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ABSTRACT

Several recent methods for speech enhancement in presence
of diffuse background noise use frequency domain blind
signal separation to estimate the diffuse noise and a nonlin-
ear post filter to suppress this estimated noise. This paper
presents a frequency domain blind signal extraction method
for estimating the diffuse noise in place of the frequency
domain blind signal separation. The method is based on the
minimization by means of a complex Newton algorithm of a
cost function depending of the modulus of the extracted com-
ponent. The proposed complex Newton method is compared
to the gradient descent on the same cost function and to the
blind signal separation approach.

Index Terms— Blind signal extraction, speech enhance-
ment, Newton method

1. INTRODUCTION

This papers deals with the enhancement of a target speech
close to amicrophone array in presence of diffuse background
noise created by sources that are far from the array. In [1], the
authors proposed an architecture that combines frequency do-
main blind signal separation (FD-BSS) to estimate the diffuse
background noise with a nonlinear post filter for suppressing
this noise.

FD-BSS is designed to separate an observed mixture in its
different components, as a result when the number of micro-
phones is greater than two, the FD-BSS based noise estima-
tion also unnecessarily separates the noise in different com-
ponents. An alternative is to use frequency domain blind sig-
nal extraction (FD-BSE) to extract the target speech and then
linearly cancel this estimate to obtain the diffuse noise esti-
mate used in the nonlinear post filter. In [2], we proposed an
FD-BSE methods that minimizes a cost function based on the
modulus of the extracted component. Unlike earlier work as
[3], this method does not perform FD-BSS and then selects
the source to be extracted but it directly extracts the desired
source under some problem dependent assumptions. In this
paper, we first give some additional insight concerning the lo-
cal minima of this proposed cost function. Then we derive
a complex Newton algorithm for minimizing this cost func-
tion. Finally we present some experimental results to show
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Fig. 1. BSS at the fth frequency bin

the performance of the proposed complex Newton method.

2. FREQUENCY DOMAIN BLIND SIGNAL
SEPARATION

The frequency domain approach of BSS is often preferred
to the time domain approach because using the short time
Fourier transform (STFT) with F frequency bins, the time do-
main convolutive mixture is transformed in F' instantaneous
mixtures, one per frequency bin. Considering the specific
problem of close speech enhancement in presence of diffuse
background noise, the mixture model is
Ly Si(f, k)
x(r) = (10 | 7| {0 |

where Z,, is the identity matrix of size n, X(f, k) is the STFT
of the observed signals, S;(f, k) is the STFT of the speech
component, N( f, k) is a vector containing the STFTs of the
n components of the diffuse backgroundnoise and

Ho(f) = {exp(G2n(f/F) fo 2 sinb(F))}icon

is an x 1 vector depending of the speech direction of arrival
(DOA) 6(f) (also of the sampling frequency fs, microphone
inter spacing d, and sound velocity ¢).

For convenience we define

S(f.k) = [S1(f. k), Sa(f. k)., Snga (£, K)]T
with Sy(f, k), -, Sns1(f, k) = N(f, k).

Then the noiseless non square instantaneous mixture is re-

written as X(f, k) = H()S(f. k). )
It is a realistic assumption that, in a given frequency bin, the
target speech component is statistically independent of the
diffuse background noise components. But the statistical in-
dependence of the diffuse background noise components is
not assumed.
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Fig. 2. BSS with channel-wise Wiener post filter at the fth
frequency bin

FD-BSS can be achieved by estimating the frequency
components S(f, k) of the emitted signals in each of the fre-
quency bin. At the fth frequency bin, the vector of estimated
components is obtained by applying a complex valued sep-
aration matrix to the vector of observed signals (see Fig. 1)

Y(f.k) = W(X(f.F).

For mixture of statistically independent point sources, the
matrix W ( f) is usually determined by an algorithm that min-
imizes a cost function measuring the statistical independence
of the components of Y(f, k) [4] (the mutual information is
a commonly used cost function, see review paper [5]).

For the case of close speech enhancement in presence of
diffuse background noise, FD-BSS estimates accurately the
diffuse background noise by blindly steering a spatial null in
the direction of the target speech to cancel it [1]. But with
a limited number of microphones it is not possible to cancel
the diffuse background noise and the target speech estimate
is very poor. For this reason, the authors in [1] proposed to
combine an FD-BSS based diffuse noise estimation with a
nonlinear post filter for suppressing the diffuse noise.

