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Abstract Self-admitted technical debt refers to situations where a software
developer knows that their current implementation is not optimal and indi-
cates this using a source code comment. In this work, we hypothesize that it
is possible to develop automated techniques to understand a subset of these
comments in more detail, and to propose tool support that can help developers
manage self-admitted technical debt more effectively. Based on a qualitative
study of 333 comments indicating self-admitted technical debt, we first identify
one particular class of debt amenable to automated management: on-hold self-
admitted technical debt (on-hold SATD), i.e., debt which contains a condition
to indicate that a developer is waiting for a certain event or an updated func-
tionality having been implemented elsewhere. We then design and evaluate an
automated classifier which can identify these on-hold instances with an area
under the receiver operating characteristic curve (AUC) of 0.98 as well as de-
tect the specific conditions that developers are waiting for. Our work presents a
first step towards automated tool support that is able to indicate when certain
instances of self-admitted technical debt are ready to be addressed.

Keywords Self-admitted technical debt · qualitative study · classification

1 Introduction

The metaphor of technical debt is used to describe the trade-off many software
developers face when developing software: how to balance near-term value with

Rungroj Maipradit · Hideaki Hata · Kenichi Matsumoto
Nara Institute of Science and Technology
E-mail: maipradit.rungroj.mm6@is.naist.jp, hata@is.naist.jp, matumoto@is.naist.jp

Christoph Treude
University of Adelaide
E-mail: christoph.treude@adelaide.edu.au



2 Rungroj Maipradit et al.

long-term quality (Ernst et al., 2015). Practitioners use the term technical
debt as a synonym for “shortcut for expediency” (McConnell, 2007) as well
as to refer to bad code and inadequate refactoring (Kniberg, 2013). Technical
debt is widespread in the software domain and can cause increased software
maintenance costs as well as decreased software quality (Lim et al., 2012).

In many cases, developers know when they are about to cause technical
debt, and they leave documentation to indicate its presence (Maldonado et al.,
2017b). This documentation often comes in the form of source code com-
ments, such as “TODO: This method is too complex, [let’s] break it

up” and “TODO no methods yet for getClassname”.1 Previous work (Ichi-
nose et al., 2016) has explored the use of visualization to support the discovery
and removal of self-admitted technical debt, incorporating gamification mech-
anisms to motivate developers to contribute to the debt removal. Current
research is largely focused on the detection and classification of self-admitted
technical debt, but has spent less effort on approaches to address the debt
automatically, likely because work on the detection and classification is still
very recent.

Previous work (Maldonado et al., 2017b) has developed an approach based
on natural language processing to automatically detect self-admitted technical
debt comments and to classify them into either design or requirement debt.
Self-admitted design debt encompasses comments that indicate problems with
the design of the code while self-admitted requirement debt includes all com-
ments that convey the opinion of a developer suggesting that the implemen-
tation of a requirement is incomplete. In general terms, design debt can be
resolved by refactoring whereas requirement debt indicates the need for new
code.

In this work, we hypothesize that it is possible to use automated techniques
based on natural language processing to understand a subset of the technical
debt categories identified in previous work in more detail, and to propose tool
support that can help developers manage self-admitted technical debt more
effectively. We make three contributions:

– A qualitative study on the removal of self-admitted technical debt. To un-
derstand what kinds of technical debt could be addressed or managed au-
tomatically, we annotated a statistically representative sample of instances
of self-admitted technical debt removal from the data set made available by
the authors of previous work (Maldonado et al., 2017a). While the focus
of our annotators was on the identification of instances of self-admitted
technical debt that could be automatically addressed, as part of this an-
notation, we also performed a partial conceptual replication (Shull et al.,
2008) of recent work by Zampetti et al. (2018),2 who found that a large
percentage of self-admitted technical debt removals occur accidentally. We
were able to confirm this finding: in 58% of the cases in our sample, the self-

1 Examples from ArgoUML and Apache Ant, respectively (Maldonado et al., 2017b).
2 Note that Zampetti et al. (2018) was published after we commenced this project, i.e.,

we do not use their data.
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// TODO the following code is copied from AbstractSimpleBeanDefinitionParser
// it can be removed if ever the doParse() method is not final!
// or the Spring bug http://jira.springframework.org/browse/SPR-4599 is resolved

Fig. 1: Motivating Example3

admitted technical debt was not actually addressed, but the admission was
simply removed. This finding is also in line with findings from Bazrafshan
and Koschke (2013) who reported a large number of accidental removals
of cloned code. Zampetti et al. (2018) further reported that in removing
self-admitted technical debt comments, developers tend to apply complex
changes. Our work indirectly confirms this by finding that a majority of
changes which address self-admitted technical debt could not easily be ap-
plied to similar debt in a different project.

– The definition of on-hold self-admitted technical debt (on-hold SATD). Our
annotation revealed one particular class of self-admitted technical debt
amenable to automated management: on-hold SATD. We define on-hold
SATD as self-admitted technical debt which contains a condition to indi-
cate that a developer is waiting for a certain event or an updated function-
ality having been implemented elsewhere. Figure 1 shows an example of
on-hold SATD from the Apache Camel project. The developer is waiting
for an external event (the visibility of doParse() changing or an external
bug being resolved) and the comment admitting the debt is therefore on
hold.

– The design and evaluation of a classifier for self-admitted technical debt.
Since software developers must keep track of many events and updates in
any software ecosystem, it is unrealistic to assume that developers will be
able to keep track of all self-admitted technical debt and of events that
signal that certain self-admitted technical debt is now ready to be ad-
dressed. To support developers in managing self-admitted technical debt,
we designed a classifier which can automatically identify those instances
of self-admitted technical debt which are on hold, and detect the specific
events that developers are waiting for. Our classifier achieves an area under
the receiver operating characteristic curve (AUC) of 0.98 for the identifi-
cation, and 90% of the specific conditions are detected correctly. This is a
first step towards automated tool support that can recommend to devel-
opers when certain instances of self-admitted technical debt are ready to
be addressed.

The remainder of this paper is structured as follows: In Section 2, we
present our research questions and the methods that we used for collecting
and analyzing data for the qualitative study. The findings from this qualitative
study are presented in Section 3. Section 4 describes the design of our classifier

3 cf. https://github.com/apache/camel/blob/53177d55053a42f6fd33434895c60615713
f4b78/components/camel-spring/src/main/java/org/apache/camel/spring/handler/Be

anDefinitionParser.java

https://github.com/apache/camel/blob/53177d55053a42f6fd33434895c60615713f4b78/components/camel-spring/src/main/java/org/apache/camel/spring/handler/BeanDefinitionParser.java
https://github.com/apache/camel/blob/53177d55053a42f6fd33434895c60615713f4b78/components/camel-spring/src/main/java/org/apache/camel/spring/handler/BeanDefinitionParser.java
https://github.com/apache/camel/blob/53177d55053a42f6fd33434895c60615713f4b78/components/camel-spring/src/main/java/org/apache/camel/spring/handler/BeanDefinitionParser.java


4 Rungroj Maipradit et al.

to identify on-hold SATD, and we present the results of our evaluation of the
classifier in Section 5. Section 6 discusses the implications of this work, before
Section 7 highlights the threats to validity and Section 8 summarizes related
work. Section 9 outlines the conclusions and highlights opportunities for future
work.

2 Research Methodology

In this section, we detail our research questions as well as the methods for
data collection and analysis used in our qualitative study. We also describe
the data provided in our online appendix.

2.1 Research Questions

Our research questions focus on identifying how self-admitted technical debt
is typically removed and whether the fixes applied to this debt could be ap-
plied to address similar debt in other projects. To guide our work, we first
ask about the different kinds of self-admitted technical debt that can be found
in our data (RQ1.1), whether the commits which remove the corresponding
comments actually fix the debt (RQ1.2), and if so, what kind of fix has been
applied (RQ1.3). To understand the removal in more detail, we also investi-
gate whether the removal was the primary reason for the commit (RQ1.4),
before investigating the subset of self-admitted technical debt that could be
managed automatically (RQ1.5). Based on the definition of on-hold SATD
which emerged from our qualitative study to answer these questions, we then
investigate its prevalence (RQ1.6) and the accuracy of automated classifiers
to identify this particular class of self-admitted technical debt (RQ2.1) and its
specific sub-conditions (RQ2.2):

RQ1 How do developers remove self-admitted technical debt?
RQ1.1 What kinds of self-admitted technical debt do developers indicate?
RQ1.2 Do commits which remove the comments indicating self-admitted

technical debt actually fix the debt?
RQ1.3 What kinds of fixes are applied to address self-admitted technical

debt?
RQ1.4 Is the removal of self-admitted technical debt the primary reason

for the commits which remove the corresponding comments?
RQ1.5 Could the fixes applied to address self-admitted technical debt be

applied to address similar debt in other projects?
RQ1.6 How many of the comments indicating self-admitted technical debt

contain a condition to specify that a developer is waiting for a certain
event or an updated functionality having been implemented elsewhere?

