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ABSTRACT 

This paper reviews a real-time two-stage blind source separation 
(BSS) method for convolutive mixtures of speech， in which a single­
input multiple-output (SIMO)-model-based independent compo­
nent analysis (lCA) and a SIMO-model-based binary masking are 
combined. SIMO-model-based 1CA can separate 白 e mixed sig­
nals， not into monaural source signals but into SIMO-model-based 
signals from independent sourc巴s in their original forrn at the mi­
crophones. Thus， the separated signals of SIMO-model-based 1CA 
can maintain the spatial qualities of each sound source. Owing to 
this attractive prop巴rty， SIMO-model-based binary masking can be 
applied to efficiently remove the residual interference components 
after SIMO-model-based 1CA. 1n addition， the perfoロnance dete­
rioration due to the latency probl巴m in 1CA can be mitigated by 
introducing real-time binary masking. We repo目the p紅ameters
used in MLSP 2007 data analisys， and the experimental evalua­
tion of the proposed method's superiority to the conventional BSS 
methods， regarding static- and moving-sound s巴paratlOn.

1. INTRODUCTION 

Blind source separation (BSS) is the approach taken to estimate 
original source signals using only the information of the mixed 
signals observed in each input channel. Basical1y BSS is classified 
into unsupervised filtering technique， and much attention has been 
paid to BSS in many fields of signal processing. 

1n recent researches of BSS based on independent component 
analysis (1CA)， various methods have been presented for acoustic­
sound separation [1 ， 2， 3].  This paper also addresses th巴 BSS prob­
lem under highly reverberant conditions (e.g.， reverberation time 
is more than 200 ms) which often arise in many audio applica­
tions. The separation perforrnance of the conventional 1CA is far 
from being su伍cient in th巴 reverberant case because too long sep­
aration filters is required but the unsupervised learning of the filter 
is not 50 easy. Therefore， one possible improvement is to partly 

combine ICA with another 5ignal enhancement technique， but in 

the conventional ICA， each of the separated outputs is a single­
channel signal， and this leads to the drawback that many kinds of 
superior multichannel techniques cannot be applied. 

1n order to attack the tough problem， we have proposed a two­
stage BSS algorithrn [4]. 1n this paper， we give a detailed review 
on 出巴 proposed method. This approach resolves the BSS prob­
lem into two stages: (a) a Single-1nput Multiple-Output (S臥W)­
model-based 1CA (SIMO-1CA) proposed by the authors' group [5] 
and (b) a SIMO-model-based binary masking (SIMO-BM) for the 
signals obtained from the SIMO-1CA. SIMO-1CA can separate the 

mlx巴d signals， not into monaural sourc巴 signals but into S1MO­
model-based signals from independent sources as they are at the 
microphones. Thus， the separated signals of SIMO-1CA can main­
tain rich spatial qualities of each sound source. After the SIMO 
1CA， the residual components of the interference， which are often 
staying in the output of SIMO-1CA as wel1 as the conventional 
1CA， can be efficiently removed by th巴 fol1owing SIMO-BM. 

It should be enhanced that the two-stage method has another 
important property， i.e.， applicability to the r巴al-tim巴 processmg.
In general 1CA-based BSS methods require huge calculations， but 
SIMO-model-based binary masking needs v巴Iγfew computational 
complexities. Therefore， b巴cause of the introduction of binary 
masking into 1CA， the propos巴d combination can function as the 
real-time system. In this paper， we introduce the detailed param­
eters used for “MLSP 2007 Data Analysis Competition " for non­
linear system [6]. Also， we evaluate the “real-time " separation per­
forrnanc巴 for real recording of static and moving sound mixtures 
under a reverberant condition. 

2. 品位XING PROCESS AND CONVENTIONAL BSS 

2. 1. Mixing Process 
1n this study， the number of microphones is K and the number 
of multiple sound sources is L， where we deal with the case of 
K=L. 

Multiple mixed signals are observed at the microphone array， 
and these signals ar，巴converted into discrete-time series via an AID 
conv巴rter. 1n the frequency domain， th巴 observed signals in which 
multiple sources are mixed are given by 

X(J) = A(J)8(f) ，  ( 1 )  

where X (J) = [X 1 (J) ， • • • ， X  K (fW is the observed signal vec­
tor， and 8(J) = [81 (J)， • • • ， 8L(J)]' is the source signal vector. 
Also， A(f) = [Ak1(f)]kl is the mixing matrix， where [X]ij de­
notes the matrix which includes the element X in the i-th row and 
the j-th column. The mixing matrix A(f) is complex刊lued be­
cause we introduce a model to deal with the relative time delays 
among the microphones and room reverberations. 

