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Recovering Inner Slices of Layered Translucent
Objects by Multi-frequency Illumination
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Abstract—This paper describes a method for recovering appearance of inner slices of translucent objects. The appearance of a
layered translucent object is the summed appearance of all layers, where each layer is blurred by a depth-dependent point spread
function (PSF). By exploiting the difference of low-pass characteristics of depth-dependent PSFs, we develop a multi-frequency
illumination method for obtaining the appearance of individual inner slices. Specifically, by observing the target object with varying the
spatial frequency of checker-pattern illumination, our method recovers the appearance of inner slices via computation. We study the
effect of non-uniform transmission due to inhomogeneity of translucent objects and develop a method for recovering clear inner slices
based on the pixel-wise PSF estimates under the assumption of spatial smoothness of inner slice appearances. We quantitatively
evaluate the accuracy of the proposed method by simulations and qualitatively show faithful recovery using real-world scenes.

Index Terms—Descattering, layer separation, image restoration, projector-camera system.
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1 INTRODUCTION

S EEING inside a translucent object is a difficult task
because its appearance is superposition of light rays

emitted from every inner layers that are blurred due to
subsurface scattering. Because observing the internal ap-
pearance of objects is of broad interest in medical, art,
and industrial inspections, various imaging techniques have
been developed for achieving this goal in the past. In par-
ticular, since the translucency effect becomes significant for
many materials in near infrared (NIR) wavelengths, infrared
photography is used as one of common techniques for this
purpose. For example, it has been used for observing inner
layers of oil paintings that tell us a lot about the drawing
technique, history, and/or authenticity of old-age painters.

One of the major difficulties in observing inner layers
of translucent objects is to separate individual inner ap-
pearances with properly dealing with scattering. To over-
come this difficulty, we develop a multi-frequency illumina-
tion method, which can recover sharp appearance of inner
slices at a desired depth with explicitly removing scattering
blur. Compared with conventional techniques that aim at
a similar goal, our method is faster and safer than the X-
ray fluorescence technique [1], and sharper results can be
obtained differently than infrared reflectography [2].

Our method exploits the fact that the spread of light
due to scattering has dependency on the depth of inner
layer from which light rays are emitted. By modeling the
light spreads as depth-dependent point spread functions
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(PSFs) and exploiting their depth-dependent low-pass char-
acteristics, we develop a method for recovering inner layer
appearances from a set of images taken under a variant
of high-frequency illumination [3]. Specifically, our method
uses a spatial pattern projection with varying its pattern
pitch – we call it multi-frequency illumination. Our multi-
frequency illumination method allows us to separate direct
(high-frequency) and global (low-frequency) components in
a similar manner to [3], yet at various frequency levels that
define high- and low-frequencies. The observed direction
components are then used for recovering the appearance of
inner slices, which are related to the direct components via
depth-dependent PSFs.

Furthermore, to deal with inhomogeneous translucent
objects that exhibit spatial PSF variations due to its inhomo-
geneity, we develop an extended method for determining
the pixel-wise PSFs with an assumption of spatial smooth-
ness of the target depth. In addition, to reduce the visible
shadowing effect that appears in the inner layers, which is
due to occlusion by their upper layers, we develop a shadow
detection method so that the shadowed regions can be later
post-processed for better visual quality.

The key contributions of this paper are threefold. First,
we describe the relationship between depth inside a translu-
cent object and its PSF by a physically motivated scattering
model. Second, based on the relationship, we develop a
method for recovering the appearance of inner slices us-
ing varying pitch pattern projection. Third, we develop a
method for recovering clear inner slices of inhomogeneous
objects based on the analysis of spatially non-uniform trans-
mittance. We apply our method to the real-world scenes
using a coaxial projector-camera system, and show the effec-
tiveness of the proposed method using oil painting, mural,
and paper scenes.

This paper extends its preliminary version [4] with the
following major differences: (1) We provide more discus-
sions and details about the PSF of subsurface scattering
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blur and its relationship to depth inside the media and
its translucency. (2) The proposed technique is further gen-
eralized for handling spatially inhomogeneous translucent
objects. (3) A post-processing method is developed for de-
tecting the shadowing effect due to occlusions.

The rest of the paper is organized as follows. Section 2
reviews related prior works. Section 3 describes the image
formation model for translucent objects and the depth-
dependent PSF model that represents blur effects due to
subsurface scattering. Based on the model, we describe the
proposed method for recovering inner slices of translucent
objects in Sec. 4. Section 5 shows results for both simulation
and real-world data. Finally, we conclude the paper in 6.

2 RELATED WORK

Our work aims at recovering the appearance of inner slices
from superposed observation. There are threads of works
for layer decomposition from super-imposed images [5], [6],
[7]. Since these methods are designed for semi-transparent
layers that do not exhibit multiple scattering, the image for-
mation model is represented by simple alpha blending [8].
Our method, on the other hand, is developed for dealing
with translucent scenes where significant multiple scatter-
ing is observed, where alpha blending cannot describe the
image formation.

In computer graphics area, various image formation
models for representing subsurface scattering have been
proposed. Donner et al. [9] propose a multi-pole model for
rendering translucent layered objects such as human skin
by extending dipole [10] and Kubelka-Munk theory [11].
d’Eon et al. [12] propose an accurate image formation
model for translucent objects by decoupling single and
multiple scatterings and quantizing the diffusion Green’s
function [13]. Based on [12], Jakob et al. [14] propose a
framework of rendering arbitrarily layered materials. These
models enable high-quality rendering of translucent objects
with multiple scattering. Since they are designed for the
forward rendering process, it is not straightforward to di-
rectly adopt them in our backward inverse problem, i.e.,
recovering appearance of inner layers of translucent objects,
due to the computational complexity. In this work, we use
a simplified version of Kubelka-Munk theory [11] for the
image formation model, which makes the inverse estimation
problem tractable while retaining the expression ability.

