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Abstract

This paper describes a novel parameter generation algorithm for
the HMM-based speech synthesis. The conventional algorithm
generates a trajectory of static features that maximizes an out-
put probability of a parameter sequence consisting of the static
and dynamic features from HMMs under an actual constraint
between the two features. The generated trajectory is often ex-
cessively smoothed due to the statistical processing. Using the
over-smoothed trajectory causes the muffled sound. In order to
alleviate the over-smoothing effect, we propose the generation
algorithm considering not only the output probability used for
the conventional method but also that of a global variance (GV)
of the generated trajectory. The latter probability works as a
penalty for a reduction of the variance of the generated trajec-
tory. A result of a perceptual evaluation demonstrates that the
proposed method causes large improvements of the naturalness
of synthetic speech.

1. Introduction

It is no doubtful that the corpus-based approach [1] has caused
the dramatic improvements of Text-to-Speech (TTS) [2]. It has
enabled us to construct a TTS system without professional ex-
pertise. So far, many generic synthesis methods have been es-
tablished.

There are two main techniques of corpus-based speech syn-
thesis, i.e., sample-based synthesis and statistical synthesis. The
sample-based synthesis such as unit selection [3] directly uses
acoustic inventories selected from a speech corpus for synthe-
sizing a speech waveform. Main advantage of this method is
that high-quality speech keeping original voice characteristics
is synthesized by concatenating natural acoustic units. How-
ever, since the desired units with target attributes are not always
in the corpus, other units with similar attributes to the target
are used instead. The concatenation of such units often causes
audible discontinuities. Signal processing alleviates those dis-
continuities but it causes other artificial sounds. Consequently,
the large-sized speech corpus with consistent voice quality is
inevitable to achieve high-quality synthetic speech, which is in-
deed hard to be prepared. One of the biggest problems of the
sample-based synthesis is difficult to flexibly synthesize speech
with rich voice characteristics.

On the other hand, the statistical synthesis such as Context
Oriented Clustering (COC) (4] uses averaged acoustic inven-
tories statistically extracted from the speech corpus. Synthetic
speech based on those inventories has smooth and consistent
quality. Moreover, it is more robust to the corpus size compared
with the sample-based method because unseen acoustics are
generated with an interpolation of the inventories having sim-
ilar attributes to the target. However, voice quality of synthetic
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speech is muffled compared with that of natural speech because
complex characteristics of speech are removed in the statistical
processing. In general, this method is inferior to the sample-
based method in terms of naturalness of synthetic speech.

A hidden Markov model (HMM) has widely been used in
speech recognition. As one of the statistical synthesis meth-
ods, we focus on the HMM-based speech synthesis method
[51[6]. This method has many advantages as follows: 1) it is
well known that the HMM is suitable for modeling a time se-
quence of speech acoustics, 2) we can apply many techniques
for HMM-based speech recognition to speech synthesis, 3) be-
cause the HMM is mathematically tractable, voice character-
istics of synthetic speech are easily controlled by modifying
acoustic statistics in the manner mathematically supported. The
HMM-based synthesis method directly generates speech pa-
rameters from HMMs so that an output probability of the pa-
rameter is maximized under a constraint on an explicit relation-
ship between static and dynamic features [7]. Consequently, a
smoothed parameter trajectory is generated but it is excessively
smoothed due to the statistical processing. Using multiple mix-
tures alleviates the over-smoothing effect [7] but it also causes
another problem of over-training.

Recently, we proposed a voice conversion method consider-
ing a global variance (G V) of the converted trajectory for allevi-
ating the over-smoothing effect [8]. It is shown that this method
is superior to a spectral enhancement technique with the post-
filter that is widely used for improving the speech quality [9].
In this paper, we apply the idea of considering GV to not only
spectral parameter generation but also F parameter generation
in the HMM-based speech synthesis.