2.2. Conventional ICA-Based BSS 
1n the frequency-domain 1CA (FD1CA)， 白rst， the short-time anal­
ysis of observed signals is conducted by fram巴ーby-fram巴 discr巴t巴
Fourier transforrn (DFT). By plotting the spectral values in a fre­
quency bin for each microphone input frame by frame， we consider 
them as a time series. Hereaft巴r， we designate the time series as 
X(f，t)= [X1 (j ， t) ， . . . ， xK(j， t)f 

Next， we perforrn signal separation using the complex-valued 
unmixing matrix， W(j) = [Wlk(J)]lk， so that the L time叩nes
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Fig. 1. Input and output relations in (a) proposed two-stage BSS 
and (b) simple combination of conventional ICA and binary mask­
ing. This co汀esponds to the case of K = L = 2. 

output Y (J， t )=[日(J ， t)ν . ， YL(j， tW becom巴s mutually inde­
pendent; this proc巴dure can be given as Y(J， t) = W(J)X(J， t) 
We perform this procedure with respect to all frequency bins. The 
optimal W (J) is obtained by， 巴.g.， the following iterative updating 
equation [1]:  

Wli+1 1(J) = η [ドトIト一 (何何 φ釘 (庁Y(げfμ川， t)の収)

+Wパ[ドil (J) ， (ρ2) 
wh巴re 1 is the ident町matrix， ( -) t denotes the time引eragmg op­
erator， [iJ is used to express th巴 value of the i th step in the it­
e凶lOns， ηis the st巴p-s四parameter， and φ(.) is the appropriate 
nonlinear vector function. After the iterations， the source permuta­
tion and the scaling indeterminacy problem can be solved by， e.g.， 
[1， 3] 

2.3. Conventional Binary-Mask-Based BSS 
Binary mask processing [7] is one of th巴 altemativ巴 approach which 
is aimed to solve the BSS problem， but is not based on ICA. We es­
timate a binary mask by comparing the amplitudes of the observed 
signals， and pick up the target sound component which arrives at 
the better microphone closer to the target speech. This proc巴dure
is perfoロned in time-合equency regions， and is to pass the specific 
regions where target spe巴ch is dominant and mask the other re­
gions. Under the assumption that the l-th sound source is close to 
the l-th microphone， the l-th sep紅ated signal is given by 

Yt(J，  t) = ml(J， t)X1(J， t)， (3) 
where rnl (/， t) is the binary mask operation which is defined as 

rnl (J， t) = 1 if IXl(f， t)1 > IXk(f， t)1 (kヂl); otherwise 
rnl (J ， t) = O. 

This m巴thod requires very few computational complexities， 
and this property is well applicable to real-time processing. The 
method， however， needs a sparseness assumption in the sources' 
spectral components， i.e.， there are no overlaps in time-frequ巴ncy
components of the sources. Indeed the assumption does not hold 
in an usual audio application， e.g.， a mixture of sp巴巴ch and a com­
mon broadband stationary noise. 

3. PROPOSED TWO-STAGE BSS ALGORITHM 

3.1. Motivation and Str叫egy
In the previous research， SIMO-model-based ICA (SIMO-ICA) 
was proposed by the authors' group [5]， who showed that the SIMO­
model-based separated signals 訂e still one set 01 array signals. 
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Fig. 2. Examples of spectra in simple combination of ICA and 
binary masking. (a) ICA's output 1; B1 (J)Sl (J， t) + E1 (J， t)， (b) 
ICA's output 2; B2 (J)S2 (J ， t) + E2(J ， t)，加d (c) result of binary 
masking between (a) and (b); れ (J ， t). 
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Fig. 3. Examples of spectra in proposed two-stage method. (a) 
SIMO-ICA's output 1; All (J)Sl (J， t) + Ell (J ， t)， (b) SIMO­
ICA's output 2; A21 (J)Sl (J， t) + E21 (J， t)， and (c) result of bi­
nary mask:ing betw巴en (a) and (b); 日(J，t). 

