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Abstract 

Julius is a high-performance， two-pass LVCSR decoder 
for researchers and developers. Based on word 3-gram 
and context-dependent HMM， it can perform almost real­
time decoding on most cuπent PCs in 20k word dicta­
tion task. M勾or search techniques are fully inco中orated
such as tree lexicon， N-gram factoring， cross-word con­
text dependency handling， enveloped beam search， Gaus­
sian pruning， Gaussian selection， etc. Besides search 
efficiency， it is also modularized carefully to be inde­
pendent from model structures， and various HMM types 
are supported such as shared-state triphones and tied­
mixture models， with any number of mixtures， states， 
or phones. Standard formats are adopted to cope with 
other free modeling toolkit. 百le main platform is Linux 
and other Unix workstations， and partially works on 
Windows. Julius is distributed with open license to­
gether with source codes， and has been used by many 
researchers and developers in Japan. 

1. Introduction 

In recent study of large vocabulary continuous speech 
recognition， we have recognized the necessity of a com­
mon platform. By collecting database and sharing tools， 
the individual components such as language models and 
acoustic models can be fairly evaluated through actual 
comparison of recognition result. It benefits both re­
search of various component technologies of and devel­
opment of recognition systems. 

The essential factors of a d巴coder to serve as a com­
mon platform is performance， modularity and availabil­
ity. Besides accuracy and speed， it has to deal with many 
model types of any mixtures， states or phones. Also the 
Interface between engine and models needs to be sim­
ple and open so that anyone can build recognition sys­
tem using their own models. In order to modify or im­
prove the engine for a specific pu中ose， the engine needs 
to be open to public. Although there are many recogni・
llOn systems recently available for research purpose and 
also as commercial products， not all engines satisfy th巴se
requlrement. 

We developed a two-pass， real-time， open-source 
large vocabulary continuous sp巴ech recognition engine 
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Figure 1: Scr巴en shot of Japanese dictation system using 
Julius. 

named “Julius" for researchers and developers. It in­
corporates many search techniques to provide high level 
search perfoロnance， and can deal with various types 
models to be used for their cross evaluation. Standard 
formats that other popular modeling tools[ 1 ][2] use is 
adopted. On a 20k-word dictation task with word 3・gram
and triphone HMM， it realizes almost real-time process­
ing on most cuπent PCs. 

Julius has been developed and maintained as part of 
free software toolkit for Japanese LVCSR[4] from 1997 
on volunteer basis. 百le overall works are still continu­
ing to the Continuous Speech Recognition Consortium， 
Japan[3]. 百is software is available for free with source 
codes. A screen shot of Japanese dictation system is 
shown in Figure 1. 

In this paper， we describe its search algorithm， mod­
ule interface， implementation and performance. It can be 
downloaded from the URL shown in the last section. 
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Figure 2: Overview of Julius 

2. Search Algorithm 

Acouslic 
Model 

Language 
Model 

Julius performs two-pass (forward.backward) search us­
ing word 2-gram and 3-gram on the respective passes[5]. 
The overview is illustrated in Figure 2. Many major 
search techniques are incorporated. The details are de­
scribed below. 

2.1. First Pass 

On the first pass， a tree-structured lexicon assigned with 
language model probabilities is applied with the frame­
synchronous beam search algorithm. It assigns pre­
computed l -gram factoring values to the intermediate 
nodes， and applies 2-gram probabilities at the word-end 
nodes. Cross-word context dependency is handled with 
approximation which applies the best model for the best 
history. As the l-gram factoring values are independent 
of the preceding words， it can be computed statically in 
a single tree lexicon and thus needs much less work area. 
Although the values are theoretically not optimal to th巴
true 2・gram probability， these errors can be recovered on 
the second pass. 

We assume one-best approximation rather than word­
pair approximation. The degradation by the rough ap­
proximation in the first pass is recovered by the tree­
trellis search in the second pass. The word trellis index， 
a set of survived word-end nodes， their scores and their 
co汀esponding starting frames per frame， is adopted to 
efficiently look up predicted word candidates and th巴lr
scores on the later pass. 1t allows recovery of word 
boundary and scoring errors of the preliminary pass on 
the later pass， thus enabl巴s fast approximate search with 
Iittle loss of accuracy. 

2.2. Second Pass 

1n the second pass， 3-gram language model and pre司
cise cross-word context dependency is applied for re­
scoring. Search is performed in reverse. direction， and 
precise sentence-dependent N-best score is calculated by 
connecting backward trellis in the result of the first pass. 
The speech input is again scanned for re-scoring of cross­
word context dependency and connecting the backward 
trellis. There is an option that applies cross-word con­
text dependent model to word-end phones without delay 
for accurate decoding. We enhanced the stack-decoding 
search by setting a maximum number of hypotheses of 
every sentence length (envelope)， since the simple best­
first search sometimes fails to get any recognition results. 
The search is not A *-admissible because the second pass 
may give better scores than the first pass. It means that 
the first output candidate may not be th巴 best one. Thus， 
we compute several candidates by continuing the search 
and sort them for the final output. 

