Noname manuscript No.
(will be inserted by the editor)

Studying Re-opened Bugs in Open Source Software

Emad Shihab* - Akinori Tharat -
Yasutaka Kamei* - Walid M. Ibrahim™ -
Masao Ohira®™ - Bram Adams* -

Ahmed E. Hassan™ - Ken-ichi Matsumoto™

Received: date / Accepted: date

Abstract Context: Bug fixing accounts for a large amount of the software maintenance
resources. Generally, bugs are reported, fixed, verified and closed. However, in some cases
bugs have to be re-opened. Re-opened bugs increase maintenance costs, degrade the overall
user-perceived quality of the software and lead to unnecessary rework by busy practitioners.
Aim: In this paper, we study and predict re-opened bugs through a case study on three large
open source projects — namely Eclipse, Apache and OpenOffice. We structure our study
along 4 dimensions: 1) the work habits dimension (e.g., the weekday on which the bug was
initially closed), 2) the bug report dimension (e.g., the component in which the bug was
found) 3) the bug fix dimension (e.g., the amount of time it took to perform the initial fix)
and 4) the team dimension (e.g., the experience of the bug fixer).

Method: We build decision trees using the aforementioned factors that aim to predict re-
opened bugs. We perform top node analysis to determine which factors are the most impor-
tant indicators of whether or not a bug will be re-opened.

Results: Our study shows that the comment text and last status of the bug when it is initially
closed are the most important factors related to whether or not a bug will be re-opened.
Based on these dimensions we create decision trees that predict whether a bug will be re-
opened after its closure. Using a combination of our dimensions, we can build explainable
prediction models that can achieve a precision between 52.1-78.6% and a recall in the range
of 70.5-94.1% when predicting whether a bug will be re-opened.

Conclusions: We find that the factors that best indicate which bugs might be re-opened
vary based on the project. The comment text is the most important factor for the Eclipse
and OpenOffice projects, while the last status is the most important one for Apache. These

Software Analysis and Intelligence Lab (SAIL)*

Queen’s University

Kingston, ON, Canada

Fax: +1-613-533-6513

E-mail: {emads, kamei, walid, bram, ahmed} @cs.queensu.ca

Graduate School of Information Science ™

Nara Institute of Science and Technology
Takayama, Ikoma, Nara, JAPAN

E-mail: {akinori-i, masao, matumoto } @is.naist.jp

2 Emad Shihab* et al.

factors should be closely examined in order to reduce maintenance cost due to re-opened
bugs.

Keywords Bug reports - Re-opened Bugs - Open Source Software

1 Introduction

Large software systems are becoming increasingly important in the daily lives of many peo-
ple. A large portion of the cost of these software systems is attributed to their maintenance.
In fact, previous studies show that more than 90% of the software development cost is spent
on maintenance and evolution activities [1].

A plethora of previous research addresses issues related to software bugs. For example,
software defect prediction work uses various code, process, social structure, geographic
distribution and organizational structure metrics to predict buggy software locations (e.g.,
files or directories) [2-8]. Other work focuses on predicting the time it takes to fix a bug [9-
11].

This existing work typically treats all bugs equally, meaning, the existing work did not
differentiate between re-opened and new bugs. Re-opened bugs are bugs that were closed
by developers, but re-opened at a later time. Bugs can be re-opened for a variety of reasons.
For example, a previous fix may not have been able to fully fix the reported bug. Or the
developer responsible for fixing the bug was not able to reproduce the bug and might close
the bug, which is later re-opened after further clarification.

Re-opened bugs take considerably longer to resolve. For example, in the Eclipse Plat-
form 3.0 project, the average time it takes to resolve (i.e., from the time the bug is initially
opened till it is fully closed) a re-opened bug is more than twice as much as a non-reopened
bug (371.4 days for re-opened bugs vs. 149.3 days for non-reopened bugs). An increased
bug resolution time consumes valuable time from the already-busy developers. For exam-
ple, developers need to re-analyze the context of the bug and read previous discussions when
a bug is re-opened. In addition, such re-opened degrade the overall user-perceived quality
of the software and often lead to additional and unnecessary rework by the already-busy
practitioners.

