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ABSTRACT 

In this paper， we propose a new spatial subtraction a汀ay (SSA) 
structure which includes independent component analysis (ICA)­
based noise estimator. Recently， SSA has been proposed to re­
alize noise-robust hands-free speech recognition. In SSA， noise 
reduction is achieved by subtracting the estimated noise power 
spec汀um from the noisy speech power spectrum. The conven­
tional SSA uses null beamformer (NBF) as a noise estimator， but 
NBF suffers from the adverse effect of microphone-element er­
rors and room reverberations in real environments. To improve 
the problem， we newly replace NBF with ICA which can adapt 
its own separation filters to出巴 巴lement eπor and the reverbera­
tion. The affections by the element e汀or and the reverberation 
can be mitigated in the proposed ICA-based noise estimator. Ex­
perimental results reveal that the accuracy of noise estimation 
by ICA outperforms that of NBF， and speech recognition perfor­
mance of the proposed method overtakes that of the conventional 
SSA. 

1. Il可TRODUCTION

A hands-free speech r巴cognition system is essential for realiz­
ing an intuitive and stress-free human-machine interface. How­
ever， the quality of the distant-talking speech is always inferior to 
that of using c1ose-talking microphone， and this leads to degra­
dations of speech recognition. One approach for establishing a 
noise-robust speech recognition system is to 巴nhance the speech 
signals by introducing microphone 訂ray signal processing. In 
delay-and-Sum (DS) 訂ray， we compensates the time delay for 
each element to reinforce the target signal arriving from the look 
direction. On the other hand， null beamformer (NBF) [1] pro­
vides more efficient noise reduction in which we steer白e di­
rectional null to the direction of the noise si伊al. Moreover， 
Gri飴th-Jim adaptive釘ray (GJ) [2] can achi巴ve a superior per­
formanc巴 relative to others. However， GJ requires a huge amount 
of ca1culations for learning adaptive multichannel FIR filters of， 
e.g.， thousands or millions taps in total. 

Spatial subtraction aπay (SSA) [3] is a successful candidat巴
for hands-free speech recognition，組d SSA is specifica11y de­
signed for a speech recognition application. In SSA， noise re­
duction is achieved by subtracting the estimated noise power 
spec汀um by NBF from the power spectrum of noisy observa­
tions in mel-sca1e filter bank domain目Since a common speech 
recognizer is not so sensitive to phase infoロnation， SSA which 
is performing subtraction processing only in the power spec汀um
domain is more applicable to the sp巴ech r巴cognition， and it is 
reported that the speech recognition performance of SSA out­
perfoロns those of DS and GJ [3]. In SSA， noise estimation is 
performed by NBF which has decent performance under ideal 
conditions. However， NBF sustains th巴 negative affection by 
microphone-element error and room reverberations. Therefore， 
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Fig. 1. Block diagram of conventional SSA. 

in the real environment where the element e汀or and the rever­
beration 紅e a1ways included， the perfoロnanc巴 of SSA signifi­
cantly decreases because the noise-estimation accuracy by NBF 
decreases. 

In this paper， we propose a new SSA structur巴 which re­
places NBF-based noise estimator with ind巴pend巴nt component 
analysis (ICA)[4]-based noise estimator. ICA is a technique for 
source separation bas巴d on independence among multiple source 
signals. In acoustic source separation scenarios， ICA can also 
ex汀act each source signal only using observed signals at the mi­
crophone array， and ICA does not require characteristics about 
S巴nsor elements and the rev巴rberation. Therefore， it is well ex­
pected that ICA can adapt its own separation filters to the ele­
ment e汀or and the reverberation. Accordingly the adverse e仔ect
by the element eπor and the reverberation can be mitigated in 
the proposed ICA-based noise estimator. Real-recording-based 
simulations are conducted， and we can indicate that the proposed 
method outperforms the conventional SSA on th巴 basis of speech 
recognition performances. 

