
Julius - an Open Source Real-Time Large Vocabulary Recognition Engine

Akinobu Lee*， Tatsuya Kawahara*ぺKiyohiro Shikano本

* Graduate School of Information Science， Nara Institute of Science and Technology， Japan

** School of Informatics， Kyoto University， Japan

ri@is.aist-nara.ac.jp

Abstract

Julius is a high-performance， two-pass LVCSR decoder
for researchers and developers. Based on word 3-gram
and context-dependent HMM， it can perform almost real­
time decoding on most cuπent PCs in 20k word dicta­
tion task. M勾or search techniques are fully inco中orated
such as tree lexicon， N-gram factoring， cross-word con­
text dependency handling， enveloped beam search， Gaus­
sian pruning， Gaussian selection， etc. Besides search
efficiency， it is also modularized carefully to be inde­
pendent from model structures， and various HMM types
are supported such as shared-state triphones and tied­
mixture models， with any number of mixtures， states，
or phones. Standard formats are adopted to cope with
other free modeling toolkit. 百le main platform is Linux
and other Unix workstations， and partially works on
Windows. Julius is distributed with open license to­
gether with source codes， and has been used by many
researchers and developers in Japan.

1. Introduction

In recent study of large vocabulary continuous speech
recognition， we have recognized the necessity of a com­
mon platform. By collecting database and sharing tools，
the individual components such as language models and
acoustic models can be fairly evaluated through actual
comparison of recognition result. It benefits both re­
search of various component technologies of and devel­
opment of recognition systems.

The essential factors of a d巴coder to serve as a com­
mon platform is performance， modularity and availabil­
ity. Besides accuracy and speed， it has to deal with many
model types of any mixtures， states or phones. Also the
Interface between engine and models needs to be sim­
ple and open so that anyone can build recognition sys­
tem using their own models. In order to modify or im­
prove the engine for a specific pu中ose， the engine needs
to be open to public. Although there are many recogni・
llOn systems recently available for research purpose and
also as commercial products， not all engines satisfy th巴se
requlrement.

We developed a two-pass， real-time， open-source
large vocabulary continuous sp巴ech recognition engine

園田園・・・園田・・E圃・-・l:l!n'幽血此量ffiIl止�岨E唱a圃園田E・E・-圃圃園田-
川lUt speechf ile : .. / . ./ IP向99/testr'Ul1/sa叩le/EF043∞2.hs.wav
579'ηs調ples (3.62 sec.)
111 speech町田lysis (同νeforlll ->門FCC)
length: 360 fr棚田(3.60 sec.)
attach �1FCC_E_D_Z->円FCC_E_N_D_Z
iI## Reco2nition: 1st pass (LR be掛川th 2-l>ra，，)

pa酷ssl_b槌es抗t: 自師F匠のf指旨導力カが、問われるところだ
pa暗隠s l b加es試t_wωordおs閃: <s心〉 匠+シシヨ一+2の+ノt6釘7 t指旨導+シド一+ぺ1げ7
力t IずJヨグt2お8が+ガt5臼B 問め-トワ+問う+叫44ν/β21/β 3れる+ じJルレい+叫4給6/舟6/ρ2

ところ+トコロ+22だだ:+グ+70/48/2 ， +， t74 </s>
pass1_best_同市コ間関eseq: silB I sh i sh 0: I n 0 I sh i d 0: I ry

okulg alt oωa I r e r u I t 0 k 0 r 0 I d a I sp I sil
E
pass1_best_score: -8926.回1641

1## Recognit ion: 2円d pass (RL heuristic best-first with 3-gram)
S訓plen岨=おO
sentence1: 首相の指導力が関われるところだ.
時間1: <s> 首相+シュショー+2の+ノ+釘 指導φシ ドー+17力+リョグ+
2811、ガt58関わ+トワ+問う+44/21/3れる+レルt46/6/2ところ+トコ
ロ+22だ+ダt70/48/2 .九 +74 </s>
凶S問1: s ilB I sh u sh 0: I n 0 I sh i d 0: I ry 0 k u I g a I
t 0 凶 a I r e r u I t 0 k 0 r 0 I d a I sp I silE
sc町泡1: -8931.327148
477 2官官、ated， 477日Jshed， 16 nωes popped in 360

##1 r、eadωavefor" input
enter fil制調e-)
日

Figure 1: Scr巴en shot of Japanese dictation system using
Julius.

named “Julius" for researchers and developers. It in­
corporates many search techniques to provide high level
search perfoロnance， and can deal with various types
models to be used for their cross evaluation. Standard
formats that other popular modeling tools[1][2] use is
adopted. On a 20k-word dictation task with word 3・gram
and triphone HMM， it realizes almost real-time process­
ing on most cuπent PCs.

