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ABSTRACT

This paper reviews a real-time two-stage blind source separation
(BSS) method for convolutive mixtures of speech, in which a single-
input multiple-output (SIMO)-model-based independent compo-
nent analysis (ICA) and a SIMO-model-based binary masking are
combined. SIMO-model-based ICA can separate the mixed sig-
nals, not into monaural source signals but into SIMO-model-based
signals from independent sources in their original form at the mi-
crophones. Thus, the separated signals of SIMO-model-based ICA
can maintain the spatial qualities of each sound source. Owing to
this attractive property, SIMO-model-based binary masking can be
applied to efficiently remove the residual interference components
after SIMO-model-based ICA. In addition, the perforinance dete-
rioration due to the latency problem in ICA can be mitigated by
introducing real-time binary masking. We report the parameters
used in MLSP 2007 data analisys, and the experimental evalua-
tion of the proposed method’s superiority to the conventional BSS
methods, regarding static- and moving-sound separation.

1. INTRODUCTION

Blind source separation (BSS) is the approach taken to estimate
original source signals using only the information of the mixed
signals observed in each input channel. Basically BSS is classified
into unsupervised filtering technique, and much attention has been
paid to BSS in many fields of signal processing.

In recent researches of BSS based on independent component
analysis (ICA), various methods have been presented for acoustic-
sound separation [1, 2, 3]. This paper also addresses the BSS prob-
lem under highly reverberant conditions (e.g., reverberation time
is more than 200 ms) which often arise in many audio applica-
tions. The separation performance of the conventional ICA is far
from being sufficient in the reverberant case because too long sep-
aration filters is required but the unsupervised learning of the filter
is not so easy. Therefore, one possible improvement is to partly
combine ICA with another signal enhancement technique, but in
the conventional ICA, each of the separated outputs is a single-
channel signal, and this leads to the drawback that many kinds of
superior multichannel techniques cannot be applied.

In order to attack the tough problem, we have proposed a two-
stage BSS algorithm [4]. In this paper, we give a detailed review
on the proposed method. This approach resolves the BSS prob-
lem into two stages: (a) a Single-Input Multiple-Output (SIMO)-
model-based ICA (SIMO-ICA) proposed by the authors’ group [5]
and (b) a SIMO-model-based binary masking (SIMO-BM) for the
signals obtained from the SIMO-ICA. SIMO-ICA can separate the
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mixed signals, not into monaural source signals but into SIMO-
model-based signals from independent sources as they are at the
microphones. Thus, the separated signals of SIMO-ICA can main-
tain rich spatial qualities of each sound source. After the SIMO-
ICA, the residual components of the interference, which are often
staying in the output of SIMO-ICA as well as the conventional
ICA, can be efficiently removed by the following SIMO-BM.

It should be enhanced that the two-stage method has another
important property, i.e., applicability to the real-time processing.
In general ICA-based BSS methods require huge calculations, but
SIMO-model-based binary masking needs very few computational
complexities. Therefore, because of the introduction of binary
masking into ICA, the proposed combination can function as the
real-time system. In this paper, we introduce the detailed param-
eters used for “MLSP 2007 Data Analysis Competition” for non-
linear system [6]. Also, we evaluate the “real-time” separation per-
formance for real recording of static and moving sound mixtures
under a reverberant condition.

2. MIXING PROCESS AND CONVENTIONAL BSS
2.1. Mixing Process
In this study, the number of microphones is K and the number
of multiple sound sources is L, where we deal with the case of
K=L.

Multiple mixed signals are observed at the microphone array,
and these signals are converted into discrete-time series via an A/D
converter. In the frequency domain, the observed signals in which
multiple sources are mixed are given by

X(f) = A()S()), (1)
where X (f) = [X1(f), -+, Xk (f)]" is the observed signal vec-
tor, and S(f) = [S1(f), -, Sc(f)]" is the source signal vector.
Also, A(f) = [Awi(f)]xt is the mixing matrix, where [X];; de-
notes the matrix which includes the element X in the i-th row and
the j-th column. The mixing matrix A(f) is complex-valued be-
cause we introduce a model to deal with the relative time delays
among the microphones and room reverberations.

