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ABSTRACT

In this paper, we propose a new spatial subtraction array (SSA)
structure which includes independent component analysis (ICA)-
based noise estimator. Recently, SSA has been proposed to re-
alize noise-robust hands-free speech recognition. In SSA, noise
reduction is achieved by subtracting the estimated noise power
spectrum from the noisy speech power spectrum. The conven-
tional SSA uses null beamformer (NBF) as a noise estimator, but
NBEF suffers from the adverse effect of microphone-element er-
rors and room reverberations in real environments. To improve
the problem, we newly replace NBF with ICA which can adapt
its own separation filters to the element error and the reverbera-
tion. The affections by the element error and the reverberation
can be mitigated in the proposed ICA-based noise estimator. Ex-
perimental results reveal that the accuracy of noise estimation
by ICA outperforms that of NBF, and speech recognition perfor-
mance of the proposed method overtakes that of the conventional
SSA.

1. INTRODUCTION

A hands-free speech recognition system is essential for realiz-
ing an intuitive and stress-free human-machine interface. How-
ever, the quality of the distant-talking speech is always inferior to
that of using close-talking microphone, and this leads to degra-
dations of speech recognition. One approach for establishing a
noise-robust speech recognition system is to enhance the speech
signals by introducing microphone array signal processing. In
delay-and-Sum (DS) array, we compensates the time delay for
each element to reinforce the target signal arriving from the look
direction. On the other hand, null beamformer (NBF) [1] pro-
vides more efficient noise reduction in which we steer the di-
rectional null to the direction of the noise signal. Moreover,
Griffith-Jim adaptive array (GJ) [2] can achieve a superior per-
formance relative to others. However, GJ requires a huge amount
of calculations for learning adaptive multichannel FIR filters of,
e.g., thousands or millions taps in total.

Spatial subtraction array (SSA) [3] is a successful candidate
for hands-free speech recognition, and SSA is specifically de-
signed for a speech recognition application. In SSA, noise re-
duction is achieved by subtracting the estimated noise power
spectrum by NBF from the power spectrum of noisy observa-
tions in mel-scale filter bank domain. Since a common speech
recognizer is not so sensitive to phase information, SSA which
is performing subtraction processing only in the power spectrum
domain is more applicable to the speech recognition, and it is
reported that the speech recognition performance of SSA out-
performs those of DS and GJ [3]. In SSA, noise estimation is
performed by NBF which has decent performance under ideal
conditions. However, NBF sustains the negative affection by
microphone-element error and room reverberations. Therefore,
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Fig. 1. Block diagram of conventional SSA.

in the real environment where the element error and the rever-
beration are always included, the performance of SSA signifi-
cantly decreases because the noise-estimation accuracy by NBF
decreases.

In this paper, we propose a new SSA structure which re-
places NBF-based noise estimator with independent component
analysis (ICA)[4]-based noise estimator. ICA is a technique for
source separation based on independence among multiple source
signals. In acoustic source separation scenarios, ICA can also
extract each source signal only using observed signals at the mi-
crophone array, and ICA does not require characteristics about
sensor elements and the reverberation. Therefore, it is well ex-
pected that ICA can adapt its own separation filters to the ele-
ment error and the reverberation. Accordingly the adverse effect
by the element error and the reverberation can be mitigated in
the proposed ICA-based noise estimator. Real-recording-based
simulations are conducted, and we can indicate that the proposed
method outperforms the conventional SSA on the basis of speech
recognition performances.

2. CONVENTIONAL SPATIAL SUBTRACTION ARRAY

2.1. Overview

The conventional SSA [3] consists of a DS-based primary path
and a reference path via the NBF-based noise estimation (see
Fig. 1). The estimated noise component by NBF is efficiently
subtracted from the primary path in the power spectrum domain
without phase information. In SSA, we assume that the target
speech direction and speech break interval are known in advance.
Detailed signal processing is shown below.

