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Hands-Free Robot Spoken Dialogue System
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Abstract—In this paper, we construct a hands-free robot
spoken dialogue system based on the real-time blind spatial
subtraction array (BSSA) and evaluate the system. BSSA is the
blind source extraction method, and the source extraction in
BSSA is carried out by subtracting the power spectrum of the
estimated noise signal by the independent component analysis
from the power spectrum of the target speech partly enhanced
signal. Although BSSA can reduce noise signal efficiently, ICA
consumes huge amount of computational costs. Thus it is
difficult to run BSSA in real-time. In this paper, we newly
propose a real-time architecture of BSSA and construct a
hands-free robot spoken dialogue system based on the real-time
BSSA. In the hands-free robot spoken dialogue system with the
real-time BSSA, 6% improvement of the speech recognition
result can be seen compared with the conventional speech
enhancement methods.

1. INTRODUCTION

A hands-free speech recognition system is essential for
realizing an intuitive, unconstrained, and stress-free human-
machine interface, especially in human-robot speech inter-
action [1]-[3]. In this system, however, it is difficult to
achieve a high recognition accuracy because noise and the
reverberation always deteriorate a target speech quality.

One approach to address the problem is to separate the
observed signals into each source signal by blind source
separation (BSS) technique. BSS is the approach to estimate
the original sources using only information of the observed
signal in each microphone. Basically, BSS is classified as
an unsupervised filtering technique, and does not require
any supervisions on directions-of-arrival (DOAs) and target-
speech pause where only noise exists. Recently, various
methods of BSS based on independent component analysis
(ICA) [4] have been presented on acoustic-sound sepa-
ration [S5]-[8]. Indeed the conventional ICA could work
especially in speech-speech (or point sources) mixing, but
such a mixing condition is very rare and not realistic; real
noises are often widespread sources. In such a sound mixing
condition, we have found that ICA is proficient in noise
estimation rather than in target speech estimation [9]. Based
on the above-mentioned fact, we have proposed a novel
blind source extraction method, i.e., blind spatial subtraction
array (BSSA) which utilize ICA as noise estimator [9]. In
BSSA, source extraction is achieved by subtracting the power
spectrum of the estimated noise via ICA from the power
spectrum of the noisy observations.
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Fig. 1. Directivity pattern which is shaped by ICA.

To work in real-time is one of the indispensable factor for
a hands-free speech recognition system. Indeed BSSA can
reduce noises efficiently, BSSA is difficult to work in real-
time because ICA part of BSSA consumes huge amount of
computational complexities. Thus, it is required to develop
a real-time architecture of BSSA.

In this paper, we newly propose the real-time architecture
of BSSA and implement the real-time BSSA. Moreover, we
introduce the implemented real-time BSSA into the spoken-
oriented guidance system “Kitarobo” which has already
been installed at an actual railway station, and construct a
hands-free spoken dialogue system. Although many real-time
robot audition systems have been proposed [3], the behavior
and performance are not explicitly analyzed under heavy
widespread noise condition, e.g., an actual railway-station, as
far as we know. Finally, we evaluate the constructed hands-
free spoken dialogue system with the real-time BSSA based
on the speech recognition test, and 6% improvement of the
speech recognition result can be revealed compared with the
conventional speech enhancement methods.

II. BLIND SPATIAL SUBTRACTION ARRAY

A. Motivation

Generally speaking, the conventional ICA could work
particularly in speech-speech mixing, i.e., all sound sources
can be regarded as point sources, but such a mixing condition
is very rare and unrealistic; real noises are often widespread.
Thus, the following scenario and problem are likely to arise
(see Fig. 1),

- The target sound is user’s speech, which can be ap-
proximately regarded as a point source. In addition, the
user locates themselves relatively close to the micro-
phone array (e.g., 1 m apart), and consequently the
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Fig. 3. Separation results in our preliminary experiment

accompanying reflection and reverberation components
are small.

« As for the noise, we are often confronted with interfer-
ence sounds which are nor point sources but widespread
sources. Also the noise is usually far from the array and
heavily reverberant.