2.2. Conventional ICA-Based BSS
In the frequency-domain ICA (FDICA), first, the short-time anal-
ysis of observed signals is conducted by frame-by-frame discrete
Fourier transform (DFT). By plotting the spectral values in a fre-
quency bin for each microphone input frame by frame, we consider
them as a time series. Hereafter, we designate the time series as
X(f,t) =[Xa(f,8), - Xx(f,0)]"-

Next, we perform signal separation using the complex-valued
unmixing matrix, W(f) = (Wik(f))ik, so that the L time-series
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Fig. 1. Input and output relations in (a) proposed two-stage BSS
and (b) simple combination of conventional ICA and binary mask-
ing. This corresponds to the case of K = L = 2.

output Y (f, t)=[Y1(f,t), -, Yi(f, t)]'r becomes mutually inde-
pendent; this procedure can be givenas Y (f,t) = W(f)X(f,t).
We perform this procedure with respect to all frequency bins. The
optimal W ( f) is obtained by, e.g., the following iterative updating
equation [1]:

WIH(f) =n [T - (2(Y (£,1)

+whl(), @
where I is the identity matrix, (-); denotes the time-averaging op-
erator, [z] is used to express the value of the ¢ th step in the it-
erations, 7 is the step-size parameter, and ®(-) is the appropriate
nonlinear vector function. After the iterations, the source permuta-
tion and the scaling indeterminacy problem can be solved by, e.g.,
[1, 3].

2.3. Conventional Binary-Mask-Based BSS

Binary mask processing [ 7] is one of the alternative approach which
is aimed to solve the BSS problem, but is not based on ICA. We es-
timate a binary mask by comparing the amplitudes of the observed
signals, and pick up the target sound component which arrives at
the better microphone closer to the target speech. This procedure
is performed in time-frequency regions, and is to pass the specific
regions where target speech is dominant and mask the other re-
gions. Under the assumption that the {-th sound source is close to
the {-th microphone, the [-th separated signal is given by

)/l(f,t):ml(f,t)X[(f,t), (3)
where m,(f, t) is the binary mask operation which is defined as
mu(f,t) = 1if [ Xu(f,t)] > [Xe(f,t)| (& # 1) otherwise
my(f,t) = 0.

This method requires very few computational complexities,
and this property is well applicable to real-time processing. The
method, however, needs a sparseness assumption in the sources’
spectral components, i.e., there are no overlaps in time-frequency
components of the sources. Indeed the assumption does not hold
in an usual audio application, e.g., a mixture of speech and a com-
mon broadband stationary noise.

YU 0), | Wi

3. PROPOSED TWO-STAGE BSS ALGORITHM
3.1. Motivation and Strategy
In the previous research, SIMO-model-based ICA (SIMO-ICA)
was proposed by the authors’ group [5], who showed that the SIMO-
model-based separated signals are still one set of array signals.
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Fig. 2. Examples of spectra in simple combination of ICA and
binary masking. (a) ICA’s output 1; B1(f)S1(f,t) + E1(f,t), (b)
ICA’s output 2; Bo(f)S2(f,t) + E2(f,t), and (c) result of binary
masking between (a) and (b); Y1(f,t).
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Fig. 3. Examples of spectra in proposed two-stage method. (a)
SIMO-ICA’s output 1; A11(f)S1(f,t) + Eni(f,t), (b) SIMO-
ICA’s output 2; A2, (f)S1(f,t) + E21(f,t), and (c) result of bi-

nary masking between (a) and (b); Y1(f, t).

There exist new applications in which SIMO-model-based sepa-
ration is combined with other types of multichannel signal pro-
cessing. In this paper, hereinafter we address a specific BSS con-
sisting of directional microphones in which each microphone’s di-
rectivity is steered to a distinct sound source, i.e, the {-th micro-
phone steers to the [-th sound source. Thus the outputs of SIMO-
ICA is the estimated (separated) SIMO-model-based signals, and
they keep the relation that the I-th source component is the most
dominant in the [-th microphone. This finding has motivated us
to combine SIMO-ICA and binary masking. Moreover we have
proposed a binary masking strategy, so-called SIMO-model-based
binary masking (SIMO-BM). That is, the masking function is de-
termined by all the information regarding the SIMO components
of all sources obtained from SIMO-ICA. The configuration of the
proposed method is shown in Fig. 1(a). SIMO-BM, which subse-
quently follows SIMO-ICA, can remove the residual component
of the interference effectively without adding enortnous computa-
tional complexities. This combination idea is also applicable to the
realization of the proposed method’s real-time implementation.

