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Abstract

Bandwidth extension is a useful technique for reconstructing
wideband speech from only narrowband speech. As a typ-
ical conventional method, a bandwidth extension algorithm
based on minimum mean square error (MMSE) with a Gaus-
sian mixture model (GMM) has been proposed [ ]. Although
the MMSE-based method has reasonably high conversion-
accuracy, there still remain some problems to be solved: 1)
inappropriate specwal movements are caused by ignoring a
correlation between frames, and 2) the converted spectra are
excessively smoothed by the statistical modeling. In or-
der to address these problems, we propose a bandwidth ex-
tension algorithm based on maximum likelihood estimation
(MLE) considering dynamic features and the global variance
(GV) with a GMM. A result of a subjective test demon-
strates that the proposed algorithm outperforms the conven-
tional MMSE-based algorithm.

1. Introduction

The use of cellular phones enables us to easily communi-
cate with each other through speech. In general, the cellu-
lar phone speech is limited to a narrowband signal up to 3.4
kHz. Although narrowband speech is capable of intelligible
communication, its sound quality is not high enough. Specifi-
cally considerable quality degradation is observable at several
phonemes such as fricatives and plosives which have impor-
tant energy distribution beyond 3.4 kHz. In order to real-
ize higher-quality speech communication, a wideband speech
codec has been developed [ ]. Essentially it needs more in-
formation than the narrowband speech codec. It is no doubt-
ful that to realize wideband speech communication while not
increasing information is more convenient.

Bandwidth extension is a useful technique for reconstruct-
ing wideband speech from only narrowband speech. Sev-
eral statistical approaches to bandwidth extension based on
a spectral mapping have been studied. A codebook mapping
method [ ] is an approach based on hard clustering and dis-
crete mapping. A reconswructed feature vector at each frame
is determined by quantizing the narrowband speech feature
vector to the nearest centroid vector of the narrowband code-
book and substituting it with a corresponding wideband cen-
troid vector of the mapping codebooE One of more sophis-
ticated approaches allowing soft clustering and continuous
mapping is a probabilistic bandwidth extension method based
on a Gaussian mixture model (GMM) [ ]. The basic mapping
algorithm has originally been proposed for voice conversion
[ 1. Most of the conventional GMM-based methods perform
the mapping based on MMSE criterion [ , ]. It has been
reported that the mapping performance is further improved
by modeling dynamic characteristics of a spectral sequence
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[ , ]. Moreover, an approach of combining mapping and
coding processes has been studied [ ]

Recently the performance of voice conversion with a GMM
was significantly improved by maximum likelihood estima-
tion (MLE) considering dynamic features and the global vari-
ance (GV) [ ]. It is expected that it also causes the perfor-
mance improvement of bandwidth extension. This paper pro-
poses bandwidth extension based on MLE considering dy-
namic features and the GV. The effectiveness of considering
dynamic features and the GV is demonstrated by a subjective
evaluation.

This paper is organized as follows. Section 2 describes the
conventional method of the bandwidth extension algorithm
based on GMM. Section 3 describes the proposed bandwidth
extension based on MLE. Section 4 describes the flow of the
bandwidth extension. Section 5 describes an experimental
evaluation. Finally, we summarize this paper in Section 6.

2. MMSE-based bandwidth extension [ |

2.1. Training

Let x;, and y, be D,-dimensional narrowband and D,-
dimensional wideband feature vectors at frame ¢, respectively.
Joint probability density of the narrowband and wideband
feature vectors is modeled by a GMM as follows:

P(zl6) = Z wnN(z; 12, ED), (1)
m=1
where g is a joint vector [x,, y, T1". The notation T denotes

transposition of the vector. The number of mixture compo-
nents is M. The weight of the m-th mixture component is w,y,.
The normal distribution with ¢ and X is denoted as N(-;p,X).
A parameter set of the GMM is 6, which consists of weights,
mean vectors and the covariance matrlcejs for individual mix-
ture components. The mean vector ;l,,, and the covariance

matrix £ of the m-th mixture component are written as

(x) (xx) (xy)
@ | Hm @) = 2 2 )
@i ==l ] e

where uf,f) and ug) are the mean vector of the m-th mixture
component for the narrowband and that for the wideband, re-

spectively, and =8 and Ef,,yy ) are the covariance matrix of
the m-th mixture component for the narrowband and that for

the wideband, respectively. The matrix 9 is the cross-
covariance matrix of the m-th mixture component for the nar-
rowband and wideband.
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The GMM is trained with the EM algorithm using the joint
vectors in a training set. This training method robustly esti-
mates model parameters compared with the least squares es-
timation [ ].