Our work is also related to imaging through scat-
tering/occlusion methods in computational photography.
Levoy et al. [15] combine a synthetic aperture technique [16]
in remote sensing and a confocal imaging technique [17] in
microscopy to reconstruct images of scenes behind occlusion
or inside scattering medium. Fuchs et al. [18] also use the
confocal imaging for the purpose of recording a solid target
in scattering media. Because these methods are based on
confocal imaging, for which both the camera and projector
need exact focusing on the same depth plane, it is needed
to have a priori knowledge about the target depth. For
imaging through scattering media, Narasimhan et al. [19]’s
and Gu et al. [20]’s methods sharpen images of a target scene
in muddy liquid by precisely modeling single scattering.
Their methods work well for those scenes that do not
exhibit multiple scattering. Differently from these works,

our method recovers images of inner slices of a translucent
object, where significant multiple scattering is observed and
the optical thickness of the target is unknown.

Our method can be grouped in a class of active sens-
ing techniques that use high-frequency pattern projection.
The original Nayar et al. [3]’s method and its extended
methods [21], [22], [23], [24], [25], [26] separate direct and
global components by projecting multiple high-frequency
patterns. Reddy et al. [27] separate light transport into direct,
near-indirect, and far-indirect rays by frequency-domain
modeling and analysis. Our method is also based upon
Nayar’s method [3] and we use a relationship among direct
components, the size of scattering blur, and the pitch of the
projection pattern to separate depth layers. There are other
pattern projection techniques to decompose light transport.
Gupta et al. [28] acquire scene depths with direct-global
separation by modeling both projector’s defocus and global
light transport. O’Toole et al. [29], [30], [31] illuminate a
scene by a pattern while masking the camera by the comple-
mentary pattern to spatially probing the light transport of
the target scene. Our method also uses a pattern projection
technique not only for separating scattering effects, but
also for specifically recovering appearance of multiple inner
slices.

Time-domain coding for analyzing light transport is an-
other approach to recover images that are not directly mea-
surable. Heide et al. [32] sweep the modulation frequency
and phase of their customized Time-of-Flight (ToF) camera
to recover the light propagation inside scattering medium.
Kadambi et al. [33] build a coded-illumination ToF camera
with a deconvolution technique and use it for recovering
a sharp image by observing through a diffuser. O’Toole et
al. [34] combine spatial probing and ToF imaging to separate
direct and indirect light-in-flight images. Tadano et al. [35]
propose an imaging system that is capable to select a target
depth using a coded ToF camera. While these methods effec-
tively recover light transport, they require carefully tailored
ToF cameras. Contrary, our method uses a simple projector-
camera system and spatial pattern coding to analyze light
transport inside translucent objects.

Methods for measuring transparent or translucent me-
dia, such as smoke scanning, are also related to our work.
Morris et al. [36] recover the shape of clear transparent
objects that refract light by recording light rays from dif-
ferent viewpoints. Hawkins et al. [37] acquire the density
distribution of participating media, such as smoke, by laser
scanning. Ihrke and Magnor [38] reconstruct the volume
of dynamic semi-transparent media by a visual-hull based
method. While related, our goal is to recover slices inside
translucent objects instead of reconstructing 3-D shape of
an object’s surface.

There have been independent developments of technolo-
gies for imaging internal structures of target objects for spe-
cial purposes. In art analysis, several techniques have been
developed for imaging hidden layers of paintings. Infrared
reflectography [2] and X-ray transmission radiography [1]
have been used for visualizing internal layers of paintings,
although the surface texture cannot be separated. X-ray
fluorescence technique [1] uses spectroscopic information
measured over a couple of days and estimates the metallic
atom distribution for determining colored appearance of
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Fig. 1: Illustration of the image formation model for translu-
cent objects. (a) Recorded intensity is the summation of all
layer’s appearance. (b) Spatial spread of light varies with
depth.

inner layers. Tera-hertz imaging [39] is another technique
that can see inner layers of paints. In the medical imaging
and its related areas, optical coherence tomography [40],
[41] techniques are widely used, especially for visualizing
retina. These techniques enable to observe inside translucent
objects based on interference of coherent light at the cost
of expensive wavelength-order optics and mechanics. In
contrast, our method uses a commodity camera and pro-
jector for recovering slices inside translucent objects, which
allows low-cost implementation. In microscopy, there are
methods that use pattern projection for visualizing inside
substances, or reconstructing 3-D shape of a small sample,
such as protein structure [42], [43], [44]. They sharpen the
microscopic image by precisely taking into account both
micro-scale optical blur and scattering blur. Our aim is to
develop a technique that is applicable to a standard scale,
where scattering blur becomes more significant.