2.3. Gaussian Pruning and Gaussian Mixture Selec. 
tion on Acoustic Computation 

For efficient decoding with tied-mixture model that has a 
large mixture pdfs， Gaussian pruning is implemented[6]. 
It prunes Gaussian distance (= log likelihood) compu­
tation halfway on the full vector dimension if it is not 
promising. Using the already computed ιbest values as a 

threshold guarantees us to find the optimal ones but does 
not eliminate computation so much [safe pruning]. We 
implement more aggressive pruning methods by setting 
up a beam width in the intermediate dimensions [beam 
pruning]. We perform safe pruning in the standard de­
coding and beam pruning in the efficient decoding. 

To further reduce the acoustic computation cost on 
triphone model， a kind of Gaussian selection scheme 
called Gaussian mixture selection is introduced[7]. Addi­
tional context-independent HMM with smaller mixtures 
are used for pre-selection of triphone states. The slate 
Iikelihoods of the context-independent models are com­
puted first at each frame， and then only the triphone 
states whose coπesponding monophone states are ranked 
within the k-best are computed. The unselected states are 
given the probability of monophone itself. Compared 10 
the normal Gaussian selection that definitely sel己cl Gaus・
sian clusters by VQ codebook， th巴 unselected states are 
reliably backed-off by assigning actual likelihood insleatl 
of some constant value， and realize stable recogllltlon 
with even more tight condition. 

2.4. Transparent Word Handling 

Toward recognition of spontaneous speech， transpare� t 
word handling is also implem巴nted for fillers. The N 
gram probabilities of transparent words are g 
aおS other words， but they will be skipped from the woru 
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context to prevent them from affecting occu汀ence of 

neighbor words. 

2.5. Alternativ.e algorithms 

Besides these algorithms described above， conventional 

a]gofllhms are a1so imple�ented for comparison: ηle 
d;fau1t a1gorithms described above such as l-gram factor­

ing. one-best approximation and word lrel1is index can be 
replaced 10 conventiona1 2-gram factoring， word-pair ap­
oroximation and word graph interface respectively. 百ley

Me seleclab1e on compile time and any combination is 
allowed. Users can choose suitable algorithms for their 

evaluation and development. 

3. 島10dule Interface 

In order 10 act as a module of various speech recognition 
systems， a recognition engine needs to have simple and 
trivial interface to other modules. We adopt standard and 
common format as module interface to keeps generality 
加d modularity to various models. The interfaçes， speech 
input and output of Julius is described in the fol1owing. 

3.1. Acoustic Model 

Monophone and triphone HMM with any number of mix­
tures， states， phones are suppo口ed. It can also handle 
tied-mixture models and phonetic tied-mixture model[6]. 
The model types are automatical1y identi白ed. The HMM 
definition file should be in HTK format. When tied­
mixture model is given (by hmmdefs using directive 
<TMix>)， Gaussian pruning is activated for each mix­
ture pdfs. Not al1 formats in HTK hmmdefs are sup­
ported: multi input stream， discrete HMM， covariance 
malrix other than diagona1 and duration parameter are not 
supported. 

3.2. Lexicon 

百le format of the recognition dictionary is similar to the 
HTK dictionary format. It is a list of words with their 
OUlput strings and pronunciations. Each pronunciation 
is expressed as a sequence of sub-word unit name in the 
acoustic mode!. Actua))y any sub-word unit like syllables 
can be used. Multiple pronuncialions of a word should 
be written as separate words， each has possible pronunci­
alion paHern. With a triphone mod巴1， each pronunciation 
unit is converted to context-aware form (ex. “a-k+i") on 
slartup. To map possible (Iogical) triphones to the defined 
(physical) ones in the hmmdefs， acoustic model should be 
accompanied with HMM list that spècifies the co汀espon­
dences. 

The defau1t maximum vocabulary size is set 10 65535 
words by default for memory efficiency， but larger size 
can be al10wed if configured so. 

3.3. Language Model 

Two language model is needed: word 2-gram for the first 
pass and word 3-gram in reverse direction for the second 
pass. ARPA-standard format can be directly read. To 
speed up the startup procedure of recognition syslem， an 
original binary format is supported J • 

3.4. Input I Output 

Speech input by waveform file ( l6bit PCM) or pattern 
vector file (HTK format) is supporled. Live microphone 
input is also supported on Linux， FreeBSD， Sun and SGI 
workstations. Input can also be sent via TCPIlP network 
using DAT-Linklnetaudio protocol. These input speech 
stream can be segmented on pause by watching zero­
cross and power， and each segmenl is recognized sequen­
tial1y in turn. 