2.2. MMSE-based conversion

The conventional method performs the conversion based
on MMSE as follows:

Vi E [.Vzlxt]
fP(y;|xr,9)yxdyt

Il

M
> P(mlxi, 6)En, 3)
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where
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2.3. Problems

Although MMSE has reasonably high conversion-
accuracy, there still remain some problems to be solved: 1)
inappropriate spectral movements are caused by ignoring a
correlation between frames, and 2) the converted spectra are
excessively smoothed by the statistical modeling.

3. MLE-based bandwidth extension

In order to solve two main problems of the conventional
method, we proposed the bandwidth extension based on MLE
considering dynamic features and the GV. Inter-frame corre-
lation is considered for realizing the converted parameter tra-
jectory with appropriate dynamic characteristics. The over-
smoothing effects are alleviated by considering the GV cap-
turing one of characteristics of the trajectory.

3.1.

We use 2D, -dimensional narrowband speech feature vector
= [x],Ax]]" and 2D,-dimensional wideband speech fea-

ture vector ¥, = [y7,Ay;]", consisting of static and dynamic
features at frame ¢. Their time sequences are written as

MLE considering dynamic features (ML) [ ]

X= [XT,X;,-- -,X}']T and ¥ = [YIT, ¢ G Y}]T, respec-
tively. A time sequence of the converted static feature vectors
T
y= [j:lT . o,jz,T] is determined as follows:
y = arg m}z}x P(Y1X,0)

subjecttoY = Wy, (6)
where W is a conversion matrix that extends a sequence of
the static feature vectors y into that of the static and dynamic
features vectors.
In order to effectively reduce the computational cost, we
approximate the likelihood as follows,

P(Y1X,®) ~ P(m|X, ®)P(YX, m, ®), (7)

where m is a mixture component sequence [m), ma, - - -, m,].
After determining the sub-optimum mixture sequence # writ-
ten as

m = arg max P(mX,0), (®)

we determine yp that maximizes the approximated likelihood
function as follows:

y arg m}z,\x P(m| X, ®)P(Y|X, fir, @)

- (o W, o
where
ED = [Eg?l,...,gﬁg,...,gﬁ’?vr], (10)
D(A,Q—l _ diag[Dg)-l, .,Dg)"’...,pg:_l].

(11)
A GMM parameter set © is estimated in advance with training
data in the same manner as the converted method.

3.2. MLE considering GV (MLGV) [ ]

The GV of the static feature vectors in each utterance is
written as

W) = M. OT (12)
1 ¢ 1 & ’

wd) = TZ(M@—?Z%@] (13)
t=1 =1

where y is the d-th component of the target static feature at
frame ¢.

The following likelihood function consisting of two proba-
bility densities for a sequence of the wideband feature vectors
and for the GV of the wideband static feature vectors is max-

imized,
L = alogP(Y|X,m,0)+log P(v(y)B,),

subject to ¥ = Wy (14)

where P(v(y)|®,) is modeled by the normal distribution. A
set of model parameters @, consists of the mean vector u®
and the covariance matrix £ ) for the GV vector v(y), which
is also estimated in advance with training data. The constant
a is a likelihood weight. In this paper, it is set to % Note

that the GV likelihood works as a penalty term for the over-
smoothing.

In order to maximize the likelihood L with respect to y, we
employ a steepest descent algorithm using the first derivative,

a a(—WTD(Y)“Wy+WTD<”"E<Y>)
Oy
N AR AR (15)
v = [v,(l),v,(Z),---,v:(d),~-,v’r(D)]T (16)
vid) = ——p To)- #v)(yz(d)——ny(d)]
(17)

The vector pf,d) is the d-th column vector of P, = =
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Figure 1: Bandwidth extension system. “mcep” denotes the
mel-cepstrum and “ap” denotes the aperiodic component.

