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Abstract 

This pap巴r describes a novel paramet巴r generation algorithm for 
th巴HMM-based speech synthesis. Th巴 conventional algorithm 
generates a trajectory of static features that maximizes an out 
put probability of a parameter s巴quence consisting of the static 
and dynamic features from HMMs under an actual constraint 
between the two features. The generated tr句ectory is often ex­
cessively smoothed due to the statistical processing. Using the 
over-smoothed tr句巴ctory causes the muffl巴d sound. In ord巴r to 
alleviate th巴 over-smoothing e仔巴ct， we propose the g巴neratJon
algorithm considering not only th巴 output probability used for 
the conv巴ntional method but also that of a global variance (GV) 
of the generated tr句巴ctory. The latter probability works as a 
penalty for a reduction of the varianc巴 of the g巴nerat巴d tr句ec­
tory. A result of a perceptual evaluation demonstrates that the 
proposed method causes large improvements of the naturalness 
of synthetic sp巴ech.

1. Introduction 

It is no doubtful that the corpus-based approach [1] has caused 
the dramatic improvements of Text-to-Speech (TTS) [2]. It has 
enabl巴d us to construct a TTS system without professional ex­
pertise. So far， many generic synthesis methods have been es­
tablish巴d.

There are two main techniques of corpus-based speech syn­
thesis， i.e.， sample-based synthesis and statistical synthesis. The 
sample-based synthesis such as unit selection [3] dir巴ctly uses 
acoustic inventories selected from a speech co叩us for synthe­
sizing a speech wavefo口TI. Main advantage of this method is 
that high-quality speech keeping original voice charact巴nstlcs
is synthesized by concatenating natural acoustic units. How­
ever， since the desired units with target attributes are not always 
in the corpus， other units with similar attributes to the target 
are used instead. The concatenation of such units often causes 
audible discontinuities. Signal processing all巴viates those dis­
continuities but it causes other artificial sounds. Consequently， 
the large-sized spee氾h corpus with consistent voice quality is 
inevitable to achieve high-quality synthetic speech， which is in­
deed hard to be prepared. One of the biggest problems of the 
sample-based synthesis is difficult to flexibly synthesize speech 
with rich voice characteristics. 

On the other hand， the statistical synthesis such as Context 
Oriented Clustering (COC) [4] uses averag巴:d acoustic inven­
tories statistically extracted from the sp伐ch corpus. Synthetic 
sp伐ch bas巴d on thos巴 inventories has smooth and consistent 
quality. Moreover， it is mor巴 robust to the corpus size compared 
with the sample-based method b巴cause unseen acoustJcs are 
generated with an interpolation of the inventories having sim一
ilar attributes to the target. However， voice quality of synthetic 

speech is muffl巴:d compared with that of natural speech because 
complex charact巴ristics of speech are r巴moved in the statistical 
processing. In gen巴ral， this method is infl巴rior to the sample­
based method in te口ns of naturalness of synthetic speech 

A hidden Markov mod巴1 (HMM) has widely b巴en used in 
speech recognition. As on巴 of the statistical synthesis meth­
ods， we focus on the HMM-based speech synthesis method 
[5][6] .  This method has many advantages as follows: 1) it is 
well known that出巴HMM is suitable for modeling a time se­
quence of sp巴ech acoustics， 2) we can apply many techniqu巴s
for HMM-based speech recognition to speech synthes眺めbe­
cause the HMM is mathematically tractable， voice character­
istics of synthetic speech are easily controlled by modifying 
acoustic statistics in th巴 manner mathematically supported. The 

HMM-based synthesis m巴thod directly generates speech pa 
rameters from HMMs so that an output probability of由巳pa­
rameter is maximized under a constraint on an explicit relation­
ship between static and dynamic features [7]. Consequently， a 
smoothed parameter tr勾ectory is generated but it is excessively 
smoothed due to the statistical processing. Using multiple mix­
tures alleviates the over-smoothing 巴ffect [7] but it also causes 
another problem of over-training 

Recently， we propos巴d a voice conversion method consider­
ing a global variance (GV) of the converted tr句巴ctory for allevi­
ating the over-smoothing e仔ect [8]. It is shown that this method 
is superior to a spectral 巴nhancement t巴chnique with the post­
filt巴r that is widely used for improving the spe氾ch quality [9] . 
ln this paper， we apply the idea of considering GV to not only 
spectral parameter gen巴ration but also Fo parameter generation 
in the HMM-based speech synthesis 

The paper is organized as follows. In Section 2， we de­
scribe the conventional parameter generation algorithm. In Sec­
tion 3， we describe the proposed algorithm considering GY. In 
Section 4， experimental evaluations ar巴 described. Finally， we 
summarize this paper in Section 5. 