It is worth mentioning that the novelty of this strategy mainly
lies in the two-stage idea of the unique combination of SIMO-
ICA and the SIMO-BM. To illustrate the novelty of the proposed
method, we hereinafter compare the proposed combination with
a simple two-stage combination of conventional monaural-output
ICA and conventional binary masking (see Fig. 1(b)) [8].

In general, conventional ICAs can only supply the source sig-
nals }/l(f7t) = Bl(f)Sl(f,t) + El(f’t) (l = 11 o 1L)’ where
By (f) is an unknown arbitrary filter and E;(f, t) is a residual sep-
aration error which is mainly caused by an insufficient conver-
gence in ICA. The residual error E;(f,t) should be removed by
binary masking in the subsequent postprocessing stage. However,
the combination is very problematic and cannot function well be-
cause of the existence of spectral overlaps in the time-frequency
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Fig. 4. Input and output relations in proposed two-stage BSS

which consists of FD-SIMO-ICA and SIMO-BM, where K =
L = 2 and exclusively selected permutation matrices are given
by Py =TIand P2 = [1];; — I.in(8)

domain. For instance, if all sources have nonzero spectral compo-
nents (i.e., when the sparseness assumption does not hold) in the
specific frequency subband and are comparable (see Fig. 2(a),(b)),
ile:;

|B1(£)S1(f,t) + Ex(f, 1) ~ |B2(£)S2(f, 1) + E2(£, 1), 4)
the decision in binary masking for Y1(f,t) and Y2(f,t) is vague
and the output results in a ravaged (highly distorted) signal (see
Fig. 2(c)). Thus, the simple combination of conventional ICA and
binary masking is not suited for achieving BSS with high accuracy.

On the other hand, our proposed combination contains the spe-
cial SIMO-ICA in the first stage, where the SIMO-ICA can sup-
ply the specific SIMO signals with respect to each of sources,
Aki(f)Si(f,t), up to the possible residual error Ex;(f,t) (see
Fig. 3). Needless to say, the obtained SIMO components are very
beneficial to the decision-making process of the masking function.
For example, if the residual error Ey;( f,t) is smaller than the main
SIMO component Ay (f)Si(f,t), the binary masking between

An(f)Si(f,t)+En(f,t) (Fig. 3(a)) and A21(f)S1(f,t)+Ea1(f,t)

(Fig. 3(b)) is more acoustically reasonable than the conventional
combination because the spatial properties, in which the separated
SIMO component at the specific microphone closer to the target
sound still maintains a large gain, are kept; i.e.,
IAll(f)Sl(f7 ) + Ell fs )| > |A21 )Sl(f7 t) + E?l(f, t)l
(5)
In this case we can correctly pick up the target signal candidate
A11(f)S1(f,t) + E11(f,t) (see Fig. 3(c)). When the target com-
ponents A1 (f)S1(f,t) are absent in the target-speech silentdura-
tion, if the errors have a possible amplitude relation of | Eq1(f, t)|
< |E21(f,t)|, then our binary masking forces the period to be
zero and can remove the residual errors. Note that unlike the sim-
ple combination method [8], our proposed binary masking is not
affected by the amplitude balance among sources. Overall, after
obtaining the SIMO components, we can introduce the SIMO-BM
for the efficient reduction of the remaining error in ICA, even when
the complete sparseness assumption does not hold.

In summary, the novelty of the proposed two-stage idea is at-
tributed to the introduction of the SIMO-model-hased framework
into both separation and postprocessing, and this offers a realiza-
tion of the robust BSS. The detailed algorithm is described in the
next subsection.

3.2. Algorithm: SIMO-ICA in 1st Stage

Time-domain SIMO-ICA [5] has recently been proposed by some
of the authors as a means of obtaining SIMO-model-based signals
directly in ICA updating. In this study, we extend time-domain
SIMO-ICA to frequency-domain SIMO-ICA (FD-SIMO-ICA). FD-
SIMO-ICA is conducted for extracting the SIMO-model-based sig-
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nals corresponding to each of the sources. FD-SIMO-ICA consists
of (L—1) FDICA parts and a fidelity controller, and each ICA runs
in parallel under the fidelity control of the entire separation system
(see Fig. 4). The separated signals of the [-thICA(l =1,--- L—1)
in FD-SIMO-ICA are defined by

Y gcany(f,t) = [N, )]kt = Wacay (f) X (f,8),  (6)

where W (icany (f) = [W'“CM) (f)]45 is the separation filter matrix

in the [-th ICA.