3 APPEARANCE OF TRANSLUCENT OBJECTS

When an image of a translucent object is recorded, the ob-
served intensity Lo(c) at camera pixel c ∈ Z2 is a summation
of all possible paths ρ ∈ Pt from depth t:

Lo(c) =

∫ τ

0

∫
Pt

ι(ρ)dρdt, (1)

where τ is the maximum thickness of the object, and ι(ρ)
is the intensity of the light path ρ. It can be modeled
as a summation of the appearance of all depth slices as
illustrated in Fig. 1(a), which can be described as

Lo(c) =

∫ τ

0
St(c)dt, (2)

where St is the appearance slice at depth t.
The appearance slice St is generally blurry due to the

scattering effect inside the medium. The spread of radiance
at a scene point inside a translucent object varies depend-
ing on its depth from the object surface [45]. In general,
the spatial spread of light can be expressed using PSFs.
Let us consider light rays emitted (or returned) from a
specific depth inside a translucent object. When the depth
is shallower, the PSF becomes sharper. It gradually wider
spreads as the depth t becomes deeper inside the medium

as illustrated in Fig. 1(b). In this manner, there is a close
relationship between the PSF and depth. By denoting ht as
a PSF at depth t, the appearance slice St can be expressed as

St(c) = (Rt ∗ ht)(c), (3)

whereRt is the sharp appearance slice that we are interested
in estimating, which we call a radiance slice, and ∗ denotes
a convolution operator.

Since the appearance of the translucent object under nor-
mal illumination is a superposition of radiance of multiple
slices as Eq. (2), the observation Lo can be re-written as

Lo(c) =

∫ τ

0
(Rt ∗ ht)(c)dt. (4)

Specifically, we are interested in recovering a few planar
parallel layers inside the medium; therefore, the image
formation model can be discretized as a multiple layered
model as

Lo(c) =
∑
d

(Rd ∗ hd)(c), (5)

where Rd and hd are the radiance slice and depth-
dependent PSF of d-th layer, respectively. Our goal is re-
covering radiance slices Rd convolved by unknown depth-
dependent PSFs hd from the composite observation Lo. Be-
fore introducing the solution method, we describe a model
of depth-dependent PSFs hd.

Depth-dependent PSFs
Our depth-dependent PSF model is motivated by the work
of [46], which is a physically motivated scattering model
designed for the PSF of scattering medium, named the
radiative transfer equation (RTE) [47], [48]. In this work, we
represent the depth-dependent PSFs hd by the RTE model.
With the RTE model, the intensity of an arbitrary light ray
in a homogeneous scattering medium can be iteratively
calculated [46] as

I(d, θ) =
∞∑
k=0

(gk(T ) + gk+1(T ))Lk(cos θ), (6)

where Lk is the Legendre polynomial of order k, g0 = 0,
and

gk(T ) = I0 exp

(
−2k + 1

k
(1− qk−1)T − (k + 1) log T

)
.

The parameter T (= σd) represents optical thickness, which
is the product of scattering coefficient σ and distance d
between the point light source and the scattering point.
The forward scattering parameter q controls how light rays
spread; q = 0 corresponds to isotropic, while positive and
negative values of q indicate forward and back scattering,
respectively. θ is the angle between the depth axis and light
ray’s direction as depicted in Fig. 2(a). k is the number
of light bounces, and I0 is the intensity of the point light
source.

In our setting, a camera is placed outside the media,
where light rays do not scatter. In this case, the depth-
dependent PSF applied to a point light source inside scat-
tering media corresponds to the intensity of the light rays
emitted from the surface, if the camera is placed sufficiently
far from the object. When we consider that the x-axis lies
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Fig. 2: Illustration of RTE model described in [46]. (a) Solid
arrow represents a scattering light ray, whose intensity
depends on d and θ. d is the distance from the point light
source I0 to the point inside the scattering medium, and θ is
the radial direction of the light ray. (b) Depth-dependent PSF
hd can be expressed using RTE model. We consider the x-
axis lies along the tangent plane of the surface of translucent
object and assume the direction of light rays emitted from
the surface becomes parallel to the depth axis.
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Fig. 3: Simulated PSF variations using the RTE model with
varying optical thickness T

along the tangent plane of the surface of translucent object
as illustrated in Fig. 2(b), the depth-dependent PSF hd(x)
can be written as

hd(x) = I (d′, φ) , (7)

where d′ =
√
x2 + d2 and φ = tan−1 (x/d). We assume

that the camera is placed sufficiently far from the object
compared to both d and x so that the direction of emitting
light rays from the surface becomes parallel to the depth
axis. In addition, we ignore the refraction of the surface for
simplicity. Figure 3 shows simulated PSFs by changing the
optical thickness T . When T is small (thin scattering media),
a sharply pointed PSF is generated, and as T becomes larger
(thicker scattering media), the PSF spatially spreads wider.

These PSFs only represent the spread of light but dot
not consider the absorption by the medium. When the
absorption is homogeneous, it only makes the deeper layers
darker and has no effect on the sharpness of the layer
recovery except for the siganl-to-noise ratio (SNR), hence
it can be practically neglected. However, if the absorption
is inhomogeneous, which is the case in inhomogeneous
translucent objects, the radiance slice of inner layer exhibits
artifacts if the spatial variation of PSFs is ignored. In this
work, we explicitly take into account the spatially-varying
PSFs in Sec. 4.3 for dealing with inhomogeneous translucent
objects.

4 PROPOSED METHOD

We are interested in recovering radiance slices Rd from the
mixed observation Lo. To achieve this goal, we develop a
multi-frequency illumination measurement method, which is
built upon the high-frequency illumination (HFI) method
proposed by Nayar et al. [3]. To begin with, we briefly
review the original HFI method.

