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ABSTRACT 

Several recent methods for speech enhancement in presence 
of diffuse background noise use frequency domain blind 
signal separation to estimate the diffuse noise and a nonlin­
ear post filter to suppress this estimated noise. This paper 
presents a frequency domain blind signal extraction method 
for estimating the diffuse noise in place of the frequency 
domain blind signal separation. The method is based on the 
minimization by means of a complex Newton algorithm of a 
cost function depending of th巴modulus of the extracted com­
ponent. The proposed complex Newton method is compared 
to the gradient descent on the same cost function and to the 
blind signal separation approach. 

lndex Termsー- Blind signal extraction， speech enhance­
ment， Newton method 

1. INTRODUCTION 

This papers deals with the enhancement of a target speech 
close to a microphone aπay in presence of diffuse background 
noise created by sources that are far from the array. In [1]， the 
authors proposed an architecture that combines frequency do­
main blind signal separation (FD-BSS) to estimate the diffuse 
background noise with a nonlinear post filter for suppressing 
this noise. 

FD-BSS is designed to separate an observed mixture in its 
di仔erent components， as a result when the number of micro­

phones is greater than two， the FD-BSS bas巴d noise estima­
tion also unnecessarily separates the noise in di仔erent com­
ponents. An altemative is to use frequency domain blind sig­
nal extraction (FD-BSE) to extract the target speech and then 
linearly cancel this estimate to obtain the diffuse noise esti­

mate used in the nonlinear post filter. In [2]， we proposed an 
FD-BSE methods that minimizes a cost function based on the 
modulus of the extracted component. Unlike earlier work as 
[3]， this method does not perform FD-BSS and then selects 
the source to be extracted but it directly extracts the desired 
source under some problem dependent assumptions. In this 
paper， we first give some additional insight conceming the 10-
cal minima of this proposed cost function. Then we derive 
a complex Newton algorithm for minimizing this cost func­
tion. Finally we present some experimental results to show 
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Fig. 1. BSS at the fth frequency bin 

the performance of the proposed complex Newton method. 

2. FREQUENCY DO九IAIN BLIND SIGNAL 

S EPARATION 

The frequency domain approach of BSS is often prefe町ed

to the time domain approach because using the short time 
Fourier transform (STFT) with F frequency bins， th巴time do­
main convolutive mixture is transformed in F instantaneous 
mixtures， one per frequency bin. Considering the specific 
problem of c10se speech enhancement in presenc巴of diffus巴
background noise， the mixture model is 

X(J， k) = [ He(J) I五l[3jfU19
where In is the identity matrix of sizeη， X(J， k) is the ST円
of the observed signals， SI (J， k) is the ST打of the speech 
component， N(J， k) is a vector containing the STFTs of the 
n components of the diffuse background noise and 

H町8以ω(げfト{州Jρ向州州27r制π叫吋(げf川与手s川
1凶s aηx 1 vector depending of the speech direction of ar汀rivali 
(DOA) (J(J) (also of t山h巴s鈎amp判Iing f仕r巴q午中ue叩ncy fム'8' microphone 
inter spacing d， and sound velocity c). 

For convenience we define 

S(J，k) = [Sl(f，k)，S2(J，k)，... ，Sn+l(J，kW 
with S2(J， k)，'" ， Sη+1(J，k) = N(J，k). 

Then the noiseless non square instantaneous mixture is re-
wntten as X(J， k) = H(J)S(J， k). (1) 
It is a realistic assumption that， in a given frequency bin， the 
target speech component is statistically independent of the 
diffuse background noise components. But the statistical in­
dependence of the diffuse background noise components is 
not assumed. 
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Fig. 2. BSS with channel-wise Wiener post filter at the fth 
frequency bin 

FD-BSS can be achieved by estimating the frequency 
components S(f， k) of the emitted signals in each of the fre­
quency bin. At the }th frequency bin， the vector of estimated 
components is obtained by applying a complex valued sep­
aration matrix to the vector of observed signals (see Fig. 1) 