RQ2 How accurately can our classifier automatically identify on-hold SATD?
RQ2.1 What is the best performance of our classifier to automatically

identify on-hold SATD?
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Table 1: Data set

project SATD removal commits sample

Apache Camel 987 128
Apache Tomcat 910 125
Apache Hadoop 370 52
Gerrit Code Review 133 19
Apache Log4j 107 9

Total 2,507 333

RQ2.2 How well can our classifier automatically identify the specific con-
ditions in on-hold SATD?

2.2 Data Collection

To obtain data on the removal of self-admitted technical debt, we used the
online appendix of Maldonado et al. (2017a) as a starting point. In their work,
Maldonado et al. conducted an empirical study on five open source projects to
examine how self-admitted technical debt is removed, who removes it, for how
long it lives in a project, and what activities lead to its removal. They make
their data available in an online appendix4, which contains 2,599 instances of
a commit removing self-admitted technical debt. After removing duplicates,
2,507 instances remain. The first two columns of Table 1 show the number of
commits for each of the five projects available in this data set. Note that as a
consequence of reusing this data set, we are implicitly also reusing Maldonado
et al. (2017a)’s definition of technical debt as well as their interpretation of
what constitutes debt removal.

Based on this data set of commits which removed a comment indicating
self-admitted technical debt (after removing duplicates), we created a statis-
tically representative and random sample (confidence level 95%, confidence
interval 5 of 333 commits. The last column of Table 1 shows the number of
commits from each project in our sample.

2.3 Data Analysis

To answer our first research question “How do developers remove self-admitted
technical debt?” and its sub-questions, we performed a qualitative study on
the sample of 333 commits which had removed self-admitted technical debt
according to the data provided by Maldonado et al. (2017a).

In the first step, the second and third author of this paper independently
analyzed twenty commits from the sample to determine appropriate questions
to be asked during the qualitative study, aiming to obtain insights into how

4 http://das.encs.concordia.ca/uploads/2017/07/maldonado_icsme2017.zip

http://das.encs.concordia.ca/uploads/2017/07/maldonado_icsme2017.zip
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developers remove self-admitted technical debt and to identify the kinds of
debt that could be addressed or managed automatically. After several itera-
tions and meetings, the second and third author agreed on seven questions that
should be answered for each of the 333 commits during the qualitative study.
These questions along with their motivation and answer ranges are shown in
Table 2.

The first author annotated all 333 commits following this annotation
schema, and the second and third author annotated 50% of the data each,
ensuring that each commit was annotated according to all seven questions by
two researchers. Note that not all questions applied to all commits. For exam-
ple, all instances which we classified as not representing self-admitted technical
debt were not considered for future questions, and all commits which we classi-
fied as not fixing self-admitted technical debt were not considered for questions
such as “Could the same fix be applied to similar Self-Admitted Technical Debt
in a different project?”.

After the annotation, the first three authors conducted multiple meetings
in which they determined consistent coding schemes for the two questions
which allowed for open answers and collaboratively resolved all disagreements
in the annotation until reaching consensus on all ratings. We report the initial
agreement for each question before the resolution of disagreements as part of
our findings in the next section.5

2.4 Online Appendix

Our online appendix contains descriptive information on the 333 commits
which were labeled as removing self-admitted technical debt according to Mal-
donado et al. (2017a) along with our qualitative annotations in response to
the seven questions. Our online appendix also includes the data set we use
in testing and training our classifier. The appendix is available at https:

//tinyurl.com/onholddebt.

3 Qualitative Findings

In this section, we describe the findings derived from our qualitative study,
separately for each sub-question of RQ1.

3.1 Initial Analysis

As shown in Figure 2, we found that not all commits which were automatically
classified as removing self-admitted technical debt by the work of Maldonado
et al. (2017a) actually removed a comment indicating debt. In some cases
(9%)—indicated as N/A in Figure 2—the comment was not removed but only

5 We calculated kappa values using https://www.graphpad.com/quickcalcs/kappa1/.

https://tinyurl.com/onholddebt
https://tinyurl.com/onholddebt
https://www.graphpad.com/quickcalcs/kappa1/
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0 50 100 150 200 250 300

yes

no

N/A

284 (85%)

19 (6%)

30 (9%)

Does the comment represent
Self-Admitted Technical Debt?

Fig. 2: Distribution of answers to “Does the comment represent Self-Admitted
Technical Debt?”. Initial agreement among the annotators before resolving
disagreements: weighted kappa κ = 0.820 across 333 comments, i.e., “almost
perfect” agreement (Viera and Garrett, 2005).

edited, and in other cases (6%), the comment had been incorrectly tagged as
self-admitted technical debt, e.g., in the case of “It is always a good idea

to call this method when exiting an application”.

3.2 RQ1.1 What kinds of self-admitted technical debt do developers indicate?

Our first research question explores the different kinds of self-admitted
technical debt found in our sample. Figure 3 shows the final result of our
coding after consolidating the coding schema. The two most common kinds
of debt in our sample are “functionality needed” (44%) and “refactoring
needed” (17%). An example for the former is the comment “TODO handle

known multi-value headers” while “XXX move message resources in

this package” is an example for the latter. We also identified a number of
clarification requests (15%), such as “TODO: why not use millis instead

of nano?”. We coded self-admitted technical debt comments that explicitly
stated that they were temporary as workaround (8%), e.g., “TODO this

should subtract resource just assigned TEMPROARY”. We identified
some comments which indicated that the developer was waiting for something
(5%), such as “TODO remove these methods if/when they are available

in the base class!!!”. We will focus our discussion on these comments
in the later parts of this paper. Finally, some comments which indicated
technical debt describe bugs (4%, e.g., “TODO this causes errors on

shutdown...”) or focus on explaining the code (2%, e.g., “some OS such

as Windows can have problem doing rename IO operations so we may

need to retry a couple of times to let it work”). Note that for this
annotation, we assigned exactly one code to each comment.

Previous classifications of self-admitted technical debt focused less on the
actions required to remove the debt and more on what part of the software
development lifecycle a debt item can be assigned to. For example, the cate-
gorisation of Maldonado and Shihab (2015) revealed five categories (design, de-
fect, documentation, requirement, and test), and the categorisation of Bavota
and Russo (2016) revealed the same five categories plus a sixth category called
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0 50 100

functionality needed

refactoring needed

clarification request

workaround

wait

bug

explanation

other

124 (44%)

49 (17%)

43 (15%)

24 (8%)

13 (5%)

12 (4%)

5 (2%)

14 (5%)

RQ1.1 What kind of Self-Admitted
Technical Debt was it?

Fig. 3: Distribution of answers to “What kind of Self-Admitted Technical
Debt was it?”. Initial agreement among the annotators before consolidating
the coding schema: 45.07% across 284 comments.

0 50 100 150

yes

no

118 (42%)

166 (58%)

RQ1.2 Did the commit fix the Self-Admitted
Technical Debt?

Fig. 4: Distribution of answers to “Did the commit fix the Self-Admitted Tech-
nical Debt?”. Initial agreement among the annotators before resolving dis-
agreements: kappa κ = 0.731 across 284 comments, i.e., “substantial” agree-
ment (Viera and Garrett, 2005).

“code”. In comparison, guided by our ultimate goal of identifying certain kinds
of self-admitted technical debt which can be fixed automatically, our categori-
sation focuses more on what needs to be done in order to fix the debt, leading
to categories such as “functionality needed” or “refactoring needed”.

3.3 RQ1.2 Do commits which remove the comments indicating self-admitted
technical debt actually fix the debt?

For the majority of commits (58%) which removed the comment indicating
technical debt, the commit did not actually fix the problem described in the
comment, see Figure 4. Instead, these commits often removed the comment
along with the surrounding code. These findings are in line with recent work
by Zampetti et al. (2018) who found that between 20% and 50% of self-
admitted technical debt is accidentally removed while entire classes or methods
are dropped.
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0 50 100 150 200

implementation

refactoring

removing code

uncommenting code

removing workaround

other

N/A

68

18

14

8

5

5

215

RQ1.3 What kind of fix was it?

Fig. 5: Distribution of answers to “What kind of fix was it?”. Initial agreement
among the annotators before consolidating the coding schema: 83.90% across
118 comments.

3.4 RQ1.3 What kinds of fixes are applied to address self-admitted technical
debt?

In the cases where the commit fixed the self-admitted technical debt, we also
coded the kind of fix that was applied. Figure 5 show the results of this coding:
Debt was either fixed by implementing new code (58%), by refactoring exist-
ing code (15%), by removing code (12%), by uncommenting code that had
been previously commented out (7%), or by removing a workaround (4%).
Note that we used the commit message and/or related issue discussions to
determine whether a change was meant to remove a workaround or was truly
a refactoring. Other cases, such as uncommenting code, were easy to decide.

In the 215 cases where the commit does not fix the self-admitted technical
debt, 30 commits do not remove the self-admitted technical debt comments or
are tagged incorrectly, 19 comments do not represent self-admitted technical
debt, and 166 commits do not fix self-admitted technical debt.