High-frequency illumination method [3]
The HFI method separates direct and global components by
projecting small pitch checker patterns. When the phase of
the projection pattern changes slightly, the direct component
D(c) varies accordingly, but the global component G(c)
remains stable. Based on this observation, their method
computes direct and global components using the maxi-
mum Lmax(c) and minimum Lmin(c) intensities that are
obtained by shifting the projector pattern as{

D(c) = Lmax(c)− Lmin(c),
G(c) = 2Lmin(c).

(8)

The direct componentD(c) contains high-frequency compo-
nents, while the global component G(c) contains only lower
frequency components than the frequency of projection
pattern. Therefore, the HFI method can be viewed as a sep-
aration technique for high- and low-frequency components.

Pattern pitch of HFI
In our case, when a translucent object is measured under
HFI with pattern pitch p, we can obtain direct component
D(p, c) and global component G(p, c) as

D(p, c) =
∑
dDd(p, c)

G(p, c) =
∑
dGd(p, c)

Sd(c) = Dd(p, c) +Gd(p, c),
(9)

where Dd(p, c) and Gd(p, c) are the direct (high-frequency)
and global (low-frequency) components at depth d, respec-
tively, and the sum of direct and global components for each
depth becomes the radiance slice. As mentioned in [3], the
pattern pitch p must be sufficiently smaller than the scene
texture for a faithful separation.

We have observed that the direct and global components
vary when the projected pattern pitch p changes. Indeed,
there is a tight relationship between the pitch size and
strength of direct component. Suppose we measure the
scene with two distinct pattern pitches pi and pj (pi < pj)
independently. When the pattern pitch becomes larger, the
wider spread of light rays are included in the direct com-
ponent, hence the direct components have the following
relationship:

Dd(pi, c) < Dd(pj , c), pi < pj . (10)

This relationship indicates that the separation frequency
varies with the pattern pitch – wider frequency band is re-
garded as the direct component as the pattern pitch becomes
larger. As low-pass characteristics of depth-dependent PSFs
are also depth-dependent, the difference of direct compo-
nents Dd(pj , c) − Dd(pi, c) also varies with depth d. Our
method exploits these differences for recovering the appear-
ance of each inner slice by changing the projection pattern
pitch.
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4.1 Multi-frequency illumination

By measuring the target object using multi-frequency pat-
terns, multiple of corresponding direct components are ob-
tained. Unfortunately, increasing the number of measure-
ments does not make the problem easier as it also increases
the number of variables to solve for. To make the problem
tractable, we assume that the texture of direct components
does not vary drastically when the pattern frequency is high
enough and the pitch variation (pj−pi) is sufficiently small.
These direct components Dd at a certain depth d are sup-
posed to have a similar texture with the original radiance;
therefore, we can expect the following relationship:

Dd(p, c) ≈ α(hd, p)Rd(c), (11)

where α(hd, p) is the relative brightness ofDd(p, c) toRd(c).
We call α(hd, p) the direct component ratio that represents the
ratio of direct component’s mean intensity to the radiance
Rd(c)’s mean intensity. Hence, Eq. (9) can be rewritten as

D(p, c) =
∑
d

α(hd, p)Rd(c). (12)

These assumptions are based on the fact that the diffuse
reflection and subsurface scattering can be regarded as
the same physical phenomena [49], [50]; the light scatters
on or beneath the surface and eventually bounces off of
the material in random directions. Direct components Dd

represent total intensities of lights from all the points inside
the object whose distance from the incident point on the
surface is smaller than the pattern pitch p. Hence the pattern
pitch p controls the scale of the separation of scattered lights
in the direct-global separation scheme, and thus controls
the intensity of direct components. Furthermore, because
p is sufficiently smaller than the scene texture, the texture
of direct components and the original texture are largely
similar. Based on these observations, we obtain the original
texture at different brightnesses by changing p.

With these assumptions, a set of direct component im-
ages D(p, c) taken under the multi-frequency illumination
of m pitch variations (p = p1, p2, . . . , pm) can be written in
a matrix form as

D(c) = AR(c), (13)

where

D(c) =
[
D(p1, c) D(p2, c) · · · D(pm, c)

]T
,

A =

 α(hd1 , p1) · · · α(hdn , p1)
...

. . .
...

α(hd1 , pm) · · · α(hdn , pm)

 ,
R(c) =

[
Rd1(c) Rd2(c) · · · Rdn(c)

]T
.

Here, D ∈ Rm is a vector of direct components measured
under m variations of the pattern pitches at pixel c, R ∈ Rn
is a vector of n layers of radiance slices, and A ∈ Rm×n is
a matrix containing direct component ratios computed from
the projected pattern pitch and the depth-dependent PSF.

When the number of projected patterns m is no less than
the number of depth layers n (m ≥ n) and rank(A) = n, the
radiance slices R can be obtained by a norm approximation
of the residual vector, i.e., D(c)−AR(c). For example, with

a least-squares approximation, the radiance slices R(c) can
be determined using the pseudo-inverse A+ as

R(c) = A+D(c). (14)

Computation of direct component ratio
The direct component ratio α(hd, p) can be derived from the
depth-dependent PSF hd and the projected pattern pitch p.
When a checker pattern is projected to a translucent object,
it reaches the depth d with some blur effect and returns
to the surface with the additional blur effect. To obtain the
direct component ratio, we consider the difference between
maximum and minimum intensities in a similar manner to
the original HFI as :

α(hd, p) =max ((lp ∗ hd) ∗ hd)
−min ((lp ∗ hd) ∗ hd) , (15)

where lp is normalized projection patterns, whose pitch is p.
The normalized illumination is defined in the range between
0 and 1; 0 being black and 1 being white. The operators max
and min return the maximum and minimum value from all
pixels, respectively.