There exist new applications in which SIMO-model-based s巴pa­
ration is combined with other types of multichannel signal pro­
cessing. In this paper， hereinafter we address a specific BSS con­
sisting of directional microphones in which each microphone's di­
rectivity is steered to a distinct sound source， i.e， the l-th micro­
phone steers to the l-th sound source. Thus the outputs of SIMO­
ICA is the estimated (separated) SIMO-model-based signals， and 
they keep th巴 relation that the l-th source component is 出e most 
dominant in th巴 l-th microphone. This finding has motivated us 
to combine SIMO-ICA and binary mask:ing. Moreover we have 
proposed a binary mask:ing strategy， so-called SIMO-model-based 

binary masking (SIMO-BM). That is， 出e mask:ing function is de­
termined by all the information regarding the SIMO compon巴nts
of all sources obtained from SIMO-ICA. The configuration of th巴
proposed method is shown in Fig. I (a). SIMO-BM， which subse­
quently follows SIMO-ICA， can remove the residual component 
of the interference effectively without adding eno口nous computa­
tional complexities. This combination idea is also applicable to the 

realization of the proposed method's real-time impl巴mentation
It is worth mentioning that the novelty of this strategy mainly 

lies in th巴 two-stage idea of the unique combination of SIMO­
ICA and the SIMO-BM. To iIIustrate th巴 novelty of the proposed 
method， we hereinaft巴r compare the proposed combination with 
a simple two-stage combination of conventional monaural-output 
ICA and conventional binary mask:ing (see Fig. I (b)) [8].  

In general， conventional ICAs can only supply the source sig­
nals }í(J，  t)  = Bl (J)SI (J ， t)  + El(J， t)  (l = 1，'" ，L)， whe児
島(J) is an unknown arbitr抑制ter and El (J ， t) is a residual sep­
aratlOn eπor which is mainly caus巴d by an insufficient conver­
gence in ICA. The residual error El (J， t) should be removed by 
binary mask:ing in the subsequent postprocessing stage. However， 
the combination is very probl巴matic and cannot function well be­
caus巴 of the existence of spectral overlaps in the time-fr巴quency
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Fig. 4. Input and output relations in proposed two-stage BSS 
which consists of FD司SIMO-ICA and SIMO-BM， where K = 
L - 2 and exclusively select巴d perrnutation matrices are given 
byP1 =IandP2 = [1]り- 1. in (8) 

domain. For instance， if all sources have nonzero spectral compo­
nents (i.e.， when the sparseness assumption does not hold) in th巴
specific frequency subband and are comparable (see Fig. 2(a)，(b))， 
l.e.， 

IB1 (f)81 (f， t) + E1 (f， t)1竺IB2(1)82(1， t) + E2(1， t)l， (4) 
the decision in bin町masking for Y1 (1， t) and乃(1，t) is vague 
and the output results in a ravaged (highly distorted) signal (see 
Fig. 2(c)). Thus， the simple combination of conventional ICA and 
binary masking is not suited for achieving BSS with high accuracy. 

On the other hand， our propos巴d combination contains the spe­
cial S酌10-ICA in the first stage， where the SIMO-ICA can sup­
ply the specific SIMO signals with respect to each of sources， 
A kl (1)81 (1， t)， up to the possible res仙Jal error E kl (1， t) (see 
Fig. 3). N巴edless to say， the obtained SIMO components are very 
beneficial to th巴 decision-making process of the masking function. 
For example， if the re叫ual error E kl (1， t) is smaller than the main 
SIMO component A kl (1)81 (1， t)， the bin町masking between 
All (1)81 (1， t)+Ell (1， t) (Fig. 3(a)) and A21 (1)81 (1， t)+E21 (1， t) 
(Fig. 3(b)) is more acoustically reasonable than the conventional 
combination because the spatial properties， in which the separated 
SIMO component at the specific rnicrophone c10ser to the target 
sound still maintains a large gain， are kept; i.e.， 
IAll (1)81 (1， t) + Ell (1， t)1 > IA21 (1)81 (1， t) + E21 (1， t)l. 

