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ABSTRACT

This paper study the blind estimation of the diffuse back-
ground noise for the hands-free speech interface. Some recent
papers showed that it is possible to use blind signal separation
(BSS) to estimate the diffuse background noise by suppress-
ing the speech component after all the components were sepa-
rated. In particular, the scale indeterminacy of BSS is avoided
by using the projection back method. In this paper, we study
an alternative to the projection back for the noise estimation
and justify the use of blind signal extraction BSE rather than
BSS.

Index Terms— blind signal extraction, noise estimation,
speech enhancement

1. INTRODUCTION

In the last decades, several efficient methods exploiting blind
signal separation (BSS) where proposed for processing the
multidimensional observation given by microphone arrays.
A great number of these methods address the separation of
speech signals, the so called cockrail party problem, using
the frequency domain approach (FD-BSS) (see review paper
[1]). Another promising application of FD-BSS in acoustic
signal processing is the hands-free speech interface. In such
interface, the user interacts with the system using his (or her)
voice which is picked at a distance by a microphone array
and processed by the system. This is not strictly speaking
a separation problem but a speech enhancement problem as
the goal is to improve the quality of the user’s speech that is
corrupted by the diffuse backgroundnoise. But, in such situa-
tion, FD-BSS is an efficient method for estimating the diffuse
background noise [2]. After FD-BSS is performed, the noise
estimate is obtain by discarding the speech component and
projecting back [3] the noise components. Then noise sup-
pression is conducted by means of a nonlinear filter using the
noise estimate given by FD-BSS (for example using spectral
subtraction or Wiener filtering) [2].

In this paper, we propose a study of the diffuse back-
ground noise estimation for the hands-free speech interface.
In particular, we compare the conventional noise estimation
method based on FD-BSS [2] to the noise estimation method
proposed in [4] that relies on frequency domain blind signal
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extraction (FD-BSE). We first derive the diffuse background
noise estimate obtained by the projection back method when
considering the hands-free speech interface. Then we also de-
rive the diffuse background noise estimate obtained by sub-
tracting the orthogonal projection of the speech component
from the observation [4]. These derivations do not appear
in [2, 4] or other papers to the knowledge of the authors.
By comparing these two noise estimation methods, we jus-
tify that extracting only the speech component is sufficient to
get an accurate estimation of the diffuse background noise.
This gives the grounds for replacing the FD-BSS based noise
estimation used in hands-free speech interface by a FD-BSE
based noise estimation. Finally a hands-free dictation task in
presence of diffuse background noise is presented as an ex-
ample.

2. HANDS-FREE SPEECH INTERFACE

Let us first present the model of the hands-free speech inter-
face which is defined in the frequency domain. The frequency
domain signals are obtained using a short time Fourier trans-
form of size F'. In the remainder f denotes the frequency bin
and £ denotes the frame index. Considering that the user is a
point source, the mixing model in the fth frequency bin is

X(f k) =Hg(f)S1(f, k) + N(f. k), (M
where S1(f, k) is the speech component, N( f, k) is a vector

containing the n components of the diffuse background noise
and

Ho(/) = {oxp(i2n(/F)fs 2 sin () et n-n

is an x 1 vector depending of the speech direction of arrival
(DOA) 6(f) (also of the sampling frequency f,, microphone
inter spacing d, and sound velocity c). Note that the vector
Hy(f) is function of the frequency. The reason is that the
apparent DOA at a given frequency, that accounts for the ef-
fect of the reflection and the reverberation, differs from the
physical DOA of the speech, which is the angle defined by
the user’s position relatively to the microphone array.

We can reformulate (1) as a noiseless instantaneous mix-

X(f. k)= [ Ho(f) | Zn ] { i}g:; ] !

where Z,, is the identity matrix of size n.
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For convenience we define

S(f.k) = [Si(f.k). So(f-k), -, Snr1(f-K)]T
with Sa(f. k). - . Sns1(f. k) = N(f. k).

Then the noiseless instantaneous mixture is re-written as
X(f. k) =A(f)S(f. k). (2)

It is a realistic assumption that, in a given frequency bin, the
target speech component is statistically independent of the
diffuse background noise components. But the statistical in-
dependence of the diffuse background noise components is
not assumed.

3. FD-BSS WITH NON LINEAR POST FILTER

In the fth frequency bin, the estimate Y'(f.t) is obtained by
applying an unmixing matrices 1 ( f) to the observed signals

Y(f. k) = W(H)X(f.%)

In [2], Takahashi et al. showed that in this situation the
square matrix W (f) estimated by BSS is such that the row
corresponding to the speech component estimate is a delay
and sum (DS) beamformer in the direction of the speech’s ap-
parent DOA at that frequency. The other rows corresponding
to the estimates of the noise components are null beamform-
ers at the speech’s apparent DOA at that frequency. After
convergence of FD-BSS, we assume that the speech compo-
nent is the first component of Y (f, k), the separation matrix

has the form LypH
wis— | g | ®

where W (f)isan — 1 x n matrix of rank n — 1 such that
WL (f)He(f) = On_1x1. We further assume that W (f) is
invertible.