This paper presents an exploratory study to determine factors that indicate whether a
bug will be re-opened. Knowing which factors are attributed to re-opened bugs prepares
practitioners to think twice before closing a bug. For example, if it is determined that bugs
logged with high severity are often re-opened, then practitioners can pay special attention
(e.g., by performing more thorough reviews) to such bugs and their fixes.

We combine data extracted from the bug and source control repositories of the Eclipse,
Apache and OpenOffice open source projects to extract 24 factors that are grouped into four
different dimensions:

1. Work habits dimension: which is used to gauge whether the work habits of the software
practitioners initially closing the bug affect its likelihood of being re-opened. The main
reason for studying this dimension is to possibly provide some insights about process
changes (e.g., avoiding closing bugs during specific times) that might lead to a reduction
in bug re-openings

2. Bug report dimension: which is used to examine whether information in the bug report
can be used to determine the likelihood of bug re-opening. The main reason for exam-
ining this dimension is to see whether information contained in the bug report can be

Studying Re-opened Bugs in Open Source Software 3

used to hint a higher risk of a bug being re-opened in the future. Practitioners can then
be warned about such data in order to reduce bug re-openings.

3. Bug fix dimension: which is used to examine whether the fix made to address a bug can
be used to determine the likelihood of a bug being re-opened. The reason for studying
this dimension is to examine whether certain factors related to the bug fix increase the
likelihood of it being re-opened later. Insights about issues that might increase the like-
lihood of a bug being re-opened are helpful to practitioners so they can know what to
avoid when addressing bugs.

4. Team dimension: which is used to determine whether the personnel involved with a
bug can be used to determine the likelihood of a bug being re-opened. The reason for
using this dimension is to examine whether certain personnel (e.g., more experienced
personnel) should avoid or be encouraged to address bugs, in order to reduce bug re-
openings.

To perform our analysis, we build decision trees and perform a Top Node analysis [12,
13] to identify the most important factors in building these decision trees. Furthermore, we
use the extracted factors to predict whether or not a closed bug will be re-opened in the
future. In particular, we aim to answer the following research questions:

Q1. Which of the extracted factors indicate, with high probability, that a bug will be
re-opened?
The factors that best indicate re-opened bugs vary based on the project. The comment
text is the most important factor for the Eclipse and OpenOffice projects, while the last
status is the most important one for Apache.

Q2. Can we accurately predict whether a bug will be re-opened using the extracted
factors?
We use 24 different factors to build accurate prediction models that predict whether or
not a bug will be re-opened. Our models can correctly predict whether a bug will be
re-opened with precision between 52.1-78.6% and recall between 70.5-94.1%.

This paper extends an earlier conference paper [41], in which we study and predict
re-opened bugs on the Eclipse project. In this paper, we extend our previous work by con-
ducting our study on two additional Open Source Systems (OSS), the Apache HTTP server
and OpenOffice. Doing so reduces the threat to external validity and improves the generaliz-
ability of our findings since the three systems come from different domains (i.e., Integrated
Development Environment (IDE) vs. Web Server vs. Productivity Suite) and are written in
different programming languages (i.e., C/C++ vs. Java). In addition, we compare our find-
ings for the three projects and provide insight about the way in which the important factors
impact the likelihood of a bug being re-opened.

The rest of the paper is organized as follows. Section 2 describes the life cycle of a
bug. Section 3 presents the methodology of our study. We detail our data processing steps
in Section 4. The case study results are presented in Section 5. We compare the prediction
results using different algorithms in Section 6. The threats to validity and related work are
presented in Sections 8 and 9, respectively. Section 10 concludes the paper.