Regarding the fidelity controller, we calculate the following
signal vector Y (icar)(f,t), in which the all elements are to be

mutually independent,
Xif, Y= ZY(ICAI) (f,t)

Hereafter, we regard Y (jcar) (f, ) as an output of a virtual * L-th”
ICA. The reason we use the word “virtual” here is that the L-th
ICA does not have its own separation filters unlike the other ICAs,
and Y car)(f,t) is subject to Wcay(f) (I=1,--- ,L — 1).
By transposing the second term (— 35" Y (ican (f,t)) on the
right-hand side to the left-hand side, we can show that (7) sug-
gests a constraint to force the sum of all ICAs’ output vectors
Zl= Y (1cay(f,t) tobe the sum of all SIMO components [El .
Akl(f) Si(f,t)]k1 (= X (£,1)).

If the independent sound sources are separated by (6), and si-
multaneously the signals obtained by (7) are also mutually inde-
pendent, then the output signals converge on unique solutions, up
to the permutation and the residual error, as

Y gcan (f:t) = diag [A(f) PI) PiS(f,t) + Eu(f,t), (8)
where diag[X] is the operation for setting every off-diagonal el-
ement of the matrix X to zero, E,(f,t) represents the residual
error vector, and P; (I = 1,---, L) are exclusively-selected per-
mutation matrices which satisfy Z{;l P; = [1];;. For a proof of
this, see [5] with an appropriate modification into the frequency-
domain representation. Obviously, the solutions provide neces-
sary and sufficient SIMO components, Ax;(f)S:(f,t), for each
l-th source. Thus, the separated signals of SIMO-ICA can main-
tain the spatial qualities of each sound source. For example, in the
case of L = K = 2, one possibility is given by

[Y(ICAI)(f 1), Y. (ICAI)(f t)]

Y acar)(fit) = @)

= [Au(f)Si1(f,1), An(f)S2(f,)]", ()
[YI(ICA2)(f’ t), YQ(ICA2)(f’ t)]T
= [A12(f)S2(£, 1), A2 (£)Si(f, )", (10)

where P; = I and P2 = [1];; — I.

In order to obtain (9) and (10), the natural gradient of Kullback-
Leibler divergence of (7) with respect to W (1cau(f) should be
added to the existing nonholonomic iterative learning rule [1] of
the separation filter in the [-th ICA (Il = ,L —1). The
new iterative algorithm of the [-th ICA part (! = 1,--- ,L — 1) in
FD-SIMO-ICA is given as (see Appendix A.1)

Wi ()
W 5) - o {acing (3(3 0y 10)
YEL, ("), } W o)

= ligTe=



Z Y(lCAl)

{0ffd1ag<§> >
(X0 3 ¥t >">t}
( ZW(ICM)(f )}

where a is the step size parameter. Also, the initial values of
W (1cau)(f) for all I values should be different.

Note that there exists an alternative method [1] of obtaining
the SIMO components in which the separated signals are projected
back onto the microphones by using the inverse of W (f) after
conventional ICA. The difference and advantage of SIMO-ICA
relative to this method are described in Appendix A.2.

3.3. Algorithm: SIMO-BM in 2nd Stage

After FD-SIMO-ICA, SIMO-model-based binary masking is ap-
plied (see Fig. 4). Here, we consider the case of (9) and (10). The
resultant output signal corresponding to source 1 is determined in
the proposed SIMO-BM as follows:

Yi(f,t) = ma(f, )M (f,0), (12)
where m1(f,t) is the SIMO-model-based binary mask operation

which is defined as m1(f,t) = 1if
Y (f,0)
> max[c1]Yy D (£, 0], e2| VI (£,1)],

._.

