tic models build with selective training to high-costs acoustic
models. The costs are due to the collection and labeling of the
task-specific speech data. While speech data collection can in
principle be carried out automatically, accurate transcription
of the speech data has to be carried out by humans.

The experimental results so far showed the effectiveness
and practical applicability of the proposed method to the
problem of building a task-adapted acoustic model with only
a few task-specific speech data. However, it is not clear yet,
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Fig. 3. Influence of the amount of task-specific speech data on
the performance of selective training (ST) and standard adap-
tation methods. Retraining with the selected data was con-
ducted for three (monophone model) or eight (PTM model)
iterations, respectively. MLLR adaptation is carried out for
two, MAP adaptation for one iteration (Experiment 1).

how much more speech data would have to be collected in
order to achieve the same performance as with selective train-
ing. Table 5 lists up the performance of acoustic models
trained on either many thousand infant utterances collected
with the Takemaru dialogue system or a corpus containing
more than 50,000 utterances from about 300 different elderly
persons (a database description can be found in [16]). The de-
cision to use this speech corpus for comparison is due to the
fact that only very few utterances from elderly people were
collected by the dialogue system. In case of experiment (1),
if there are 10,000 transcribed infant utterances available for
retraining the initial model, a higher performance than with
selective training can be achieved. Nevertheless, the differ-
ence in performance between this well-trained (56.8%) and
the initial model (46.9%) is reduced by 76% (relative). Fur-
thermore, using only 5,000 infant utterances for EM train-
ing would not be enough to outperform selective training. In
case of experiment (2), an acoustic model trained on a large
database of elderly speech could not beat the performance of
the initial acoustic model trained on adult speech collected
with the Takemaru system. From this comparison it is clear

that many times more task-specific speech data would have to
be collected in order to reach the performance of the model
obtained with selective training.

Table 5. Performance (word accuracy) of high-cost models
as more transcribed data collected with the Takemaru system
(infant speech) or from a separate database (elderly speech)
becomes available.

Model # Training Data Word Accuracy
2,000 infant 49.9%

Infant Monophone 3,000 infant 50.4%
5,000 infant 51.5%
3,000 infant 54.9%

Infant PTM 5,000 infant 55.5%
10,000 infant 56.8%

Elderly PTM 56,604 elderly 73.9%

4.6. Summary of Experimental Results

A summary of experimental results is given in Table 6. There
are significant improvements in word accuracy over the initial
model by employing selective training. The column “Adapt”
shows the maximum performance obtained using MAP or
MLLR adaptation with the task-specific data. The difference
in performance to selective training is large enough to be able
to consider the proposed algorithm as a reasonable alternative
for task-adaptation of acoustic models.

Table 6. Summary of experimental results (word accuracy
in %). Selective training (SelTrain) is effective in each ex-
perimental setup and is able to provide a better task-adapted
model than conventional acoustic model construction (Initial)
and MLLR or MAP adaptation (Adapt) with the task-specific
data.

Data → Model Type Initial Adapt SelTrain
Takemaru DB Mono 46.9 50.7 51.7

Element → Infant PTM 53.0 54.4 55.9
Takemaru DB Mono 73.6 75.0 75.9

Adult → Elderly PTM 76.7 77.5 78.2

4.7. Computation Time and Disk Space

Table 7 shows that the proposed approach for automatic se-
lection of training utterances is computationally practical. For
example, when using a PTM model with about 210k param-
eters and a data pool containing about 30k utterances in case
of experiment (1), the required disk space is about 4.7GB and
the processing time to select relevant utterances is only three
hours (one CPU, no network access). Most of the disk space



is required to store the sufficient statistics of the training ut-
terances. There is much room for speedup by partitioning the
data pool into subsets of equal size and distribute the compu-
tation among multiple CPUs, since the ST DelScan algorithm
is parallelizable.

Table 7. Run time and disk space required when using a stan-
dard PC with one 3.2 GHz CPU (no network access).

# Utterances # Parameters Time Space
29,776 Monophone / 100k 20 min 2.6 GB
29,776 PTM / 210k 3 hrs 4.7 GB

5. CONCLUSION

A framework for cost-effective task-adaptation of acoustic
models using utterance-based selective training was proposed
and evaluated. Training utterances are selected from a large
data pool so that the model likelihood given a small amount of
task-specific speech data is maximized. The selected training
utterances are employed to retrain the initial model in order
to obtain a task-adapted model.

Results of two evaluation experiments for building an in-
fant and elderly acoustic model show, that the approach is
already effective in case if there are only a few task-specific
utterances available. Furthermore, the performance was better
than with conventional acoustic model construction as well as
MLLR and MAP adaptation using the task-specific data. The
gap in performance to a high-cost acoustic model is reduced
up to 76% relative in case of the infant acoustic model.

As future work, the behavior of the proposed method has
to be evaluated if the data pool consists of multiple speech
databases and whether it is effective in case the source of the
training data and the task-specific data is different. More-
over, since further cost reduction of acoustic modeling could
be achieved in general if the transcription of the training utter-
ances needs not to be provided, it is worth considering acous-
tic model construction based on unsupervised selective train-
ing.
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