2. CONVENTIONAL SPATIAL SUBTRACTION ARRAY 

2.1. Overview 

The conventional SSA [3] consists of a DS-based primary path 
and a reference path via the NBF-based noise estimation (see 
Fig. 1). ηle estimated noise component by NBF is efficiently 
subtracted from the primary path in the power spectrum domain 
without phase information. In SSA， we assume that the target 
speech direction and speech br巴ak interval are known in advance. 
Detailed signal processing is shown below 

2.2. Partia1 speech enhancement in primary path 

First， the short-time analysis of obs巴rv巴d signals is conducted by 
a台ame-by-frame discrete Fourier transform (DFT). By plotting 
the spec甘al values in a frequency bin for each microphone in­
put frame by frame， we consider these values as a time series. 
Hereaft巴r， we designate the time series as 

X(f， T) = [ X1 (f， T)， • • • ，X，(f， T)f， )
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where J is the number of microphones， / is the仕equency bin 
and T is the frame number. Also， X(f， T) can be rewritten as 

X(f， T) = A(f) (S(f， T) + N(f， T))， 

S(f， T) = [0，...，0， S u(f， T)， 0，...， O]T， 
、ーー、� 、ーー、..--'

U-l K-U 

N(f， T) = [N1(f，T)，..句NιJJ，T)， 0， NU+1 (f， T)，..吟NKぴ: T)]T， (4) 

where Aげ) is a mixing matrix， S(f， T) is a target speech signal 
vector， N(f， T) is a noise signal vector， U expresses the target 
sþeech number， and K is the number of sound sources. 

Next， the target speech signal is partly enhanc巴d in advance 
by DS. This procedure can be given as 

YDS(f， T) = Wbs(刀X(f， T) 

= Wbs(f)A(f)Sぴ，吟+ Wbs(刀A(刀Nぴふ (5) 
Wos(f) = [W�osV)，...， W;o釘(f)]T， (6) 

wfsトj以p(一阿/M)/sdj叫/c)， (7) 
where Yos(/， T) is a primary-path output which slightly e凶ances
the target speech， Wos(f) is a filter coe節cient vector of DS， M 
is the DFT size， /s is sampling frequency， dj is a microphone伊­
sition， and c is sound velocity. Besides， (}u is a known direction­
of-arrival (DOA) of the target speech. In Eq目(5)，the second term 
in the right-hand side expresses the rem釦ning noise in the output 
of the primary path. 
2.3. Noise estimation in reference path 

In the reference path， we estimate the noise signal by using NBF. 
This procedure is given as 

ZNBF(f， T) W�BF(f)X(f， T)， (8) 

WNBF(f) {[I，O]・[a(f，(}o)，a(f，(}U)tlT， (9) 
a(f，θ) [al (f， (})， . . . ，aJ(f， (})]T， (10) 

aj(f， (}) E叩(伽(f/M)λdj sin θ/c)， (11 ) 

where ZNBF(f， T) is the estimated noise by NBF， WNBF(f) is a 
NBF-白It巴r coe飴cient vector which steers出e directional null in 
the direction of the DOA of the target speech， (}u， and steers unit 
g出n in the arbitrary direction (}o( * (}u). a(f， (}) is a steering vec­
tor which expresses phase information of the sound source arriv­
ing from the direction (}. Besides， M + denotes Moore-Penrose 
pseudo inverse matrix of M. This processing can suppress the 
target speech arriving from (}u， which is equal to an extraction 
of noises from sound mixtures if we take into account affec・
tions of sensor eπors and reverberations. Thus we can esti­
mate the noise signals by NBF under ideal conditions. Note 
that ZNBF(f， T) is the function of the frame number T， unlike 
the constant noise prototype estimated in the traditional spectral 
subtraction method [5]. Therefore， SSA can deal with a non-
statlOnary nOIse 
2.4. Mel-scale fiIter bank岨alysis

SSA includes mel-scale filter bank analysis，加d outputs mel・
合equency cepstrum coefficient (MFCC) [6]. The triangular win­
dow W mel (k; 1) (1 = 1，"'， L) to perform mel-scale filter bank 
analysis is designat巴d as follows: 