An equivalent architecture is depicted in Fig. 2. After
BSS, the estimate of the diffuse background noise is obtained
by finding the speech component in each frequency bin and
projecting back [6] the n — 1 other estimated components to
the microphone array. Then a channel-wise Wiener post filter
is used to suppress the noise estimate and finally the channels
are merged together with a delay and sum (DS) beamformer
to get the final speech estimate (the beamformer direction is
estimated from the row of the separation matrix correspond-
ing to the speech estimate).

3. PROPOSED APPROACH
3.1. Blind signal extraction

In FD-BSE, at the fth frequency bin, the extracted component
is obtained by applying a complex valued extraction vector to
the vector of observed signals (see upper part in Fig. 3)

y(f k) = V(HIX(f.k)

with the constraint € {|y(f, k)|*} = 1. 2)

Considering the target speech in diffuse noise problem,
the extraction of the speech is expressed by V(f)7"H(f) ~
Ae; where e is the first coordinate row vector and A is an un-
know complex scalar. The constraint forces [A[2€ {|s1]?} ~
1. Then a n component noise estimate is obtained by taking
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Fig. 3. BSE noise estimation at the fth frequency bin

Xn(fk) = (L. —Tx(n VIOVINT) X (£ k). 3)
where T'x(y) is the covariance matrix of X(f). This corre-
sponds to the lower part of Fig. 3.

3.2. Cost function and local minima

We use the cost function presented in [2] that is not based
directly on statistical independence but on the sparseness of
the extracted component. This cost function is defined by

TV = 5 € {lytf, BID?

where & {-} is the expectation operator.

In this paper, we conduct the derivation of the local min-
ima of this cost function for the two signal case to show that
the cost function presents local minima when extraction is
performed (This is a particular case as the cost function is
defined for any number of signals in [2]).

Let us consider the mixture y = v187 + v2S7 of two in-
dependent complex valued random variables s; and s, the
constraint (2) is enforced by taking

(4)

— _| cos d| eI _ Isin| eIB2

U1 and

g1 o2

where o2 = £ {|s;|*}. Because of the symmetry of the prob-
lem we can consider the case 6 € [0, 5]. Let us moreover
assume that the modulus and phase of s; and s, are indepen-
dent and that their phases are uniformly distributed.

The derivative of the modulus of y with respect to 6 is

d 1 d [cos?6

d * 2 2
= 5V = 25 (o + 2l
56 sin 6
T St |51||52lc055),
0102

where § = v, — 81 — 72 + B2 (with s; = |s;|e?7*). Then, after
derivation and assuming that we can permute the operators
45 and £{-}, the derivative is

d ]
—&{y = sinecoseé'{—B}
+ (0052 6 — sin? 9) £ {“;f%il cos 5}
102
2 2
where B = ]522| —@.
03 o3

= 276 —~



Using the same approach with these assumptions we obtain
for the gecond derivative

d¢92€{ly|}_ (cos? § — sin® 9)5{@3}

—sin?6cos? 9 £ {—Bz}

lyl?

—sin()cosf)(c0320—si1120)£{| E M 056}.
Yy

g102

|-’1|

For 6 = 0, s; is extracted |y| = and the last term of

the derivative can be factorized as
€ {———'sle?l cos&} =& {—-——ISIHSQI }5{Cos5}
lylo1og lyloioa
because s; and s2 have statistically independent modulus and
phase. Since ; is uniformly distributed in [—, 7] we can
prove using the characteristic function that € {cosé} = 0.

Consequently the derivative is null for § = 0. Moreover, us-
ing the independence of s; and s2, the second derivative is

“w-e{ntt-elm- o

using Jensen’s inequality we get
e{yl} o, _or _Eflsil}
062 - & {|51|} 01

which is always positive because € {[s1]2} — € {|s1 [} > 0.
So the modulus has local minima for § = 0 + p7 correspond-
ingto |y| = J—;—‘ll With the same reasoning, we can show that
the modulus has local minima for 8 = % + pr corresponding

to |y| = lj_zl (the extension to the case of n signals is done
by considering n — 1 angles and splitting the 7 signals in two
groups recursively).