2.2. Partial speech enhancement in primary path

First, the short-time analysis of observed signals is conducted by
a frame-by-frame discrete Fourier transform (DFT). By plotting
the spectral values in a frequency bin for each microphone in-
put frame by frame, we consider these values as a time series.
Hereafter, we designate the time series as

X(f, ) =X, .. XA, M
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where J is the number of microphones, f is the frequency bin
and 7 is the frame number. Also, X(f, 7) can be rewritten as

X(f,1)=Af)(S(f,T) + N(f, 1)), (2)
S(f,7)=[0,...,0,S y(f,7),0,...,0]", (3)
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where A(f) is a mixing matrix, S(f, ) is a target speech signal
vector, N(f,T) is a noise signal vector, U expresses the target
speech number, and X is the number of sound sources.

Next, the target speech signal is partly enhanced in advance
by DS. This procedure can be given as

Yos(f, )= WI(NHX(f,7)
=WI(HANSED + WEs(NAOINGD,  (5)
Wos(f) = WS (f),..., WPS(NTT, (©6)

WO (f)= } exp (~i27(f /M) f.d; sin 6y c), (7

where Yps(f, 7) is a primary-path output which slightly enhances
the target speech, Wpg(f) is a filter coefficient vector of DS, M
is the DFT size, f; is sampling frequency, d; is a microphone po-
sition, and c is sound velocity. Besides, 6y is a known direction-
of-arrival (DOA) of the target speech. In Eq. (5), the second term
in the right-hand side expresses the remaining noise in the output
of the primary path.

2.3. Noise estimation in reference path

In the reference path, we estimate the noise signal by using NBF.
This procedure is given as

Zner(f,T) = Wige(HX(f, 1), ®)
Waer(f) = {(1,0-[a(f,80).a(f.6u) )", (9)
alf.0) = [a(f,0),....a,(f,0)]", (10)
aj(f,0) = exp(i2n(f/M)fid;sing]c), (1)

where Zygr(f,T) is the estimated noise by NBF, Wygr(f) is a
NBF-filter coefficient vector which steers the directional null in
the direction of the DOA of the target speech, 6, and steers unit
gain in the arbitrary direction 8o(# 6y). a(f,6) is a steering vec-
tor which expresses phase information of the sound source arriv-
ing from the direction 6. Besides, M* denotes Moore-Penrose
pseudo inverse matrix of M. This processing can suppress the
target speech arriving from 6y, which is equal to an extraction
of noises from sound mixtures if we take into account affec-
tions of sensor errors and reverberations. Thus we can esti-
mate the noise signals by NBF under ideal conditions. Note
that Zygr(f, 7) is the function of the frame number 7, unlike
the constant noise prototype estimated in the traditional spectral
subtraction method [S]. Therefore, SSA can deal with a non-
stationary noise.

2.4. Mel-scale filter bank analysis

SSA includes mel-scale filter bank analysis, and outputs mel-
frequency cepstrum coefficient (MFCC) [6]. The triangular win-
dow Wi (k;l) (I = 1,--+, L) to perform mel-scale filter bank
analysis is designated as follows:
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where fi,(), fc(1), and fy(/) are the lower, center, and higher fre-
quency bins of each triangle window, respectively. They satisfy
the relation among adjacent windows as

fe) = fill = 1) = fill + 1), (13)

Moreover, f.(/) is arranged in regular intervals on mel-frequency
domain. Mel-scale frequency Mely., for fe(!) is calculated as
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2.5. Noise reduction processing

In SSA, noise reduction is carried out by subtracting the esti-
mated noise power spectrum from the partly enhanced target
speech power spectrum in the mel-scale filter bank domain as

JuilD)
Wt (3 DiIYos(f, DF = a(D) - B - 12 (£, 7))
=il
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(15)
where m(l, T) is the output from the mel-scale filter bank. The
system switches in two equations depending on the conditions in
Eq. (15). m(l,7) is a function of the over-subtraction parameter
B and the parameter (/) which is determined during a speech
break so that the resultant output m(/,7) is zero. On the other
hand, if the power spectrum takes a negative value, m(/,7) is
obtained by using flooring processing, where y is the flooring
coefficient.

Since a common speech recognition is not so sensitive to
phase information, SSA which is performing subtraction pro-
cessing in the power domain is more applicable to the speech
recognition. Moreover, in general, the order of the filter bank
[ is set to 24, and consequently SSA optimizes only 24 param-
eters. On the other hand, GJ requires the adaptive learning of
FIR-filters of thousands or millions of taps. Finally, we perform
mel-scale filter bank analysis, log transform and discrete cosine
transform to obtain MFCC for speech recognizer.