(5) 
In this case we can correctly pick up the target signal candidate 
All (1)81 (1， t) + Ell (1， t) (see Fig. 3(c)). When the target com­
ponents A k1 (1)81 (1， t) are absent in the target-speech silent dura­
tion， if the e汀ors have a possibl巴 ampl山d巴 relat
<1向Eι21 (げfλ， t削)1， t山he叩n 0側u町r b凶m町masking f，伽O町r附cωEωs t批he p阿巴叩討巾o吋d tωo be 
zero and ca叩nr閃巴mov巴 t白h巴 residual 巴π'Ofs. Note that unlike the sim­
ple combination method [8]， our propos巴d binary masking is not 
a仔'ected by th巴 amplitude balance among sources. Overall， after 
obtaining the SIMO components， we can introduce the SIMO-BM 
for the efficient reduction of the remaining e汀or in ICA， even when 
the compl巴te sparseness assumption does not hold. 

In summary， the novelty of the proposed two-stage idea is at­
tributed to the introduction of the SIMO-model-based framework 
into both separation and postprocessing， and this 0仔巴rs a realiza­
tion of the robust BSS. The detailed algorithm is described in the 
next subsection. 

3. 2. Algorithm: SIMO-ICA in 1st Stage 

Time-domain SIMO-ICA [5] has recently b巴en proposed by some 
of the authors as a means of obtaining SIMO-model-based signals 
directly in ICA updating. In this study， we extend time-domain 
SIMO-ICA to frequency-domain SIMO-ICA (FD-SIMO-ICA). FD­
SIMO-ICA is conduct巴d for extracting the SIMO-model-based sig-

nals co汀esponding to each of the sources. FD-SIMO-ICA consists 
of (L-1) FDICA parts and afidelity controller， and each ICA runs 
in parallel under the fidelity control of the entire separation system 
(s巴e Fig. 4). The separated signals of the l-th ICA (l = 1γ . L-1) 
in FD-SIMO-ICA are defined by 

Y(ICAl)(1， t) = [y:ICA 1)(1， t)] kl = W(lCAl) (1)X(1， t)， (6) 

where W(l 叫(f) = [WijCAl) (f)] り is the 均叩a則or州t町E釘r口rm町m刷n
in t由h巴lι-t出hICA.

Regarding the fidelity controller， we calculate the following 
signal vector Y (ICAL) (1， t)， in wh凶the all elements are to be 
mutually independent， 

L-1 
Y (ICAL)(1， t) = X(1， t)一乞罰則)(1，t). (7) 

Hereafter， we regard Y (ICAL) (j， t) as an output of a virtual“L-th" 
ICA. The reason we use the word “νirtuar' h巴re is that the L-th 
ICA does not have its own separation filters unlike the other ICAs， 
and Y(日L)(1，t) is subject to W(lCAl)(1) (l =し ・・，L - 1). 
By transposing the second terrn (- "Lf=-;. 

1 Y (日l)(1，t)) on the 
right-hand side to the left-hand side， we can show that (7) sug­
gests a constraint to force the sum of all ICAs' output vectors 
"Lf=1 Y (ICAl) (1， t) to be the sum of all SIMO components ["Lf=1 

A kl(1) 8l(1， t)] k1 (= X(1， t)). 
If the independent sound sources are separated by (6)， and si­

multaneously the signals obtained by (7) are also mutually inde­
pendent， then the output signals converge on unique solutions， up 
to the perrnutation and the residual eπor， as 

Y(lCAl)(1， t) = diag [A(1)PT]PlS(1， t) + El(1， t)， (8) 
where diag[X] is the operation for setting every off-diagonal el­
巴ment of the matrix X to zero， El(j， t) rep陀sents the residl凶
error vector， and P 1 (l = 1，・. ，L)釘e exclusively叩lected peト
mutation matrices which sati均"Lf=1Plニ[l]ij・For a proof of 
this， see [5] with an appropriate modification into the frequency­
domain representation. Obviously， the solutions provide neces­
S町and sufficient SIMO components，ん(1)8l(1，t)， for each 
l-th source. Thus， the separated signals of SIMO-ICA can main­
tain the spatial qualities of each sound source. For example， in the 
case of L = K = 2， one possibility is given by 

[円。CAリ(f， t)，村山1)(1，t)f
= [All (1)81 (1， t)， A22 (1)82 (1， tW， (9) 

[叫(日2)(1， t)， Y2(1CA幻(1， t)f 
= [A12 (1)82 (1， t)， A21 (1)81 (j， tW， (10) 

where P1 = 1 and P2 = [l]ij - 1. 