2 The Bug Life Cycle

Bug tracking systems, such as Bugzilla [14], are commonly used to manage and facilitate
the bug resolution process. These bug tracking systems record various characteristics about

4 Emad Shihab* et al.

~
[Opened } { New } {Ass\gned } [Resolved]

l FIXED
INVALID

[Reopened](—[Verified] > WONTFIX

DUPLICATE
WORKSFORME

—

Fig. 1 Bug resolution process [15]

reported bugs, such as the time the bug was reported, the component the bug was found in
and any discussions related to the bug. The information stored in bug tracking systems is
leveraged by many researchers to investigate different phenomena (e.g., to study the time it
takes to resolve bugs [18,35]).

The life cycle of a bug can be extracted from the information stored in the bug track-
ing systems. We can track the different states that bugs have gone through and reconstruct
their life cycles based on these states. For example, when bugs are initially logged, they are
confirmed and labeled as new bugs. Then, they are triaged and assigned to developers to be
fixed. After a developer fixes the bug, the fix is verified and the bug closed.

A diagram representing the majority of the states bugs go through is shown in Figure 1.
When developers, testers or users experience a bug, they log/submit a bug report in the bug
tracking system. The bug is then set to the Opened state. Next, the bug is triaged to determine
whether it is a real bug and whether it is worth fixing. After the triage process, the bug is
accepted and its state is updated to New. It then gets assigned to a developer who will be
responsible to fix it (i.e., its state is Assigned). If a bug is known to a developer beforehand',
it is assigned to that developer who implements the fix and the bug goes directly from the
New state to the Resolved _FIXED state. More typically, bugs are assigned to a developer
(i.e., go to the Assigned state), who implements a fix for the bug and its state is transitioned
into Resolved_FIXED. In certain cases, a bug is not fixed by the developers because it is
identified as being invalid (i.e., state Resolved_INVALID), a decision was made to not fix
the bug (i.e., state Resolved_WONTFIX), it is identified as a duplicate of another bug (i.e.,
state Resolved DUPLICATE) or the bug is not reproducible by the developer (i.e., state
Resolved_WORKSFORME). Once the bug is resolved, it is verified by another developer or
tester (state Verified_FIXED) and finally closed (state Closed).

However, in certain cases, bugs are re-opened after their closure. This can be due to
many reasons. For example, a bug might have been incorrectly fixed and resurfaces. Another
reason might be that the bug was closed as being a duplicate and later re-opened because it
was not actually a duplicate.

In general, re-opened bugs are not desired by software practitioners because they de-
grade the overall user-perceived quality of the software and often lead to additional and
unnecessary rework by the already-busy practitioners. Therefore, in this paper we set out to
investigate which factors best predict re-opened bugs. Then, we use these factors to build
accurate prediction models to predict re-opened bugs.

! For example, in some cases developers discover a bug and know how to fix it, however they create a bug
report and assign it to themselves for book-keeping purposes.