Our categorisation of the different kinds of fixes is at a slightly more coarse-
granular level compared to that presented by Zampetti et al. (2018) who iden-
tified five categories (add/remove method calls, add/remove conditionals, ad-
d/remove try-catch, modify method signature, and modify return) in addition
to “other”. In their categorisation, “other” accounts for 44% (339/779) of all
instances. In comparison, our categorisation is less fine-grained, but contains
fewer “other” cases.

Table 3 shows the relationship between the two coding schemes that
emerged from our qualitative data analysis: one for the kinds of technical
debt indicated in developer comments, and one for the kinds of fixes applied
to this debt. Unsurprisingly, many instances where new functionality was
needed were addressed by the implementation of said functionality, and cases
where refactoring was needed were addressed by refactoring. Interestingly,
all comments of developers explaining technical debt were removed without
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RQ1.4 Was removing the Self-Admitted Technical Debt
the primary reason for the commit?

Fig. 6: Distribution of answers to “Was removing the Self-Admitted Technical
Debt the primary reason for the commit?”. Agreement among the annotators:
weighted kappa κ = 0.630 across 118 comments, i.e., “substantial” agree-
ment (Viera and Garrett, 2005).

addressing the debt. An example is the self-admitted technical debt com-
ment “some OS such as Windows can have problem doing delete IO

operations so we may need to retry a couple of times to let it

work” in the Apache Camel project which was removed in commit f10f55e6

together with the surrounding source code. We hypothesise that in some
cases, developers decide to replace code which requires an explanation with
simpler code. More work will have to be conducted to test this hypothesis.
Waits could sometimes be addressed by uncommenting code that had been
written in anticipation of the fix. A large number of comments indicating
debt were not addressed—for example, out of 43 comments which we coded
as clarification request, 33 (77%) were “resolved” by simply deleting the
comment (e.g., the comment “TODO why zero?” was removed from the
Apache Camel source code in commit 3d8f4e97 without further explanation.
Note that in cases where more than one of our codes could apply, we noted the
most prominent one. This could for example occur in cases of long comments
which were used to communicate different concerns. In such rare cases, we
applied the code for the longest section of the comment. This explains the
small number of inconsistencies, e.g., a “functionality needed” debt fixed by
a “refactoring”.

3.5 RQ1.4 Is the removal of self-admitted technical debt the primary reason
for the commits which remove the corresponding comments?

The removal of technical debt was often not the primary reason for commits
which removed self-admitted debt, see Figure 6. We did not attempt to resolve
disagreements between annotators for this question as the concept of “primary
reason” can be ambiguous. Instead, instances where annotators disagreed are
shown as “unclear” in Figure 6.

6 https://github.com/apache/camel/commit/f10f55e38945686827dc249703b16066826

57a62
7 https://github.com/apache/camel/commit/3d8f4e9d68253269b4f5cf7e3cfea4553b4

6d74f

https://github.com/apache/camel/commit/f10f55e38945686827dc249703b1606682657a62
https://github.com/apache/camel/commit/f10f55e38945686827dc249703b1606682657a62
https://github.com/apache/camel/commit/3d8f4e9d68253269b4f5cf7e3cfea4553b46d74f
https://github.com/apache/camel/commit/3d8f4e9d68253269b4f5cf7e3cfea4553b46d74f
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An example of a commit which removed self-admitted technical debt even
though it was not the main purpose of the commit is Apache Camel com-
mit f47adf.8 The commit removed the following comment: “TODO: Support

ordering of interceptors”, but this was part of a much larger refactor-
ing as described in the commit message: “Overhaul of JMX”. On the other
hand, the commit message of commit 88ca359 from the same project “Added
onException support to DefaultErrorHandler” is very similar to the self-
admitted technical debt comment that was removed in this commit “TODO: in

the future support onException”, which suggests that removing the debt
was the primary reason for this commit.

3.6 RQ1.5 Could the fixes applied to address self-admitted technical debt be
applied to address similar debt in other projects?

We annotated the 118 self-admitted technical debt comments which had been
fixed by a commit in terms of whether the fix applied in this commit could
be applied in a similar context in a different project. While this annotation
was subjective to some extent—as also indicated by our kappa agreement of
0.540 which was the lowest across all questions we answered about the self-
admitted technical debt comments—we used our intuition about whether we
could envision tool support to address a comment automatically. We used our
experience of conducting research on automated tool support for source code
manipulation for this step.

We identified two kinds of self-admitted technical debt that could pos-
sibly be handled automatically. The first kind are comments which are
fairly specific, e.g., “TODO gotta catch RejectedExecutionException and

properly handle it”. Automated tool support could be built to at least
catch the exception based on this description. The second kind are comments
which indicate that a developer is waiting for something, which we will dis-
cuss further in the next subsection. Figure 7 shows the ratio of fixes that could
possibly be automated and applied in other settings, which is one third of all
fixes. Note that we counted all those comments as “possibly” that were rated
as “possibly” by at least one annotator. This finding supports Zampetti et al.
(2018) who found that most changes addressing self-admitted technical debt
require complex source code changes. The primary goal of investigating this
research question was the identification of types of self-admitted technical debt
likely amenable to being fixed automatically.

8 https://github.com/apache/camel/commit/f47adf75510ef71a5b4071e8c77af7abb9c

07dc9
9 https://github.com/apache/camel/commit/88ca359343c3a96786d435985f46841eeff

cfb6e

https://github.com/apache/camel/commit/f47adf75510ef71a5b4071e8c77af7abb9c07dc9
https://github.com/apache/camel/commit/f47adf75510ef71a5b4071e8c77af7abb9c07dc9
https://github.com/apache/camel/commit/88ca359343c3a96786d435985f46841eeffcfb6e
https://github.com/apache/camel/commit/88ca359343c3a96786d435985f46841eeffcfb6e
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40 (34%)

78 (66%)

RQ1.5 Could the same fix be applied to similar
Self-Admitted Technical Debt in a different project?

Fig. 7: Distribution of answers to “Could the same fix be applied to similar
Self-Admitted Technical Debt in a different project?”. Agreement among the
annotators: kappa κ = 0.540 across 118 comments, i.e., “moderate” agree-
ment (Viera and Garrett, 2005).

0 50 100 150 200 250

yes

no

27 (10%)

257 (90%)

RQ1.6 Does the Self-Admitted Technical Debt
comment include a condition?

Fig. 8: Distribution of answers to “Does the Self-Admitted Technical Debt
comment include a condition?”. Initial agreement among the annotators before
resolving disagreements: weighted kappa κ = 0.618 across 284 comments, i.e.,
“substantial” agreement (Viera and Garrett, 2005).

Table 4: Example of self-admitted technical debt on “on-hold” and “wait”

Example of SATD Category / On-hold or not

// TODO change to file when this is ready wait / non on-hold
// FIXME: Code to be used in case wait / non on-hold
route replacement is needed
// TODO: is needed when we add add functionality / on-hold
support for when predicate
// TODO: Camel 2.9/3.0 consider refactor / on-hold
moving to org.apache.camel

3.7 RQ1.6 How many of the comments indicating self-admitted technical
debt contain a condition to specify that a developer is waiting for a certain
event or an updated functionality having been implemented elsewhere?

A theme that emerged from answering the previous research question is the
concept of self-admitted technical debt comments which include a condition
to indicate that a developer is waiting for a certain event or an updated func-
tionality having been implemented elsewhere. Since no other obvious class of
self-admitted technical debt emerged which seemed amenable to automated
tool support, we focus on this kind of self-admitted technical debt for building
a classifier (see next section). We refer to this kind of debt as on-hold SATD—
the comment is on hold until the condition is met (see Figure 1 for examples).
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Fig. 10: Similarity between project names and words.

In our sample, we identified 27 such comments, see Figure 8. These comments
are also related to the “wait” category shown in Figure 3, but not necessar-
ily identical since the question addressed by Figure 3 did not explicitly ask
about conditions. Table 4 shows examples of “on-hold” comments and those
classified in the “wait” category.

4 Classifier Design

Figure 9 shows the overview of our classifier for on-hold SATD identification
and the detection of the specific conditions that developers are waiting for.
Given self-admitted technical debt comments, data preprocessing and n-gram
feature extraction are applied before classifying them into on-hold or not.
Within identified on-hold SATD comments, specific conditions are detected.