Julius has been developed and maintained as part of
free software toolkit for Japanese LVCSR[4] from 1997
on volunteer basis. 百le overall works are still continu­
ing to the Continuous Speech Recognition Consortium，
Japan[3]. 百is software is available for free with source
codes. A screen shot of Japanese dictation system is
shown in Figure 1.

In this paper， we describe its search algorithm， mod­
ule interface， implementation and performance. It can be
downloaded from the URL shown in the last section.

Mハ

乍4

1

ハb

no

噌lム

4・・

conlexl.dependenl HMM
(cross word approx.) (no approx.)

Figure 2: Overview of Julius

2. Search Algorithm

Acouslic
Model

Language
Model

Julius performs two-pass (forward.backward) search us­
ing word 2-gram and 3-gram on the respective passes[5].
The overview is illustrated in Figure 2. Many major
search techniques are incorporated. The details are de­
scribed below.

2.1. First Pass

On the first pass， a tree-structured lexicon assigned with
language model probabilities is applied with the frame­
synchronous beam search algorithm. It assigns pre­
computed l -gram factoring values to the intermediate
nodes， and applies 2-gram probabilities at the word-end
nodes. Cross-word context dependency is handled with
approximation which applies the best model for the best
history. As the l-gram factoring values are independent
of the preceding words， it can be computed statically in
a single tree lexicon and thus needs much less work area.
Although the values are theoretically not optimal to th巴
true 2・gram probability， these errors can be recovered on
the second pass.

We assume one-best approximation rather than word­
pair approximation. The degradation by the rough ap­
proximation in the first pass is recovered by the tree­
trellis search in the second pass. The word trellis index，
a set of survived word-end nodes， their scores and their
co汀esponding starting frames per frame， is adopted to
efficiently look up predicted word candidates and th巴lr
scores on the later pass. 1t allows recovery of word
boundary and scoring errors of the preliminary pass on
the later pass， thus enabl巴s fast approximate search with
Iittle loss of accuracy.

2.2. Second Pass

1n the second pass， 3-gram language model and pre司
cise cross-word context dependency is applied for re­
scoring. Search is performed in reverse. direction， and
precise sentence-dependent N-best score is calculated by
connecting backward trellis in the result of the first pass.
The speech input is again scanned for re-scoring of cross­
word context dependency and connecting the backward
trellis. There is an option that applies cross-word con­
text dependent model to word-end phones without delay
for accurate decoding. We enhanced the stack-decoding
search by setting a maximum number of hypotheses of
every sentence length (envelope)， since the simple best­
first search sometimes fails to get any recognition results.
The search is not A *-admissible because the second pass
may give better scores than the first pass. It means that
the first output candidate may not be th巴 best one. Thus，
we compute several candidates by continuing the search
and sort them for the final output.

2.3. Gaussian Pruning and Gaussian Mixture Selec.
tion on Acoustic Computation

For efficient decoding with tied-mixture model that has a
large mixture pdfs， Gaussian pruning is implemented[6].
It prunes Gaussian distance (= log likelihood) compu­
tation halfway on the full vector dimension if it is not
promising. Using the already computed ιbest values as a

threshold guarantees us to find the optimal ones but does
not eliminate computation so much [safe pruning]. We
implement more aggressive pruning methods by setting
up a beam width in the intermediate dimensions [beam
pruning]. We perform safe pruning in the standard de­
coding and beam pruning in the efficient decoding.

To further reduce the acoustic computation cost on
triphone model， a kind of Gaussian selection scheme
called Gaussian mixture selection is introduced[7]. Addi­
tional context-independent HMM with smaller mixtures
are used for pre-selection of triphone states. The slate
Iikelihoods of the context-independent models are com­
puted first at each frame， and then only the triphone
states whose coπesponding monophone states are ranked
within the k-best are computed. The unselected states are
given the probability of monophone itself. Compared 10
the normal Gaussian selection that definitely sel己cl Gaus・
sian clusters by VQ codebook， th巴 unselected states are
reliably backed-off by assigning actual likelihood insleatl
of some constant value， and realize stable recogllltlon
with even more tight condition.

2.4. Transparent Word Handling

Toward recognition of spontaneous speech， transpare� t
word handling is also implem巴nted for fillers. The N
gram probabilities of transparent words are g
aおS other words， but they will be skipped from the woru

1692
- 168-

context to prevent them from affecting occu汀ence of

neighbor words.