In order to obtain (9) and (10)， th巴 natural gradient of Kullback­
Leibler divergence of (7) with respect to W (ICAl) (1) should be 
add巴d to the existing nonholonomic iterative 1巴amir】g rule [1] of 
the separation filter in the l-th ICA (l = 1，'" ，L - 1). The 
new出rativ巴 algorithm of the l-th ICA pa目(l = 1， • . •  ，L - 1) in 
FD-SIMO-ICA is given as (see Appendix A.l) 

witJ)(f) 

叫Al叫川tり川)バ(1) - a [日{ o制M叫i

叫叫4札払恥{仏ιιμLιんムAl州iり)(川 t}'W叫川吋札iI処弘L{仏LιLιんAl)ω 
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( L-l - � off-diag (φ(X(f， t)一乞 YjiLAI)(fj))
L-l一 、(X(1， t)- L 叫ん)(f， t) ) 口 ) t � 

L-l l (1 - L WgbAl)(f) ) 1， (11) 

whereα is the step-size parameter. Also， the initial values of 
W (ICAl) (f) for alll values should be di仔erent.

Note that there exists an altemative method (1) of obtaining 
the SIMO components in which the separat巴d signals are projected 
back onto the microphones by using the invers巴 of W (f) after 
conventional ICA. The difference and advantage of SIMO-ICA 
relative to由is method are described in Appendix A.2. 

3.3. Algorithm: SIMO・BM in 2nd Stage 

After FD-SIMO-ICA， SIMO-model-based binary masking is ap­
plied (see Fig. 4). Here， we consider the case of (9) and (10)百1巴
resultant output signal coπesponding to source 1 is d巴termm巴d in 
the proposed SIMO-BM as follows: 

ち(f， t) = ml(1， t)円(JCA1)U， t)， (12) 
where ml (1， t) is the SIMO-model-based binary mask operation 
which is defined as ml (1， t) = 1 if 

村山1)(1，t) 
>max[C1ldICA2)(fj)|， C2lT1(ICA2)(fj)|， C3|ち�JCA1)(f， t) 1]; 

(13) 
otherwise ml (f， t) = O. Here， ma邸x [日.] represents the fl向u口山I
pi比cking up t白h巴 maximum value among t白he 訂gum巴印nt臼s， and Clし. • •  ，C3 
are the weights for enhancing the contribution of each SIMO com-
ponent to the masking decision process. For example， [Cl' C2， C3] 
= [0， 0，1] yields the simple combination of conventional ICA and 
conventional bin町mask (8). Otherwise， if we set [Cl， C2， C3] 
= [1， 0， 0] ， w巴 can utilize better (acoustically reasonable) SIMO 
information regarding each source as described in Sect. 3.1. lf 
we change another pattem of c;， we can generate various SIMO­
model-based maskings with differ巴nt separation and distortion prop­
ertles. 

The resultant output co汀esponding to source 2 is given by 

ち(1， t) = m2(f， t)九�JCA1)(f， t)， (14) 
where m2(f， t) is defined as m2(1， t) = 1 if 

ぜJCAl)(1， t) 
> max[Clly1(JCA2)(1， t)l， c21九?CA2)(1， t) 1， c3IYl(JCAl) (1， t) 1] ; 

(15) 

otherwise m2(j， t) = O. 

The extension to the gen巴ral case of L = K > 2 can be 
easily implemented. Hereafter we consider one example in that 
the pe口nutation matrices are given as 

Pl = [Oin(k，l)]ki， (16) 
where Oij is Kronecker's delta function， and 

I k+l-1 (k+l-1<L) π(k， l) = L : : . T :一 I (17) 
I k+l-1-L (k+l - 1>L) 

In this case， (8) yi巴Ids

Y(JCAl)(f， t) = 

[ Akn(州) (f)Sn(k，l) (1， t) + Ekn(k，l) (1， t)] kl・(18)

Fig. 5. (a) Overview of pocket-size real-time BSS module， where 
proposed two-stage BSS algorithm works on TEXAS INSTRU­
MENTS TMS320C6713 DSP. (b) Signal flow in real-time imple­
mentation of proposed method 

Thus the resultant output for source 1 in SIMO-BM is given by 

ち(f，t)=ml(f， t)Yi(ICA1)(f， t)， (19)
where ml (1， t) is defined as ml (f， t) = 1 if 

y1(JCA
l) (1， t) > max [cIIY2(JCAL) (f， t)l， c2Iy3(JCAL-l) (f， t) 1. 

c31九(日L-2)(fj)|， ， cLIlYJICA2)(fj)|，
， CLL-IIYr:削)(1， t)I]; (20) 

otherwise ml (f， t) = O. The other sources can be obtained in the 
sam巴町lanner.

