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Abstract— We newly propose a real-time two-stage blind
source separation (BSS) for binaural mixed signals observed at
the ears of humanoid robet, in which a Single-Input Multiple-
Output (SIMO)-model-based independent component analysis
(ICA) and binary mask processing are combined. SIMO-model-
based ICA can separate the mixed signals, not into monaural
source signals but into SIMO-model-based signals from inde-
pendent sources as they are at the microphones. Thus, the
separated signals of SIMO-model-based ICA can maintain the
spatial qualities of each sound source, and this yields that
binary mask processing can be applied to efficiently remove the
residual interference components after SIMO-model-based ICA.
The experimental results obtained with a human-like head reveal
that the separation performance can be considerably improved
by using the proposed method in comparison to the conventional
ICA-based and binary-mask-based BSS methods.

Index Terms— Robot audition, blind source separation, ICA,
binary masking.

I. INTRODUCTION

Blind source separation (BSS) is the approach taken to
estimate original source signals using only the information
of the mixed signals observed in each input channel. This
technique is based on unsupervised filtering in that the source-
separation procedure requires no training sequences and no a
priori information on the directions-of-arrival (DOAs) of the
sound sources. Owing to the attractive features of BSS, much
attention has been paid to the BSS technique in many fields of
signal processing. One promising example in acoustic signal
processing is a humanoid robot auditory system [l1], i.e.,
separation of binaural mixed signals observed at the ears
of the robot, which constructs an indispensable basis for
intelligent robot technology [2], [3].

In recent works of BSS based on independent component
analysis (ICA) [4], various methods have been proposed for
acoustic-sound separation [S], [6], [7], [8]. In this paper, we
mainly address the BSS problem under highly reverberant
conditions which often arise in many practical audio appli-
cations. The separation performance of the conventional ICA
is far from being sufficient in such a case because too long
separation filters is required but the unsupervised learning of
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the filter is not so easy. Therefore, one possible improvement
is to partly combine ICA with another supervised signal en-
hancement technique, e.g., spectral subtraction [9]. However,
in the conventional ICA framework, each of the separated
outputs is a monaural signal, and this leads to the drawback
that many kinds of superior multichannel techniques cannot
be applied.

To solve the problem, we propose a novel two-stage BSS
algorithm which is applicable to an augmentation of the
humanoid robot audition. In this approach, the BSS problem
is resolved into two stages: (a) a Single-Input Multiple-Output
(SIMO)-model-based ICA [10], [11] and (b) binary mask
processing [12], [13], [14] in the time-frequency domain for
the SIMO signals obtained from the preceding SIMO-model-
based ICA. Here the term “SIMO” represents the specific
transmission system in which the input is a single source
signal and the outputs are its transmitted signals observed at
multiple microphones. SIMO-model-based ICA can separate
the mixed signals, not into monaural source signals but into
SIMO-model-based signals from independent sources as they
are at the microphones. Thus, the separated signals of SIMO-
model-based ICA can maintain the spatial qualities of each
sound source. After the SIMO-model-based ICA, the residual
components of the interference, which are often staying in the
output of SIMO-model-based ICA as well as the conventional
ICA, can be efficiently removed by the following binary mask
processing. The experimental results reveal that the proposed
method can successfully achieve the BSS for speech mixtures
even under a realistic reverberant condition.

II. MIXING PROCESS AND CONVENTIONAL BSS

A. Mixing Process

In this study, the number of microphones is K and the
number of multiple sound sources is L. The directions of
arrival of multiple L sound sources are designated as 8; (I =
1,---, L) (see Fig. 1), where we deal with the case of K = L.

In the frequency domain, the observed signals in which
multiple source signals are mixed linearly are given by

X(f) = A(f)S(), M
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Fig. 1.  Configuration of a multi-microphone system in robot head and
source signals.

where X (f) = [X) : ,X;\'(f)]T is the observed signal
vector, and S( = [51 -, Se(f))T is the source signal
vector. Also, A(f) = [AH )]kt 1s the mixing matrix, where
[X]:; denotes the matrix which includes the element X in
the i-th row and the j-th column. The mixing matrix A(f) is
assumed to be complex-valued because we introduce a model
to deal with the arrival lags among each of the elements of
the microphone array and room reverberations.

B. Conventional ICA-Based BSS

In the frequency-domain ICA (FDICA), first, the short-time
analysis of observed signals is conducted by frame-by-frame
discrete Fourier transform (DFT). By plotting the spectral
values in a frequency bin for each microphone input frame by
frame, we consider them as a time series. Hereafter, we des-
ignate the time series as X (f,t) =[X1(f,1).- . Xk (f.1)]T.