2.5. Alternativ.e algorithms

Besides these algorithms described above， conventional

a]gofllhms are a1so imple�ented for comparison: ηle
d;fau1t a1gorithms described above such as l-gram factor­

ing. one-best approximation and word lrel1is index can be
replaced 10 conventiona1 2-gram factoring， word-pair ap­
oroximation and word graph interface respectively. 百ley

Me seleclab1e on compile time and any combination is
allowed. Users can choose suitable algorithms for their

evaluation and development.

3. 島10dule Interface

In order 10 act as a module of various speech recognition
systems， a recognition engine needs to have simple and
trivial interface to other modules. We adopt standard and
common format as module interface to keeps generality
加d modularity to various models. The interfaçes， speech
input and output of Julius is described in the fol1owing.

3.1. Acoustic Model

Monophone and triphone HMM with any number of mix­
tures， states， phones are suppo口ed. It can also handle
tied-mixture models and phonetic tied-mixture model[6].
The model types are automatical1y identi白ed. The HMM
definition file should be in HTK format. When tied­
mixture model is given (by hmmdefs using directive
<TMix>)， Gaussian pruning is activated for each mix­
ture pdfs. Not al1 formats in HTK hmmdefs are sup­
ported: multi input stream， discrete HMM， covariance
malrix other than diagona1 and duration parameter are not
supported.

3.2. Lexicon

百le format of the recognition dictionary is similar to the
HTK dictionary format. It is a list of words with their
OUlput strings and pronunciations. Each pronunciation
is expressed as a sequence of sub-word unit name in the
acoustic mode!. Actua))y any sub-word unit like syllables
can be used. Multiple pronuncialions of a word should
be written as separate words， each has possible pronunci­
alion paHern. With a triphone mod巴1， each pronunciation
unit is converted to context-aware form (ex. “a-k+i") on
slartup. To map possible (Iogical) triphones to the defined
(physical) ones in the hmmdefs， acoustic model should be
accompanied with HMM list that spècifies the co汀espon­
dences.

The defau1t maximum vocabulary size is set 10 65535
words by default for memory efficiency， but larger size
can be al10wed if configured so.

3.3. Language Model

Two language model is needed: word 2-gram for the first
pass and word 3-gram in reverse direction for the second
pass. ARPA-standard format can be directly read. To
speed up the startup procedure of recognition syslem， an
original binary format is supported J •

3.4. Input I Output

Speech input by waveform file (l6bit PCM) or pattern
vector file (HTK format) is supporled. Live microphone
input is also supported on Linux， FreeBSD， Sun and SGI
workstations. Input can also be sent via TCPIlP network
using DAT-Linklnetaudio protocol. These input speech
stream can be segmented on pause by watching zero­
cross and power， and each segmenl is recognized sequen­
tial1y in turn.

Decoding of the first pass is done in paral1el with the
speech input. It starts processing as soon as a input seg­
ment slarts， and when a long pause is detected， it finishes
the first pass and continues to lhe second pass. As the sec­
ond pass finishes in very short time， the delay of recogni­
tion result output is sufficiently smal!.

The cuπent speech analysis function of Julius can
extract on1y one coefficients for our acoustic models2.
CMN (cepstral mean normalization) is activated automat­
ically if acoustic mode1 requires il. In case of自le input，
cepstral mean is computed first for the file or segment.
For live input， average values of last 5 seconds are used.

Output is a recognition result in word sequence. N­
best results can be output. Phoneme sequence， log likeli­
hood scores and several search statistics can also be gen­
erated. Partial results can be output successive1y whi1e
processing the first pass， though the fina1 resu1t is unde­
termined ti11 the end of the second pass.

3.5. Search Parameters

Various search parameters can be d巴termined in both
compile time and run time. 百le parameters of 1anguage
model weight and insertion penalty as well as the beam
width can be adjusted for the印spective passes. Two de­
fau1t decoding options are a1so set up: Standard decod­
ing strictly handles context dependency of acoustic mod­
els for accurate recognition. Efficient decoding uses a
smal1er beam width by defau1t and terminated the search
when the 白rst candidate is obtained

4. Implementation and Distribution

Main p1atform is Linux， but it also works on other Unix
workstations: FreeBSD， Solaris2， IRIX6.3 and Digita1
Unix. Live microphone input is supported on most OS. It

I A conversion tool“mkbingram" is included in the distribution
package

226 dimension MFCC-E_ILZ coefficients only

1693
- 169ー

Tabl巴 1: Performance of 20k Japanese dictation system

1 system JI efficient 1 accu日te 1
acoustic model PT、4 triphone

129x64 2000x16
Julius conf fast standard

CPU time 1.3 xRT 5.0 xRT
Word acc. (male) 89.0 94.4

Word acc. (female) 91.8 95.6
Word acc. (GD avg.) 90.4 95.0

Word acc. (GID) 89.7 93.6

Julius-3.2， CPU: Pentium III 850MHz
(without Gaussian Mixture selection)

can also run on Microsoft Windows. We are now work­
ing on the Windows v巴rsion to be fully functioned， but
cUITently the features are limited.