2. Conventional Parameter Generation 
AIgorithm 

We assume a D-dimensional static feature vector Ct 
[Ct(l)， Ct(2)， • • • ， Ct cp)]T �台ame t. We use a speech param­
et巴r vector Ot = [c;r，ムcJ ，ム2c;r]T cons山ng of not only 
the static feature vector but also dynamic feature vectorsムCt，ム2Ct ， which are calculat巴d by 

b.Ct 272L(川 )
 
l

 (

 ム2Ct
， (2) 
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In this paper， we treat feature vectors at aIl frames over an utt巴r­
ance as a time sequence vector. The sequence vectors of Ot and 
Ct are wntten as 

0=[oJ，oL AIT， 
c = [山J， ，叶T

respectively， and the relationship betw巴en those is represented 
as 

O=wc， 
where 

w [ω1，ω2，・・・ ，ωT]T， 
[ωjhjl)刈2)] ， 吐Vt

ωjn) = [ohD， ，OD山山)(_L�n))仏D，
1st (t_L�n))ーth

，w(n)(O)IDxD， 川町一L�n))IDxD，
出 (t+L�n))ー出

ODxD，... ，ODXD]T， n = 0，1，2 (8) 
T-th 

L�) = L�) = 0， and ω(的(0)= 1 
For a given continuous mixture HMM入， an output proba­

bility of the parameter vectors 0 is written as 

P(OI入)=玄P(O，QI入)， (9) 

aIlQ 
where 

Q = {( ql ， i 1 )， (q2 ， i2 )γ・. ， (qT， iT)} ( 10) 

is the state and mixture sequence， i.e.， (q， i) indicates the i-th 
mixture of state q. We determine the static feature sequence 
C that maximizes the output probability. In order to reduce 
computational cost， the current HMM句based speech synthesis 
system [5][6] determines the sub-optimum state sequence inde­
pendently of 0 so that the state duration probability P(ql入)
is maximized， where q = {Ql，q2，... ，qT}. Moreover， the sub­
optimum mixture sequence i = {ilゐ，. . . ，iT} is also deter­
mined when a single Gaussian is used as each state output prob­
ability. Under such conditions， we maximize the following log­
scaled output probability with respect to C， 

同P(OIQ，か すOTU勺+ OTU-l M + K， (11) 

where 

U-1 d時[U;ll，il'Uらし2，...，U;;，iT]' ( 12) 
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μ;'，it and U:;'\t a削he 3M x 1 mean vec町and山3Mx3M
covariance matrix， respectively， associated with it-th mixture of 
state qt. The constant K is independent of O. Under the condi­
tion (5)， we determine C that maximizes the output probability 
by setting 

nu
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Consequently， we obtain a set of equations 

C = (WTU-1W) -1 WTU-1 MT 川)

(3) 

(4) 

Although we assume that the sub-optimum state and mixture 
sequence is given in this paper， we can also dete口nine C by 
directly maximizing P(OI入) with EM algorithm [7]. 

(5) 

3. Proposed Parameter Generation 
AIgorithm Considering GV 

The GV [8] of the static featur巴 vectors is defined as 

(6) 

(7) 

v(C) [v(1)， v(2)γ・・ ，V(D)]T ， (16) 

1
� 

v(d) 子工(Ct(d)一耐))2 ， ( 17) 
t=1 

1 � 
ë(d) 子2:c.，.(d) ( 18) 

7"=1 
The proposed method determines the static feature sequence 
considering not only the output probability of the static and dy­
namic feature vectors but also that of恥GV. Speci白caIly， in­
stead of maximizing the probability (11)， we maximize the foト
lowing criterion， which is based on a product of the two output 
probabilities， with respect to the static feature s巴quence C， 

L = log {p(OIQ，入)ω・p(v(C)1入，，)}， ( 19) 

where p(v(C)1仇入，，) i凶s modele巴d by a s別ingle Gaωu凶s鈴叩s臼ian di凶st甘ribuト-
tion. A set of model parameters入" consists of the mean vector 
μ" and the covariance matrix :E" p:;;1 for the GY. This 
Gaussian model入匂and theHMMs入 are indep巴ndently trained 
from the speech corpus. The constantωdenotes the weight con­
trolling a balance between the two probabilities. In this paper，ω 
is set to the ratio of the number of dimensions between vectors 
v(C) and 0， i.e.， 1/(3T). 