3.4. Real-Time Implementation 

We have already built a pocket-size real-time BSS module in coop­
erate with Kobe Steel， Ltd.， where the proposed two-stage BSS al­
gorithm can work on a generaトpurpose DSP as shown in Fig. 5(a) 
Figure 5(b) shows a configuration of a real-time implementation 
for th巴 proposed two-stage BSS. Signal processing in this imple­
mentation is performed in the following manner. 

1. Inputted signals are converted to time-frequency series by 
using a frame-by-frame fast Fourier transform (FFT). 

2. SIMO-ICA is conduct巴d using current 3-s-duration data for 
estJmatmg 白 巴 separation matrix， that is applied to the next 
(not current) 3 s samples. This staggered r巴lation is due to 
th巴 fact that the filter update in SIMO-ICA requires substan­
tial computational complexities (the DSP perfoπns at most 
100 iterations) and cannot provide the optimal separation 
filter for 白 e cu汀ent 3 s data. 

3. SIMO-BM is appli巴d to the s巴parated signals obtained by 
the previous SIMO-ICA. Unlike SIMO-ICA， binary mask­
ing can b巴 conducted just in the cuπent segment. 

4. The output signals from SIMO-BM 紅巳converted to the re­
sultant time-domain waveforms by using an inverse FFT. 

Although the separation filter update in the SIMO-ICA part 
is not real-time processing but includes a latency of 3 s巴conds，
the entire two-stage system still seems to run in real-time because 
SIMO-BM can work in the cuπ巴nt segment with no delay. Gener 
ally， the latency in conventional ICAs is problematic and reduces 
the applicability of such methods to real-time systems. In the pro­
posed method， however， the performance det巴rioration du巴 to the 
latency problem in SIMO-ICA can be mitigated by introducing 
real-time binary masking. Owing to the advantage， th巴 problem of 
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perfonnance decrease is prevented， especially in the case of rapid 
change of the mixing condition， e.g.， the target sources are mov­
ing. This fact will appear via experiments in the next section. 

4. SOUND SEPARATION EXPERlMENTS 

4.1. Real-Time Separation Experiment for Moving Sound Source 
1n this s巴ction， a real-recording-based BSS experiment is performed 
using actual devices in a real acoustic environment. We carried out 
real-time sound separation using source signals recorded in the real 
room illustrated in Fig. 6， wh巴r巴 two loudspeakers and the real­
time BSS system (Fig. 5(a)) with a directional microphone (SONY 
st巴r巴o microphon巴 ECM-DS70P) are set. The reverberation time 
in this room is 200 ms， and the levels of background noise and 巴ach
of the sound sources measured at the a汀ay origin were 39 dB(A) 
and 65 dB(A)， respectively. Two speech signals， whose 1巴ngth is 
limit巴d to 32 seconds， are assum巴d to arrive from di仔巴rent direc-
tions， (h and ()2， wher巴 we fix source 1 in ()1 - -400， and move 
source 2 as follows: 

1. in 0ー10 s duration， sourc巴 2 is set to ()2 = 50へ

2. in ICト11 s duration， source 2 moves from ()2 = 500 to 30ぺ

3. in 11-21 s duration， source 2 is s巴ttled i n ()2 = 30へ

4. in 21-22 s duration， source 2 moves from ()2 = 300 to 10ぺ

5. in 22-32 s duration， source 2 is fixed in θ2 = 100 

Two kinds of sentences， spoken by two male and two female speak­
ers， are used as the original speech samples. Using these sentences， 
we obtain 12 combinations with respect to sp巴akers and source 
directions. The sampling frequency is 8 kHz. The DFT size of 
W (f) is 1024. We used a null-beamfonner-based initial value [3] 
which is steered to (-60ぺ600). The step-size parameter was op­
timized for each method to obtain the best separation perfoロnance.

