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Abstract

We propose a new algorithm for blind source separation
(BSS), in which independent component analysis (ICA) and
beamforming are combined to resolve the low-convergence prob-
lem through optimization in ICA. The proposed method con-
sists of the following three parts: (1) frequency-domain ICA
with direction-of-arrival (DOA) estimation, (2) null beamform-
ing based on the estimated DOA, and (3) integration of (1) and
(2) based on the algorithm diversity in both iteration and fre-
quency domain. The inverse of the mixing matrix obtained
by ICA is temporally substituted by the matrix based on null
beamforming through iterative optimization, and the temporal
alternation between ICA and beamforming can realize fast- and
high-convergence optimization. The results of the signal sepa-
ration experiments reveal that the signal separation performance
of the proposed algorithm is superior to that of the conventional
ICA-based BSS method, even under reverberant conditions.

1. Introduction

Blind source separation (BSS) is the approach taken to estimate
original source signals using only the information of the mixed
signals observed in each input channel. This technique is appli-
cable to the realization of noise-robust speech recognition and
high-quality hands-free telecommunication systems. In the re-
cent works for the BSS based on the independent component
analysis (ICA) [1, 2], several methods, in which the inverse of
the complex mixing matrices are calculated in the frequency
domain, have been proposed to deal with the arrival lags among
each of the elements of the microphone array system [3, 4, 5].
However, this ICA-based approach has the disadvantage that
there is difficulty with the low convergence of nonlinear opti-
mization [6].

In this paper, we describe a new algorithm for BSS in which
ICA and beamforming are combined. The proposed method
consists of the following three parts: (1) frequency-domain ICA
with estimation of the direction of arrival (DOA) of the sound
source, (2) null beamforming based on the estimated DOA, and
(3) integration of (1) and (2) based on the algorithm diversity in
both iteration and frequency domain. The temporal utilization
of null beamforming through ICA iterations can realize fast-
and high-convergence optimization. The following sections de-
scribe the proposed method in detail, and it is shown that the
signal separation perforrnance of the proposed algorithm is su-
perior to that of the conventional ICA-based BSS method.
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Figure 1: Configuration of a microphone array and signals.

2. Data model and conventional BSS

method
In this study, a straight-line array is assumed. The coordinates
of the elements are designated as d, (k = 1,---, K), and the

directions of arrival of multiple sound sources are designated as
6, (I =1,---,L) (see Fig. 1), where we deal with the case of
K=L=2.

In general, the observed signals in which multiple source
signals are mixed linearly are given by the following equation
in the frequency domain:

X(f) = A(f)S(f),

where X (f) is the observed signal vector, S(f) is the source
signal vector, and A( f) is the mixing matrix; these are given as

1

X(f) = X)) Xe(HIT, @
S(f) = [Siu(f),- S, 3)
Aii(f) AiL(f)

A(f) = : : )
Axi(f) Ak (f)

A(f) is assumed to be complex-valued because we introduce a
model to deal with the arrival lags among each of the elements
of the microphone array and room reverberations.

In the frequency-domain ICA, first, the short-time analy-
sis of observed signals is conducted by frame-by-frame discrete
Fourier transform (DFT) (see Fig. 2). By plotting the spectral
values in a frequency bin of each microphone input frame by
frame, we consider them as s time series. Hereafter, we des-
ignate the time series as X (f,t) =[X1(f,t), -, Xk (f,)]".
Next, we perform signal separation using the complex-valued
inverse of the mixing matrix, W (f), so that the L time-series
output Y (f,t) becomes mutually independent; this procedure
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Figure 2: BSS procedure based on frequency-domain ICA.

can be given as

Y(f,t) = W(HX(f1), (5)
where
Y(fit) = Wi(fit), - Ye(f, 0], ©)
Wi (f) Wik (f)
W(f) = : : @)
Wei(f) Wek(f)

We perform this procedure with respect to all frequency bins.
Finally, by applying the inverse DFT and the overlap-add tech-
nique to the separated time series Y (f,t). we reconstruct the
resultant source signals in the time domain.

In the conventional ICA-based BSS method, the optimal
W (f) is obtained by the following iterative equation [3, 7]:

W () =n]diag ((2(Y (£,)Y"(£,0)),)
—(B(Y(£,0)Y"(£,0)),]W:(H)+W(f), ®

where (-), denotes the time-averaging operator, ¢ is used to ex-
press the value of the ¢ th step in the iterations, and 7 is the
step-size parameter. Also, we define the nonlinear vector func-
tion ®(-) as

[®(YA(f,8), - ®(YL(f, )T, (9
[1 +exp(-Y, P (£, )]
+3- [L+ep(=,"(£,)] 7", (10)

2(Y(£,1))
2(Yi(f, 1))

where Y,(R) (f, t) and Yz(” (f, t) are the real and imaginary parts
of Y;(f,t), respectively.