In order to determine C that maximizes L， we iterativ巴ly
update C with the gradient method， 

C(叶1)品 = C(i)ーth +α ・ ..o.C(i)ー出 (20)

whereαis a step size parameteιIf we use the steepest decent 
algorithm using only the first derivative written as 

2E = ω (_WTU-1WC + WTU-1 Mì 
θC - \ - - . - -- ) 

r ，T ，T ， T1T + Ivi ， V2 ，・・・ ，vr I (21) 

り� = [v;(l)，v;(2)，... ，v;(D)]T， (22) 

バ(d) = _�pSd)�v(C)一μ品

where p�d) is the d-th vec町 of P "， the vec回 ..o.C(i)ー山 IS 
wntten as 

ムC(i)ーth
= �� I (24) 

θC lc=c(庁th

Moreover， we may also use the Newton-Raphson method using 
not only th巴自rst derivative but also the second derivative written 
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as 

r V�，l 
θ2L 了 1___ I 一一一---:-T = 一ω W ' U - ' W+IδCδG ' I 1 旬子 l

旬'i.T 1 
I ， (25) 

V�.T J 
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Vtl.t2 - I ・ \ ・ l
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ぺ;f2)=一会 (βp�dllT(V(G)一μu)+2zjff) } ，(27)

Z;�，\'2d2) = p�dl，d2){Ctl (d1)-ë(d!)}{引の)-ë(d2)}， (28) 
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The vector 企G (i)ーlh is written as 

i)-lh 一 (￡ト) -2 1c=C()th
(30) 

Large computational cost is necessary to calculat巴 the second 
derivative， i.e.， the Hessian matrix. Furthermore， it is not always 
a positive definite matrix. In this paper， we approximate the 
second derivative using only diagonal elements 

A concept of the proposed method is that the parameter gen­
eration is performed under a constraint on the variance of the 
generated parameter tr勾巴ctory， i.e.， GY. In th巴 criterion (19)， 
W巴 can consider the probability p(v(G)) as a penalty tem1 for 
a reduction of the GV 

4. Experimental Evaluations 

4.1. Experimental conditions 
We Irained HMMs for each of 4 Japanese speakers (2 males， 
MHT and MYI， and 2 females， FTK and FYM). We used 
450 sentences of phonetically balanced 503 sentences from 
ATR Japanese sp巴巴ch database B-set as training data for 
each speaker. Context-dependent labels were prepared from 
phoneme and linguistic labels includ巴d in the ATR database目

As a spectral parameter， we used Oth through 24th mel­
cepstral co巴筒cients obtained from the smoothed spectrum an­
alyzed by STRAIGHT (10). As a source parameter， we used a 
log-scaled Fo automatically extracted from a waveform. Each 
of the sp巴ctral and Fo parameter vectors included the static fea­
ture and their delta and delta-delta features. Frame shift was set 
to 5 ms. 

A spectral pa口 was modeled by continuous HMMs of 
which each state output probability was modeled by a single 
Gaussian distribution with a diagonal covariance matrix. As for 
an Fo part， we used th巴 HMMs based on multi-space probability 
distribution (MSO-HMMs) [11] to model a tim巴 sequence con­
sisting of continuous values， i.e.， log-scaled Fos， and discrete 
symbols that represent unvoiced frames. Static， delta， and delta­
delta Fos were treated in di仔erent streams. We constructed 
context-dependent HMMs for each part with a decision-tree 
based context clustering techniqu巴 based on an MOL crit巴rIon
[12]. We also trained context-dependent HMMs for modeling 
the state duration probabiliti巴s.
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Figure 1: CO/11pariso/1 of cOl1vergence pelプormance between 
two gradient methods 

1n the synthesis， we concatenated HMMs for given input 
contexts and then we determined a sequence of probability den­
sity functions (POFs) in the manner as described in Section 2. 
A mel-cepstrum s巴quence was directly generated from POFs 
1n the Fo parameter generation， we白rstly determined unvoiced 
frames based on the output probability of the unvoiced symbol 
from the MSO-HMMs. Then， we generated an Fo parameter se­
quence from a POF sequence that doesn't include the unvoiced 
frames. Inverse variances for the dynamic features were set to 0 
at the boundaries between voiced and unvoiced frames. A sim­
ple excitation was constructed with a pulse train and noise based 
on the generated Fo parameters. Then， a speech waveforrn was 
synthesized with the MLSA自lter [13] based on the generated 
mel-cepstra 