4.2 Estimation of informative slices
Once we know the target depths (or PSFs) to inspect, we
can set up a matrix A using Eq. (15), and thus can recover
slices corresponding to the depths using Eq. (14). However,
such a prior knowledge is difficult to obtain before mea-
surement; therefore, automatically selecting a good set of
depths becomes important for recovering informative slices.
For example, if an arbitrary depth is chosen, it has a chance
to correspond to the middle of distinct texture layers. To
recover informative slices, we use a two-step approach. The
first step is the estimation of a set of informative depths via
optimization. This is equivalent to selecting a small number
of useful PSFs from many other possible PSFs. The second
step is the recovery of slices at the informative depths
determined by the earlier step. The overall procedure of this
strategy is illustrated in Fig. 4. Now, we explain the details
of each step.

Step 1: Estimation of informative depths
Elements of matrix A depend on depth-dependent PSFs;
hence estimation of informative depths corresponds to esti-
mating the shape of PSFs. The candidate relative depth T ,
which determines the shape of the PSFs, are set in the range
between 1 + ε and 10 + ε with a step size 0.05. We add
the offset ε (= 0.01) because Eq. (6) does not converge if
T ≤ 1. Initially, we set up the matrix A using all candidate
parameters T (thus m < n) in order to estimate informative
slices.

Frequently, there are only a small number of informative
slices inside translucent objects. Hence we can regard such
radiance slices exist sparsely along depth. Our method uses
this sparsity to determine the informative slices by solving
a l1 regularized problem (as known as the lasso [51]) with a
non-negative constraint about R:

R̂(c) = argmin
R(c)

‖AR(c)−D(c)‖22 + λ ‖R(c)‖1 (16)

subject to R � 0.
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(a) (b) (c)

Fig. 4: Selection of informative PSFs (corresponding to cer-
tain depths). (a) Estimates R̂d obtained via optimization
(Eq. (16)). Non-zero pixels indicate the informative regions.
(b) We find the local maxima of the non-zero pixel counts
(corresponding to l0-norm of R̂d) for all pixel coordinates
across depth. (c) Selected PSFs corresponding to the local
maximas

We can regard the depth d (= T
σ ), where R̂d(c) has a non-

zero value, is informative while others are not. Equation (16)
becomes a quadratic programming (QP) problem and thus
can be efficiently solved in a polynomial time. We solve
the optimization in a per-pixel manner. Solving a similar
problem for the entire image at a time instead of computing
in a pixel-wise manner is also a viable option; however,
we have observed that they do not make much difference
because of the following Step 2. Therefore, for efficient
parallelization, we choose the per-pixel implementation.

Step 2: Informative slice recovery
This step determines informative depth slices of the whole
image by consolidating all the pixel-wise selections. The
informative depths d̂ are local maximas of the sum of l0
norm of R̂d(c) for all pixels. The evaluation function f(d) is
defined as

f(d) =
∑
c

‖R̂d(c)‖0, (17)

and we find all local maxima of f(d) along d in the rage of
interest as shown in Fig. 4(b). Once the depths of interest
are selected, we can set up a small matrix Â. Finally, the
appearances of informative slices are recovered using the
matrix Â using the least-squares approximation as

R(c) = Â+D(c) (18)

in the same manner to Eq. (14). We call the method described
so far a baseline method.

4.3 Recovering inner slices inside inhomogeneous up-
per layer

Now we describe an extension of the baseline method
for dealing with inhomogeneous translucent objects. When
the upper layer is inhomogeneous, due to either different
materials or thicknesses, or even both, recovered inner slices
by the baseline method are affected by the upper layer’s
non-uniform scattering and transmission. Because of the

Inhomogeneous upper layer (different PSFs)

Inner layer

Different irradiance

Pigments

Fig. 5: Scene of inhomogeneous upper layer. PSFs and irra-
diance of inner layer vary depending on the upper layer’s
optical property.

spatially non-uniform scattering and absorption property,
both PSF and irradiance of the inner layer vary even if the
inner layer is homogeneous as illustrated in Fig. 5. Under
this situation, the baseline method suffers from artifacts
because it assumes a single PSF per slice for the entire image
region.

To deal with the inhomogeneous upper layer, we employ
a pixel-wise PSF selection approach. By applying Step 2
of the baseline method in a sliding window manner, a set
of PSFs can be obtained for each pixel. We apply a 2D
Gaussian-weighted filter for the sliding window for sup-
pressing high-frequency observation noise. The evaluation
function fc(d) for pixel location c is defined as

fc(d) =
∑

cn∈Wc

Nσf
(‖cn − c‖2)

∥∥∥R̂d(cn)∥∥∥
0
, (19)

where Nσf
is a zero-mean Gaussian distribution with stan-

dard deviation σf centered at c, and cn is a pixel location
in the window Wc. By selecting the informative depths for
each pixel via finding the local maxima of fc, we can recover
pixel-wise informative slices in a similar manner to Eq. (18)
as

R(c) = Â+(c)D(c), (20)

where Â+(c) is the pseudo-inverse of a small matrix con-
taining direct component ratios computed for pixel c using
the selected PSFs.