3. Proposed algorithm

The conventional ICA method inherently has a significant dis-
advantage which is due to low convergence through nonlinear
optimization in ICA. In order to resolve the problem, we pro-
pose an algorithm based on the temporal alternation of learning
between ICA and beamforming; the inverse of the mixing ma-
trix, W ( f), obtained through ICA is temporally substituted by
the matrix based on null beamforming for a temporal initializa-
tion or acceleration of the iterative optimization. The proposed
algorithm is conducted by the following steps with respect to all
frequency bins in parallel (see Fig. 3).
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Figure 3: Proposed algorithm combining frequency-domain
ICA and beamforming.

[Step 1: Initialization] Set the initial W ;(f), i.e., Wo(f), to
an arbitrary value, where the subscripts ¢ is set to be 0.

[Step 2: 1-time ICA iteration] Optimize W ;(f) using the
following 1-time ICA iteration:

wiSMH=n [diag((Q(Y(f, )Y (f, t)),)

—(@(Y (£, )Y (£,0)) ]W:(H+Wi(f),
(11

where the superscript “(ICA)” is used to express that the inverse
of the mixing matrix is obtained by ICA.

[Step 3: DOA estimation] Estimate DOAs of the sound sources
by utilizing the directivity pattern of the array system, Fi(f,6).
which is given by

K
F(f,6) =Y WSN(f) expljanfdising/c], (12)
k=1

where W,(JCA)(]') is the element of WEEA)(f). In the direc-
tivity patterns, directional nulls exist in only two particular di-
rections. Accordingly, by obtaining statistics with respect to the
directions of nulls at all frequency bins, we can estimate the
DOAs of the sound sources. The DOA of the ! th sound source,
6.. can be estimated as 6; =2 Z:’f:l 6:(fm)/N, where N is a
total point of DFT, and 6, (f,) represents the DOA of the [ th
sound source at the m th frequency bin. These are given by

Gl(f,,.)=min[argm9in|F1(fm,0)|,argmoin|F2(fm,9)|], (13)

02(fm)=max[argn¥in|F1(fm,0)|,argn'gn |F2(fm,0]!],(l4)

where min[z, y] (max[z, y]) is defined as a function in order t0
obtain the smaller (larger) value among z and y.

[Step 4: Beamforming] Construct an alternative matrix for
signal separation, W (BF)(¥), based on the null-beamforming
technique where the DOA results obtained in the previous step
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is used. In the case that the look direction is 6 and the direc-
tional null is steered to 5, the elements of the matrix for signal
separation are given as

W™ (fm) = exp[ — j2m fimds sin b1 /]

X {exp [j27rfmd1 (sin 62 —sin 6, )/c]

— exp [j21rfmd2(sin 6, —sin él)/c] }_1, (15)
WS (fm) == exp| = j27 fmdz sin 61 /c]

X {exp [.727ffmd1 (sin §2 —sin él)/c]

— exp [j27rfmd2(sin 6 —sin 6, )/c] }—l. (16)

Also, in the case that the look direction is 62 and the directional
null is steered to 61, the elements of the matrix are given as

WP (fm) = — exp[ — j27 fmd sin 62 /c]
x { - exp[j27 fmd: (sin 61 —sin 65) /c]
+exp[j27rfmd2(sin 6, —sin éz)/c}}—l, (17)

W (fm) = exp| - j2m fmda sin 62/c]

x {—exp[j27rfmd1(sinéx—sin éz)/c]

+ exp[j27rfmd2(sin 0, —sin 02)/c] }_!. (18)
[Step 5: Diversity with cost function] Select the most suit-
able unmixing matrix in each frequency bin and each iteration
point, i.e., algorithm diversity in both iteration and frequency
domain. As a cost function used to achieve the diversity, we
calculate two kinds of cosine distances between the separated
signals which are obtained by ICA and beamforming. These
are given by :

[(reom i opom ) |

<IY1(ICA)(f’t)|2>%< Y2(ICA)(f’t)|2>

(v 0vPP ) |

<‘Y1(BF)(f,t)r> %<|Y2(BF)(f,t)|2>%

J(ICA)(f)z 1 7(19)

2
t

JER(f)= , (0)

where Y,('CA)(f, t) is the separated signal by ICA, and YI(BF) (f,1)

is the separated signal by beamforming. If the separation per-
formance of beamforming is superior to that of ICA, we obtain
the condition, JUCA)(£) > JBF)(£); otherwise JICA)(f) <
J®BF)(£) Thus, an observation of the conditions yields the fol-
lowing algorithm:

wISM (),
w R ().