Studying Re-opened Bugs in Open Source Software

Table 1 Factors Considered in Our Study

Dim| Factor | Type | Explanation | Rationale
2 Time Nominal | Time in hours (Morning, Afternoon, Evening, Night) Bugs closed at certain times in the day (e.g., late afternoons)
= when the bug was first closed. are more/less likely to be re-opened.
j Weekday Nominal | Day of the week (e.g., Mon or Tue) when the bug was Bugs closed on specific days of the week (e.g., Fridays) are
5 first closed. more/less likely to be re-opened.
B Month day Numeric | Calendar day of the month (0-30) when the bug was first | Bugs closed at specific periods like the beginning, mid or end
closed. of the month are more/less likely to be re-opened.
Month Numeric | Month of the year (0-11) when the bug was first closed. Bugs closed in specific months (e.g., during holiday months
like December) are more/less likely to be re-opened.
Day of | Numeric | Day of the year (1-365) when the bug was first closed. Bugs closed in specific times of the year(e.g., later on in the
year year) are more/less likely to be re-opened.
Component | Nominal | Component the bug was found in (e.g., UI, Debug or Certain components might be harder to fix; bugs found in these
Search). components are more/less likely to be re-opened.
Platform Nominal | Platform (e.g., Windows, MAC, UNIX) the bug was Certain platforms are harder to fix bugs for, and therefore, their
- found in. bugs are more likely to be re-opened.
5 Severity Numeric | Severity of the reported bug. A high severity (i.e., 7) in- Bugs with high severity values are harder to fix and are more
? dicates a blocker bug and a low severity (i.e., 1) indicates | likely to be re-opened.
o0 an enhancement.
5 Priority Numeric | Priority of the reported bug. A low priority value (i.e., 1) Bugs with low priority value (i.e., high importance) are likely
indicates an important bug and a high priority value (i.e., to get more careful attention and have a smaller chance of be-
5) indicates a bug of low importance. ing re-opened.
Number in | Numeric | Number of persons in the cc list of the logged bugs before | Bugs that have persons in the cc list are followed more closely,
CC list the first re-open. and hence, are more/less likely to be re-opened.
Description | Numeric | The number of words in the description of the bug. Bugs that are not described well (i.e., have a short description)
size are more likely to be re-opened.
Description | Bayesian | The text content of the bug description. Words included in the bug description (e.g., complex or dif-
text score ficult) can indicate whether the bug is more likely to be re-
opened.
Number of | Numeric | The number of comments attached to a bug report before | The higher the number of comments, the more likely the bug
comments the first re-open. is controversial. This might lead to a higher chance of it being
re-opened.
Comment Numeric | The number of words in all comments attached to the bug | The longer the comments are, the more the discussion about
size report before the first re-open. the bug and the more/less likely it will be re-opened.
Comment Bayesian | The text content of all the comments attached to the bug The comment text attached to a bug report may indicate
text score report before the first re-open. whether a bug will be re-opened.
Priority Boolean States whether the priority of the bug was changed after Bugs that have their priorities increased are generally followed
changed the initial report before the first re-open. more closely and are less likely to be re-opened.
Severity Boolean States whether the severity of the bug was changed after Bugs that have their severities increased are generally followed
changed the initial report before the first re-open. more closely and are less likely to be re-opened.
& Time days Numeric | The time it took to resolve a bug, measured in days. For | The time it takes to fix a bug is indicative of its complexity and
& re-opened bugs, we measure the time to perform the ini- hence the chance of finding a good fix.
] tial fix.
Last status Nominal | The last status of the bug when it is closed for the first | When bugs are closed using certain statuses (e.g., Worksforme
time. or duplicate), they are more/less likely to be re-opened.
No. of files Numeric | The number of files edited to fix the bug for the first time. Bugs that require larger fixes, indicated by an increase in the
in fix number of files that need to be edited, are more likely to be
re-opened.
Reporter String Name of the bug reporter. Bugs reported by specific individuals are more/less likely to
Name be re-opened (e.g., some reporters may do a poor job reporting
bugs).
%. Fixer String Name of the initial bug fixer. Bugs fixed by specific individuals are more/less likely to be re-
3 Name opened (e.g., developers that work on complex functionality).
~ Reporter Numeric | The number of bugs reported by the bug reporter before Experienced reporters know what information to provide in
Experience reporting this bug. bug reports, therefore their bugs less likely to be re-opened.
Fixer Numeric | The number of bug fixes the initial fixer performed before | Experienced fixers are more familiar with the project, there-
Experience fixing this bug. fore their bugs are less likely to be re-opened.

3 Approach to Predict Re-opened Bugs

In this section, we describe the factors used to predict whether or not a bug will be re-opened.
Then, we present decision trees and motivate their use in our study. Finally, we present the
metrics used to evaluate the performance of the prediction models.