4.1 Data Preprocessing

Three preprocessing steps are applied, namely, term abstraction, lemmatiza-
tion, and special character removal.
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Table 5: Regular expressions for term abstraction

abstraction pattern

@abstractdate (0[1-9]|[12]\d|3[01]).(0[1-9]|1[0-2])
.([12]\d3)
# year.month.date, e.g., 21.02.2011

(0[1-9]|[12]\d|3[01])\/(0[1-9]|1[0-2])
(\/([12]\d3))*
# day/month(/year), e.g., 25/05, 22/05/2012

((([0-9])|([0-2][0-9])|([3][0-1]))

(Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|

Oct|Nov|Dec)\w+ \d4
# day month year, e.g., 23 June 2013

\d+-\d+-\d+ \d+:\d+:\d+ [-|+]\d+
# year-month-day timestamp, e.g., 2006-03-06
23:16:24 +0100

@abstractversion [0-9]{1,2}\.[0-9]{1,2}([+-]|\.[0-9]{1,3}|
\.[A-Za-z]{1,2})*( [0-9]{1,3})*
# release version, e.g., 1.9.3, 4.0, 8.0.x,
1.0.12 25

@abstractbugid abstractproduct[ |-]*\d+
# bug id, e.g., jetty-9.3

@abstracturl https?:\/\/(www\.)?[-a-zA-Z0-9@:%. \
+~#=]{2,256}\.[a-z]{2,6}\b
([-a-zA-Z0-9@:% \+.~#?&//=]*)
# url

Term Abstraction. Similar to a previous text classification study (Prana
et al., 2019), we perform abstraction as a preprocessing step. The previous
study (Prana et al., 2019) abstracted keywords from GitHub README files.
Their abstraction included mail-to links, hyperlinks, code blocks, images, and
numbers. We also apply abstraction for hyperlinks (URLs), however, we do not
apply the others because images, mail-to links, and code blocks do not usually
appear in comments. Instead, we introduce four kinds of abstraction which
are related to on-hold conditions. We target the following terms: date expres-
sion, version, bug id, URL, and product name. Each term is abstracted into a
string: @abstractdate, @abstractversion, @abstractbugid, @abstracturl,
and @abstractproduct. Table 5 shows the regular expressions we use to detect
@abstractdate, @abstractversion, @abstractbugid, and @abstracturl.

For abstracting product names for @abstractproduct, we try finding se-
mantically similar words to the project names and their sub-project names
in our data set, i.e., Apache, Camel, Tomcat, Hadoop, Gerrit, Log4j, Yarn,
Mapreduce, Hdfs, Ant, Jmeter, ArgoUML, Columba, Emf, Hibernate, Distri-
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bution, JEdit, JFreechart, JRuby, and SQuirrel. Figure 10 shows the similarity
between each word in comments and project name and their related project
using Spacy (Honnibal and Montani, 2017).10 According to the result, the
similarity score drops drastically from 1.0—therefore, we consider words with
similarity 1.0 as project names. We obtained 77 words.

We apply this process because we are more interested in the existence
of these types rather than the actual terms, which do not appear fre-
quently. For example, considering the comment “TODO: CAMEL-1475 should

fix this”, CAMEL-1475 will be changed to the string “@abstractproduct
@abstractbugid”. Table 5 summarizes the regular expressions we used for
identifying targeted terms. Replacements using the regular expressions are
conducted from top to bottom in the table. Subsequently, URLs linking to
specific ids of bugs are abstracted to “@abstracturl @abstractbugid”.

Lemmatization. Lemmatization is a process to reduce the inflection form of
words into dictionary form by considering the context in the sentences. This
process is applied to increase the frequency of words appearing by changing
words into dictionary forms using tools from Spacy (Honnibal and Montani,
2017).

Special character removal. Since non-English characters and non-numeric ones
do not represent words, we use the regular expression [^A-Za-z0-9]+ to re-
move them. Stop word removal is not applied in this work because a stop word
list contains important keywords for identifying on-hold SATD (e.g., when, un-
til). We use Spacy to apply lemmatization which will change words into their
dictionary form. However, some single characters will appear, e.g., when lem-
matising “// TODO: Removed from UML 2.x” to “todo remove from uml 2
x”.

4.2 N-gram Feature Extraction

We extract n-gram term features by applying N-gram IDF (Shirakawa et al.,
2015, 2017). Inverse Document Frequency (IDF) has been widely used in many
applications because of its simplicity and robustness; however, IDF cannot
handle phrases (i.e., groups of more than one term). Because IDF gives more
weight to terms occurring in fewer documents, rare phrases are assigned more
weight than good phrases that would be useful in text classification. N-gram
IDF is a theoretical extension of IDF for handing multiple terms and phrases
by bridging the theoretical gap between term weighting and multi-word ex-
pression extraction (Shirakawa et al., 2015, 2017).

Terdchanakul et al. (2017) reported that for classifying bug reports into
bugs or non-bugs, classification models using features from N-gram IDF out-
perform models using topic modeling features. In addition to this, we consider

10 Spacy has recently been found to achieve a higher accuracy when applied to software-
related text compared to other libraries (Al Omran and Treude, 2017).
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that n-gram word features are beneficial for comment classification rather than
topic modeling because source code comments are generally short and contain
only a small number of words.

Wattanakriengkrai et al. (2018) created classification models to identify
design and requirement self-admitted technical debt using source code com-
ments. By using N-gram IDF and auto-sklearn automated machine learning,
classification models outperform models with single word features.

In this study, we use an N-gram Weighting Scheme tool (Shirakawa, 2017),
which uses an enhanced suffix array (Abouelhoda et al., 2004) to enumer-
ate valid n-grams. We obtain a list of all valid n-grams that contain at
most 10 terms from the on-hold self-admitted technical debt comments and
remove n-grams which have frequency equal to one. We obtain about one
thousand two hundred n-gram terms from our 267 on-hold self-admitted
technical debt comments. After that, we apply Auto-sklearn’s feature selec-
tion. Auto-sklearn includes two feature selection functions from the sklearn
library, sklearn.feature selection.GenericUnivariateSelect (Univariate feature
selector) and sklearn.feature selection.SelectPercentile (Select features accord-
ing to percentile). Calling these functions is part of Auto-sklearn’s feature
preprocessing—it selects suitable feature processing based on meta-learning
automatically.

4.3 Classifier Learning

Given the set of n-gram term features from the previous step, we build a
classifier that can identify on-hold SATD by classifying self-admitted technical
debt comments into on-hold or not.

In machine learning, two problems are known: (1) no single machine learn-
ing method performs best on all data sets, and (2) some machine learning
methods rely heavily on hyperparameter optimization. Automated machine
learning aims to optimize choosing a good algorithm and feature preprocess-
ing steps (Feurer et al., 2015). To obtain the best performance (RQ2.1), similar
to Wattanakriengkrai et al. (2018)’s work, we apply auto-sklearn (Feurer et al.,
2015), a tool of automated machine learning.

Auto-sklearn addresses these problems as a joint optimization prob-
lem (Feurer et al., 2015). Auto-sklearn includes 15 base classification al-
gorithms, and produces results from an ensemble of classifiers derived by
Bayesian optimization (Feurer et al., 2015).

For classifier learning, we prepare feature vectors with N-gram TF-IDF
scores of all n-gram terms. The score is calculated with the following formula:

n-gram TF-IDF = log(
|D|
sdf

) ∗ gtf

where |D| is the total number of comments, sdf is the document frequency of
a set of terms composing an n-gram, and gtf is the global term frequency.
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4.4 On-hold Condition Detection

After on-hold SATD comments are identified, we try to identify their on-
hold conditions. During our annotation, we found conditions of self-admitted
technical debt that are related to waiting for a bug to be fixed, a release of a
library, or a new version of a library.

– For a bug to be fixed, we abstract the bug report number. In a bug report
tracking system, the bug report number is created by using the project
name and report number which we abstract using the keywords @abstract-
product and @abstractbugid.

– For release date, we abstract it using the keyword @abstractdate.
– For a new version of a library, the library version usually appears in a

project name and release version (e.g., 1.9.3, 4.0), which we abstract using
the keywords @abstractproduct and @abstractversion.

As we have already replaced these terms with specific keywords shown in Ta-
ble 5, we can derive conditions by recovering the original terms. The following
is our detection process.

1. Extract keywords of @abstractdate, @abstractversion,
@abstractbugid, and @abstractproduct by preserving the order of
appearance in the identified on-hold SATD comments.

2. Group keywords to make valid conditions. Only the following sets of key-
words are considered to be valid conditions, and other keywords that do
not match the following orders are ignored.
– {@abstractdate}: an individual date expression.
– {@abstractproduct, @abstractversion, ...}: a product name fol-

lowed by one or more version expressions, to indicate specific versions
of the product.

– {@abstractproduct, @abstractbugid, ...}: a product name fol-
lowed by one or more bug ID expressions, to indicate specific bugs
of the product.

Identifying these keywords as conditions is not trivial, because they also
frequently appear in comments that do not indicate on-hold SATD. Since we
limit this detection to the identified on-hold comments, we expect that this
simple process can work.

5 Classifier Evaluation

In this section, we describe the steps we took to evaluate our classifier.

5.1 Data Preparation and Annotation

As shown in Figure 8, we found fewer than 30 on-hold SATD comments in the
sample of 333 comments. Since it is difficult to train classifiers on such a small
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Table 6: Annotated self-admitted technical debt comments

characteristic number

excluded
not self-admitted technical debt 225
sample of removed self-admitted technical debt 333

classification data
with condition (on-hold) 267
without condition 4,981

sum 5,806

number of instances, we investigated all 2,507 comments again to prepare
data for our classification. After that, the first and third author separately
annotated the remaining comments in terms of (i) whether comments represent
self-admitted technical debt (similar to Figure 2) and (ii) whether the self-
admitted technical debt comments include a condition (similar to Figure 8). All
conflicts in this annotation were resolved by the second author. Note that we
decided to train the classifier on comments which had been removed through
the resolution of self-admitted technical debt to ensure we were able to consider
the entire lifecycle of the self-admitted technical comment before deciding
whether to consider it on-hold.