Next, we perform signal separation using the complex-
valued unmixing matrix, W (f) = [Wi(f)]ik, so that the L
time-series output Y (f, t)=[Y1(f.t),---, Y..(f.t)]T becomes
mutually independent; this procedure can be given as

Y(f.t) = W(X(S.0). @

We perform this procedure with respect to all frequency bins.
The optimal W ( f) is obtained by, for example, the following
iterative updating equation:

W) = a1 - (@Y (£.)Y(£.0),|WH()
+wWH(f), 3)

where I is the identity matrix, (-); denotes the time-averaging
operator, [i] is used to express the value of the i th step in the
iterations, and 7 is the step-size parameter. In our research,
we de fine the nonlinear vector function ®(-) as [15]:
. . T

(Y (f,1) = [GJ‘arg(h(fJ))___.ey-arg(h(f‘t))] @
where arg[-] represents an operation to take the argument
of the complex value. After the iterations, the permutation

problem, i.e., indeterminacy in ordering sources, can be
solved by, e.g., [8], [16].
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C. Conventional Binary-Mask-Based BSS

Binary mask processing [12], [13], [14] is one of the al-
ternative approach which is aimed to solve the BSS problem,
but is not based on ICA. This method is basically introducing
the auditory masking effect which tells that the stronger
signal masks the weaker one. We estimate a binary mask by
comparing the amplitudes of the observed (binaural) signals,
and pick up the target sound component which arrives at the
better ear (better microphone) closer to the target speech. This
procedure is performed in time-frequency regions, and is to
pass the specific regions where target speech is dominant and
mask the other regions. Under the assumption that the [-th
sound source is close to the [-th microphone and L = 2, the
[-th separated signal is given by

Yi(f,t) = mu(f.)Xi(f.1), (5)

where m,( f,t) is the binary mask operation which is defined
as my(f,t) = 1if X((f,t) > Xe(f.t) (kK # [); otherwise
m(f,t)=0.

This method requires very few computational complexities,
and this property is well applicable to real-time processing.
The method, however, assumes the sparseness in the spectral
components of the sound sources, which is often introduced in
Computational Auditory Scene Analysis (CASA)-based BSS.
That is, in binary mask processing, it should be assumed
that there are no overlaps in time-frequency components of
the sources, but the assumption does not hold in an usual
application to the acoustic sound separation (indeed, e.g., a
mixture of speech and common broadband stationary noise
has many overlaps).

ITI. PROPOSED TWO-STAGE BSS ALGORITHM
A. Motivation and Strategy

In the previous research, SIMO-model-based ICA was
proposed by, e.g., Takatani et al. [10], [11], and they showed
that SIMO-model-based ICA can separate the mixed signals
into SIMO-model-based signals at the microphone points.
This finding has motivated us to combine the SIMO-model-
based ICA and binary mask processing. That is, the binary
mask technique can be applied to the SIMO components
of each source obtained from SIMO-model-based ICA. The
configuration of the proposed method is depicted in Fig. 2(a).
Binary mask processing which follows SIMO-model-based
ICA can remove the residual component of the interference
effectively without adding huge computational complexities.

It is worth mentioning that the novelty of this strategy
mainly lies in the two-stage idea of the unique combination
of SIMO-mode-based ICA and the SIMO-model-based binary
mask. To illustrate the novelty of the proposed method, we
hereinafter compare the proposed combination with a simple
two-stage combination of a conventional monaural-output
ICA and binary mask processing (see Fig. 2(b)) [17].

In general, the conventional ICAs can only supply the
source signals Yi(f,t) = Bi(f)Si(f,t) + Ei(f.t) (I =
1,---, L), where By(f) is an unknown arbitrary distortion fil-
ter and E(f,t) is a residual separation error which is mainly
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Fig. 2. Input and output relations in (a) proposed two-stage BSS and (b)
simple combination of conventional ICA and binary mask processing. This
corresponds to the case of K = L = 2

caused by an insufficient convergence in ICA. The residual
error £;(f,t) should be removed by binary mask processing
in the next post-processing stage. However, the combination
is very problematic and cannot function well because of
the existence of the spectral overlaps in the time-frequency
domain. For instance, if all sources have nonzero spectral
components (i.e., sparseness assumption does not hold) in
the specific frequency subband and these are comparable, the
decision in binary mask processing for Y1 (f.t) and Ya2(f,t)
is vague and the output results in a ravaged signal. Thus the
simple combination of the conventional ICA and binary mask
processing is not valid for solving the BSS problem.

On the other hand, our proposed combination contains the
special SIMO-model-based ICA in the first stage. The aim of
the SIMO-model-based ICA is to supply the specific SIMO
signals with respect to each of sources, Ay (f)Si(f,t), up to
the possible delay of the filters and the residual error. Needless
to say, the obtained SIMO components is well applicable to
binary mask processing because of the spatial properties that
the separated SIMO component at the specific microphone
closer to the target sound still maintains the large gain. Thus,
after having the SIMO components, we can introduce the
binary mask for the efficient reduction of the remaining error
in ICA, even when the sparseness assumption does not hold.