After separation, the noise estimate )/(\N(f. t) is obtained
from the separated components (see next section). To sup-
press the diffuse background noise effect, a Wiener filter is ap-
plied on each component of the observed signals. The Wiener
gain for the zth signal is

Xi(f, D)2

Gi(f, = A
il |Xi(f, )2 + ol Xni(f. )2

where the subscript () denotes the ¢th component and « is a
parameter controlling the noise reduction. The ith component
of the filtered target speech is

Xi(f.t)

2
GO [y

Si(f.t) =
Finally the speech estimate §(f. t) is obtained by applying
a delay and sum (DS) beamformer in the direction € of the
target speech, see Fig. 1 (The angle @ is the average of the
angles 6(f) estimated from W( f)).

4771

9Target S
Blind | . P (] i
N : o e
X ik . ‘Compute | §: ! :

i-i [ Wiener gains = { I

. “n ‘v ¥

' Apply H

Wiener gains| : {

“n
Fig. 1. Blind noise estimation with channel-wise Wiener post
filter.

4. NOISE ESTIMATION METHODS
4.1. Method using the noise components
After performing FD-BSS, the diffuse background noise is
estimated by discarding the speech component and projecting

back the noise components [2]. The projection back of the
noise components is defined by

Xn(f k) = W()'DW(f)X(f, )

where D is a diagonal matrix with entries [0,1, - - - , 1] along
the diagonal. To study the quality of the noise estimate given
by the projection back, let us define the matrix

K(f) = W(f)"'DW(f)A(/) 4)
suchthat  Xn (f, k) = K(f)S(f, k).

. 1 LHI(f)
Using Eq.(3), we get W(f)A(f) = O 1n1 n“’J_(f) ;
1 %Hé’(f)}* |
On—lxl WJ_(f)

where * denotes the Moore-Penrose pseudo inverse. Using
the expression of this Moore-Penrose pseudo inverse

1 %Hé"(f)r_[ - 01><n—1]
On-1x1 Wi(f) | — [#Z5He(f) WIi(H) ]|’

Eq.(4) reduces to K(f) = [Oan |WI(f)W_L(f)]
however W1 (f) is a right inverse of W (f) thus

then W™1(f) = A(f) [

WI()WL(f) #T. and Xn(f.k) # N(f.k).

The quality of the estimated noise obtained using the pro-
jection back depends of how close to Z,, is W1 (f)W L(f).
For the right inverse we have the following equality

IWT(HWL(f) - Tl =1 ()

where || - || denotes the Frobenius norm. Meaning that the
average squared error on the entries of W1 (f)W _ (f) is ﬁ;

4.2. Method using the speech component

Another way to estimate the diffuse background noise is to
suppress the speech from the observation. After performing
FD-BSS, this can be done by first projecting the estimated
speech component on the observation and then subtracting
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this projection from the observation. Note that the other n — 1
components obtained by performing the FD-BSS are simply
discarded.

The noise estimate obtained by subtracting the projection
of the speech component from the observation is defined by

Xn(f.8) = (Tn = Tx (MWL (HAWL () X(J,0)

where ['x(f) is the covariance of X(f,k), W1(f) is the
row of W( f) corresponding to the speech component, and
A is a scalar such that z(f,k) = AW (f)X(f, k) verifies
EI2(f.K)2) = 1.

Replacing W (f) by its value givenin Eq.(3) we have

2(f,k)=A[ 1| +Ho(f) ] S(f.k)
then the constraint on z( f, k) gives

A2 = 1 where o? = £{|Si(f. k)|*}.

of + Zin:zl '7?1701'2
Let us denote by Q(f) the matrix such that

Xn(fk) = Q(f)S(f. k).
Re-writing (we drop the frequency index for convenience)
the covariance of X(k) as I'x = ATlsAH where I's =
diag{o?,--- ,02,} is the covariance of S(k) we get

Q=A(T,+1 - TsAY AW, W, A).