(FECR(Fy < TP ()

(J0oR(g) > g=P(y) . @D

w(f) = {

If the (i + 1)th iteration was the final iteration, go to step 6; oth-
erwise go beck to step 2 and repeat the ICA iteration inserting
the W (f) given by Eq. (21) into W;(f) in Eq. (11) with an
increment of 3.

[Step 6: Ordering and scaling] Using the DOA information
obtained in step 3, we detect and correct the source permutation
and the gain inconsistency [8].
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Figure 4: Layout of reverberant room used in experiments.

4. Experiments and results
4.1. Conditions for experiments

A two-element array with the interelement spacing of 4 cm is
assumed. The speech signals are assumed to arrive from two
directions, —30° and 40°. Two kinds of sentences, those spo-
ken by two male and two female speakers selected from the ASJ
continuous speech corpus for research [9], are used as the origi-
nal speech samples. Using these sentences, we obtain 12 combi-
nations with respect to speakers and source directions. In these
experiments, we use the following signals as the source signals:
the original speech convolved with the impulse responses spec-
ified by different reverberation times (RTs) of 150 msec and
300 msec. The impulse responses are recorded in a variable
reverberation time room as shown in Fig. 4. The analytical con-
ditions of these experiments are as follows: the sampling fre-
quency is 8 kHz, the frame length is 128 msec, the frame shift
is 2 msec, and the step-size parameter 7 is set tobe 1.0 x 10~°.

4.2. Objective evaluation of separated signals

In order to compare the performance of the proposed algorithm
with that of the conventional BSS described in Sect. 2 for dif-
ferent iteration points in ICA, the notse reduction rate (NRR),
defined as the output signal-to-noise ratio (SNR) in dB minus
input SNR in dB, is shown in Fig. 5. These values were av-
erages of all of the combinations with respect to speakers and
source directions. As for the proposed algorithm, we also plot
the NRR which is rescaled by the computational cost (see dot-
ted lines) because the proposed algorithm has a computational
complexity of about 1.9-fold compared with the conventional
ICA.

In Fig. 5, it is evident that the separation performances of
the proposed algorithm are superior to those of the conventional
ICA-based BSS method at every iteration point, even consid-
ering the additional computational cost of the proposed algo-
rithm. For example, compared with the conventional method,
the proposed method can improve the NRR of about 4.6 dB at
the 50-iteration point in the conventional ICA when the RT is
150 msec. Also, when the RT is 300 msec, the proposed method
can improve the NRR of about 1.5 dB.

Figure 6 shows a result of alternation between ICA and null
beamforming through iterative optimization by the proposed al-
gorithm when the RT is 300 msec. In this figure, the symbol
“=” represents that the null beamforming is used in the itera-
tion point and frequency bin. As shown in Fig. 6, the proposed
algorithm can work automatically as follows: (1) null beam-
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forming is used for the acceleration of learning at early times in
the iterations because W (BF)(f) is a rough approximation of
the inverse of the mixing matrix A(f), (2) ICA is used after the
early part of the iterations because ICA can update the inverse
of the mixing matrix more accurately, and (3) the inverse of
the mixing matrix obtained by ICA is substituted by the matrix
based on null beamforming through whole iteration points at
particular frequency bins where the independence between the
sources is low. From these results, although null beamforming
is not suitable for signal separation under the condition that the
direct sounds and their reflections exist, we can confirm that the
temporal utilization of null beamforming for algorithm diversity
through ICA iterations is effective for improving the separation
performance and convergence.

5. Conclusion

In this paper, we described a fast- and high-convergence algo-
rithm for BSS where null beamforming is used for temporal
algorithm diversity through ICA iterations. The results of the
signal separation experiments reveal that the signal separation
performance of the proposed algorithm is superior to that of
the conventional ICA-based BSS method, and the utilization of
null beamforming in ICA is effective for improving the sep-
aration performance and convergence, even under reverberant
eonditions.
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Figure 6: The result of alternation between ICA and null beam-
forming through iterative optimization by the proposed algo-
rithm. The symbol “=" represents that the null beamforming
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