4. Details of bandwidth extension process

Figure 1 shows a flow of the bandwidth extension.

Step1 Extracting Fp, mel-cepstrum and aperiodic com-
onent [ ] as speech features from the narrow-
and speech signal.

Step2 Converting mel-cepstrum and aperiodic compo-
nent of the narrowband speech into those of the

wideband speech.

Generating STRAIGHT mixed excitation [ ] us-
ing the extracted Fj and the converted aperiodic
component, and then synthesizing the estimated
wideband speech with MLSA filter [ ] based on
the converted mel-cepstrum.

Step 3

Step4 The estimated wideband speech is separated into
a low-band signal and a high-band signal with a

low-pass filter (LPF) and a high-pass filter (HPF).

The input narrowband speech is converted into a

Step S
low-band signal with up-sampling.

Step6 Power of the estimated high-band signal is ad-
justed so that power of the estimated low-band sig-

nal is equal to that of the input low-band signal.

Step7 Reconstructing the wideband speech by adding the
resulting high-band signal and the low-band sig-

nal.

5. Experimental evaluations

In order to demonstrate the effectiveness of the proposed
method, we conducted a subjective evaluation.
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Figure 2: Result of subjective evaluation.

5.1. Experimental conditions

We used 16 kHz sampled natural speech of 4 Japanese
speakers (2 males, 2 females) as the wideband speech. The
3.4 kHz narrowband speech was prepared by down-sampling
the wideband speech and then passing it through EVRC (En-
hanced Variable Rate Codec) [ ]. The training data was 50
sentences from subset A of ATR’s phonetically balanced sen-
tence database. The evaluation data was 50 sentences from
subset B of ATR’s phonetically balanced sentence database.
For narrowband, we used the 16-dimensional mel-cepstral co-
efficients from the mel-cepstral analysis [ ]. For wideband,
we used the 24-dimensional mel-cepstral coefficients from
the STRAIGHT analysis [ ]. We used the averaged aperi-
odic components [ ] on three frequency bands (0to 1, 1 to
2, 2 to 4 kHz) for narrowband and those on five frequency
bands (Oto 1,1to2,2to4,4to6,6to8 kHz) for wideband.
The frame shift was 5 ms. The number of mixture compo-
nents of the GMM for mel-cepstral conversion was set to 64.
The number of mixture components of the GMM for aperi-
odic components conversion was set to 4. Speaker dependent
models were evaluated.

We conducted an opinion test on speech quality. An opin-
ion score was set to a 5-point scale (5: excellent, 4: good, 3:
fair, 2: poor, 1: bad). The evaluated speech samples consisted
of EVRC, MMSE, ML, MLGYV, and wideband natural speech
(Natural). The listeners were eight Japanese adult man and
woman.

5.2. Experimental results

Figure 2 shows a result of the opinion test. There is no sig-
nificant difference between EVRC and MMSE. On the other
hand, the proposed method ML is significantly better than
both EVRC and MMSE. The reconstructed wideband speech
with the highest speech quality was obtained by consider-
ing the GV as well in the proposed method. An example
of spectral sequences of the narrowband speech, the recon-
structed speech and the natural wideband speech is shown in
Figure 3. The proposed method estimates spectral envelopes
considering inter-frame correlation while alleviating the over-
smoothing effects.
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Figure 3: An example of spectral sequences of narrowband speech, (a) converted speech by the ML using the GV , (b) spectra
of natural speech, (c) for a sentence fragment, “/jyu: jitsUshIteiku/".

6. Conclusions

We proposed bandwidth extension based on maximum
likelihood estimation (MLE) with a Gaussian mixture model
(GMM) considering dynamic features and the global variance
(GV). A result of the subjective evaluation demonstrated that
the speech quality of the narrowband speech is significantly
improved by the proposed method. We plan to deal with a
ls:,peaker independent model, online processing and noise ro-

ustness.
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