( /一点。(1)|一一一一一一 切。(1)三/5.!c(l))，J !c(I)ーん(1)Wmel(f，I) = i ん(1) :_ f | 一一一一T， (Jc(l)三/5.ん(1))，l ん(1) - !c(l) 
(12) 

where五0(1)， /c(l)， and ん(1) are the lower， center， and higher fre­
quency bins of each triangle window， respectively. They satisfy 
the relation among adjacent windows as 

!c(l) =ん(1-1)=ん(1 + 1). (13) 

Moreover， !c(ηis町anged in regular intervals on mel-frequency 
domain. Mel-scale frequency MeIJdl) for !c(l) is calculated as 

(2) 
(3) 

( . !c(ハfs 1 Mel ，_，ハ = 25951011 "、 < 1 + 一二��JC\' ) ---- --0 山 \ _ 700・MJ (14) 

2.5. Noise reduction processing 

In SSA， noise reduction is c制百ed out by subtracting the estト
mated noise power spec汀um仕om the partly enhanced target 
speech power spec町um in the mel-scale filter bank domain as 

m(l， T) = 

エ W肌凡melυ(f川川川; 1刈刈1)川1){jY1
1=1斤5ο(/)

( iげf IY1九'os(げ/，T竹寸)12一αa(l) • β .IZIゐNB肝F(f，T竹)12 主 0 )， ， 

エ W仇凡m耐elιU仇;刈刈η川{付γ |陥YOω T川)1川|リ)(似o飢仙t山he問附1則
1=11，ο(。

(15) 
where m(l， T) is出e output from the mel-scale filter bank. The 
system switches in two equations depending on出e conditions in 
Eq. (15). m(l， T) is a function of the over-subtraction parameter 
βand the parameterα(1) which is determined during a speech 
break so that the resultant output m(l， T) is zero. On the other 
hand， if the power spectrum takes a negative value， m(l， T) is 
obtained by using f100ring processing， where y is the自ooring
coefficient 

Since a common speech recognition is not so sensitive to 
phase information， SSA which is perfo口ning subtraction pro­
cessing in the power domain is more applicable to the speech 
recognition. Moreover， in general， the order of也e fiIter bank 
1 is set to 24， and consequently SSA optiπl.Ìzes only 24 param­
巴ters. On the other hand， GJ requires the adaptive leaming of 
FIR-filters of thousands or millions of taps. Finally， w巴perforrn
mel-scale filter bank組alysis， log仕組sforrn and discrete cosin巴
transform to obtain恥1FCC for speech recognizer. 

3. PROPOSED METHOD 

3.1. Error robustness analysis for noise estimation by NBF 

In this s氏tion， we discuss the problem of th巴 conventional SSA 
The NBF-based noise estimator is used in the conventional SSA， 
but NBF suffers from the adverse 巴ffect of the microphone el­
ement e汀or and the room reverberation. NBF is a technique 
to suppress an mt巴rf，巴rence source signal by g巴nerating a null 
against the direction of the interference source signal. If the in­
terference source signal arrives from the same direction as the 
null， we can suppress the interference source signal perfectly 
1n a reverberant environment， however， the interference source 
signal arrives from not only the null's direction but also outside 
of the direction. Therefore， in the reverberant room， we can­
not suppress the interference source signal sufficiently. In ad­
dition， a microphone element usually involves gain and phase 
E汀ors. NBF is designed under the ideal assumption that all el­
ements have the same characteristics. In the real environment， 
however， the characteristics of each element are di仔'erent. From 
the above-mentioned fact， the dir巴ctivity pattem shaped by NBF 
in the ideal environment is apa口from that of in the r巴al env汀on­
ment 