In summary, the novelty of the proposed two-stage idea
is due to the introduction of SIMO-model-based framework
into both separation and post processes, and this offers a
realization of the robust BSS. The detailed process of using
the proposed algorithm is as follows.
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Fig. 3. Input and output relations in the proposed FD-SIMO-ICA. where
K=L=2

B. Algorithm

Time-domain SIMO-ICA [10] has recently been proposed
by one of the authors as a means of obtaining SIMO-model-
based signals directly in the ICA updating. In this paper,
we extend the time-domain SIMO-ICA to frequency-domain
SIMO-ICA (FD-SIMO-ICA). FD-SIMO-ICA is conducted for
extracting the SIMO-model-based signals corresponding to
each of sources. The FD-SIMO-ICA consists of (L — 1)
FDICA parts and a fidelity controller, and each ICA runs
in parallel under the fidelity control of the entire separation
system (see Fig. 3). The separated signals of the [-th ICA
(!l =1,---L — 1) in FD-SIMO-ICA are defined by

Ycan(fit) = [y}fICAl)(faf)]kl =Wacan(f)X(f.1).
(6)

where W(icay (f) = [I‘l/’i(;CA”(f)]lj is the separation filter
matrix in the [-th ICA.

Regarding the fidelity controller, we calculate the following
signal vector Y (jcar)(f,t), in which the all elements are to
be mutually independent,

L—-1

Yacan(£t) = X(f.0 =) Yucan(f.t). (D
=1

Hereafter, we regard Y (jcar)(f.f) as an output of a vir-
tual “L-th” ICA. The reason we use the word ‘“virtual”
here is that the L-th ICA does not have own separation
filters unlike the other ICAs, and Y jcar)(f.f) is sub-
ject to Wycap(f) (1 = 1,---,L — 1). By transposing
the second term (72114:—11 Y 1can(f- 1)) in the right-hand
side into the left-hand side, we can show that (7) means
a constraint to force the sum of all ICAs’ output vectors
Zle Y (1can(f,t) to be the sum of all SIMO components
(it Au(£)Si £ )k (= X (£,1)).

If the independent sound sources are separated by (6), and
simultaneously the signals obtained by (7) are also mutually
independent, then the output signals converge on unique
solutions, up to the permutation, as

Y qcay(f,t) = diag[A(f)P|P;S(f,1), (8)
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where P; (I = 1,---,L) are exclusively-selected permu-
tation matrices which satisfy Zle P; = [1];;. Regarding
a proof of this, see [10] with an appropriate modification
into the frequency-domain representation. Obviously the so-
lutions given by (8) provide necessary and sufficient SIMO
components, Ay (f)S;(f,t), for each [-th source. Thus, the
separated signals of SIMO-ICA can maintain the spatial
qualities of each sound source. For example in the case of
L = K =2, one possibility is given by

[Y0CAD (1), YICAD (£, 0]"
= [AuNSiFD), A=(DSa(£0]T O
(4250, YO, 0]"

= [An(N)S:(f,t), Au(H)Si(£.0]T,  (10)

where P1 =T and P2 = [1]1’]‘ - 1.

In order to obtain (8), the natural gradient of Kullback-
Leibler divergence of (7) with respect to W (jcayy(f) should
be added to the existing nonholonomic iterative learning rule
[5] of the separation filter in the {-th ICA (I =1, --.L —
1). The new iterative algorithm of the [-th ICA part (I =
1,---,L —1) in FD-SIMO-ICA is given as

i+1]
W(]ICAZ)(f)

= Wla(f) —a Hoff-diag (®(Yeny(f:1)
)

(qu)(f t H>t} ’ W{JI]CAI)(f)
— {off -diag < X ZY[ICAI
’ ( Z Y(JI]CAI) ) >t}

(I Z o )} (an

where « is the step-size parameter, and we define the nonlin-
ear vector function ®(-) as [15]:

2(Y(f,t) =

[tanh(|Y1(f, t)])er2re®{fe) ..
tanh(|Yz (f, e 50T (12

Also, the initial values of W cay(f) for all [ should be
different.

After FD-SIMO-ICA, binary masking processing is ap-
plied. For example in the case of (9) and (10), the resultant
output signal corresponding to the source 1 is obtained as
follows:

Vi(f,t) = mi(f, )PV (S,0), (13)

where my(f,t) is the binary mask operation which is defined
asmq(f,t)=1if YI(ICAl)(f, t) is greater than YQ(ICAQ)(f, t);
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Fig. 4. Layout of reverberant room used in experiments.