The paper is organized as follows. In Section 2, we de-
scribe the conventional parameter generation algorithm. In Sec-
tion 3, we describe the proposed algorithm considering GV. In
Section 4, experimental evaluations are described. Finally, we
summarize this paper in Section 5.

2. Conventional Parameter Generation
Algorithm

We assume a D-dimensional static feature vector c¢: =
[ce(1),ce(2),- -+ yce (TD)]T at frame ¢. We use a speech param-
eter vector 0, = |e], Ac/ ,A%¢/]T consisting of not only
the static feature vector but also dynamic feature vectors Acy,
AZeq, which are calculated by

L
Ace = ZrifL(_l) w(l)(T)ct+n QY]
2 Ly (2)
Atet = ET-:iL(_Q) w¥(T)Cesr. (2)
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In this paper, we treat feature vectors at all frames over an utter-
ance as a time sequence vector. The sequence vectors of o, and
c; are written as

T

0=[01T302y" (3)

T
T
')OT] 1

m
T T i
C=[cl,621"'ch] )

“

respectively, and the relationship between those is represented
as

0=wcC, )
where
W = |wi,wa, -, wr), (6)
we = [w® w®w®], ™
w® = [0pxp,+,00x0, W™ (~LT) by,
Ist (¢-L)-th
™) Ipxp, -, w™ (=L I pxp,
t-th (t+L{7)-th
0pxp, - ,0pxp)' , mn=0,1,2 (8)
T-th

LO = = 0,and w®(0) = 1.
For a given continuous mixture HMM A, an output proba-
bility of the parameter vectors O is written as

P(OIA) = )~ P(0.QIN), ©)
allQ
where
Q = {(q1,%1),(g2,%2),-- -, (g7,i1)} (10)

is the state and mixture sequence, i.e., (g, %) indicates the i-th
mixture of state g. We determine the static feature sequence
C that maximizes the output probability. In order to reduce
computational cost, the current HMM-based speech synthesis
system [5][6] determines the sub-optimum state sequence inde-
pendently of O so that the state duration probability P(g|\)
is maximized, where ¢ = {q1,g2," - - ,gT }. Moreover, the sub-
optimum mixture sequence ¢ = {i1,d2, - -,ir} is also deter-
mined when a single Gaussian is used as each state output prob-
ability. Under such conditions, we maximize the following log-
scaled output probability with respect to C,

log P(OIQ,A) = ~20TU™'0 + OTU'M + K, (1)

where
U™l = diag[U, UL, U] (12)
M = [,‘;,n,,,;,w...,,,;NT]T, 13
y.;'; i, and U;,l.” are the 3M x 1 mean vector and the 3M x 3M

covariance matrix, respectively, associated with z.-th mixture of
state g;. The constant K is independent of O. Under the condi-
tion (5), we determine C that maximizes the output probability
by setting

8log P(WC|QA)

aC =0

(14)
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Consequently, we obtain a set of equations

C= (WTU'IW)_IWTU_IMT. (15)

Although we assume that the sub-optimum state and mixture
sequence is given in this paper, we can also determine C by
directly maximizing P(O|A) with EM algorithm [7].

3. Proposed Parameter Generation
Algorithm Considering GV

The GV [8] of the static feature vectors is defined as

v(C) = [v(1),v(2), - ,v(D)]", (16)
T

od) = 3 (ald - ), ()
1!;1

a(d) = Tch(d). (18)

The proposed method determines the static feature sequence
considering not only the output probability of the static and dy-
namic feature vectors but also that of the GV. Specifically, in-
stead of maximizing the probability (11), we maximize the fol-
lowing criterion, which is based on a product of the two output
probabilities, with respect to the static feature sequence C,
L =10g{p(01Q,A)” - p(v(C)|Av)}, (19)
where p(v(C)|Ay) is modeled by a single Gaussian distribu-
tion. A set of model parameters A, consists of the mean vector
p, and the covariance matrix £, = P! for the GV. This
Gaussian model A, and the HMMs A are independently trained
from the speech corpus. The constant w denotes the weight con-
trolling a balance between the two probabilities. In this paper, w
is set to the ratio of the number of dimensions between vectors
v(C)and O, i.e., 1/(3T).
In order to determine C' that maximizes L, we iteratively
update C with the gradient method,
C(i+1)vt.h = C(i)-th +a AC(iHh, (20)
where a is a step size parameter. If we use the steepest decent
algorithm using only the first derivative written as