From the above-mentioned scenario, it is expected that the
conventional ICA can suppress the user’s speech signal to
pick up the noise source, but ICA is very weak in picking
up target speech itself via suppression of the far-located
widely-spread noise. This is due to the fact that ICA with the
small number of sensors and filter taps often provides only
directional nulls against the undesired source signals [8].

To confirn this fact, we have conducted preliminary
source separation experiment under an actual railway-station
condition. Figure 2 illustrates the layout of the railway-
station in this experiment, where the reverberation time is
1000 ms. We use 46 speakers (200 sentences) as the target
speech. As for noise, we used an actually recorded railway-
station noise. Figure 3 shows the result for the average SNR
improvement of all the target speakers, and from this result,
we can confirm that ICA is proficient in noise estimation
rather than in target speech estimation. This result gives us
an unfortunate conclusion that ICA is nor proficient in speech
enhancement in such a diffuse noise environment. However,
this also implies that we can still use ICA as an accurate
noise estimator even under reverberant conditions.

Based on the above-mentioned fact, we have proposed
BSSA that utilizes ICA as a noise estimator [9]. In BSSA,
source exwraction is achieved by subtracting the power spec-
trum of the estimated noise via ICA from the power spectrum
of the target speech enhanced observed signal via delay-and-
sum (DS). The detailed signal processing is shown below.

B. Basic Principle of BSSA [9]

The block diagram of the BSSA is shown in Fig. 4. BSSA
consists of two paths; a primary path which is DS-based

pemeennne Primary path ........, 3

Phase H
User's speech compenseation H m(LT)
BT {
F nlf1)
: T "W)E. MFCC(x%)
Noise

Fig. 4. The block diagram of the off-line BSSA

target speech enhancer, and a reference path which is ICA-
based noise estimator. Finally, we obtain the target speech
extracted signal based on spectral subtraction [10].

First, the observed signal vector in time-frequency domain
is defined as

x(f, 1) = [a(f ). x0T, (1

where x(f, 7) is the observed signal vector, f is the frequency
bin, 7 (=0, 1,2,...) is time frame index, and J is the number
of microphones. In the primary path, the target speech is
partly enhanced via DS; the procedure can be given as

yos(f, 7) = gps(f, u) x(f, ), @)
gos(f0) = PV (£,6),..., eV, 01T, 3)

1
gP0f.0) = 5 exp (-i2n(fIM)fid;sing/c),  (4)

where gps(f, 6) is the coefficient vector of DS array, and 6y
is the look direction which is estimated by the uamixing
matrix optimized by ICA [11]. Also, f; is the sampling
frequency and d; (j = 1,---,J) is the microphone position.
Besides, M is the DFT size, and c is the sound velocity.

In the reference path, the ICA-based noise estimation is
performed. First, we perform signal separation using the
complex valued unmixing matrix Wica (f), so that the output
signals o(f,7) = [01(f,7),...,0k(f, 7)1 become mutually
independent; this procedure can be represented by

o(f,7) = Wica(N)x(f, 1), (5)
WiCA) (1) WIN 5)

Wica(f) = : : . 6)
Wer () Wes ()

Also, the unmixing matrix is updated iteratively by
W) = k(I - Ele(o(f, o (f, D] WiEL ()
+ w2 (N, )

where u is the step size parameter, [p] is used to express
the value of the p-th step in the iterations, I is an identi
matrix, and E[] is the expectation operator. Besides, M
denotes hermitian transpose of matrix M, and ®(:) is the
appropriate nonlinear vector function [7].

In the reference path, it is only required to estimate noise
component. Thus, the target signal component oy (f, T) is re-
moved from the output signal vector o(f, 7). This processing
can be designated as

q(f’ T) = [01 (.fi T)’ ey OU-X(.fv T): 0,
ovn(f, 7)., oD (8)
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Next, we apply the projection back (PB) [6] method to
remove the ambiguity of amplitude. This procedure can be
represented as

§(f. 1) = Wica(Na (£, 1), ©)

where M* denotes Moore-Penrose pseudo inverse matrix of
M. Next, we obtain the estimated noise signal z(f,T) by
performing DS as follows:

A7) = gps(HA(S, 7).