4.2. lnvestigation of iterative generation process 
We firstly generate a parameter tr句ectory wi出 the conven tional 
algorithm， and then we estimate the tr勾巴ctory that maximizes 
th巴 criterion (19) using the gradient method. We can p巴rform
these processes at each dimension because we use diagonal co­
V訂lance matnces 1目白IS paper. 

We investigated which tr句ectory is better as an initial value 
used for the gradient method， the generated tr句ectory by the 
conventional algorithm or the trajectory to which the generated 
on巴 is converted so that its GV is equal 10 the mean of the GV 
model入v. Results show巴d that the latter has a larger value of 
the criterion than the former. Therefore， we use the converted 
tr句巴ctory as the initial value. Note that this result depends on 
the weightωin the criterion 

We also investigated which gradient method has a better 
peげörmance of the conv巴rgence， the steepest decent algorithm 
or the Newton-Raphson method. The step siz巴 p訂ameter was 
optimized for each method so that the criterion converged as fast 
as possibl巴. One example of the convergence of the criterion 
is shown in Figure 1. The Newton-Raphson method has the 
better convergence compared with the steepest decent algorithm 
when using the initial value as mentioned above. We found this 
tendency at the most of cases. Therefore， we use the Newton­
Raphson method in this paper 

4.3. Perceptual evaluation 
We perforrned an opinion test on the naturalness of synthetic 
speech to demonstrate the e仔'ectiveness of the proposed method. 
We evaluated the following five voices: 1) synthetic spe巴ch with 
the spectral and Fo parameters generated by the conventional 
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Figure 2: Mean opinion score (MOS) .for each synthetic voice. 
MOS is calculated over results.for aU (!f.four speakers.“Conv." 
。nd“GV" denote that the conventional method and the pro­
posed method are employed respectiνely.for each of“Fo" and 
"Me/-cep" parameter generations. "Natural" denotes that pa­
ramete月以tracted from natural speech are used， i.e.， analysis­
synthesized speech. 

method， 2) synthetic speech with the spectral parameter gener­
ated by th巴 conventional method and the Fo parameter gener­
ated by the proposed method， 3) synthetic speech with the spec­
tral parameter gen巴rated by the proposed method and the Fo 
param巴ter generated by the conventional method， 4) synthetic 
speech with th巴 spectral and Fo parameters generated by the 
proposed method， and 5) analysis-synthesiz巴d speech. Seven 
Japanes巴 listeners participated in the test. Each listener evalu­
ated 25 samples consisting of自ve sentences for each speaker. 
Those sentences were randomly selected for each listener from 
53 sentences， which w巴re not included in the training data. 

Figure 2 shows a result of the test. It is observed that the 
proposed method works very welJ in the spectral parameter g巴n­
eration. Considering山GV in the乃parameter generatlOn 
slightly causes an improvement of the naturalness of synthetic 
speech. One of reasons why the Fo improvements are small 
is possibly that the GV vectors used in the training were af­
fected by 巴町ors of the automatic Fo extraction， especial1y halv­
ing and doubling， which were often observed on the extracted 
Fos. Those eπors make the GV inappropriately large 

Th巴 improved quality is sti11 worse than that of the analysis­
synthesized speech. This quality difference is caused by not 
only the insufficient accuracy of the generated spec紅al and Fo 
parameters but also that of duration modeling. Further improve­
ments of the acoustic modeling are indispensable for achieving 
higher-quality synthetic speech. 

5. ConcJusions 

W巴 proposed a parameter generation algorithm considering 
global variance (GV) of the generated parameters for th巴 HMM
based speech synthesis. The proposed method generated a time 
sequence of static features that maximized a criterion based on 
not only an output probability of a time sequence of the static 
and dynamic features but also that of the GV under a constraint 
that the dynamic features and the GV were calculated from the 
static features. We applied this algorithm to both spectral and 
Fo parameter generations. As a result of the perceptual evalua-

ゆ
tion， it was shown that the proposed algorithm causes th巴 large
improvements of the naturalness of synthetic speech. 
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