We also include a data set from ten open source projects introduced by Mal-
donado et al. (2017b). First, we randomly selected a sample of 30 comments
out of all 3,299 comments. The first author, third author, and an external
annotator annotated these comments, resulting in 97.78% overall agreement,
i.e., “almost perfect” according to Viera and Garrett (2005). Then the first
author annotated the remaining comments.

Tables 6 and 7 show the result of this data preparation. From 5,806 com-
ments, 333 comments are samples of removed self-admitted technical debt
and 225 comments that do not represent self-admitted technical debt are ex-
cluded. We obtained 267 on-hold comments and 4,981 other comments, which
are used for our classification. After excluding duplicate comments, our dataset
contains a total of 5,248 comments. Before exclusion, 410 comments were du-
plicates which can be grouped into 168 sets of comments. Among these 168
sets of duplicates, 11 sets (24 comments) are on-hold comments, and 157 sets
(386 comments) are non on-hold comments.

5.2 Evaluation Settings

We measure the classification performance in terms of precision, recall, F1, and
AUC. AUC is the area under the receiver operating characteristic curve. The
receiver operating characteristic curve is created by plotting the true positive
rate (TPR) against the false positive rate (FPR) at various threshold settings.

Precision =
tp

tp+ fp
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Table 7: Number of on-hold SATD comments in each project

project number example

Apache Camel 88 // @deprecated will be removed on Camel 2.0 ...
Apache Tomcat 20 // TODO This can be fixed in Java 6 ...
Apache Hadoop 20 // TODO need to get the real port number

MAPREDUCE-2666
Gerrit Code Review 6 // TODO: remove this code when Guice fixes

its issue 745
Apache Log4j 1 // TODO: this method should be removed if

OptionConverter becomes a static
Apache Ant 7 // since Java 1.4 ...

// workaround for Java 1.2-1.3
Apache Jmeter 2 // TODO this bit of code needs to be tidied up

... Bug 47165
ArgoUML 77 // TODO: gone in UML 2.1
Columba 0 –
EMF 1 // Note: Registry based authority is being

removed ... which would obsolete RFC 2396.
If the spec is added ... needs to be removed.

Hibernate 5 // FIXME Hacky workaround to JBCACHE-1202
JEdit 6 // undocumented hack to allow browser

actions to work. // XXX - clean up in 4.3
JFreeChart 2 // TODO: In JFreeChart 1.2.0 ...
JRuby 23 // Workaround for JRUBY-4149
SQuirrel 9 // We know this fails - Bug# 1700093

total 267 –

Recall =
tp

tp+ fn

F1 =
2 · (precision · recall)
(precision+ recall)

TPR =
tp

tp+ fn

FPR =
fp

tn+ fp

where tp is the number of true positives, tn is the number of true negatives,
fp is the number of false positives, and fn is the number of false negatives.

Comparison. A Naive Baseline is created based on the assumption that it is
also possible to find on-hold technical debt comments while using basic search-
ing similar to the grep command. The words we use for searching are selected
from the top 30 words that appear frequently in comments. We manually clas-
sify words to select those that relate to on-hold technical debt. The words
we selected are “should”, “when”, “once”, “remove”, “workaround”, “fixed”,
“after”, and “will”.

To assess the effectiveness of n-gram features in classifying on-hold SATD
comments, we compare the performances of classifiers using N-gram TF-IDF
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Table 8: Performance comparison

N-gram TF-IDF
naive baseline TF-IDF N-gram TF-IDF without rebalancing

Precision 0.12 0.73 0.75 0.76
Recall 0.66 0.60 0.78 0.77
F1 0.20 0.66 0.77 0.76
AUC 0.70 0.97 0.98 0.98

Table 9: Top 10 N-gram TF-IDF frequent features only appear in on-hold
comments.

N-gram Features frequency

‘remove’, ‘in’, ‘abstractproduct’, ‘abstractversion’ 7
‘in’, ‘uml’, ’2’, ‘x’ 7
‘fix’, ‘in’ 6
‘workaround’, ‘to’ 6
‘todo’, ‘cmueller’, ‘remove’, ‘the’ 6
‘ref’, ‘attribute’ 6
‘be’, ‘remove’, ‘in’, ‘abstractproduct’, ‘abstractversion’ 6
‘for’, ‘abstractversion’ 5
‘after’, ‘abstractproduct’, ‘abstractbugid’ 5
‘workaround’, ‘for’, ‘abstractproduct’, ‘abstractbugid’ 4

and traditional TF-IDF (Salton and Buckley, 1988). Except for feature extrac-
tion, the two classifiers are prepared using the same settings including term
abstraction.

Ten-fold cross-validation. Ten-fold cross-validation divides the data into ten
sets and every set is used as test set once while the others are used for training.
Due to the imbalance between the number of positive and negative instances,
we use the Stratified ShuffleSplit cross validator of scikit-learn made available
by Pedregosa et al. (2011), which intends to preserve the percentage of samples
from each class. Because of this process, some instances can appear multiple
times in different sets. Therefore we report the mean values of the evaluation
metrics across all ten runs as the performance.

To measure the effect of rebalancing on our classification, we compare the
performance of N-gram TF-IDF with and without Stratified ShuffleSplit.

5.3 RQ2.1 What is the best performance of a classifier to automatically
identify on-hold SATD?

As shown in Table 8, our classifier with n-gram TF-IDF achieved a mean pre-
cision of 0.75, a mean recall of 0.78, a mean F1-score of 0.77, and a mean
AUC of 0.98. N-gram TF-IDF has the best performance in every evaluation
except precision which has a similar score with N-gram TF-IDF without rebal-
ancing. We consider that both precision and recall are essential for this kind
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Table 10: Cross-project classification on projects which contain on-hold more
than 2%

Project #, (% of on-hold) Precision Recall F1 AUC

Apache Ant 7, (5.6%) 0.50 0.57 0.53 0.97
Apache Camel 88, (10.9%) 0.81 0.39 0.52 0.96
Apache Hadoop 20, (8.2%) 0.61 0.85 0.71 0.96
Apache Tomcat 20, (2.8%) 0.19 0.50 0.27 0.92
ArgoUML 77, (6.7%) 0.36 0.17 0.23 0.82
Gerrit Code Review 6, (6.3%) 0.60 0.50 0.55 0.91
JEdit 6, (2.6%) 0.33 0.67 0.44 0.91
JRuby 23, (5.0%) 0.46 0.57 0.51 0.97
SQuirrel 9, (3.9%) 0.24 0.44 0.31 0.91

Average - 0.46 0.52 0.45 0.93

Table 11: Within-project classification on projects which contain on-hold more
than 2%

Project #, (% of on-hold) Precision Recall F1 AUC

Apache Ant 7, (5.6%) 0.19 0.80 0.30 0.86
Apache Camel 88, (10.9%) 0.91 0.61 0.73 0.99
Apache Hadoop 20, (8.2%) 0.85 0.80 0.79 0.99
Apache Tomcat 20, (2.8%) 0.73 0.65 0.66 0.99
ArgoUML 77, (6.7%) 0.66 0.79 0.71 0.98
Gerrit Code Review 6, (6.3%) 0.15 0.30 0.20 0.86
JEdit 6, (2.6%) 0.11 0.80 0.18 0.90
JRuby 23, (5.0%) 0.70 0.80 0.70 0.99
SQuirrel 9, (3.9%) 0.15 1.00 0.25 0.89

Average - 0.49 0.73 0.50 0.94

of recommendation system. Precision is important since false positives (i.e.,
unwarranted recommendations) will annoy developers. However, recall is still
important since false negatives (i.e., recommendations that the system could
have made but did not) might cause problems since developer will be unaware
of important information. Table 9 shows the top features from N-gram TF-
IDF ranked by how frequently our classifier uses them to distinguish on-hold
comments from other self-admitted technical debt comments.

We also run an experiment for both cross-project classification and within-
project classification on projects for which the ratio of on-hold SATD com-
ments among all self-admitted technical debt comments is more than 2%. For
cross-project classification, we divide data into sets according to their project.
Every set is used as test set once while the other sets are used for training.
Table 10 shows the results for each project. On average, our classifier with
cross-project classification achieved a mean precision of 0.46, a mean recall of
0.52, a mean F1-score of 0.45, and a mean AUC of 0.93.

For within-project classification, in each project, we apply a ten-fold clas-
sification with the Stratified ShuffleSplit cross validator. Table 11 shows the
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Table 12: Examples of specific conditions in on-hold SATD comments

specific condition example of on-hold SATD comments

@abstractdate // Workaround for, Adobe Read 9 plug-in on
IE bug // Can be removed after 26 June 2013

@abstractproduct, @abstractversion // TODO cmueller:, remove the
“httpBindingRef” look up in Camel 3.0

@abstractproduct, @abstractbugid // FIXME (CAMEL-3091): @Test

/*
* TODO: After YARN-2 is committed, we should call containerResource.getCpus()
* (or equivalent) to multiply the weight by the number of requested cpus.
*/

Fig. 11: On-hold SATD example which we correctly identify11

result for each project. Among them, five projects (Camel, Hadoop, Tomcat,
ArgoUML, and JRuby) have a similar score or higher compared to cross-
project classification according to all metrics. Another four projects (Ant,
Gerrit, JEdit, and SQuirrel) have a lower score compared to cross-project clas-
sification according to all metrics. The difference between these two groups is
that the first group has the number of on-hold comments >= 20 while the
second group has the number of on-hold comments < 10.