Figure 2 illustrates dir巴ctivity pattems which are shaped by 
two-element NBF in the ideal (solid line) and the real (dotted 
line) environment where the reverberation time is 200 ms. In this 
fig町e，白e n凶1 directio日is set to zero degree. We can see that 
the depth of the null in the real environment which cont創ns the 
element e汀or and the reverberation shallows. Therefore， we can­
not suppress the interference source signal completely in the real 
environment by using NBF. Indeed， in SSA， we perfoロn nOlse 
estimation via NBF which steers null against the target speech 
signal， but we c釦not suppress the t紅get speech signal suffi­
ciently. In fact， NBF cannot estimate noise signal completely 
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Fig. 2. Directivity pattems shaped by NBF in ideal environment 
and real environment which contains element 巴πor and reverber­
atlOn. 

Reference Path 

Fig. 3. Block diagram of proposed method. 

Thus the improvement of robustness in the noise estimator p紅t
is a problem demanding prompt attention. 

3.2. Strategy of proposed method 

We propose an improved SSA which includes ICA-based noise 
estimator instead of NBF-based noise estimator to address the 
problems which are discussed in the pr巴vious section. In the pro­
posed method. the primary path and noise r巴duction processing 
are the same as the conventional SSA. As for the reference path. 
we newly introduce ICA as a robust noise estimator for adapting 
the filters to the element error and the reverberation (see Fig. 3). 
In ICA. an unmixing matrix is optimized so that output signals 
become mutually independent only using observed signals. and 
a priori information about the sensors and the room acoustics is 
not required. Therefore the proposed method can reduce these 
adverse e仔"ects because ICA can estimate noise signals which in­
volve whole characteristics of the microphone elements and the 
reverberation. D巴tailed signal processing is shown below. 

3.3. ICA・based noise estimation in reference path 

The proposed method includes ICA-based noise estimation. In 
ICA part. we perform signal separation using the complex valued 
unmixing matrix WrcA(j). so that the output signals O(j. r) = 

[01 (j. r). . . . .0 ，(f. rW become mutually independent; this pro­
cedure can be represented by 

。(f. r) = W(f)X(f. r). (16) 

W(j) = P(j)W1CA(j). (17) 

where P(f) is a permutation matrix and W(j) is a new unmixing 
matrix which resolves the permutation problem. The permuta­
tion matrix P(f) is determined by look.ing at null directions in 
the directivity pattem which is shaped by W1CA(f) [1]. so that 
the U-th output Ou(f. r) is set to the target speech signal. The 
optimal W1CA(f) is obtained by the following iterative updating 
equation [7]: 

WELll(刀=μ [1ー〈φ (O(f. r)) OH(f. r)>， 1 W:広げ)

+W:広(f). (18) 
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Fig. 4. Layout of reverberant room used in our experiment. 

where μis the step-size paramete仁[p] is used to express the 
value of the p-th step in the iterations. and 1 is an identity ma­
trix. Besides. 0， denotes a time-averaging operator. MH de­
notes conjugate transpose of matrix M. and φ(・) is the appropri­
ate nonlinear vector function [1]. In the reference path. the t訂p
get signal is not required because we want to estimate only the 
noise component. Accordingly w巴 remove the separated spe巴ch
component Ou(j. r) from ICA outputs O(j. r). and construct the 
following“noise-only vector. 

.. Q(f. r); 
Q(f.r) = [01抗r). ...• OU-I (f. r). O. OU+I (f. r). ...• O，(f.の]T. (19) 

Next. we apply th巴 pr句ection back (PB) [8] method to remove 
the ambiguity of amplitude. This procedure can be written as 

E(f. r) = W+(j)Q(f. r). (20) 

Here. Q(j. r )  is composed of only noise components. Therefore. 
E(j. r) is a good estimation of the received noise signals at the 
microphone positions; 

E(f. r) "" A(j)N(j. r). (21 ) 
Finally. we obtain the estimated noise signal ZICA(f. r) by per­
forming DS as follows: 

ZICA(f. r) = WÒs(f)E(f. r) "" WÒs(f)A(f)N(f. r). (22) 

Equation (22) is expected to be equal to the noise term ofEq. (5) 
in the primary path. Of course. Eq. (22) cont副ns estimation er­
rors to some extent. Even though th巴 level of the noise estimation 
E汀or is not negligible. we can still enhance the target speech via 
over-subtraction [5] in the power spectrum domain. 