g_é = w(-wTUWe+ WU M)
+[v'1T,v'2T,'--,v'TT]T, @n
v, = [oi(),u@), - uD)]", @)
w(d) = —2p (C) - ) (c(d) —3d), @3)

where p{® is the d-th vector of P,, the vector AC™)™! ig

written as

oL

(i)-th _ OL
ac ~ 8C |g_gwrth

(24)

Moreover, we may also use the Newton-Raphson method using
not only the first derivative but also the second derivative written
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as
" 1"
52L Vi1 Vi
— = _—uW'U W+ . (29)
acoc” E = (
V71 Chay
m(1,1) n(1,D)
t1,t1 ty,t2
Viity = : : ; (26)
1(D,1) n(D,D)
t1,t2 ty,t2
w(dy.d: 2 ;s 7 b
Vi = - {8 P (w(0) - ) + 2515} @D

Z{duda) — plddalc, (d))—8(da)}{ery (d2) —E(d2)} , (28)

where
if (d1 # d2), 0,
B= elseif (t1 # t2), -1, (29)
else, T-1.
The vector AC(‘)'[h is written as
Ac(i)'lh e (_32—1’) o 3_L (30)
QC(I)CT aC C=C(L)'(h. ’

Large computational cost is necessary to calculate the second
derivative, i.e., the Hessian matrix. Furthermore, it is not always
a positive definite matrix. In this paper, we approximate the
second derivative using only diagonal elements.

A concept of the proposed method is that the parameter gen-
eration is performed under a constraint on the variance of the
generated parameter trajectory, i.e., GV. In the criterion (19),
we can consider the probability p(v(C)) as a penalty term for
a reduction of the GV.

4. Experimental Evaluations
4.1. Experimental conditions

We trained HMMs for each of 4 Japanese speakers (2 males,
MHT and MY]I, and 2 females, FTK and FYM). We used
450 sentences of phonetically balanced 503 sentences from
ATR Japanese speech database B-set as training data for
each speaker. Context-dependent labels were prepared from
phoneme and linguistic labels included in the ATR database.

As a spectral parameter, we used Oth through 24th mel-
cepstral coefficients obtained from the smoothed spectrum an-
alyzed by STRAIGHT ({10]. As a source parameter, we used a
log-scaled Fp automatically extracted from a waveform. Each
of the spectral and Fy parameter vectors included the static fea-
ture and their delta and delta-delta features. Frame shift was set
to 5 ms.

A spectral part was modeled by continuous HMMs of
which each state output probability was modeled by a single
Gaussian distribution with a diagonal covariance matrix. As for
an Fy part, we used the HMMs based on multi-space probability
distribution (MSD-HMMs) [11] to model a time sequence con-
sisting of continuous values, i.e., log-scaled Fps, and discrete
symbols that represent unvoiced frames. Static, delta, and delta-
delta Fys were treated in different streams. We constructed
context-dependent HMMs for each part with a decision-tree
based context clustering technique based on an MDL criterion
[12]. We also trained context-dependent HMMs for modeling
the state duration probabilities.
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Figure 1: Comparison of convergence performance between
mwo gradient methods.