5.4 RQ2.2 How well can our classifier automatically identify the specific
conditions in on-hold SATD?

Because of our treatment of imbalanced data (see Section 5.3), some comments
can appear multiple times in the test set. We consider that an on-hold com-
ment is correctly identified only if it has been classified correctly in all cases
where it was part of the test set. Our classifier was able to identify 219 out
of 267 on-hold comments correctly. Among them, 94 comments contain ab-
straction keywords which indicate a specific condition, and all those instances
were confirmed to be specific conditions by manual investigation. Table 12
shows examples of on-hold comments and their specific conditions. However,
some comments do not mention specific conditions, such as “This crap is

required to work around a bug in hibernate”. Among the 48 false posi-
tives (incorrectly identified comments), 10 comments contain abstraction key-
words, but these keywords are used for references and not for conditions that
a developer is waiting for. In summary, 90% (94/(10+94)) of the detected spe-
cific conditions are correct, and for 43% (94/219) of the on-hold comments, we
were able to identify the specific condition that a developer was waiting for.

11 cf. https://github.com/apache/hadoop/commit/80eb92aff02cc9f899a6897e9cbc2bc6
9bd56136/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server

https://github.com/apache/hadoop/commit/80eb92aff02cc9f899a6897e9cbc2bc69bd56136/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-nodemanager/src/main/java/org/apache/hadoop/yarn/server/nodemanager/util/CgroupsLCEResourcesHandler.java
https://github.com/apache/hadoop/commit/80eb92aff02cc9f899a6897e9cbc2bc69bd56136/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-nodemanager/src/main/java/org/apache/hadoop/yarn/server/nodemanager/util/CgroupsLCEResourcesHandler.java
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/**
* Ugly workaround because CodeMirror never hides lines completely.
* TODO: Change to use CodeMirror’s official workaround after
* updating the library to latest HEAD.
*/

Fig. 12: On-hold SATD example which our classifier cannot identify12

Figure 11 shows an example of an on-hold SATD comment. Our model can
identify conditions using the keywords @abstractproduct and @abstractbugid
referring to YARN-2. Figure 12 shows an example that our classifier could not
identify correctly. The on-hold condition refers to a workaround waiting for an
update to the CodeMirror library.

5.5 Developer Feedback

To evaluate whether our approach for detecting on-hold SATD could be useful
in practice, we ran the cross-project classifier on the source code of the open-
source project JabRef, a graphical Java application for managing BibTEX and
biblatex (.bib) databases.13 We used source code comments containing SATD
keywords from Huang et al. (2018) (Table 1 and Table 16) and an abstractkey-
word as input and classified the resulting data into on-hold and not on-hold.
From the classification result, we obtained a total of 22 potential on-hold com-
ments. A manual analysis revealed that 19 cases were not actually SATD and
that 3 cases are on-hold SATD. Note that our classifier was developed to clas-
sify SATD comments into on-hold or not, and not to determine whether any
comment is SATD—this has been done in previous work (Maldonado and Shi-
hab (2015)). We then sent three instances of on-hold SATD to one of JabRef’s
core developers. Table 13 shows these comments along with the explanation
we sent to the developer. In addition, for each on-hold SATD comment, we
included a link to the exact line of code from which we had extracted the
comment.

Regarding the first comment, the developer pointed out that the comment
had been deleted in the meantime, but noted

As a final check, it would be helpful though.

Regarding the second comment, the developer mentioned the potential
overlap between notifications that our approach could produce and other no-
tifications that the developer would already receive anyway:

-nodemanager/src/main/java/org/apache/hadoop/yarn/server/nodemanager/util/Cgro

upsLCEResourcesHandler.java
12 cf. https://github.com/gerrit-review/gerrit/commit/0485172aaa70e3b1f0e98c002
15672657e6f462e/gerrit-gwtui/src/main/java/com/google/gerrit/client/diff/CodeMi

rrorDemo.java
13 https://github.com/JabRef/jabref/

https://github.com/apache/hadoop/commit/80eb92aff02cc9f899a6897e9cbc2bc69bd56136/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-nodemanager/src/main/java/org/apache/hadoop/yarn/server/nodemanager/util/CgroupsLCEResourcesHandler.java
https://github.com/apache/hadoop/commit/80eb92aff02cc9f899a6897e9cbc2bc69bd56136/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-nodemanager/src/main/java/org/apache/hadoop/yarn/server/nodemanager/util/CgroupsLCEResourcesHandler.java
https://github.com/apache/hadoop/commit/80eb92aff02cc9f899a6897e9cbc2bc69bd56136/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-nodemanager/src/main/java/org/apache/hadoop/yarn/server/nodemanager/util/CgroupsLCEResourcesHandler.java
https://github.com/apache/hadoop/commit/80eb92aff02cc9f899a6897e9cbc2bc69bd56136/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-nodemanager/src/main/java/org/apache/hadoop/yarn/server/nodemanager/util/CgroupsLCEResourcesHandler.java
https://github.com/apache/hadoop/commit/80eb92aff02cc9f899a6897e9cbc2bc69bd56136/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-nodemanager/src/main/java/org/apache/hadoop/yarn/server/nodemanager/util/CgroupsLCEResourcesHandler.java
https://github.com/apache/hadoop/commit/80eb92aff02cc9f899a6897e9cbc2bc69bd56136/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-nodemanager/src/main/java/org/apache/hadoop/yarn/server/nodemanager/util/CgroupsLCEResourcesHandler.java
https://github.com/apache/hadoop/commit/80eb92aff02cc9f899a6897e9cbc2bc69bd56136/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-nodemanager/src/main/java/org/apache/hadoop/yarn/server/nodemanager/util/CgroupsLCEResourcesHandler.java
https://github.com/apache/hadoop/commit/80eb92aff02cc9f899a6897e9cbc2bc69bd56136/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-nodemanager/src/main/java/org/apache/hadoop/yarn/server/nodemanager/util/CgroupsLCEResourcesHandler.java
https://github.com/apache/hadoop/commit/80eb92aff02cc9f899a6897e9cbc2bc69bd56136/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-nodemanager/src/main/java/org/apache/hadoop/yarn/server/nodemanager/util/CgroupsLCEResourcesHandler.java
https://github.com/apache/hadoop/commit/80eb92aff02cc9f899a6897e9cbc2bc69bd56136/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-nodemanager/src/main/java/org/apache/hadoop/yarn/server/nodemanager/util/CgroupsLCEResourcesHandler.java
https://github.com/apache/hadoop/commit/80eb92aff02cc9f899a6897e9cbc2bc69bd56136/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-nodemanager/src/main/java/org/apache/hadoop/yarn/server/nodemanager/util/CgroupsLCEResourcesHandler.java
https://github.com/apache/hadoop/commit/80eb92aff02cc9f899a6897e9cbc2bc69bd56136/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-nodemanager/src/main/java/org/apache/hadoop/yarn/server/nodemanager/util/CgroupsLCEResourcesHandler.java
https://github.com/apache/hadoop/commit/80eb92aff02cc9f899a6897e9cbc2bc69bd56136/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-nodemanager/src/main/java/org/apache/hadoop/yarn/server/nodemanager/util/CgroupsLCEResourcesHandler.java
https://github.com/apache/hadoop/commit/80eb92aff02cc9f899a6897e9cbc2bc69bd56136/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-nodemanager/src/main/java/org/apache/hadoop/yarn/server/nodemanager/util/CgroupsLCEResourcesHandler.java
https://github.com/apache/hadoop/commit/80eb92aff02cc9f899a6897e9cbc2bc69bd56136/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-nodemanager/src/main/java/org/apache/hadoop/yarn/server/nodemanager/util/CgroupsLCEResourcesHandler.java
https://github.com/apache/hadoop/commit/80eb92aff02cc9f899a6897e9cbc2bc69bd56136/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-nodemanager/src/main/java/org/apache/hadoop/yarn/server/nodemanager/util/CgroupsLCEResourcesHandler.java
https://github.com/apache/hadoop/commit/80eb92aff02cc9f899a6897e9cbc2bc69bd56136/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-nodemanager/src/main/java/org/apache/hadoop/yarn/server/nodemanager/util/CgroupsLCEResourcesHandler.java
https://github.com/apache/hadoop/commit/80eb92aff02cc9f899a6897e9cbc2bc69bd56136/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-nodemanager/src/main/java/org/apache/hadoop/yarn/server/nodemanager/util/CgroupsLCEResourcesHandler.java
https://github.com/apache/hadoop/commit/80eb92aff02cc9f899a6897e9cbc2bc69bd56136/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-nodemanager/src/main/java/org/apache/hadoop/yarn/server/nodemanager/util/CgroupsLCEResourcesHandler.java
https://github.com/apache/hadoop/commit/80eb92aff02cc9f899a6897e9cbc2bc69bd56136/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-nodemanager/src/main/java/org/apache/hadoop/yarn/server/nodemanager/util/CgroupsLCEResourcesHandler.java
https://github.com/apache/hadoop/commit/80eb92aff02cc9f899a6897e9cbc2bc69bd56136/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-nodemanager/src/main/java/org/apache/hadoop/yarn/server/nodemanager/util/CgroupsLCEResourcesHandler.java
https://github.com/apache/hadoop/commit/80eb92aff02cc9f899a6897e9cbc2bc69bd56136/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-nodemanager/src/main/java/org/apache/hadoop/yarn/server/nodemanager/util/CgroupsLCEResourcesHandler.java
https://github.com/apache/hadoop/commit/80eb92aff02cc9f899a6897e9cbc2bc69bd56136/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-nodemanager/src/main/java/org/apache/hadoop/yarn/server/nodemanager/util/CgroupsLCEResourcesHandler.java
https://github.com/apache/hadoop/commit/80eb92aff02cc9f899a6897e9cbc2bc69bd56136/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-nodemanager/src/main/java/org/apache/hadoop/yarn/server/nodemanager/util/CgroupsLCEResourcesHandler.java
https://github.com/apache/hadoop/commit/80eb92aff02cc9f899a6897e9cbc2bc69bd56136/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-nodemanager/src/main/java/org/apache/hadoop/yarn/server/nodemanager/util/CgroupsLCEResourcesHandler.java
https://github.com/apache/hadoop/commit/80eb92aff02cc9f899a6897e9cbc2bc69bd56136/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-nodemanager/src/main/java/org/apache/hadoop/yarn/server/nodemanager/util/CgroupsLCEResourcesHandler.java
https://github.com/apache/hadoop/commit/80eb92aff02cc9f899a6897e9cbc2bc69bd56136/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-nodemanager/src/main/java/org/apache/hadoop/yarn/server/nodemanager/util/CgroupsLCEResourcesHandler.java
https://github.com/apache/hadoop/commit/80eb92aff02cc9f899a6897e9cbc2bc69bd56136/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-nodemanager/src/main/java/org/apache/hadoop/yarn/server/nodemanager/util/CgroupsLCEResourcesHandler.java
https://github.com/apache/hadoop/commit/80eb92aff02cc9f899a6897e9cbc2bc69bd56136/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-nodemanager/src/main/java/org/apache/hadoop/yarn/server/nodemanager/util/CgroupsLCEResourcesHandler.java
https://github.com/apache/hadoop/commit/80eb92aff02cc9f899a6897e9cbc2bc69bd56136/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-nodemanager/src/main/java/org/apache/hadoop/yarn/server/nodemanager/util/CgroupsLCEResourcesHandler.java
https://github.com/apache/hadoop/commit/80eb92aff02cc9f899a6897e9cbc2bc69bd56136/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-server/hadoop-yarn-server-nodemanager/src/main/java/org/apache/hadoop/yarn/server/nodemanager/util/CgroupsLCEResourcesHandler.java
https://github.com/gerrit-review/gerrit/commit/0485172aaa70e3b1f0e98c00215672657e6f462e/gerrit-gwtui/src/main/java/com/google/gerrit/client/diff/CodeMirrorDemo.java
https://github.com/gerrit-review/gerrit/commit/0485172aaa70e3b1f0e98c00215672657e6f462e/gerrit-gwtui/src/main/java/com/google/gerrit/client/diff/CodeMirrorDemo.java
https://github.com/gerrit-review/gerrit/commit/0485172aaa70e3b1f0e98c00215672657e6f462e/gerrit-gwtui/src/main/java/com/google/gerrit/client/diff/CodeMirrorDemo.java
https://github.com/JabRef/jabref/
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Table 13: On-hold SATD sent for developer feedback