3. PROPOSED METHOD

3.1. Error robustness analysis for noise estimation by NBF
In this section, we discuss the problem of the conventional SSA.
The NBF-based noise estimator is used in the conventional SSA,
but NBF suffers from the adverse effect of the microphone el-
ement error and the room reverberation. NBF is a technique
to suppress an interference source signal by generating a null
against the direction of the interference source signal. If the in-
terference source signal arrives from the same direction as the
null, we can suppress the interference source signal perfectly.
In a reverberant environment, however, the interference source
signal arrives from not only the null’s direction but also outside
of the direction. Therefore, in the reverberant room, we can-
not suppress the interference source signal sufficiently. In ad-
dition, a microphone element usually involves gain and phase
errors. NBF is designed under the ideal assumption that all el-
ements have the same characteristics. In the real environment,
however, the characteristics of each element are different. From
the above-mentioned fact, the directivity pattern shaped by NBF
in the ideal environment is apart from that of in the real environ-
ment.

Figure 2 illustrates directivity patterns which are shaped by
two-element NBF in the ideal (solid line) and the real (dotted
line) environment where the reverberation time is 200 ms. In this
figure, the null direction is set to zero degree. We can see that
the depth of the null in the real environment which contains the
element error and the reverberation shallows. Therefore, we can-
not suppress the interference source signal completely in the real
environment by using NBF. Indeed, in SSA, we performn noise
estimation via NBF which steers null against the target speech
signal, but we cannot suppress the target speech signal suffi-
ciently. In fact, NBF cannot estimate noise signal completely.
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Fig. 2. Directivity patterns shaped by NBF in ideal environment
and real environment which contains element error and reverber-
ation.
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Fig. 3. Block diagram of proposed method.

Thus the improvement of robustness in the noise estimator part
is a problem demanding prompt attention.

3.2. Strategy of proposed method

We propose an improved SSA which includes ICA-based noise
estimator instead of NBF-based noise estimator to address the
problems which are discussed in the previous section. In the pro-
posed method, the primary path and noise reduction processing
are the same as the conventional SSA. As for the reference path,
we newly introduce ICA as a robust noise estimator for adapting
the filters to the element error and the reverberation (see Fig. 3).
In ICA, an unmixing matrix is optimized so that output signals
become mutually independent only using observed signals, and
a priori information about the sensors and the room acoustics is
not required. Therefore the proposed method can reduce these
adverse effects because ICA can estimate noise signals which in-
volve whole characteristics of the microphone elements and the
reverberation. Detailed signal processing is shown below.

3.3. ICA-based noise estimation in reference path

The proposed method includes ICA-based noise estimation. In
ICA part, we perform signal separation using the complex valued
unmixing matrix Wica(f), so that the output signals O(f, 1) =
[0,(f.T),....0,(f,7)]F become mutually independent; this pro-
cedure can be represented by

of,7) = W(HX(f, 1), (16)
W(f) = P(/)Wica(f), (17)

where P(f) is a permutation matrix and W(f) is a new unmixing
matrix which resolves the permutation problem. The permuta-
tion matrix P(f) is determined by looking at null directions in
the directivity pattern which is shaped by Wica(f) [1], so that
the U-th output Oy (f, 7) is set to the target speech signal. The
optimal Wica(f) is obtained by the following iterative updating
equation [7]:

W2 =p (1= (@O 1) 0°(f. )| Wil ()
+WiE (), (18)
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Fig. 4. Layout of reverberant room used in our experiment.

where u is the step-size parameter, [p] is used to express the
value of the p-th step in the iterations, and I is an identity ma-
trix. Besides, (-); denotes a time-averaging operator, M" de-
notes conjugate transpose of matrix M, and ®(-) is the appropri-
ate nonlinear vector function [1]. In the reference path, the tar-
get signal is not required because we want to estimate only the
noise component. Accordingly we remove the separated speech
component Oy (f, T) from ICA outputs O(f, 7), and construct the
following “noise-only vector, ” Q(f, 7);

0(f,7) = [01(fi1). s Ot (1), 0, O (i), ., Os(F,0]" . (19)