6 Emad Shihab* et al.

3.1 Dimensions Used to Predict if a Bug will be Re-opened

We use information stored in the bug tracking system, in combination with information from
the source control repository of a project to derive various factors that we use to predict
whether a bug will be re-opened.

Table 1 shows the extracted factors, the type of the factor (e.g., numeric or nominal),
provides an explanation of the factor and the rationale for using each factor. We have a total
of 24 factors that cover four different dimensions. We describe each dimension and its fac-
tors in more detail next.

Work habits dimension. Software developers are often overloaded with work. This in-
creased workload affects the way these developers perform. For example, Sliwerski et al. [16]
showed that code changes are more likely to introduce bugs if they were done on Fridays.
Anbalagan et al. [17] showed that the time it takes to fix a bug is related to the day of the
week when the bug was reported. Hassan and Zhang [12] used various work habit factors to
predict the likelihood of a software build failure.

These prior findings motivate us to include the work habit dimension in our study on re-
opened bugs. For example, developers might be inclined to close bugs quickly on a specific
day of the week to reduce their work queue and focus on other tasks. These quick decisions
may cause the bugs to be re-opened at a later date.

The work habit dimension consists of four different factors. The factors of the work
habit dimension are listed in Table 1. The time factor was defined as a nominal variable that
can be morning (7 AM to 12 Noon), afternoon (Noon to 5 PM), evening (5 PM to
12 midnight) or night (midnight to 7 AM), indicating the hours of the day that they bug
was initially closed on.

Bug report dimension. When a bug is reported, the reporter of the bug is required to in-
clude information that describes the bug. This information is then used by the developers to
understand and locate the bug. Several studies use that information to study the amount of
time required to fix a bug [18]. For example, Panjar [9] showed that the severity of a bug has
an effect on its lifetime. In addition, a study by Hooimeijer and Weimer [19] showed that
the number of comments attached to a bug report affects the time it takes to fix it.

We believe that attributes included in a bug report can be leveraged to determine the
likelihood of a bug being re-opened. For example, bugs with short or brief descriptions may
need to be re-opened later because a developer may not be able to understand or reproduce
them the first time around.

A total of 11 different factors make up the bug report dimension. They are listed in Ta-
ble 1.

Bug fix dimension. Some bugs are harder to fix than others. In some cases, the initial fix to
the bug may be insufficient (i.e., it did not fully fix the bug) and, therefore, the bug needs to
be re-opened. We conjecture that more complicated bugs are more likely to be re-opened.
There are several ways to measure the complexity of a bug fix. For example, if the bug fix
requires many files to be changed, this might be an indicator of a rather complex bug [20].

The bug fix dimension uses factors to capture the complexity of the initial fix of a bug.
Table 1 lists the three factors that measure the time it took to fix the bug, the status before
the bug was re-opened and the number of files changed to fix the bug.

Studying Re-opened Bugs in Open Source Software 7

>13.9 time_days <=13.9

Assigned Resolved Verified

Fixed Fixed last_state Fixed >4 num_fix_files <=4
Reopened Reopened l REOI.JGNed
>21.3 time _days <213 >2 hum_fix_files <=2
Reopened Not Reopened i
>65.1 time_days <=est >7.25 time_days =725
Reopened Not Reopened Not Reopened

Fig. 2 Sample Decision Tree.

People dimension. In many cases, the people involved with the bug report or the bug fix
are the reason that it is re-opened. Reporters may not include important information when
reporting a bug, or they lack the experience (i.e., they have never reported a bug before). On
the other hand, developers (or fixers) may lack the experience and/or technical expertise to
fix or verify a bug, leading to the re-opening of the bug.

The people dimension, listed in Table 1, is made up of four factors that cover bug re-
porters, bug fixers and their experience.

The four dimensions and their factors listed in Table 1 are a sample of the factors that
can be used to study why bugs are reopened. We plan (and encourage other researchers) to
build on this set of dimensions to gain more insights into why bugs are re-opened.