# on-hold SATD explanation

1 “... todo: reenable customize entry
types feature (<link to issue 4719>)
...”

we could notify developers once issue
4719 has been closed

2 “... we must not clean the url. this
is the deal with @manastungare - see
<link to comment on issue 684> ...”

we could have notified developers once
issue 684 was closed and/or if there
have been responses to the comment

3 “... - handling of identically fields with
different names (<link to issue 521>)
...”

we could have notified developers once
issue 521 was closed

Maybe, here an active ‘Comment Checking’ would be more helpful. Then
remembering if the comment should be kept - so that an additional scan
with the same setting does not trigger a notification again. - For me,
getting notified because of new comments additionally, would not be
helpful as I would have been notified of GitHub.

The third comment turned out to be the most useful one, in the developer’s
perception:

In this case, a bot posting a message to the issue with following text
would have been helpful: ‘I found following references to this closed issue
in the code. Maybe, the code has to be adapted, too?’

In response to our final question “Do you think such a tool could be use-
ful?”, the developer responded

Since the last example was really useful, you hear me saying: “Yes”.
:-).

6 Implications

The ultimate goal of our work is to enable the automated management of
certain kinds of self-admitted technical debt. Previous work (Zampetti et al.,
2018) has found that most changes which address self-admitted technical debt
require complex code changes—as such, it is unrealistic to assume that au-
tomated tool support could handle all kinds of requirement debt and design
debt that developers admit in source code comments. Thus, in this work we
set out to first identify a sub-class of self-admitted technical debt amenable
to automated management and second develop a classifier which can reliably
identify this sub-class of debt.

Our qualitative study revealed one particular class of self-admitted tech-
nical debt potentially amendable to automated tooling: on-hold SATD, i.e.,
comments in which developers express that they are waiting for a certain ex-
ternal event or updated functionality from an external library before they
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can address the debt that is expressed in the comment. In other words, the
comment is on hold until the condition has been met.

Based on the data set made available by Maldonado et al. (2017a) and Mal-
donado et al. (2017b), we identified a total of 293 comments which indicate
on-hold SATD, confirming that this phenomenon is prevalent and exists in dif-
ferent projects. Our classifier to identify on-hold SATD was able to reach an
AUC of 0.98 in identifying comments that belong to this sub-class. In addition,
we were able to identify specific conditions contained within these comments
(90% of conditions are detected correctly). Based on 15 projects, there are
293 on-hold comments out of 5,529 self-admitted technical debt comments,
resulting in a relative frequency of 5.30%. Out of 15 projects, the ratio of
on-hold comments compared to all self-admitted technical debt comments is
larger than 2% for nine projects.

Given all the events and new releases that happen in a software project at
any given point in time, it is unrealistic to assume that developers will be able
to stay on top of all instances of technical debt that are ready to be addressed
once a condition has been met. Instead, there is a risk that developers forget
to go back to these comments and debt instances even when the event they
were originally waiting for has occurred.

This work builds a first step towards the design of automated tools that
can support developers in addressing certain kinds of self-admitted technical
debt. In particular, based on the classifier introduced in this work, it is now
possible to build tool support which can monitor the specific external events
we have identified in this work (e.g., certain bug fixes or the release of new
versions of external libraries) and notify developers as soon as a particular
debt is ready to be addressed. While the ratio of on-hold comments is fairly
low, such comments appeared in almost all of the studied projects, and we
argue that alerting developers when such comments are ready to be addressed
can prevent bugs or vulnerabilities that might otherwise occur, e.g., because
of outdated libraries.

In terms of tool support, we envision a tool which supports the developer by
indicating comments that are ready to be addressed rather than a tool which
addresses comments automatically. Addressing comments automatically—
even though it is an interesting research challenge—is problematic for two
reasons: (1) the precision of such a tool would have to be really high, and
current work including our own suggests that this is not yet the case; and
(2) developers are unlikely to relinquish control over their code base to a tool
which automatically changes code.

7 Threats to Validity

Regarding threats to internal validity, it is possible that we introduced bias
through our manual annotation. While we generally achieved high agreement
regarding the annotation questions listed in Table 2, the initial agreement re-
garding RQ1.1 was low which is explained by the nature of the open-ended
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question. We resolved all disagreements through multiple co-located coding
sessions with the first three authors of this paper. Note that we do not use the
results of RQ1.1 as an input for our classifier. We may possibly have wrongly
classified the removal of self-admitted technical debt, since in particular for
comments indicating the need for new features, it can be hard to judge whether
the new feature was indeed fully implemented. Another concern is that we did
not manually validate the entire data set that we are reusing from previous
work. There might be further quality issues with this which would affect the
performance of our approach, such as self-admitted technical debt being iden-
tified in the header of classes.

For external validity, while we analyzed a statistically representative sample
of commits for RQ1 and the entire data set made available by Maldonado et al.
(2017a) (after removing duplicates) for RQ2, we cannot claim generalizablity
beyond the projects contained in this data set and our classifier might be
biased as a result of the small number of projects. The limited data set allowed
us to perform an in-depth qualitative analysis, and future work will need to
investigate the applicability of our results to other projects and within-project
prediction.

For construct validity, this is related to the manual labeling of on-hold
SATD. A label might be affected by annotator misunderstand or mislabel-
ing. Despite annotators resolving disagreements through discussion, the labels
might still be incorrect.