Y(f. k) = W(f)X(f. k). 
For mixture of statistically independent point sources， the 

matrix W(f) is usually detennined by an algorithm that min­
imizes a cost function measuring the statistical independence 
of the components of Y(f， k) [4] (the mutual information is 
a commonly used cost function， see review paper [5]) 

For the case of close speech enhancement in presence of 
diffuse background noise， FD-BSS estimates accurately th巴
diffuse background noise by blindly steering a spatial null in 
the direction of the target speech to cancel it [1]. But with 
a limited number of microphones it is not possible to cancel 
the diffuse background noise and the target speech estimate 
is very poor. For this reason， the authors in [1] proposed to 
combine an FD-BSS based diffuse noise estimation with a 
nonlinear post自Iter for suppressing the diffuse noise. 

An equivalent architecture is depicted in Fig. 2. After 
BSS， the estimate of the diffuse background noise is obtained 
by finding the speech component in each frequency bin and 
projecting back [6] the n - 1 other estimated components to 
the microphone array. Then a channel-wise Wiener post filter 
is used to suppress the noise estimate and finally the channels 
are merged together with a delay and sum (DS) beamformer 
to get the final speech estimate (the beamformer direction is 
estimated from the row of the separation matrix correspond­
ing to the speech estimate) 

3. PROPOSED APPROACH 
3.1. Blind signal extraction 

In FD-BSE， at the f th frequency bin， the extracted component 
is obtained by applying a complex valued extraction vector to 
the vector of observed signals (see upper pa口in Fig. 3) 

ν(fぅk) = V(f)HX(f. k) 
with the constraint [; {Iy(f， k)n = 1. (2) 
Considering the target speech in diffuse noise problem， 

the extraction of the speech is expressed by V(f)HH(f)勾
入el where el is the first coordinate row vector and入is an un­
know complex scalar. The constraint forces 1入12[;{18112}ぉ
1. Then a n component noise estimate is obtained by taking 

l'(f，k) 

X.\U，k) 

Fig. 3. BSE noise estimation at the fth frequency bin 

文N(f、k)= (In - rX(f)v(f)V(f)H) X(f，k). (3) 

where rX(f) is the covariance matrix of X(f). This corre­
sponds to the lower part of Fig. 3. 

3.2. Cost function and local minima 

We use the cost function presented in [2] that is not based 
directly on statistical independence but on the sparseness of 
the extracted component. This cost function is defined by 

m川=→i川以fι川，
where ε {-}i凶s the expecta剖叩tion 0叩peratωor.

In this paper， we conduct the derivation of the local min­
ima of this cost function for the two signal case to show that 
the cost function presents local minima when extraction is 
performed (This is a particular case as the cost function is 
defined for any number of signals in [2]). 

Let us consider the mixture y - V181 + V282 of two in­
dependent complex valued random variables 81 and 82， the 
constraint (2) is enforced by taking 

Vl 巳立lE泊 and V2 =出出eJβ2
σ1 σ2 

whereσ? = ε { 1 8i n. Because üf the叩nmetry of the prob­
lem we can con副er the case ()ε [0，き]. Let us moreover 
assume that the modulus and phase of 81 and 82 are indepen­
dent and that their phases are uniformly distributed. 

The derivative of the modulus of y with respect to () is 

d ， d � 1 d (cos2 () 今 sin2() ， ， � 7" Iyl = 711 VYY* = 一一ト:2 v 18112 + u':2 v 1 8212 
d() "" d() V '''> 21yl d() \ O"i I V � I O"� 

θsin8 _\ +2一一一一18111821cosð 1 UIU2 / 

where 0 =γ1 - ßl - 12 + ß2 (with 8i = 18;leJí'i). Then， after 
derivation and assuming that we can permute the operators 
f!õ. and [; {-}， the derivative is 

�1l [;{lyl} = sin()cos()[; �土B�d()- " " IJ - - - - - --- - - I Iν1 - J f 1811 1 821 .._ <ì + (cos2 () - sin2 ())パ 一一一cosð トl ly lσlσ2 --- - J 
18212 18112 

here B = �一一ーで「 ・
σ5 σf 
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Using the same approach with these assumptions we obtain 
for the second derivative 