The whole source code is distributed freely. Preparing
acoustic model and language model， one can construct a
speech recognition system for their tasks. Users can mod­
ify the source or part of them for their applications with­
out explicit permission of the authors， both in research
purpose， and even in commercial purpose.

Julius has been developed since 1996. The recent
revision is 3.2 and development is still continuing on vol­
unteer basis. The source codes are written in C language，
and its total amount is about 22，000 lines and 604 Kbytes.
Although it has been developed and tested on Japanese
environment， it should work on other language with little
modification.

5. Evaluation on Japanese Dictation task

Performance of the total Japanese dictation system with
Julius and typical models provided by the IPA Japanese
dictation 100Ikit[4] is summarized in Table I for 20k sys­
tem. Two typical configuration are listed: 巴fficiency­
oriented and accuracy-oriented. Note that the Gaussian
mixture selection and transparent word handling is not
included in this experiment.

The accurate version with triphone model and stan­
dard decoding achieves a word accuracy of 95%. The
efficient version using the PTM model keeps the accu­
racy above 90% and runs almost in real-time at a stan­
dard Pc. The required memory is about l00Mbytes for
the efficient version and about 200Mbytes for the accu­
rate version. This difference comes mainly from acoustic
probability cache， as all state probabilities of all frame is
cached in the first pass to be accessed on the second pass

The total syst巴m performance integrating Gaussian
mixture selection is shown in Table 2. Real-time factor
of 1.06 is achieved even with standard setting， and the
word accuracy reaches 92.1 %.

Tilbl巴 2: Total Performanc巴
system 11 efficient + GMS 1

acoustic model PTM 129x64
Julius conf. standard

CPU time 1.0 xRT
Word acc. (male) 90.7

Word acc. (female) 93.5
Word acc. (GD avg.) 92.1

Julius-3.2， CPU: Pentium III 850MHz

6. Conclusions

A two-pass， open-source large vocabulary continuous
speech recognition engine Julius has been introduced. It
has an ability to achieve word accuracy of 95% in accu­
rate setting， and over 90% in real-time processing in 20k­
word dictation. It is well modularized with simple and
popular interface to be used as an assessment platform. lt
provides total recognition facility with the cuπent state­
of-the-art search techniques open to all researchers and
developers engaging in speech-related works.

It has been used by many researchers and developers
in Japan as a standard system. Future work will be dedi­
cated to further refinement of performance (especially in
memory usage)， stability and more documentation. The
main WWW page is on the URL below:
http://winnie.kuis.kyoto-u.ac.jp/pub/julius/

7. Acknowledgment

Part of the work is sponsored by CREST (Core Research
for Evolutional Science and Technology)， Japan

8. References

[1] P.R. Clarkson and R. Rosenfeld: Statistical Language
Modeling Using the CMU-Cambridge Toolkit. ln Proc.
01 ESCA -Eurospeecll '97， vol.5. pages-2707-2710. 1997

[2] S.Young， J.Jansen， J.Odell， O.Ollason and P.Woodland:
The HTK Book， In Entropic Cambridge Research Lab..
1995.

(3] http://www.lang.asヒem.or.jp/CSRC/

[4] T.Kawahara， A.Lee， T.Kobayashi， K.Takeda，
N.Minematsu， S.Sagayama， K.ltou， A.Ito， M.Yamamoto，
A. Yamada， T. Utsuro， and K.Shikano: Free Software
Toolkit for Japanese Large Vocabulary Continuous
Speech Recognition， ln Proc. ICSLP， Vol.4， pages
476-479，2000

[5] A.Lee， T.Kawahara and S.Ooshita: An Ef自cient Two­
P ass Search Algorithm using Word Trellis lndex， ln proc
ICSLP， pages 1831-1834， 1998.

[6] A.Lee， T.Kawahara， K.Takeda and K.Shikano: A Ne_"，
P honetic Tied-Mixture Model for Eftìcient Oecoding， ln
Proc. IEEE-ICASSP， pages 1269-1272，2∞O.

[7] A.Lee. T.Kawahara and K.Shikano: Gaussian Mixture
Selection using Context-independent HMM， In Proc.
IEEE-ICASSP， 2001.

川崎

O

E、

司t

no

1ム