8 Related Work

Self-admitted technical debt has been a popular research topic in the soft-
ware engineering community in recent years. In this section, we introduce key
research related to our study.

8.1 Impact of self-admitted technical debt

Sierra et al. (2019) conducted a survey about self-admitted technical debt
by investigating three categories: (i) detection, (ii) comprehension, and (iii)
repayment. Detection focuses on identifying and detecting self-admitted tech-
nical debt. Comprehension studies the life cycle of self-admitted technical debt.
Repayment focuses on removal of self-admitted technical debt. This research
found a lack of research related to the repayment of self-admitted technical
debt.

Maldonado et al. (2017a) studied the removal of self-admitted technical
debt by applying natural language processing to self-admitted technical debt.
They found that (i) the majority of self-admitted technical debt was removed,
(ii) self-admitted technical debt was often removed by the person who intro-
duced it, and (iii) self-admitted technical debt lasts between 18 to 172 days
(median). Using a survey, the authors also found that developers mostly use
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self-admitted technical debt to track bugs and code that requires improve-
ment. Developers mostly remove self-admitted technical debt when they are
fixing bugs or adding new features.

Zampetti et al. (2018) conducted an in-depth quantitative and qualitative
study of self-admitted technical debt. They found that (i) 20% to 50% of
the corresponding comments were accidentally removed when entire methods
or classes were dropped, (ii) 8% of self-admitted technical debt removals were
indicated in the commit messages, and (iii) most of the self-admitted technical
debt requires complex changes, often changing method calls or conditionals.

Bavota and Russo (2016) introduced a large-scale empirical study across
159 software projects. From this data they performed manual analysis of 366
comments, showing (i) an average of 51 self-admitted technical debt comments
per system, (ii) that self-admitted technical debt consists of 30% code debt,
20% defect debt, and 20% requirement debt, (iii) the number of self-admitted
technical debt comments is increasing over time, and (iv) on average it takes
over 1,000 commits before self-admitted technical debt is fixed.

Wehaibi et al. (2016) studied the relation between self-admitted techni-
cal debt and software quality based on five open source projects (i.e., Hadoop,
Chromium, Cassandra, Spark, and Tomcat). Their result showed that (i) there
is no clear evidence that files with self-admitted technical debt had more de-
fects than other files, (ii) compared with self-admitted technical debt changes,
non-debt changes had a higher chance of introducing other debt, but (iii)
changes related to self-admitted technical debt were more difficult to achieve.

Mensah et al. (2018) introduced a prioritization scheme. After running this
scheme on four open source projects, they found four causes of self-admitted
technical debt which was code smells (23.2%), complicated and complex task
(22.0%), inadequate code testing (21.2%), and unexpected code performance
(17.4%). The result also showed that self-admitted technical design debt was
prone to software bugs, and that for highly prioritized self-admitted technical
debt tasks, more than ten lines of code were required to address the debt.

Kamei et al. (2016) used analytics to quantify the interest of self-admitted
technical debt to see how much of the technical debt incurs positive interest,
i.e., debt that indeed costs more to pay off in the future. They found that ap-
proximately 42–44% of the technical debt in their case study incurred positive
interest.

Palomba et al. (2017) conducted an exploratory study on the relationship
between changes and refactoring and found that developers tend to apply a
higher number of refactoring operations aimed at improving maintainability
and comprehensibility of the source code when fixing bugs. In contrast, when
new features are implemented, more complex refactoring operations are per-
formed to improve code cohesion. In most cases, the underlying reasons behind
the application of such refactoring operations were the presence of duplicate
code or previously introduced self-admitted technical debt.

Mensah et al. (2016) propose a new technique to estimate Rework Effort,
i.e., the effort involved to resolve self-admitted technical debt. They performed
an exploratory study using text mining to extract self-admitted technical debt
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from source code comments. In order to extract source code comments, the
authors apply text mining on four open source projects. The result from four
projects shows a rework effort between 13 and 32 commented lines of code on
average per self-admitted technical debt comment.

8.2 Self-admitted technical debt Identification and Classification

Potdar and Shihab (2014) tried to identify self-admitted technical debt by
looking into source-code comments in four open source project (i.e., Eclipse,
Chromium OS, Apache HTTP Server, and ArgoUML). Their study showed
that (i) the amount of debt in these project ranged between 2.4% and 31%
of all files, (ii) debt was created mostly by developers with more experience,
and time pressures and code complexity did not correlate with the amount
of self-admitted technical debt, and (iii) only 26.3% to 63.5% of self-admitted
technical debt comments were removed.

Farias et al. (2015) proposed a tool called CVM-TD (Contextualized Vo-
cabulary Model for identifying Technical Debt) to identify technical debt by
analyzing code comments. The authors performed an exploratory study on two
open source projects. The result indicated that (1) developers use dimensions
of CVM-TD when writing code comments, (2) CVM-TD provides vocabu-
lary that may be used to detect technical debt, and (3) models need to be
calibrated.

Farias et al. (2016) investigated the use of CVM-TD with the purpose of
characterizing factors that affect the accuracy of the identification of techni-
cal debt, and the most chosen patterns by participants as decisive to indicate
technical debt items. The authors conducted a controlled experiment to eval-
uate CVM-TD, considering factors such as English skills and experience of
developers.

Silva et al. (2016) investigated the identification of technical debt in pull
requests. The authors found that the most common technical debt categories
are design, test, and project convention.

Maldonado et al. (2017b) tried identifying design-related and requirement-
related self-admitted technical debt using a maximum entropy classifier.

Huang et al. (2018) tried classifying comments in terms of whether they
contained self-admitted technical debt or not, and reported that their proposal
outperformed the baseline method.

Maldonado and Shihab (2015) studied types of self-admitted technical debt
using source code comments. This study classified types of self-admitted tech-
nical debt into design debt, defect debt, documentation debt, requirement
debt, and test debt. The most common type of self-admitted technical debt
is design debt and the second most common type is requirement debt. Self-
admitted technical debt consist of 42% to 84% design debt, and 5% to 45%
requirement debt.

Zampetti et al. (2017) developed a machine learning approach to recom-
mend when design technical debt should be self-admitted. They found their
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approach to achieve an average precision of about 50% and a recall of 52%.
When predicting cross-projects, the performance of the approach improved to
an average precision of 67% and a recall of 55%.

Yan et al. (2019) identify self-admitted technical debt using change-level
self-admitted technical debt determination. This model identifies whether a
change introduces self-admitted technical debt. In order to create the model,
they identified technical debt using all versions of source code comments. Then,
they manually label changes that introduce technical debt in comments and
extract 25 features which belong to three groups, i.e., diffusion, history, and
message. After that, they create a classifier using random forest. Across seven
projects, this model achieves an AUC of 0.82 and cost-effectiveness of 0.80.

Flisar and Podgorelec (2019) developed a new method to detect self-
admitted technical debt using word embedding trained from unlabeled code
comments. They then apply feature selection methods (Chi-square, Informa-
tion Gain, and Mutual Information), and use three classification algorithms
(Naive Bayes, Support Vector Machine, and Maximum Entropy) to test on ten
open source projects. Their proposed method was able to achieve 82% correct
predictions.

Liu et al. (2018) proposed a self-admitted technical debt detector tool
which is able to detect debt comments using text mining and is able to manage
detected comments in an IDE via an Eclipse plug-in.

Ren et al. (2019) proposed a Convolutional Neural Network for classifying
code comments as self-admitted technical debt or not, based on ten open
source projects. Their approach outperforms text-mining-based methods both
in terms of within-project and cross-project prediction.

In our study we use the same data set as previous research (Maldonado
et al., 2017a,b).

9 Conclusions and Future Work

Self-admitted technical debt refers to situations in which software developers
explicitly admit to introducing technical debt in source code comments, ar-
guably to make sure that this debt is not forgotten and that somebody will
be able to go back later to address this debt. In this work, we hypothesize
that it is possible to develop automated techniques to manage a subset of
self-admitted technical debt.

As a first step towards automating a part of the management of certain
kinds of self-admitted technical debt, in this paper, we contribute (i) a qualita-
tive study on the removal of self-admitted technical debt in which we annotated
a statistically representative sample of 333 technical debt comments using
seven questions that emerged as part of the qualitative analysis; (ii) on-hold
SATD (debt which contains a condition to indicate that a developer is waiting
for a certain event or an updated functionality having been implemented else-
where) which emerged from this qualitative analysis as a particular class of
self-admitted technical debt that can potentially be managed automatically;
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and (iii) the design and evaluation of a classifier for self-admitted technical
debt which can detect on-hold debt with an AUC of 0.98 as well as identify
the specific conditions that developers are waiting for.

Building on these contributions, in our future work we intend to build
the tool support that our classifier enables: a recommender system which can
indicate for a subset of self-admitted technical debt in a project when it is
ready to be addressed. We found that self-admitted technical debt is sometimes
addressed by uncommenting source code that has already been written in
anticipation of the debt removal. As another step towards the automation of
technical debt removal, in future work, we will explore whether it is possible
to address such debt automatically.
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