Ã2 (司 、
かε{Iyl }= (c山 一sin2 θ)ぺ市B J
- sin2 Bcos2 B E 1 �B2 \ lIyl2 - J 

( 1 n 15d l 521 ___ .- ) - sin B cos B (cos2 B - sin2 B) パ 寸B一一 cosð � 
lly l 】 σlσ2

----J 
For B = 0，51 is削acted Iyl = 与fl andU1Elaslierm of 

the derivative can be factorized as 
εぺ引{ t北151川川山仇州1152刷15凶凶s匂州2計 � CO Sð} = E {刊仲仙川川1 51川川S釘刈叫l川川11一一一O回叫 5吋ð > = εパ←{-一→→)ドいいト川ε引作ωω山{いh凶附C∞側ωO白叫叫5吋叫6丹} I ylσlσ2 --- -J - l lylσ1σ2 

because 51 and 52 have statistically independent modulus and 
phase. Since ìl is uniformly distributed in [πバ1 we can 
prove using the characteristic fur削ion that E {cos 8} - 0 
Consequently the derivative凶null for B = O. Moreover， us­
ing the independence of 51 and 52， the second derivative is 

θ2E {Iyl} c" ( Bσ1 ) c" (σ1 1511 ) 
θB2 -ll 5dJ -l1511σ1 J 

using Jensen's inequality we get 
θ2E {Iyl} � σ1 ε{15d} 

θB2 一 ε{1511} σI

which is always positive because ε{15d2} - E {1511}2 主 O.
So t山h巴modulus has local minima for B = 0 + Pπcorrespond­
m叩01ωU剖|= =￥千 W川le sam問ne re郎on川nin打m略n
1山h巴modulus has local minima for B = � + Pπcorresponding 
t o l u | = =境野i子1 (山t叶山批he児e e削X刈胤刷xten旬加刷E釘叩叩n
by considering n - 1 angl巴s and splitting the ηs剖Igna討Is in two 
groups recursively) 

An interesting property of the cost function J(B) = 
t(ε{lyl})2 is the dependency of the local maximum posi 
tlOn toムJ = J(π/2) -J(O). In Fig. 4(a) we plotted J(θ) 
versus B forムJ勾0.15， whereas in Fig. 4(b) it is plotted 
for forムJ勾0.7. Increasing ð.J results in imperceptible 
minima in B -π/2 +πas the two adjoini時local maxima 
get very c10se (in Fig. 4(b) the local minima can be seen if we 
magnify the graph). To underline this interesting property， 
we calculated the cost function variation versus B when 51 is 
a frequency domain speech components and 52 is a diffuse 
noise components (the data are the same as in the simulation 
part). The results for all the frequency bins are plotted in 
Fig. 4(c). Note that the local minima in B =号+pπare Im­
perceptible contrary to the ones in B = 0 + PπbecauseムJ is 
large for all frequency bins. As a consequence， the basins of 
attraction co汀esponding to the extraction of the diffuse noise 
are very small compared to the ones for the speech extraction. 
This feature of the proposed cost function is very interesting 
as it guarantees the extraction of the close speech component 
from the diffuse background noise without the need of any 
additional processing (unlike FD-BSS that requires to fìnd 
the speech component out of the separated components). 
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Fig.4. (a)(b) Cost function for mixture of signals with differ­
ent values ofムJversus angle， (c) Cost functions for mixture 
of speech and noise components versus frequency and angle 
(real data) 

3.3. Complex Newton algorithm 

Let us fìrst defìne the complex derivative operator 
θU = (叫 釘� ì 
θ( \ åV åV' ) 

where * denotes the complex conjugate and the derivatives 
relatively to V and V事are row operators (Wirtinger calculus 
was also used in [7] to present complex Newton ICA methods 
based on the kurtosis cost function). 