Decoding of the first pass is done in paral1el with the 
speech input. It starts processing as soon as a input seg­
ment slarts， and when a long pause is detected， it finishes 
the first pass and continues to lhe second pass. As the sec­
ond pass finishes in very short time， the delay of recogni­
tion result output is sufficiently smal!. 

The cuπent speech analysis function of Julius can 
extract on1y one coefficients for our acoustic models2. 
CMN (cepstral mean normalization) is activated automat­
ically if acoustic mode1 requires il. In case of自le input， 
cepstral mean is computed first for the file or segment. 
For live input， average values of last 5 seconds are used. 

Output is a recognition result in word sequence. N­
best results can be output. Phoneme sequence， log likeli­
hood scores and several search statistics can also be gen­
erated. Partial results can be output successive1y whi1e 
processing the first pass， though the fina1 resu1t is unde­
termined ti11 the end of the second pass. 

3.5. Search Parameters 

Various search parameters can be d巴termined in both 
compile time and run time. 百le parameters of 1anguage 
model weight and insertion penalty as well as the beam 
width can be adjusted for the印spective passes. Two de­
fau1t decoding options are a1so set up: Standard decod­
ing strictly handles context dependency of acoustic mod­
els for accurate recognition. Efficient decoding uses a 
smal1er beam width by defau1t and terminated the search 
when the 白rst candidate is obtained 

4. Implementation and Distribution 

Main p1atform is Linux， but it also works on other Unix 
workstations: FreeBSD， Solaris2， IRIX6.3 and Digita1 
Unix. Live microphone input is supported on most OS. It 

I A conversion tool“mkbingram" is included in the distribution 
package 

226 dimension MFCC-E_ILZ coefficients only 
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Tabl巴 1: Performance of 20k Japanese dictation system 

1 system JI efficient 1 accu日te 1 
acoustic model PT、4 triphone 

129x64 2000x16 
Julius conf fast standard 

CPU time 1.3 xRT 5.0 xRT 
Word acc. (male) 89.0 94.4 

Word acc. (female) 91.8 95.6 
Word acc. (GD avg.) 90.4 95.0 

Word acc. (GID) 89.7 93.6 

Julius-3.2， CPU: Pentium III 850MHz 
(without Gaussian Mixture selection) 

can also run on Microsoft Windows. We are now work­
ing on the Windows v巴rsion to be fully functioned， but 
cUITently the features are limited. 

The whole source code is distributed freely. Preparing 
acoustic model and language model， one can construct a 
speech recognition system for their tasks. Users can mod­
ify the source or part of them for their applications with­
out explicit permission of the authors， both in research 
purpose， and even in commercial purpose. 

Julius has been developed since 1996. The recent 
revision is 3.2 and development is still continuing on vol­
unteer basis. The source codes are written in C language， 
and its total amount is about 22，000 lines and 604 Kbytes. 
Although it has been developed and tested on Japanese 
environment， it should work on other language with little 
modification. 

5. Evaluation on Japanese Dictation task 

Performance of the total Japanese dictation system with 
Julius and typical models provided by the IPA Japanese 
dictation 100Ikit[4] is summarized in Table I for 20k sys­
tem. Two typical configuration are listed: 巴fficiency­
oriented and accuracy-oriented. Note that the Gaussian 
mixture selection and transparent word handling is not 
included in this experiment. 

The accurate version with triphone model and stan­
dard decoding achieves a word accuracy of 95%. The 
efficient version using the PTM model keeps the accu­
racy above 90% and runs almost in real-time at a stan­
dard Pc. The required memory is about l00Mbytes for 
the efficient version and about 200Mbytes for the accu­
rate version. This difference comes mainly from acoustic 
probability cache， as all state probabilities of all frame is 
cached in the first pass to be accessed on the second pass 

The total syst巴m performance integrating Gaussian 
mixture selection is shown in Table 2. Real-time factor 
of 1.06 is achieved even with standard setting， and the 
word accuracy reaches 92.1 %. 

Tilbl巴 2: Total Performanc巴
system 11 efficient + GMS 1 

acoustic model PTM 129x64 
Julius conf. standard 

CPU time 1.0 xRT 
Word acc. (male) 90.7 

Word acc. (female) 93.5 
Word acc. (GD avg.) 92.1 

Julius-3.2， CPU: Pentium III 850MHz 

6. Conclusions 

A two-pass， open-source large vocabulary continuous 
speech recognition engine Julius has been introduced. It 
has an ability to achieve word accuracy of 95% in accu­
rate setting， and over 90% in real-time processing in 20k­
word dictation. It is well modularized with simple and 
popular interface to be used as an assessment platform. lt 
provides total recognition facility with the cuπent state­
of-the-art search techniques open to all researchers and 
developers engaging in speech-related works. 

It has been used by many researchers and developers 
in Japan as a standard system. Future work will be dedi­
cated to further refinement of performance (especially in 
memory usage)， stability and more documentation. The 
main WWW page is on the URL below: 
http://winnie.kuis.kyoto-u.ac.jp/pub/julius/ 
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