Note that z(f, 7) is the function of the frame number 7, unlike
the constant noise prototype estimated in the traditional
spectral subtraction method [10]. Therefore, BSSA can deal
with nonstationary noise.

Finally, source extraction is achieved by spectral subtrac-
tion as follows

(10)

{bosth o - 8- k(r. )
(if bos(f, P -B-lzf, T 20)
v lyps(f,7)| (otherwise),

yBssa(fy 7) =

1n

where ygssa(f, 7) is the final output BSSA, B is the over-
subtraction parameter, and y is the flooring parameter. The
appropriate setting, e.g., 8> 1 and y < 1, gives an efficient
noise reduction.

III. ReAL-TIME IMPLEMENTATION OF BSSA
A. Overview

DS, spectral subtraction, and separation filtering in BSSA
are possible to work in real-time. However, it is toilsome to
optimize (update) the separation filter in real-time because
the optimization of the unmixing matrix by ICA consumes
amount of computational costs. Therefore, we will introduce
a strategy in that the separation filter optimized by using the
past time period data is applied to the current data. Figure 5
illustrates a configuration of a real-time implementation for
BSSA. Signal processing in this implementation is performed
via the following manner.

1) Inputted signals are converted into time-frequency do-
main series by using a frame-by-frame fast Fourier
transform. (FFT).

2) ICA is conducted using the past 1.5-s-duration data for
estimating separation filter while the current 1.5 s. The
optimized separation filter is applied to the next (not
current) 1.5 s samples. This staggered relation is due to
the fact that the filter update in ICA requires substantial
computational complexities and cannot provide the
optimal separation filter for the current 1.5 s data.

3) Inputted data is processed in two paths. In the pri-
mary path, target speech is partly enhanced by DS.
In the reference path, ICA-based noise estimation is
conducted. Again, note that the separation filter for
ICA is optimized by using the past time period data.

4) Finally, we obtain the target-speech-enhanced signal by
subtracting the power spectrum of the estimated noise
signal in the reference path from the power spectrum
of the primary path’s output.

5/6[7]8]9]10] ++ -
1 -----

time index T

o[1]2]3]4
block index T 0

Fig. 6. Relation between time index and block index (/sample = 5 case).

Although the separation filter update in the ICA part is not
real-time processing but involves totally a latency of 3.0
seconds, the entire system still seems to run in real-time
because DS, spectral subtraction and separation filtering can
work in the current segment with no delay. In the system, the
performance degradation due to the latency problem in ICA
is mitigated by oversubtraction in the spectral subtraction.
Detailed real-time signal processing is shown below.

B. ICA part in real-time algorithm

In the ICA part of this algorithm, a sequential time-
series input is divided into fixed-length blocks, and ICA is
performed in each block. The number of samples in one
block, lgmpre, is defined as

l _i‘lsecfSJ
sample = [ |»

T shie (12)

where l,. is block length in seconds (we use 1.5 s in
this paper), Tshiri is frame shift size for short-time Fourier
transform, and {-] is the floor function. Thus, a set of time
frame index belonging to a block b (= 0,1,2,...), Tp, can
be given as

(13)

Figure 6 shows the relation between a time frame index and
a block index, where, e.g., Lampie = 5.
The unmixing matrix for a block b, W%E)A(f), is optimized

by the following iterative update equation:

[WISA)] ™™ = il - @(6(f, 6" (F, Der, ] [WSA )]

[p]
+[wgrn]” (14)
where (:);er, is the time-averaging operator which is local-
ized within block Ts, and 6(f, 1) = [6:(f,7),...,0x(f, DIT
is the temporal separated signal vector given as

o(f,7) = Wit (Nx(fi1)  (TETy). 15)