Fig. 5. Head and torso simulator used in experiment.
otherwise m(f,t) = 0. Also, the resultant output signal
corresponding to the source 2 is given by

» A(ICA
Va(f.) = ma(f,0¥] AV (f,0), (14)

where ma( f,t) is the binary mask operation which is defined

_ 1 ey, (ICAD) : ,(ICA2) .
asma(f,t) =1ifY, (f.t) is greater than Y, (f, t);
otherwise ma(f,t) = 0. The extension to the general case of
L = K > 2 can be easily implemented in the same manner.

IV. EXPERIMENT UNDER REAL ACOUSTIC ENVIRONMENT
A. Conditions for Experiments

We carried out binaural-sound-separation experiments us-
ing acoustical source signals recorded in the experimental
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room illustrated in Fig. 4, where two sources and two mi-
crophones are set. The reverberation time in this room is
200 ms. A head and torso simulator (HATS; see Fig. 5)
by Briiel & Kja®r is used as the recording apparatus, which
simulates a robot auditory system. Two acoustic signals are
assumed to arrive from different directions, 8; and 62, where
we prepare two kinds of source direction patterns as follows;
(01,602) = (—60°,60°), or (—60°,0°). We used the speech
signals spoken by two male and two female speakers, and
human-speech-colored stationary noise as the source samples.
The sampling frequency is 8 kHz and the length of each
speech sample is limited to 3 seconds. The DFT size of W ( f)
in each method is 1024. We use two types of initial values
which are given by the HRTF-based null beamformers [8]
whose directions of sources are (—15°,15°), or (—30°, 30°).

B. Experimental Results

We compare four methods as follows: (A) the conventional
binary-mask-based BSS given by (5), (B) the conventional
ICA-based BSS given by (2), (C) simple combination of
the conventional ICA and binary mask processing, and (D)
the proposed two-stage BSS method. Here we did not use
any a priori information on the true DOA of sources, room
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transfer functions, positions of microphones, and acoustic
characteristics of HATS (the robot head) in the separation
procedure of each method. These information can not be used,
especially for the robot which moves around the user.

Noise reduction rate (NRR) [8], defined as the output
signal-to-noise ratio (SNR) in dB minus the input SNR in dB,
is used as the objective indication of separation performance.
The SNRs are calculated under the assumption that the speech
signal of the undesired speaker is regarded as noise.

Figure 6 show the results of NRR for speech-speech
mixing under different speaker allocations and initial value
conditions. These scores are the averages of 12 speaker
combinations. Also, Fig. 7 shows the results of NRR for the
mixing of speech and stationary noise; this corresponds to the
case in that the spectral sparseness assumption does not hold.
From the results, we can confirm that the proposed two-stage
BSS can consistently and significantly improve the separation
performance regardless the speaker directions, noise and
initial value conditions. It is also worth mentioning that the
proposed method can provide the improvements even under
unsparse-source mixing conditions, unlike the conventional
binary mask processing. This fact is a promising evidence
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on the feasibility of the proposed combination technique of
SIMO-model-based ICA and binary mask processing.

V. REAL-TIME IMPLEMENTATION

We have already built a real-time two-stage BSS demo
system running on a very light palmtop PC (SONY VAIO
type-U with Pentium-M 1.1 GHz processor, 550 g weight).
Figure 8 shows a configuration of a real-time implementation
for the proposed two-stage BSS. Signal processing in this
implementation is performed as the following instructions.

1) Inputted binaural signals are converted to time-
frequency series by using frame-by-frame fast Fourier
transform (FFT).

2) SIMO-ICA is conducted using a current 3 s-duration
data for estimating the separation matrix which is
applied to the next (not current) 3 s samples. This stag-
gered relation is due to the fact that the filter update in
SIMO-ICA requires huge computational complexities
and cannot provide the optimal separation filter for the
current 3 s data.

3) Binary mask processing is applied to the separated
signals obtained by the previous SIMO-ICA. Unlike
SIMO-ICA, binary masking can be conducted just in
the current segment.

4) The output signals from binary mask processing are
converted to the resultant time-domain waveforms by
using an inverse FFT.

Although the separation filter update in SIMO-ICA part is
not real-time processing but includes a 3 s latency, the whole
two-stage system still seems real-time because the binary
masking can work in the current segment with no delay.
Generally the latency in the conventional ICAs is problematic
and reduces the applicability of the methods to real-time
systems. In the proposed method, however, the performance
deterioration due to the latency problem in SIMO-ICA can be
mitigated by introducing real-time binary mask processing.

VI. CONCLUSION

We proposed a new BSS framework in which the SIMO-
model-based ICA and binary mask processing are efficiently
combined. In order to evaluate its effectiveness, a separation
experiment was carried out under a reverberant condition.
The experimental results revealed that the NRR can be
considerably improved by using the proposed two-stage BSS
algorithm. In addition, we could find the fact that the proposed
method outperforms the combination of the conventional ICA
and binary mask processing as well as the simple ICA and
binary mask processing.
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