We compare four methods as follows: (A) the conventional 
binary-mask-based BSS， (B) the conventional 1CA-based BSS， where 
the scaling ambiguity can be properly solved by [1]. (C) the simple 
combination of the conventional 1CA and binary masking [8]， and 
(D) the proposed two-stage BSS method. 1n the proposed method， 
we set [Cl， C2 ， C3] = [1，0，0.4]， which gives the best perfonnance 
under this background noise condition 

Figure 7 shows the averaged segmental NRR for 12 sp巴aker
combinations， which was calculated along th巴 tJme aXlS at every 
0.5 s p巴riod. Th巴自rst 3 s duration is spent on the initial filter 
learning of 1CA in血巴 methods (B)， (C) and (D)， and thus the valid 
1CA-based separation filter is absent here. Therefore， at 0-3 s， 
we simply applied binary masking in th巴 methods (C) and (D). 
The successive duration (at 3-32 s) shows the separation results 
for open data sampl巴， which is to be evaluated in this experiment. 
From Fig. 7， we can confinn that the proposed two-stage BSS (D) 
outperfo口ns other methods at almost all the time during 3-32 s 
1t is worth noting that the conventional 1CA shows heavy d巴terio­
rations especialJy in the 2nd source's moving periods， i.e.， around 
10 s and 21 s， but the proposed method can mltigate the degra­
dations. These results can conclude the proposed method to be 
beneficial to many real-tim巴 BSS applications in the real world. 

4.2. For 1\但，SP 2007 Data Analysis Competition 
w巴 tried恥伍SP 2007 data analysis competition to attack the con­
volutive blind source separation. We entered the competition with 
non-linear section and achieved victory. 1n this section， w巴 intro­
duce the parameters employed in the competition as follows: The 
DFT size of 1CA filter W (f) and binary masking is 1024. The 
initial value of S臥10-1CA is identity matrix. We use 0.05 as the 
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Fig. 6. Layout of reverberant room used in real-recording-based 
experiment. Reverberation time is 200 ms. 
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Fig. 7 .  R巴sults of segmental NRR calculated along time axis at 
every 0.5 s period， where real recording data and real-time BSS 
ar巴 used. Each line is average for 12 sp巴aker combinations. 

st巴p size parameterα， and the number of iterations is 1100. Also， 
we adopted the SIMO-BM's coefficients [cJ ， C2 ， C3] as， [1 ， 0 ， 0.4] 
for sp巴ech， and [ 1 ， 0 ， 0] for music. 

S. CONCLUSION 

We have proposed BSS framework in which SIMO-1CA and SIMO­
BM are efficiently combined. The S恥10-1CA is an algorithm 
for separating the mixed signals， not into monaural source signals 
but into SIMO-model-based signals of independent sources with 
out the loss of their spatial qualities. Thus， after the SIMO-1CA， 
we can introduce the S1MO-model-based binary masking and suc­
ce巴d in removing the residual int巴rference components. 1n order 
to evaluat巴 its effectiveness， on-line separation experiment using 
DSP module was carried out for real recording data under a 200-
ms-reverberant condition. The experimental results reveal巴d that 
the SNR can be considerably improved by the proposed two-stage 
BSS algorithm compared with the conventional methods. AIso， 
we introduce the detailed parameters used for “MLSP 2007 Data 
Analysis Competition " for non-linear system. 
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A. APPENDIX 
A. 1. Derivation of (11 ) 
Here， KulJback-Leibler diverg巴nce between the joint probability 
density function (PDF) of Y(f， t) and the product of marginal 



PDFs of "Y，.(f， t) is defined by KLD(Y(f， t)). The gradient of notes the k-th el巴m巴nt of the argument， andムkl is a cofactor of 
KLD(Y(ICAL)(f，t)) w油陀spect to W (ICA1) (J) should be added the matrix W(J). 
to the iterative leaming rule of the separation filter in the l-th ICA This method is simpler than SIMO-ICA， but its inversion of-
(l - 1，'" ， L - 1). We obtain the partial differentiation (stan- ten fails and yields harmful results because th巴 invertibility of ev-
dard gradient) ofKLD(Y (ICAL) (J， t)) wi出respectωW(ICA1)(J) 町W(f) cannot be guar叩匂吋[9]. Also， there exists another 
(l = 1， • . • ， L -1) as improper issue f，ωthe combination of ICA and bin町masking

θKLD(Y(ICAL)(J， t)) as shown b巴low. In PB， spatial information (amplitude di伽ー

θW(ICA1)(J) enαbetween directional microphones) in the target signal is just 

� 
， ._. ..， . - ， 

"N " � similar to that i目白 e interference because th巴 projection op 
_ rθKLD(Y仰L)(f， t))θW i�CAL )(Jn (det W(f))一1ムlk is applied to not only the.同et signal compo-目 . 目一 l θW:r