Here, if the average power of the specific block b is very
small, the unmixing matrix should not be updated because
the low-power block which does not contains any dominant
signals leads to an unstable convergence of the unmixing
matrix. Thus, we do not update the unmixing matrix in such
a block b if the average power of the block b is very small.
This can be represented by

WEAH) = WA () (F (xS, )P rer, < thpow),

where thy,, is the threshold for the average power.
Moreover, the initial value of the unmixing matrix in the
optimization at each block is represented by

o _ {winiu'al(f ) Gf bmod breger = 0),

Tp={7|b lampe ST <(b+ 1) kample}-

(16)

ICA
[W(b) (f)] - W%bcﬁ)(f) (otherwise), an

where breser is the reset period of the unmixing matrix,
and Wiy (f) is the initial value of the unmixing matrix
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Fig. 5. Signal flow in real-time implementation of proposed method.

given in advance. This initial value is ordinarily generated
using the observed signal via some methods, e.g., principle
component analysis or beamformning. Thus, the optimized
unmixing matrix is reset into the given initial value every
brcset blOCks.

Furthermore, we can estimate DOAs from the unmixing
matrix W}E)A(f ) [11]. This procedure is represented by

WICA

(Wt o],/ [wighan™],,,
2nfsc‘1(dj = dj') ’

where 6,5 is the DOA of the u-th sound source in the block b.
Then, we choose the U-th source signal which is the nearest
the front of the microphone array, and designate the DOA of
the chosen source signal as 6y, in this paper. This is because
almost all users often stand in front of the microphone array
in a spoken-oriented human-machine interface.

Bup = sin” (18)

C. Noise reduction part in real-time algorithm

Noise reduction is carried out according to the following

three steps;

1) First, we perform DS beamforming to enhance the
target signal (primary path).

2) Next, we estimated noise signal based on ICA (refer-
ence path).

3) Finally, we obtain the target speech enhanced signal by
subtracting the power spectrum of the estimated noise
from the power spectrum of the primary path’s output.

In the primary path, DS is performed to enhance the target

speech signal. This procedure can be represented by

Yoy . ) = gbs (s Bup-)x(fi7) (TeTs),  (19)

where yDb (f,7) is the primary path’s output in a block &.
In the reference path, first, the signal separation is per-
formed. This can be designated as

o (f, 1) = Wk (Nx(f,7) (T € Ty), (20)

where o) (f, T) = [015(f, T .., 0k (f, T)]T is the separated
signal vector in a block b. Next, we obtain the estimated
noise signal in a block b, z)(f, 7), as

2o (f. 1) = ghs(f. 0us-) [WISA (D] 40y (1) (T € Th),
@1

[Ova(f, T), 500

0U¢l.b(f' .- .z

,ou-1p(f,7),0,
» OK.b(f’ T)]T»

qQp(fi7) =
(22)

where g,(f,7) is the vector in which the target speech
component is removed.

Finally, we obtain the target speech enhanced signal
yggs"(f, 7) by spectral subtraction. This can be given as

PRADE =B e DR
(if (. D =B ey, DI 2 0)
v DRy (iTl  (otherwise).

)u,)SA(f T)=
(23)

In (19) and (21), note that we have only to use the
estimated DOA and the optimized unmixing matrix in the
previous block b — 2. This is due to data buffering and
optimization process for ICA. ICA optimization requires
a certain length of data, e.g., 1.5 s. data. Thus, we must
buffer a certain length of input data for ICA optimization.
Consequently, ICA optimization just starts after the buffering.
Moreover, ICA optimization cannot finish in no time at
all because ICA optimization consumes huge amount of
computations. Thus ICA optimization is performed while one
block. As a result, in a current block b, we are only admitted
to utilize the separation filter optimized in the block b — 2
(see Fig. 7). By the same manner, we can only apply the
estimated DOA of the block b — 2 to a current block b.