3.2 Building Decision Tree-Based Predictive Models

To determine if a bug will be re-opened, we use the factors from the four aforementioned
dimensions as input to a decision tree classifier. Then, the decision tree classifier predicts
whether or not the bug will be re-opened.

We chose to use a decision tree classifier for this study since it offers an explainable
model. This is very advantageous because we can use these models to understand what at-
tributes affect whether or not a bug will be re-opened. In contrast, most other classifiers
produce “black box” models that do not explain which attributes affect the predicted out-
come.

To perform our analysis, we divide our data set into two sets: a training set and a test
set. The training set is used to train the decision tree classifier. Then, we test the accuracy of
the decision tree classifier using our test set.

The C4.5 algorithm [21] was used to build the decision tree. Using the training data,
the algorithm starts with an empty tree and adds decision nodes or leafs at each level. The
information gain using a particular attribute is calculated and the attribute with the highest
information gain is chosen. Further analysis is done to determine the cut-off value at which
to split the attribute. This process is repeated at each level until the number of instances
classified at the lowest level reaches a specified minimum. Having a large minimum value
means that the tree will be strict in creating nodes at the different levels. On the contrary,
making this minimum value be small (e.g., 1) will cause many nodes to be added to the tree.
To mitigate noise in our predictions and similar to previous studies [22], in our case study,
we set this minimum node size to be 10.

8 Emad Shihab* et al.

To illustrate, we provide an example tree produced by the fix dimension, shown in Fig-
ure 2. The decision tree indicates that when the time_days variable (i.e., the number of days
to fix the bug) is greater than 13.9 and the last status is Resolved Fixed, then the bug will
be re-opened. On the other hand, if the time_days variable is less than or equal to 13.9 and
the number of files in the fix is less than or equal to 4 but greater than 2, then the bug will
not be re-opened. Such explainable models can be leveraged by practitioners to direct their
attention to bugs that require closer review before they are closed.

3.3 Evaluating the Accuracy of Our Models

To evaluate the predictive power of the derived models, we use the classification results
stored in a confusion matrix. Table 2 shows an example of a confusion matrix.

Table 2 Confusion Matrix

True class
Classified as | Re-open Not Re-open
Re-open TP Fp
Not Re-open FN TN

We follow the same approach used by Kim et. al [23], using the four possible outcomes
for each bug. A bug can be classified as re-opened when it truly is re-opened (true positive,
TP); it can be classified as re-opened when actually it is not re-opened (false positive, FP);
it can be classified as not re-opened when it is actually re-opened (false negative, FN);
or it can be classified as not re-opened and it truly is not re-opened (true negative, TN).
Using the values stored in the confusion matrix, we calculate the widely used Accuracy,
Precision, Recall and F-measure for each class (i.e., re-opened and not re-opened) to evaluate
the performance of the predictive models.

The accuracy measures the number of correctly classified bugs (both the re-opened and
the not re-opened) over the total number of bugs. It is defined as:

TP+TN
TP+FP+TN+FN’
Since there are generally less re-opened bugs than not re-opened bugs, the accuracy
measure may be misleading if a classifier performs well at predicting the majority class
(i.e., not re-opened bugs). Therefore, to provide more insights, we measure the precision
and recall for each class separately.

ey

Accuracy =

1. Re-opened precision: Measures the percentage of correctly classified re-opened bugs
over all of the bugs classified as re-opened. It is calculated as P(re) = %.
2. Re-opened recall: Measures the percentage of correctly classified re-opened bugs over

all of the actually re-opened bugs. It is calculated as R(re) = Tl;’;%.

3. Not re-opened precision: Measures the percentage of correctly classified, not re-opened

bugs over all of the bugs classified as not re-opened. It is calculated as P(nre) = %

4. Not re-opened recall: Measures the percentage of correctly classified not re-opened

bugs over all of the actually not re-opened bugs. It is calculated as R(nre) = %.