Using Eq.(3), we can express the last term as
Lns1 — TsAPAPW, W, A =

1 117
2

foe = 87 [ 4, | [, ]
Then by matrix manipulation we obtain

1
Q=[Hq|Z,]-IN? (afIn + ;A) [Ho | tHoHJ' ],

’U%H}-

1
Letus define R = |\ (a?In + ;A)

where A = diag{o3, - - -

naf + 01-2

the diagonal matrix of general term R;=——————

2 n+l o
noy + Ek:2 =
and the scalars o and o such that 02 < 02 < o for
k € [2,n + 1] (62 and ai, are the minimal and maximal
diffuse noise power across the microphones). Then we can
write

Q= (Z, -R)Hg | 7, - LRHeH}! | with

o o? ai o?
b1 B _0?. oy B ;?
o2 In SIn_RS o2 In
n+ - T+ =
a? a?
n+ % 1 n+ -4
> I, <-R<—21, (6)
2 n 2
ne+ - Te+ P
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The noise estimate obtained by this method is of compa-
rable quality to the one obtained by projecting back the noise
component. It depends explicitly of the power of the speech
component relatively to the diffuse noise components. In par-
ticular, if a% = oz, we have

Q= [ Onxl |Iﬂ - %HgHgl ]

; 1
Note that we also have the equality || — ;H9H£’||2F =11

meaning that the average mean square error on the entries of
I, — LHgH/ isalso 5 as in Eq. (5).

5. RATIONALE FOR USING FD-BSE

From the above analysis, we can see that, for the hands-free
speech interface case, the quality of the diffuse background
noise estimate is not degraded by considering only the speech
component and discarding the noise components obtained by
the FD-BSS algorithm. Consequently, using FD-BSS to esti-
mate a separation matrix is not necessary. It is wiser to use an
FD-BSE method that estimates only a row vector for extract-
ing the speech component and obtain the diffuse background
noise estimate necessary for the post filter using the approach
presented in Sect. 4.2.

In FD-BSE, at the fth frequency bin, the estimate y(f,t)
is obtained by applying an extracting vector M( f) to the ob-
served signals

y(f. k) = M(N)X(S, k)
The vector M(f) that extract the speech component can be
obtained by the method presented in [4] that minimize the
cost function

JM(f)) = %€{|y(f,k)|}2 under the constraint

E{ly(f, k)|2} =1 with an iterative gradient descent.

Then the diffuse background noise is estimated with the
method in Sect. 4.2, replacing W (f) by M(f).

6. SIMULATION RESULTS

Experiments were conducted using measurements and record-
ings from a train station hall (using a four microphone array).
Since our goal is to perform speech recognition, a 20K-word
Japanese dictation task from JNAS [5] is used as performance
measure. The recognizer is JULIUS [6], the conditions used
in recognition are given in Table 1. The acoustic model is
a clean model with super-imposed noise (office noise 25dB
SNR). The test sentences are convoluted with the measured
impulse response (in front of array at 50cm) and mixed with
the recorded diffuse background noise at different SNR lev-
els.

The FD-BSE method [4] is compared with a FD-BSS
method (modified INFOMAX algorithm [7]). The quality of
the noise estimate is measured in term of noise reduction rate
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Table 1. System specifications.

Sampling frequency | 16 kHz
Frame length 25 ms

Frame period 10 ms
Pre-emphasis 1-0.972"1

12-order MFCC.
12-order AMFCCs
1-order AE

Feature vectors

HMM PTM , 2000 states
Training data Adult and Senior (JNAS)
Test data Adult and Senior female (JNAS)

(NRR) defined as the difference of the SNR before and after
processing (taking the noise as signal). We also compute the
cepstral distance (CD) between the estimated noise and the
true noise to measure the distortion.

In Fig. 2(a), we can see that the NRRs are higher and
the CDs are lower for the noise estimate obtained with FD-
BSE (the values are averaged on the 100 signals and error
bars are plotted). The FD-BSE noise estimate is especially
better at higher SNRs (as we can expect from Eq.(6)). The
FD-BSE based noise estimation is also on average 2.9 time
faster than the FD-BSS based one. The error bars in Fig. 2(a)
and the computation time standard deviations are relatively
large because the signals from the JNAS database have vari-
able lengths (2.4 s to 13.8 s). The word accuracies for
the speech recognition task obtained using the unprocessed
signal (OBS), the delay and sum beamformer in the target
speech direction (DS), FD-BSS with multichannel Wiener
filter (BSS+W a) and FD-BSS with channel-wise Wiener
filter (BSE+W «) are given in Fig. 2(b).
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Fig. 2. Simulation results.
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7. CONCLUSION

In this paper, we justify the use of FD-BSE for estimating the
diffuse background noise in the hands-free speech interface
case. The reason is that the quality of the diffuse background
noise estimate obtained by using only the estimated speech
component does not differ from the one obtained using all the
estimated noise components. Consequently, it is unnecessary
to estimate a matrix with an FD-BSS method. Estimating a
vector with an FD-BSE method is a better option as the com-
putation cost is reduced while the noise estimation quality is
maintained. Note that, in the real data simulation, the qual-
ity of the noise estimate obtained with FD-BSE is higher as
the FD-BSE algorithm is trying to extract a speech like signal
(see [4]) whereas the FD-BSS method is trying to recover the
statistical independence of the speech and the noise which is
a more challenging task.
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