4. EXPERIMENTS AND RESULT 

4.1. Experimental setup 

Figure 4 shows a layout of the reverberant room used in our ex­
periments. We use the following 16 kHz sampled signals as test 
data; the original speech convoluted with the impuls巴 responses
recorded in the real environment. and added with a cleaner noise 
which was recored in th巴 real environment. The cleaner noise is 
not a point source but consists of several non-stationary noises 
emitted from. e.g.， a motor. air duct and nozzle. Moreover the 
cleaner noise includes background nois巴 The input signaトto­
noise ratio (SNR) is set to 5. 10. or 15 dB at the array. A four­
巴lement array with the int巴relement spacing of 2 cm is used. and 
DFT size is 512. Over-subtraction parameterβis 1.4 and fioor­
ing coe筒cient y is 0.2. 

4.2. Accuracy of estimated noise signal 

First. we analyze the directivity pattem shaped by ICA in the 
real environment. Figure 5 depicts the directivity pattem of ICA 
(broken line) in the real environment. From this result， we can 
confirrn that the null shaped by ICA becomes deep compared 
with that of the NBF-based conventional SSA. Therefore， it is 
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expected that the target speech suppression performance of ICA 
(equals the accuracy of the noise estimation) outperforms that of 
NBF. Next， we compare the conventional SSA and the proposed 
method in the accuracy of the estimated noise signal. Figure 6 
shows the long-term-averaged power sp巴ctra of the estimated 
noise signals by NBF and ICA. The black solid line indicates 
the power spectrum of th巴 noise signal in the primary pa出，and 
this power spectrum is needed to be estimated. The gray solid 
line represents the power spectrum of the estimated noise signal 
by NBF， and the dotted line shows the power spectrum of the es­
timated noise signal by ICA. We can see that the power spec回m
of the estimated nois巴 signal by NBF is not accurate. This is due 
to that the t訂g巴t sp巴巴ch component still r巴m釦ns in the output of 
NBF because the null shaped by NBF is shallow. On the other 
hand， we can see that the power spec汀um of the estimated noise 
signal by ICA is a good estimation b巴cause the d巴pth of the null 
shaped by ICA is enough for suppressing the target speech. This 
result points out that ICA-based noise estimator is a more accu­
rate noise estimator than NBF-based one. This gives propriety 
in which we us巴ICA as a noise estimator 

4.3. Results of speech recog凶tion performance 

We compar巴 DS， the conventional SSA， and the proposed method 
on the basis of word accuracy scores. Table 1 describes the con­
ditions for speech recognition， and we use 46 speak巴rs (200 sen­
tences) as original speech. Figure 7 shows the word accuracy in 
each method. Here， “Unprocessed " refers to the result without 
any noise reduction processing. From this result， we can see that 
the word accuracy of the proposed method is obviously supe­
rior to those of the conventional methods. This is a prornising 
evidence that the proposed method has an applicability to noise­
robust speech recognition rather than the conventional SSA 

1rable 1. Conditions for speech re∞gmtlOn 

Database I n可AS [9)， 306 speakers (150 
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Fig. 7. Results of word accuracy in each method. 

5. CONCLUSIONS 

In this pap巴r， we proposed a new SSA which involves ICA-based 
noise estimation to realize a robust hands-f民e speech r巴cogni­
tion in noisy environments. First， we pointed out NBF suffers 
from the adverse effect of the element e汀or and the reverber­
ation in th巴 real environment. S巴condly， based on the above­
mentioned fact， we proposed a new SSA structur巴 which re­
places NBF-based noise estimator in the conventional SSA with 
ICA-based noise estimator. Finally， it was confinned也at白E
word accuracy of the proposed method overtook that of the con­
ventional SSA in the experiment. 
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