1690

— 206 —



b-2 b-1 b

time

Input data z(f.7) (r € To-n) | 2(/,7) (r € Tp—p))| =(L.7)Ur€TQ) | oooee
Bulleting Buftering Buftering

Optimizing deta " | o(7,7) (- € To-y) | #4r) (r € Tug)] #17) (€ Ty _+ovee

\\ °"":".‘""’"’ Optimazed fite Optimizad fiter

ﬁv:j:zw::; wisA(1.7) | w:gr,,u.r)—[ WISA (1.1) | ,,,,,

perform d to the data in block 5-3. separation fiit r optimized using the
ICA optimization is performed to previous data in the block b-2. Moreover, the

in the block 5-2, ICA optimization s In the bicok b, we can use the
block data while a current block. optimization is performed in the block 5-1.

Fig. 7. Configuration of updating separation filter.

Generate
d Information

esponse
erator

ISpeachueoqnnbnl I Text to speech l

Real-time BSSA

Microphone array

Fig. 8. Overview of hands-free robot spoken dialogue system with real-time
BSSA.

IV. Hanps-FreEe RoBoT SPOKEN DIALOGUE SYSTEM WITH
ReaL-TME BSSA

A. Overview

We introduce the real-time BSSA into the robot spoken
dialogue system “Kitarobo” [12] which has already been
installed in an actual railway station. In this paper, we replace
the input device of Kitarobo, i.e., a close-talking microphone,
with the real-time BSSA to construct the hands-free robot
spoken dialogue system. Figures 8 and 9 show an overview
and appearance of the hands-free robot spoken dialogue
system with the real-time BSSA. Unlike the conventional
Kitarobo, the input device is substituted with the real-time
BSSA. Details of Kitarobo is described in the following
subsection.

B. Robot Spoken Dialogue System “Kitarobo”

The spoken-oriented guidance robot “Kitarobo™” is working
in an actual railway station since end of March 2006. The
system is installed besides the ticket gate and is adjacent to
each other. Everybody can use the systems while the station
is open. Since the station faces to a road, an automobile
engine sound and sound of a bus hom are also inputted
to the system. Kitarobo provides guidance information to
visitors regarding issues on the station or around the station
without resting. The input device of the original Kitarobo
is a close-talking microphone. Thus the original Kitarobo is
not a hands-free system and is weak against the surrounding
noises. Reference [12] helps you to understand further details
of Kitarobo.

V. EXPERIMENT AND RESuULT
A. Simulating railway-station noise

The main task of Kitarobo is a station guidance, and
always working in an actual railway-station. Thus, it is

Display for guid;

Robot agenet

Fig. 9. Appearance of our hands-free robot spoken dialogue system with
real-time BSSA.
55m

i |
r 1

I ﬁ Interference loudspeakers |
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Reverberation time: 400 ms

Fig. 10. Layout of reverberant room in our experiment.

difficult to conduct various BSSA experiments in an arbitrary
time. Therefore, we have a necessity to construct the noise
environment simulator of railway-station for experiments. To
solve the problem, we have constructed the experimental
room for hands-free spoken dialogue system with the real-
time BSSA. The experimental room contains Kitarobo with
the real-time BSSA and railway-station noise simulator. The
noise simulation is performed in the following;

1) Record noises in an actual railway station. In the
experiment, eight-channel directional microphones are
used to record the multi-channel railway-station noise.

2) Playback the multi-channel recorded railway-station
noise by eight surrounded loudspeaker (see Fig. 10).

This noise consists of various kinds of interference noises,
namely, background noise, sounds of trains, ticket-vending
machines, automatic ticket wickets, foot steps, cars, and
wind. In addition, this noise is highly nonstationary.

B. Experimental Setup

To evaluate the hands-free spoken dialogue system with
the real-time BSSA, the speech recognition test was con-
ducted. Figure 10 depicts a layout of a reverberant room
in our experiment where the reverberation time is about
400 ms. The following real-recored 16 kHz-sampled signals
were used in the experiments. The target signal is user’s
speech which is talked in front of a microphone array and
1.5 m apart from the armray. As for noise, two noises were
added simultaneously. First noise is the real-recored noise in
an actual railway-station noise (it simulates railway-station
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noise) emitted from surrounded 8 loudspeakers. Second noise
is an interference speech located at 50 degrees in the right
direction of the microphone array, and its distance is 2.0 m.