The recovered inner slices may still contain the bright-
ness discontinuity due to the non-uniform transmission,
because PSFs considered so far neglect absorption by the
medium. Inhomogeneous transmittance causes inhomoge-
neous irradiance on the inner layer, hence the recovered
inner layer may have brightness variations. Indeed, this
brightness discontinuity stands out at the boarder of distinct
PSFs. In this work, we adopt a gradient-based image repair-
ing approach to reduce the brightness discontinuity. Specif-
ically, we suppress the gradient of edges at the brightness
discontinuity in the inner with retaining other edges so that
a cleaner appearance of the inner slice can be obtained. Such
edges E can be identified by observing the change of PSF
estimates because the discontinuity of transmission occurs
at the boarder of different materials or thicknesses in the
upper layer. Hence, the brightness corrected slice R′d can be
recovered by setting the gradient of such edges to zero as

∇R′d(c) =
{
0 if c ∈ E
∇Rd(c) otherwise,

(21)
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Fig. 6: Evaluation of the approximation in Eq. (11). We
calculate the cross correlation between direct component
slice Dd(p) and the ground truth slice Rd. It shows high
correlation even for the worst case.

where ∇ is the gradient operator and E is the set of edges
corresponding to the material (or thickness) borders. The
integration is computed by a standard sparse linear system
solver as done in the work of Poisson image editing [52].

5 EXPERIMENTS

We evaluate our method numerically by simulation and also
show qualitative results using real-world scenes.

5.1 Evaluation by simulation

We first assess the appropriateness of the approximation
in Eq. (11), and then evaluate the accuracy of the slice
recovery.

Validity of approximation in Eq. (11)

In this simulation, we change the pattern pitch p from 3
to 20 pixels, the depth d from 4 to 18 [mm] (in optical
depths T , which correspond to 4σ to 18σ). The scene is one-
layered for the purpose of assessing the approximation in
Eq. (11). The coefficient σ is set to 0.27 [mm−1], and forward
scattering parameter q is set to 0.9. These parameters are
chosen according to [53]. We generate the appearance slices
Sϕd,p using checker pattern lϕp as

Sϕd,p = ((lϕp ∗ hd) ◦Rd) ∗ hd. (22)

p and ϕ are the pitch and phase of the pattern, and ◦ is the
Hadamard (element-wise) product operator. We compute
direct component Dd(p) from these synthetic images with
changing the phase ϕ.

We assess correlations between the recovered direct com-
ponents Dd(p) and the ground truth slices Rd using zero-
mean cross correlation (ZNCC). The ZNCC value falls in
the range from −1 to 1, where a negative value indicates
negative correlation, and a greater value indicates higher
similarity. The evaluation results are summarized in Fig. 6.
The plots correspond to the average of ZNCC scores ob-
tained from 15 different texturesRd. ZNCC values decreases
as the depth becomes deeper (greater T ) and pattern pitch
becomes larger. However, they are all consistently highly
correlated (minimum ZNCC value is 0.982 and the mean
value is 0.992), and it shows the accuracy of the approxima-
tion.

ZNCC values
Layers Max. Mean Min.

Top layer 0.99 0.93 0.89
Bottom layer 0.92 0.84 0.67

TABLE 1: Two layers recovery result for 20 sets of scenes.
We compare recovered slices with the ground truth slices
by ZNCC. Higher ZNCC scores indicate more accurate
recovery.

Evaluation of slice recovery
Here we evaluate the overall accuracy of our method via
simulation. We generate images Lϕp under projection pat-
terns lϕp as

Lϕp =
∑
d

((lϕp ∗ hd) ◦Rd) ∗ hd. (23)

We use 20 different two-layered scenes that have distinct
textures R5 and R15 at two depth ranges 5 ≤ d < 15 and
15 ≤ d. The textures are randomly paired from the ones
that are used in the previous experiment. We change the
pitch p of checker pattern and shift the pattern with ϕ. From
the generated images, we compute D(p, c) for each pattern
pitch p, and apply our method to recover slices at d = 5 and
15.

We again use ZNCC values between the recovered and
ground truth slices. The experimental results are summa-
rized in Table 1. In all data sets, the ZNCC values of upper
layer is higher than the lower layer as expected. The result of
this simulation indicates that our method can recover slices
of various textures with high accuracy.

Figure 7 shows a synthetic example of three-layer recov-
ery, where slices at at d = 1, 5, and 15 are recovered. The
ZNCC scores for the recovery results are 0.98, 0.83, and
0.51, respectively. While the result is generally consistent
with the ground truth, negative intensities and ringing
artifacts are observed due to the discrete pitch variations
and convolution.

5.2 Real-world experiment

We develop a coaxial projector-camera setup for realizing
the measurement setup as shown in Fig. 8. The coaxial setup
has a favorable property; correspondence between projector
and camera pixels becomes invariant with respect to depths.
Unlike non-coaxial settings, with which a illumination ray
inside the translucent object forms a line in the image coor-
dinates [24], the coaxial setting allows us to easily separate
the direct rays. We use a LightCommander projector, which
is a DMD projector development kit by Texas Instruments,
and use near infrared (NIR) light for measurements. The
lenses of both camera and projector are set equivalent (Ai
Micro-Nikkor 105mm f/2.8S) for making the alignment easy.
In the experiment, we use 18 variations of checker patterns
(3px to 20px with 1px interval), and shift the pattern for
one-third of square size for each pattern.

Experimental results
First, we use an oil painting as a target scene as shown in
Fig. 9(a), which has draft and surface pigment layers as
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(a) Simulated scene. three star-shaped pillars with different
heights are placed in scattering media. An example slice is
illustrated by the green plane.