In the synthesis, we concatenated HMMs for given input
contexts and then we determined a sequence of probability den-
sity functions (PDFs) in the manner as described in Section 2.
A mel-cepstrum sequence was directly generated from PDFs.
In the Fp parameter generation, we firstly determined unvoiced
frames based on the output probability of the unvoiced symbol
from the MSD-HMMSs. Then, we generated an F, parameter se-
quence from a PDF sequence that doesn’t include the unvoiced
frames. Inverse variances for the dynamic features were set to 0
at the boundaries between voiced and unvoiced frames. A sim-
ple excitation was constructed with a pulse train and noise based
on the generated Fj parameters. Then, a speech waveform was
synthesized with the MLSA filter [13] based on the generated
mel-cepstra.

4.2. Investigation of iterative generation process

We firstly generate a parameter trajectory with the conventional
algorithm, and then we estimate the trajectory that maximizes
the criterion (19) using the gradient method. We can perform
these processes at each dimension because we use diagonal co-
variance matrices in this paper.

We investigated which trajectory is better as an initial value
used for the gradient method, the generated trajectory by the
conventional algorithm or the trajectory to which the generated
one is converted so that its GV is equal to the mean of the GV
model A,. Results showed that the latter has a larger value of
the criterion than the former. Therefore, we use the converted
trajectory as the initial value. Note that this result depends on
the weight w in the criterion.

We also investigated which gradient method has a better
performance of the convergence, the steepest decent algorithm
or the Newton-Raphson method. The step size parameter was
optimized for each method so that the criterion converged as fast
as possible. One example of the convergence of the criterion
is shown in Figure 1. The Newton-Raphson method has the
better convergence compared with the steepest decent algorithm
when using the initial value as mentioned above. We found this
tendency at the most of cases. Therefore, we use the Newton-
Raphson method in this paper.

4.3. Perceptual evaluation

We performed an opinion test on the naturalness of synthetic
speech to demonstrate the effectiveness of the proposed method.
We evaluated the following five voices: 1) synthetic speech with
the spectral and Fo parameters generated by the conventional
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Figure 2: Mean opinion score (MOS) for each synthetic voice.
MOS is calculated over results for all of four speakers. “Conv.”
and “GV” denote that the conventional method and the pro-
posed method are employed respectively for each of “Fo " and
“Mel-cep” parameter generations. “Natural” denotes that pa-
rameters extracted from natural speech are used, i.e., analysis-
synthesized speech.

method, 2) synthetic speech with the spectral parameter gener-
ated by the conventional method and the Fy parameter gener-
ated by the proposed method, 3) synthetic speech with the spec-
tral parameter generated by the proposed method and the Fp
parameter generated by the conventional method, 4) synthetic
speech with the spectral and Fp parameters generated by the
proposed method, and 5) analysis-synthesized speech. Seven
Japanese listeners participated in the test. Each listener evalu-
ated 25 samples consisting of five sentences for each speaker.
Those sentences were randomly selected for each listener from
53 sentences, which were not included in the training data.

Figure 2 shows a result of the test. It is observed that the
proposed method works very well in the spectral parameter gen-
eration. Considering the GV in the Fy parameter generation
slightly causes an improvement of the naturalness of synthetic
speech. One of reasons why the Fp improvements are small
is possibly that the GV vectors used in the training were af-
fected by errors of the automatic Fy extraction, especially halv-
ing and doubling, which were often observed on the extracted
Fos. Those errors make the GV inappropriately large.

The improved quality is still worse than that of the analysis-
synthesized speech. This quality difference is caused by not
only the insufficient accuracy of the generated spectral and Fy
parameters but also that of duration modeling. Further improve-
ments of the acoustic modeling are indispensable for achieving
higher-quality synthetic speech.

5. Conclusions

We proposed a parameter generation algorithm considering
global variance (G V) of the generated parameters for the HMM-
based speech synthesis. The proposed method generated a time
sequence of static features that maximized a criterion based on
not only an output probability of a time sequence of the static
and dynamic features but also that of the GV under a constraint
that the dynamic features and the GV were calculated from the
static features. We applied this algorithm to both spectral and
Fp parameter generations. As a result of the perceptual evalua-
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tion, it was shown that the proposed algorithm causes the large
improvements of the naturalness of synthetic speech.
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