C叫(J刀) θW阿J;ア 臼勺)-L n問m巴叩削nt but凶It al加Iso t叩則ο，o t白he引m蜘tL. "J ， . I "J 
， . ， .J り similar tωo Se巴cはt. 3.1， (ο25め) leads tω o 

= l àKLD(Y (ICAL) (f， t)2 . (一川 ， οl) Yt(k)(fj)=(似W(J)) -1.ð.1k . (Bl (f)SI (f， t) + El (f， t)) 
l θW3 山(J) \ � I Jり = (det W(J))一1ムlk . Bl (f)SI (f， t) 

wh悶W3C叫)(f) is the element of W仰L)(f). By閃placing + (det W(f))-1.ð.1k . El(J，仏 (26)
δKLD(Y(臥L)(J，t))jθW(ICAL)(f) wi出 its natural gradient， where we c印刷Jme that I (det W(f))-J.ð.川is the 1叫estvalue 

dlfy(21) as among|(dd W(f))-IAK|(k=I，・.. ，K) for the l-th source 
-θKLD(Y(ICAL)(J， t)).w? )(f)W(ICAL)(f) in our dimcmml-microphone-use mnm0・Thus， when山tar-

θW(仰I陀臥C臼AL司)(ω f刀-) _ . H (ICA叫C臼ωA叫L gF伊巴飢t s勾i氾gna叫a必1c∞om叫p叩E叩倒n凶t Sl(げf， tの) iおs no削Oωt s副il巴叩削n川t， b凶m町masking c叩a叩n 
=ベ{1 一ぺ(伊φ (似Yれ(1に臥叫叫C臼叫叫A叫叫L勾)(υ仏山川fλμ川，t刈tの) ) . Y玲0匙弘C臼叫A

，W(I臥C臼AL勾) (げωf刀). (22) k = 1 among y;(k) (J， t) f，ωall k. Ho明ever， the problem is that， 

By inserting (7) and the relation W (ICAL) (J) = 1 -2ごと
1
1W(ICM)(f) When SI(f，t)is almost silmt， binary masking has to pはup(iム

into (22)， we obtain cannot mask) the undtSind Et(f，t)component b巴cause the sec-

{ (I-\ 4> (X(f，t)-
�山-→1 叩…m…t白h

: (←トIト一ぺ(伊φ引(件何X引 (げfμ川，t刈tの) 2z;yYh (υ凹Iに臥刷叫C臥ω刷叫Al叫 tりl) (Jバμ (げfμ川，t吟り)ゆ) :2::山Jι LJ3;2日2?口;:出記;2立:ぷ♂:「お二z芯;2 2弘;立 ?古
(X(J の- Pout)(fのな )

L-l 
( 1 - L W (ICA1) (J) ) (23) 

In order to deal with non-i.i.d. signals， we apply the nonholonomic 
constraint to (23). The natural gradient with the nonholonomic 

一イ{o必ff-di叫必
(件何附X刻刈 (υf 川tのト)ト一 三忌bbトYれ行Y(ICυ凹仰仰川I陀口削C臼ωAl

L-l 
(1 -乞W(ICA1) (J) ) (24) 

Thus， the new出削ive algorithm of the l-th ICA part (l = 1 ， ・ ・ ・ ， L-
1) in SIMO-ICA is given by adding (24) into the existing ICA 
equation， and we obtain (11). 

A.2. Difference between SIMO-ICA and Projection-Back Method 

In th巴 projection-back(PB) method， the following operation is per­
formed after (2): 

f 1-1 L-l 、
ず)(f，t)= � W(J)-I�古川(J，t)，�ケ司T � 

= (det W(f))-1.ð.1k . "Y，.(f， t)， (25) 

where y;(k)(f， t) r巴presents the l-th resultant separated source sig­
nal which is projected back onto the k-th microphone， {.} k de-

the combination of SIMO-model-based signals and binary mask­
ing. In contrast to the PB method， SIMO-ICA holds the applicabil­
ity to the combination wi出binary masking because the separation 
filter of SIMO-ICA cannot always b巴 represented in the PB form， 
i.e.， we are often confront疋d with the case that the residual-nois巴
∞mponent in the k( # l)-th microphone has 出e largest ampliωde 
W巴n among Ei(k)(f，t). 
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