Ground truth slices

Recovered slices

d = 1 d = 5 d = 15

(b) Comparison of the recovered and ground truth slices

Fig. 7: (a) Target scene (b) Result of three-layer recovery at
d = 1, 5, and 15. The ground truth radiances slices (upper)
and recovered slices (lower) are shown. ZNCC scores are
0.98, 0.83, and 0.51, respectively.

camera

beam splitter
projector

target object

a pair of same lenses

Fig. 8: Measurement setup. The coaxial system allows us
to maintain the correspondences between projector and
camera pixels.

depicted in Figs. 9(b) and 9(c). By taking a standard pho-
tograph under the near infrared light (as done in infrared
reflectography [2] in the art field), we can only vaguely
observe the draft layer as shown in Fig. 9(d). Since it is the
superposition of draft and surface pigment layers, it natu-
rally results in a blurry image. Even with a manual contrast
adjustment, it is difficult to clearly observe the shape of draft
tree as depicted in Fig. 9(e). A simple layer decomposition
still suffers from the blur as shown in Figs. 9(f) and 9(g) . By
applying our method to this scene, two PSFs are estimated
as depicted in Fig. 10(a) and two slices are recovered as
in Figs. 9(h) and 9(i). The upper surface layer corresponds
to the surface pigment layer. Because the yellow pigment
is almost transparent in the infrared wavelength, the corre-

(a) The scene (b) Draft layer (c) Oil painted

(d) NIR photo
(reflectography)

(e) Enhanced

(f) Li and Brown [7]
(sharp layer)

(g) Li and Brown [7]
(blurred layer)

(h) Ours
(surface slice)

(i) Ours
(inner slice)

Fig. 9: Experimental result of oil painting using the baseline
method. (a) Target scene. We draw a colored round tree
on top of the draft of spiny tree. (b) Inner layer (draft) of
the painting. (c) Painted scene. Red rectangle region is mea-
sured. (d) Normal photo using infrared light. (e) Enhanced
image. Intensity range and contrast of (d) are manually
adjusted. (f, g) Layer separation results of Li and Brown [7].
Because their method separates sharp and blurred layers, it
suffers from global components. (h, i) Results of our method.
Layer of surface texture and hidden drawing, respectively.
Range of the intensities is adjusted for visualization.

sponding painting regions become dark in the surface slice.
The lower layer shows the inner layer, where the texture of
the tree is clearly observed. The variation of the remaining
high-frequency components of each layer, which can be
computed from its PSF using Eq. (15), along with the pattern
pitch is shown in Fig. 10(b). It shows that the high-frequency
components of the upper layer remain more significantly
than that of the inner layer, and it indicates the separability
of the layers.

The second target scene is stacked translucent sheets that
consist of layered translucent sheets and printed texture
films as shown in Fig. 11(a). With a conventional NIR
photograph, we can observe mixed textures as shown in
Fig. 11(b), where textures are blurry and appearances across
depths are superposed. Our method correctly selects two
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Fig. 10: Selected PSFs and remaining high-frequency com-
ponents for each layer. (a) Selected PSFs. There are two
peaks in the plot of Eq. (17), hence two corresponding
PSFs are selected to recover. (b) Remaining high-frequency
components for each layer. Upper layer remains more high-
frequency components than that of the inner layer.

informative depths and recovers their radiance slices as
shown in Figs. 11(c) and 11(d). In the upper slice, only
‘ABCD’ texture is visible, and ‘1234’ texture appears in
the lower slice. Due to the shadowing effect caused by
the opaque material on the upper layer (the texture of
‘ABCD’), the lower slice contains the ‘ABCD’ texture as an
unobserved shadowed region.

Additional results are shown in Fig. 12. The top row is
a piece of painting, where the painter’s signature is hidden
under pigment. Our method clearly recovers surface texture
and inner signature slices. The middle row is a mural
painting covered by white mold. In this example, we used
RGB light sources instead of NIR, and record each color
channel separately. Our method can recover the slices in
this example as well, and the inner appearance is clearly
visible in the result of Fig. 12(d). The bottom row is a double-
sided ancient document with RGB light sources. While an
ordinary digital scanner suffers from the back-side texture,
our method can faithfully separate surface and back-side
textures.

Figure 13 shows the result of the scene with an inhomo-
geneous upper layer. We use a 21× 21 pixels Gaussian win-
dow for selecting PSFs. The target object is an oil painting,
where the upper layer consists of a wide variety of pigments
in their thicknesses and materials. The result of the baseline
method shown in Fig. 13(b) exhibits brightness discontinu-
ity at the middle of image region due to inhomogeneity of
the upper pigments. By selecting PSFs per pixel using the
Gaussian-window, the inner layer is recovered in a pixel-
wise manner as shown in Fig. 13(f), although it still suffers
from brightness discontinuity. Finally, with the gradient-

(a) The scene (b) NIR photo

(c) Upper slice (d) Lower slice

Fig. 11: Experimental result of layered scene using the
baseline method. (a) Scene is a composite object of texture
and translucent sheets (tracing paper). (b) Normal photo of
the scene. Textures inside the object can be seen, although
blurry. (c) Recovered slice of upper layer. (d) Recovered
slice of lower layer. Textures in sub-millimeter gap can be
separated. Further analysis of shadowed region is shown in
Fig. 14

domain filtering to suppress the brightness discontinuity,
the inner layer that has uniform brightness can be recovered
as shown in Fig. 13(h). It shows improvement in the visual
quality, especially in the left part of the image and overall
contrast.