Next, we apply the projection back (PB) [8] method to remove
the ambiguity of amplitude. This procedure can be written as

E(f,r) = W (HQU 7). (20

Here, O(f, T) is composed of only noise components. Therefore,
E(f,7) is a good estimation of the received noise signals at the
microphone positions;

E(f,7) = A(IN(f, 7). (21

Finally, we obtain the estimated noise signal Zica(f, 1) by per-
forming DS as follows:

Zicalf.1) = WE(NE(f,7) = WES(DANON(, 7). (22)

Equation (22) is expected to be equal to the noise term of Eq. (5)
in the primary path. Of course, Eq. (22) contains estimation er-
rors to some extent. Even though the level of the noise estimation
error is not negligible, we can still enhance the target speech via
over-subtraction [5] in the power spectrum domain.

4. EXPERIMENTS AND RESULT

4.1. Experimental setup

Figure 4 shows a layout of the reverberant room used in our ex-
periments. We use the following 16 kHz sampled signals as test
data; the original speech convoluted with the impulse responses
recorded in the real environment, and added with a cleaner noise
which was recored in the real environment. The cleaner noise is
not a point source but consists of several non-stationary noises
emitted from, e.g., a motor, air duct and nozzle. Moreover the
cleaner noise includes background noise. The input signal-to-
noise ratio (SNR) is set to S, 10, or 15 dB at the array. A four-
element array with the interelement spacing of 2 cm is used, and
DFT size is 512. Over-subtraction parameter 3 is 1.4 and floor-
ing coefficient y is 0.2.

4.2. Accuracy of estimated noise signal

First, we analyze the directivity pattern shaped by ICA in the
real environment. Figure 5 depicts the directivity pattern of ICA
(broken line) in the real environment. From this result, we can
confirm that the null shaped by ICA becomes deep compared
with that of the NBF-based conventional SSA. Therefore, it is
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expected that the target speech suppression performance of ICA
(equals the accuracy of the noise estimation) outperforms that of
NBF. Next, we compare the conventional SSA and the proposed
method in the accuracy of the estimated noise signal. Figure 6
shows the long-term-averaged power spectra of the estimated
noise signals by NBF and ICA. The black solid line indicates
the power spectrum of the noise signal in the primary path, and
this power spectrum is needed to be estimated. The gray solid
line represents the power spectrum of the estimated noise signal
by NBF, and the dotted line shows the power spectrum of the es-
timated noise signal by ICA. We can see that the power spectrum
of the estimated noise signal by NBF is not accurate. This is due
to that the target speech component still remains in the output of
NBF because the null shaped by NBF is shallow. On the other
hand, we can see that the power spectrum of the estimated noise
signal by ICA is a good estimation because the depth of the null
shaped by ICA is enough for suppressing the target speech. This
result points out that ICA-based noise estimator is a more accu-
rate noise estimator than NBF-based one. This gives propriety
in which we useICA as a noise estimator.

4.3. Results of speech recognition performance

We compare DS, the conventional SSA, and the proposed method
on the basis of word accuracy scores. Table | describes the con-
ditions for speech recognition, and we use 46 speakers (200 sen-
tences) as original speech. Figure 7 shows the word accuracy in
each method. Here, “Unprocessed” refers to the result without
any noise reduction processing. From this result, we can see that
the word accuracy of the proposed method is obviously supe-
rior to those of the conventional methods. This is a promising
evidence that the proposed method has an applicability to noise-
robust speech recognition rather than the conventional SSA.

Table 1. Conditions for speech recognition

Database INAS [9], 306 speakers (150

sentences / 1 speaker)

Task 20 k newspaper dictation

Acoustic model phonetic ~ tied  mixture
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Fig. 7. Results of word accuracy in each method.

5. CONCLUSIONS

In this paper, we proposed a new SSA which involves ICA-based
noise estimation to realize a robust hands-free speech recogni-
tion in noisy environments. First, we pointed out NBF suffers
from the adverse effect of the element error and the reverber-
ation in the real environment. Secondly, based on the above-
mentioned fact, we proposed a new SSA structure which re-
places NBF-based noise estimator in the conventional SSA with
ICA-based noise estimator. Finally, it was confirmed that the
word accuracy of the proposed method overtook that of the con-
ventional SSA in the experiment.
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