(an

Ca[YQ(ICAl)(f, t)|];

(13)
otherwise mi(f,t) = 0. Here, max[] represents the function of
picking up the maximum value among the arguments, and c1, - - -
are the weights for enhancing the contribution of each SIMO com-
ponent to the masking decision process. For example, [c1, c2, ¢3]
= [0, 0, 1] yields the simple combination of conventional ICA and
conventional binary mask [8]. Otherwise, if we set [c1, c2, 3]
= [1,0, O], we can utilize better (acoustically reasonable) SIMO
information regarding each source as described in Sect. 3.1. If
we change another pattern of ¢;, we can generate various SIMO-

model-based maskings with different separation and distortion prop-

erties.
The resultant output corresponding to source 2 is given by
Ya(f,1) = ma(£, )YV (£,0), (14)
where mo(f,t) is defined as m2(f,t) = 1if
Y2(ICA1)(f’ )
> max[cllyl(lcfxz)(f’ B, |Y(ICA1)(f1 L
(15)

2|Y(ICA2)(ft l

otherwise m2(f,t) = 0.

The extension to the general case of L = K > 2 can be
easily implemented. Hereafter we consider one example in that
the perinutation matrices are given as

Py = [Bin(k,1y]kis
where §;; is Kronecker’s delta function, and

(16)

E+1—1 (k+1-1<1L)
k.l) = . 17
n(k,0) {k+l—1—L k+i-1>1)° P
In this case, (8) yields
Yacan(fit) =

[Aknik.ty(N)Snikty (1) + Engey(F1)],, - (18)

, C3
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Fig. S. (a) Overview of pocket—size real-time BSS module, where
proposed two-stage BSS algorithm works on TEXAS INSTRU-
MENTS TMS320C6713 DSP. (b) Signal flow in real-time imple-
mentation of proposed method.

Thus the resultant output for source 1 in SIMO-BM is given by

Vi(f,8) = ma(f, ) YNV (£,1), (19)
where m (f,t) is defined as m1(f,t) = 1if

VI (£,6) > max[en [V (£,0)], e v M7 (£,2)],
= C
N 7 O RETE) S A

e YV (5,01 20
otherwise m1(f,t) = 0. The other sources can be obtained in the
same manner.

3.4. Real-Time Implementation

We have already built a pocket-size real-time BSS module in coop-
erate with Kobe Steel, Ltd., where the proposed two-stage BSS al-
gorithm can work on a general-purpose DSP as shown in Fig. 5(a).
Figure 5(b) shows a configuration of a real-time implementation
for the proposed two-stage BSS. Signal processing in this imple-
mentation is performed in the following manner.

1. Inputted signals are converted to time-frequency series by
using a frame-by-frame fast Fourier transform (FFT).

2. SIMO-ICA is conducted using current 3-s-duration data for
estimating the separation matrix, that is applied to the next
(not current) 3 s samples. This staggered relation is due to
the fact that the filter update in SIMO-ICA requires substan-
tial computational complexities (the DSP performs at most
100 iterations) and cannot provide the optimal separation
filter for the current 3 s data.

3. SIMO-BM is applied to the separated signals obtained by
the previous SIMO-ICA. Unlike SIMO-ICA, binary mask-
ing can be conducted just in the current segment.

. The output signals from SIMO-BM are converted to the re-
sultant time-domain waveforms by using an inverse FFT.

Although the separation filter update in the SIMO-ICA part
is not real-time processing but includes a latency of 3 seconds,
the entire two-stage system still seems to run in real-time because
SIMO-BM can work in the current segment with no delay. Gener-
ally, the latency in conventional ICAs is problematic and reduces
the applicability of such methods to real-time systems. In the pro-
posed method, however, the performance deterioration due to the
latency problem in SIMO-ICA can be mitigated by introducing
real-time binary masking. Owing to the advantage, the problem of
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performance decrease is prevented, especially in the case of rapid
change of the mixing condition, e.g., the target sources are mov-
ing. This fact will appear via experiments in the next section.