Shadow detection from recovered inner layers
The recovered appearance of inner layers suffers from shad-
ows caused by their upper layers. If the upper layer’s
transmittance is low, it casts shadow to the inner layer, e.g.,
as ‘ABCD’ scene shown in Fig. 11(d). Here we describe
a simple technique for dealing with shadows by post-
processing. To simplify the discussion, we assume that there
are only two layers in the scene, i.e., upper and inner layers.

The shadowed regions have two common properties:
(1) The shape of shadows observed in the inner slice is
similar to the texture of upper slice. (2) The shadowed
region becomes darker due to low irradiance. Based on these
observations, we define a shadow likelihood measure Ps for
identifying shadowed regions.

The similarity S of the texture shapes in the recovered
slices R1 and R2 can be obtained using the absolute value
of their cross correlation as

S (c) = |Cw,c(R1, R2)| , (24)

where Cw,c is the cross-correlation within a small window
w centered at pixel location c, and values in R1 and R2 are
normalized in the range of [0, 1]. Using this similarity, the
shadow likelihood Ps is defined using the darkness of the
shadowed region in R2 as

Ps(c) = S (c)(1−R2(c)). (25)
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(a) Target scene (b) Normal photo (c) Surface slice (d) Inner slice

Fig. 12: Additional results for a painting, a mural, and an ancient document using the baseline method. (a) Target scenes.
Top: author’s signature covered by red pigment. Middle: A mural painting covered by white mold. Bottom: An ancient
document of double side print. Rectangle regions are measured. (b) Normal photograph. Both upper and lower slices, and
global components are composed. (c) Recovered slices of surface. (d) Recovered inner slices.

10010 σσ

(a) Normal IR photo (b) Inner slice (baseline) (c) Upper layer’s depth (d) Inner layer’s depth

(e) Upper slice (pixel-wise) (f) Inner slice (pixel-wise) (g) Gradient mask (h) Inner slice (post-processed)

Fig. 13: Result of a scene with an inhomogeneous upper layer using the extended method. (a) Captured image using
near infrared lights. (b) Recovered inner slice by the baseline method. (c, d) Selected depths for upper and inner layers,
respectively. (e) Recovered upper slice by pixel-wise recovery. (f) Recovered inner slice by pixel-wise recovery. (g) Gradient
mask computed from (d) that is used for gradient-domain filtering. (h) Recovered inner slice from (f) and (g) by image
enhancement in the gradient domain.
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(a) Inner slice
including shadow

(b) Likelihood of shadow (c) Shadow region mask (d) Inpainted inner layer

Fig. 14: Shadow detection and inpainting results. The scene are the same as Fig. 11 and Fig. 12. (a) The inner layer
including shadowed region. (b) Shadow likelihood from recovered slices. White pixels indicate higher likelihood of being
in shadow. (c) Shadow region is indicated by red by thresholding the likelihood. (d) Shadow region is recovered by image
inpainting [54]. Shadow artifact caused by the upper layer is suppressed.

It yields a likelihood score for each pixel being in shadow,
and by a simple thresholding, a shadowed region can be
determined.

Once the shadow regions are identified, we can use a
shadow removal technique. For example, the lost informa-
tion within the shadow region can be filled in by arbitrary
image inpainting methods. In this paper, we use a patch-
match based image inpainting method [54].

The result of shadow detection and removal for the
‘ABCD’ and ancient document scenes are shown in Fig. 14.
For this experiment, we use 21×21 window size for comput-
ing the similarity measure. The shadow likelihood shown
in Fig. 14(b) qualitatively corresponds to the shadowed
regions in the inner layer. The shadow mask generated by
thresholding the shadow likelihood is shown in Fig. 14(c).
Figure 14(d) shows the image inpainting result using the
detected shadow mask and the method of [54]. It shows
improvement of visual quality of the inner layer.

Finally, we show a recovery and shadow removal result
for a three-layer scene. Figure 15(a) shows the target scene,
where three printed papers are overlaid. By applying our
baseline method, three slices with shadows are recovered.
With shadow detection and inpainting, we obtain the re-
covery of three layers as shown in Figs. 15(b)-15(d) For
the shadow detection of the third slice, we compute the
correlation with the original second slice which contains
the shadows casted by the top slice. Figure 15(e) shows
how high-frequency components remain along with varying
pattern pitches. The lowest layer only retains a limited
amount of high-frequency components hence its recovery
becomes slightly blurry. However, it shows the different
characteristics among layers, which indicates the separabil-
ity of the layers.

6 CONCLUSION

This paper described a method for recovering inner slices
of translucent objects based on multi-frequency pattern pro-

(a) The scene (b) Uppermost slice

(c) Middle slice (d) Lowest slice
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(e) Remaining high-frequency components

Fig. 15: The result of seeing through pages. (a) The target
object. Three printed thin papers are superposed. (b) Re-
covered uppermost slice. Only the first page can be seen.
(c) Recovered second page. Shadows from the upper layer
is inpainted. (d) Recovered third page. Shadows from the
first and second layers are inpainted. (e) Remaining high-
freqency components for each pixel.
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jection. The proposed method is built upon the observation
that the PSF inside translucent objects varies according to
the depth of slices. Based on that, we have shown that inner
radiance slices can be recovered by estimating PSFs using
varying pitches of projection patterns. We also developed
a method for automatically selecting informative slices via
a sparse representation, i.e., determining sparse coefficients
that corresponds to radiance slices. We further extended the
method for dealing with inhomogeneous translucent objects
based on a combination of pixel-wise appearance recovery
and gradient-based image repairing. The effectiveness of
the proposed method are shown by several experiments on
simulation and real-world translucent objects.
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