We use 5 speakers (250 words) as target user, and
Julius [13] ver. 4.0 RC2 as speech decoder. A eight-element
array with the interelement spacing of 2 cm is used. The
array consists of directional microphone SHURE MX-184.
DFT size is 512 points, window length for ICA is 256 points,
and window shift size is 128 points in the experiment. The
proposed real-time BSSA is run on Intel Xeon X5355 with
2.66 GHz and requires 64 Mbytes RAM. However, we have
succeeded at the real-time implementation of ICA on general
purpose DSP [14]. The computational complexity of the
proposed real-time BSSA is almost the same as the real-
time ICA, i.e., DS and spectral subtraction are only added
compared with the real-time ICA. Thus, it can be expected
that the real-time BSSA is also implemented on general
purpose DSP. Besides, RME Hammerfall DSP Multiface is
used for 8-channel AD/DA.

The algorithm delay only depends on the following; (a)
DS filtering, (b) noise estimation by the separation filter,
and (c) hardware limitation for reading size of the input
signal. Although ICA optimization is parallelly performed,
the optimization result cannot be applied to current block.
Thus, ICA optimization does not yields the algorithm delay.
In DS and the separation filter, for reducing the effect of the
circular convolution, the main pulse of the filter is located
at the center of the filter. Thus, the resultant signal of the
filtering is delayed, and its delay is the half of the filter
length. Note that the noise estimation is performed in parallel
with DS. Therefore, the total delay of DS filtering and noise
estimation is also the half of the filter length. Moreover, the
hardware limitation for reading size of the input signal exists.
In the experiment, the signal can be read with 512 points.
Consequently, the algorithm delay of the final output can be
given by

Delay [points] = Read size + Filter Size/2. 24)
Now, since we use 512-point filter, the algorithm delay of
the final output of the real-time BSSA is 768 points. This
corresponds to 48 ms delay with 16 kHz sampling.

C. Experimental result

We compared DS, the conventional ICA, and the proposed
real-time BSSA on the basis of the speech recognition test.
Figures 11 shows speech recognition result. From this result,
we can see that both the word correct and word accuracy
of the proposed BSSA are obviously superior to those of
DS and the conventional ICA. In particular, 8% (in word
correct) or 6% (in word accuracy) improvement of the speech
recognition result can be confirmed. Thus, it is a promising
evidence that the response accuracy of the spoken dialogue
system will be increased with the real-time BSSA.

The demonstration movie of the constructed hands-free
spoken dialogue system with the real-time BSSA is available
in the following URL.

Demo: http://spalab.naist.jp/database/Demo/rtbssa/

I Single microphone [J DS
ICA W Proposad BSSA

Word correct [%]
Word accuracy %]
”
o

Fig. 11. Result of speech recognition test in (a) word correct, and (b) word
accuracy.

V1. CoNcLUSION

In this paper, we propose the real-time architecture of
BSSA which is our previously proposed blind source extrac-
tion method. Also, we introduce the real-time BSSA into
spoken-oriented guidance system “Kitarobo”, and construct
the hands-free robot spoken dialogue system. Finally, we
evaluate the constructed system based on the speech recogni-
tion test. As a result, we can see that the speech recognition
performance of the hands-free spoken dialogue system with
the real-time BSSA is outperforms those of DS-, and ICA-
based hands-free spoken dialogue based systems. Thus, it is
expected that the response accuracy of the hands-free spoken
dialogue system with the real-time BSSA is increased.

In the future, we will inwoduce more efficient post-
filtering, e.g., Winer filter, into the proposed real-time BSSA
instead of spectral subtraction. In addition, we will try to in-
tegrate the proposed real-time BSSA and speech-recognition-
based approach, e.g. missing feature theory [3].
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