4. SOUND SEPARATION EXPERIMENTS

4.1. Real-Time Separation Experiment for Moving Sound Source

In this section, areal-recording-based BSS experiment is performed

using actual devices in a real acoustic environment. We carried out
real-time sound separation using source signals recorded in the real
room illustrated in Fig. 6, where two loudspeakers and the real-
time BSS system (Fig. 5(a)) with a'directional microphone (SONY
stereo microphone ECM-DS70P) are set. The reverberation time
in this room is 200 ms, and the levels of background noise and each
of the sound sources measured at the array origin were 39 dB(A)
and 65 dB(A), respectively. Two speech signals, whose length is
limited to 32 seconds, are assumed to arrive from different direc-
tions, 67 and 6,, where we fix source | in 6, —40°, and move
source 2 as follows:

1. in 0-10 s duration, source 2 is set to 2 = 50°,

2. in 10-11 s duration, source 2 moves from 62 = 50° to 30°,
3. in 11-21 s duration, source 2 is settled in 8, = 30°,

4. in 21-22 s duration, source 2 moves from 8, = 30° to 10°,
5. in 22-32 s duration, source 2 is fixed in 8, = 10°.

Two kinds of sentences, spoken by two male and two female speak-
ers, are used as the original speech samples. Using these sentences,
we obtain 12 combinations with respect to speakers and source
directions. The sampling frequency is 8 kHz. The DFT size of
W (f) is 1024. We used a null-beamformer-based initial value [3]
which is steered to (—60°, 60°). The step-size parameter was op-
timized for each method to obtain the best separation performance.

We compare four methods as follows: (A) the conventional

binary-mask-based BSS, (B) the conventional ICA-based BSS, where

the scaling ambiguity can be properly solved by {1]. (C) the simple
combination of the conventional ICA and binary masking [8], and
(D) the proposed two-stage BSS method. In the proposed method,
we set [c1, c2,¢3] = [1,0,0.4], which gives the best performance
under this background noise condition.

Figure 7 shows the averaged segmental NRR for 12 speaker
combinations, which was calculated along the time axis at every
0.5 s period. The first 3 s duration is spent on the initial filter
learning of ICA in the methods (B), (C) and (D), and thus the valid
ICA-based separation filter is absent here. Therefore, at 0-3 s,
we simply applied binary masking in the methods (C) and (D).
The successive duration (at 3-32 s) shows the separation results
for open data sample, which is to be evaluated in this experiment.
From Fig. 7, we can confimm that the proposed two-stage BSS (D)
outperforms other methods at almost all the time during 3-32 s.
It is worth noting that the conventional ICA shows heavy deterio-
rations especially in the 2nd source’s moving periods, i.e., around
10 s and 21 s, but the proposed method can mitigate the degra-
dations. These results can conclude the proposed method to be
beneficial to many real-time BSS applications in the real world.

4.2. For MLSP 2007 Data Analysis Competition

We tried MLSP 2007 data analysis competition to attack the con-
volutive blind source separation. We entered the competition with
non-linear section and achieved victory. In this section, we intro-
duce the parameters employed in the competition as follows: The
DFT size of ICA filter W (f) and binary masking is 1024. The
initial value of SIMO-ICA is identity matrix. We use 0.05 as the
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Fig. 7. Results of segmental NRR calculated along time axis at
every 0.5 s period, where real recording data and real-time BSS
are used. Each line is average for 12 speaker combinations.

step size parameter ¢, and the number of iterations is 1100. Also,
we adopted the SIMO-BM'’s coefficients [c1, ¢z, c3] as, [1,0,0.4)]
for speech, and [1, 0, 0] for music.

S. CONCLUSION

We have proposed BSS framework in which SIMO-ICA and SIMO-
BM are efficiently combined. The SIMO-ICA is an algorithm
for separating the mixed signals, not into monaural source signals
but into SIMO-model-based signals of independent sources with-
out the loss of their spatial qualities. Thus, after the SIMO-ICA,
we can introduce the SIMO-model-based binary masking and suc-
ceed in removing the residual interference components. In order
to evaluate its effectiveness, on-line separation experiment using
DSP module was carried out for real recording data under a 200-
ms-reverberant condition. The experimental results revealed that
the SNR can be considerably improved by the proposed two-stage
BSS algorithm compared with the conventional methods. Also,
we introduce the detailed parameters used for “MLSP 2007 Data
Analysis Competition” for non-linear system.
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A. APPENDIX
A.1. Derivation of (11)
Here, Kullback-Leibler divergence between the joint probability
density function (PDF) of Y (f,t) and the product of marginal
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PDFs of Y;(f,t) is defined by KLD(Y (f,t)). The gradient of
KLD(Y (car)(f,t)) with respect to W car) (f) should be added
to the iterative learning rule of the separation filter in the I-th ICA
(l=1,---,L —1). We obtain the partial differentiation (stan-
dard gradient) of KLD(Y (1car)(f,t)) with respect to W car) (f)
(I=1,...,L—1)as