An interesting property of the cost function J(0) =
2(€ {|y|})2 is the dependency of the local maximum posi-
tion to AJ = J(w/2) — J(0). In Fig. 4(a) we plotted J(0)
versus 0 for AJ = 0.15, whereas in Fig. 4(b) it is plotted
for for AJ =~ 0.7. Increasing AJ results in imperceptible
minima in @ = 7/2 + 7 as the two adjoining local maxima
get very close (in Fig. 4(b) the local minima can be seen if we
magnify the graph). To underline this interesting property,
we calculated the cost function variation versus € when s; is
a frequency domain speech components and s, is a diffuse
noise components (the data are the same as in the simulation
part). The results for all the frequency bins are plotted in
Fig. 4(c). Note that the local minima in § = 5 + pm are im-
perceptible contrary to the ones in § = 0 + p7 because AJ is
large for all frequency bins. As a consequence, the basins of
attraction corresponding to the extraction of the diffuse noise
are very small compared to the ones for the speech extraction.
This feature of the proposed cost function is very interesting
as it guarantees the extraction of the close speech component
from the diffuse background noise without the need of any
additional processing (unlike FD-BSS that requires to find
the speech component out of the separated components).
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Fig. 4. (a)(b) Cost function for mixture of signals with differ-
ent values of AJ versus angle, (c) Cost functions for mixture
of speech and noise components versus frequency and angle
(real data)

3.3. Complex Newton algorithm

Let us first define the complex derivative operator

a() 3

(% &)
where * denotes the complex conjugate and the derivatives
relatively to V and V* are row operators (Wirtinger calculus
was also used in [7] to present complex Newton ICA methods
based on the kurtosis cost function).

The derivative of the cost function is (dropping frequency
and frame indices)
£{5r})

8J(V)
and the Sgssia;;s—g{t |}< { ! }
S 1 R B
where Hyv = — (cc”-£{| |}5{X|U| })
and Hy-y = (ccT—£{| |}5{ 4 )[Q?XT })

with C = g{y X}.
y|

By Hermitian symmetry we have
and va- = H{,.v

Hv-v
Hy-v+

Hy-v- = Hyv
Then the complex Newton method update is

I
AV = 55 {lyl} (Hvv — Hv-vHyiy.Hyv-)

(HV.VH-EV.E {lx*} — {y—x})
lyl [yl

and the update rule is V41 = V; + p; AV,
where j denotes the iteration number and 4 a positive adap-
tation step.
In practice, an additional cost function

=i

IN(V) = (V”rxv Tj?

is added to J(V) to 1mplement the constraint (2).
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Table 1. System specifications.

Sampling frequency | 16 kHz
Frame length 25 ms

Frame period 10 ms
Pre-emphasis 1—0.972"1

Feature vectors 12-order MFCC, 12-order AMFCCs. 1-order AE

HMM PTM , 2000 states
Training data Adult and Senior (JNAS)
Test data Adult and Senior female (JNAS)

Table 2. Word accuracy and computation time.

OBS BSS BSE(grad.) | BSE(Newton)
67.92% | 79.15% 78.39% 78.96%
91.78 s 16.03 s 18.9s

4. SIMULATIONS

In a train station hall (900ms of reverberation), a eight linear
microphone array with spacing of 2.15 cm was used to record
the diffuse noise and obtain the estimate of the impulse re-
sponse for a user standing at 50cm in front of the array. Then
we generated one hundred test utterances with 10dB of SNR
for performing the 20K-word Japanese dictation task from
INAS [8].

The data are processed with the architecture presented in
Fig. 2 where the noise estimation is performed by FD-BSS
(Infomax like see [5]) or using FD-BSE with the proposed
complex Newton metlLod or the gradient based method [2].
For FD-BSE we take X n(f, k) as noise estimate (see Eq.(3)
and Fig.3). For the Newton method, a fixed step 1 = 0.1 is
used during 100 iterations whereas for the gradientmethod an
initial step of x = 0.1 is divided by two every 50 iterations
until 200 iterations are performed. FD-BSS has an initial step
of ;1 = 0.5 which is divided by two every 50 iterations until
200 iterations are performed. The gain of the channel-wise
Wiener post filter is set to similar values for the three methods.

The recognizer is JULIUS [9] and the conditions used in
recognitionare given in Table 1. The acoustic model is a clean
model with super-imposed noise (office noise 25dB SNR).

The word accuracy and averaged computation times for
the three methods and for the unprocessed signal (OBS) are
given in Table 2. The proposed Newton method achieves sim-
ilar word accuracy as the other two methods using half the
number of iterations but, in its current implementation, com-
putation time is higher than that of the gradient based BSE
method because of the higher complexity of each iteration.
An advantage of the Newton method is also its robustness to
the selection of the adaptation step compared to the gradient
based method.
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5. CONCLUSION

In this paper, we derived the local minima of the BSE cost
function we presented in [2] and proposed a complex Newton
algorithm for its minimization. The simple implementation
of this complex Newton method gives promising results and
we are now working on a more efficient implementation to
replace the gradient based optimization.
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