The derivative of the cost function is (dropping frequency 
and frame indices) 

主巴= �E {Iyl} ( パ4L)ε {弔斗)θ( 2 - " '''' \ - l IYI J - l IYI J ) 
and the Hessian is 

θ/θJ(V ) \ H r行VV 行V'V 1 冗VJ(V) = ーl一一一 1 - 1 �.vv �.v-v 1 
θ( \. θ( ) l行VV・ 行v・v' J 

1 / (vvH 、 \
where行VV = 二 ( CCH-E {Iyl}ε { 二二二一� 1 \.-- - "''' ' - l ly I J ) 

(/>/>T r" 11 r ( (y')2XXT ) \ and 冗V'V= � ( ccT -E {Iν I} E � 一一寸一一� 1 \.--
- " ''' ' - l lyl3 J ) 

山 c=ε jι主l
l Iyl J 

By Hermitian symmetry we have 
干ív・v・=干í�v and 干{VV・=干{�'V

Then the complex Newton method update is 

ð.V = �E {Iyl} (行VV 行V'市:vIw)一1

(冗 冗γ一→1 ε L1t匂匂叶X'斗事. } ε Jγ V'VfLV'V'" ì.. 田 - " ì.. 町 f
and the update rule is Vj+1 = Vj +的ムVj

where j denotes the iteration number and μj a positive adap­
tatlOn step. 

In practice， an additional cost function 

ふ州川(何(V)片= i 附
i凶s added tωo J(V) tωolm町m甲p凶lement the constraint (2勾).
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Table 1. System spec(ヌcations

Sampling frequency 16 kHz 

Frame lenglh 25 ms 

Frame period 10 ms 

Pre-emphasis 1 - 0.97z-' 
Fealure veclors 12・order MFCC， 12-order .ð.MFCCs， I-orderムE

HMM PTM .2∞o slales 

Training dala Adull and Senior (JNAS) 

Tesl dala Adull and Senior female (JNAS) 

18.9 s 

4. SI恥IULATIONS

In a train station hall (900ms of reverberation)， a eight linear 
microphone array with spacing of 2.15 cm was used to record 
the diffuse noise and obtain the estimate of the impulse re­
sponse for a user standing at 50cm in front of the array. Then 
we generated one hundred test utterances with 10dB of SNR 
for performing the 20K-word Japanese dictation task from 
JNAS [8]. 

The data are processed with the architecture presented in 
Fig. 2 where the noise estimation is performed by FD-BSS 
(Infomax like see [5]) or using FD-BSE with the proposed 
complex Newton m巴t�d or the gradient based method [2] 
For FD-BSE we take XN(J， k) as noise estimate (see Eq.(3) 
and Fig.3). For the Newton method， a fixed stepμ= 0.1 is 
used during 100 iterations whereas for the gradient method an 
initial st巴p of μ= 0.1 is divided by two every 50 iterations 
until 200 iterations are performed. FD-BSS has an initial step 
of μ= 0.5 which is divided by two every 50 iterations until 
200 iterations are perform巴d. The gain of the channel-wise 
Wiener post filter is set to similar values for the three methods. 

The recognizer is JULIUS [9] and the conditions used in 
recognition are given in Table 1. The acoustic model is a clean 
model with super-imposed noise (office noise 25dB SNR). 

The word accuracy and averag巴d computation times for 
the thre巴 methods and for the unprocessed signal (OBS) are 
given in Table 2. The proposed Newton method achieves sim­
ilar word accuracy as the other two methods using half the 

number of iterations but， in its cu打開t implementation， com­

putation time is higher than that of the gradient based BSE 
method because of th巴 higher complexity of each iteration. 

An advantage of the Newton method is also its robustness to 

the selection of the adaptation step compared to the gradient 

based method. 

5. CONCLUSION 

In this paper， we derived the local minima of the BSE cost 
function we presented in [2] and proposed a complex Newton 
algorithm for its minimization. The simple implementation 
of this complex Newton method gives promising results and 

we are now working on a more efficient implementation to 
replace the gradient based optimization. 
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