OKLD(Y (car)(f, 1))

aW(ICAl)(f)
_ [0KLD(Y geary (£,8) BWSC’*“(f)]
WD (f) Wi () |,

OKLD(Y qeary (£,1) ('”J
(ICAL) ’
oW () ’
where W}UCAL)(f) is the element of W (jcar)(f)- By replacing
OKLD(Y acar)(f, 1) /OW ucary(f) with its natural gradient,

we modify (21) as
_ OKLD(Y gear) (f, t))

OW (ear) (f)
{1-(2 (Yacany(1:0) - Yieary(1:0) }
- W aeary(f).

(21)

. W?lCAL)(f)W(ICAL)(f)

(22)

By inserting (7) and the relation W car) (f) = I—Zf‘z‘ll W can (f)

into (22), we obtain

{(I - <<I>(X(f, t) — LZ_IY(ICM)(ﬁ t))
; (X(f,t) - lf Y ican (f, t))H>t}
=1

. (I - Ii W(lCAl)(f))-
=1

In order to deal with non-i.i.d. signals, we apply the nonholonomic
constraint to (23). The natural gradient with the nonholonomic
constraint is given as

= { off-diag <<I>(X(f, t) — LZ_l Y qcay (f, t))
: (X(f,t) — LZ_IY(ICAI)(f’ t))H>t}
1=1

: (I — Ii W(lCAl)(f))-

(23)

(24)

Thus, the new iterative algorithm of the [-thICApart (I = 1,--- , L—

1) in SIMO-ICA is given by adding (24) into the existing ICA
equation, and we obtain (11).

A.2. Difference between SIMO-ICA and Projection-Back Method

In the projection-back (PB) method, the following operation is per-

formed after (2):
-1 L1

( AY
Y (f,8) = {wm‘l[o,w 0 Yih .0 ,OF}
k

= (det W (f)) " Aw - Yi(f, 1), 25

where Yl(k) (f, t) represents the I-th resultant separated source sig-
nal which is projected back onto the k-th microphone, {-}« de-
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notes the k-th element of the argument, and Ax: is a cofactor of
the matrix W (f).

This method is simpler than SIMO-ICA, but its inversion of-
ten fails and yields harmful results because the invertibility of ev-
ery W (f) cannot be guaranteed [9]. Also, there exists another
improper issue for the combination of ICA and binary masking
as shown below. In PB, spatial information (amplitude differ-
ence between directional microphones) in the target signal is just
similar to that in the interference because the projection operator
(det W (f)) ™" Au is applied to not only the target signal compo-
nent but also the interference component in Y;( f, ). For example,
similar to Sect. 3.1, (25) leads to

Y (f,1) = (det W (£)) 7 Aw - (Bi(£)Si(f,t) + Ei(£,1))
= (det W (f)) "' Aw - Bi(f)Si(f, )
+ (det W(£)) " *Aw - Ei(£, 1), (26)

where we can assume that |(det W (f)) ™! Ay is the largest value
among |(det W (f))"*Aw| (k = 1,---, K) for the I-th source
in our directional-microphone-use scenario. Thus, when the tar-
get signal component S;(f,t) is not silent, binary masking can
approximately extract S;(f,t) component because the first term
in the right-hand side in (26) becomes the most dominant just in
k = [ among Yl(k)(f, t) for all k. However, the problem is that,
when S;(f, t) is almost silent, binary masking has to pick up (i.e.,
cannot mask) the undesired E,(f,t) component because the sec-
ond term in the right-hand side in (26) also becomes the most dom-
inant in & = . This fact yields the negative result that the PB
method is not available to a residual-noise reduction purpose via
the combination of SIMO-model-based signals and binary mask-
ing. In contrast to the PB method, SIMO-ICA holds the applicabil-
ity to the combination with binary masking because the separation
filter of SIMO-ICA cannot always be represented in the PB form,
i.e., we are often confronted with the case that the residual-noise
component in the k(5 !)-th microphone has the largest amplitude
even among Yl(k)(f, t).
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