5. F-measure: Is a composite measure that measures the weighted harmonic mean of pre-
cision and recall. For re-opened bugs it is measured as F-measure(re) = %
2% P(nre)*R(nre)

and for bugs that are not re-opened F-measure(nre) = Plnre) T R(nre)

Studying Re-opened Bugs in Open Source Software 9

A precision value of 100% would indicate that every bug we classified as (not) re-opened
was actually (not) re-opened. A recall value of 100% would indicate that every actual (not)
re-opened bug was classified as (not) re-opened.

To estimate the accuracy of the model, we employ 10-fold cross validation [24]. In 10-
fold cross validation, the data set is partitioned into 10 sets. Each of the 10 sets contains 1/10
of the total data. Each of the 10 sets is used once for validation (i.e., to test accuracy) and
the remaining nine sets are used for training. We repeat the this 10-fold cross validation 10
times (i.e., we build 100 decision trees in total) and report the average.

4 Data Processing

To conduct our case study, we used three projects: Eclipse Platform 3.0, Apache HTTP
Server and OpenOffice. The main reason we chose to study these three projects in our case
study is because they are large and mature Open Source Software (OSS) projects that have
a large user base and a rich development history. The projects also cover different domains
(i.e., Integrated Development Environment (IDE) vs. Web Server vs. Productivity Suite)
and are written in different programming languages (i.e., C/C++ vs. Java). We leveraged
two data sources from each project, i.e., the bug database and the source code control (CVS)
logs.

To extract data from the bug databases, we wrote a script that crawls and extracts bug
report information from the project’s online Bugzilla databases. The reports are then parsed
and different factors are extracted and used in our study.

Most of the factors can be directly extracted from the bug report, however, in some cases
we needed to combine the data in the bug report with data from the CVS logs. For example,
one of our factors is the number of files that are changed to implement the bug fix. In most
cases, we can use the files included in the submitted patch. However, sometimes the patch is
not attached to the bug report. In this case, we search the CVS logs to determine the change
that fixed the bug.

We used the J-REX [25] tool, an evolutionary code extractor for Java-based software
systems, to perform the extraction of the CVS logs. The J-REX tool obtains a snapshot
of the Eclipse CVS repository and groups changes into transactions using a sliding window
approach [16]. The extracted logs contain the date on which the change was made, the author
of the change, the comments by the author to describe the change and files that were part of
the change. To map the bugs to the changes that fixed them, we used the approach proposed
by Fischer et al. [43] and later used by Zimmermann et al. [2], which searches in the CVS
commit comments for the bug IDs. To validate that the change is actually related to the bug,
we make sure that the date of the change is on or prior to the close date of the bug. That said,
there is no guarantee that the commits are bug fixes as they may be performing other types
of changes to the code.

To use the bug reports in our study, we require that they be resolved and contain all of
the factors we consider in our study. Table 3 shows the number of bug reports used from
each project. To explain the data in Table 3, we use the Eclipse project as an example. We
extracted a total of 18,312 bug reports. Of these 18,312 reports, only 3,903 bug reports were
resolved (i.e., they were closed at least once). Of the resolved bug reports, 1,530 could be
linked to source code changes and/or submitted patches. We use those 1,530 bug reports in
our study. Of the 1,530 bug reports studied, 246 were re-opened and 1,284 were not.

For each bug report, we extract 24 different factors that cover four different dimen-
sions, described in Table 1. Most of the factors were directly derived from the bug or code

10 Emad Shihab* et al.

Table 3 Bug Report Data Statistics

Eclipse Apache HTTP OpenOffice

Total Extracted Bug Reports 18,312 32,680 106,015

Resolved Bug Reports 3,903 28,738 86,993

Bug Reports Linked to Code Changes or Patches 1,530 14,359 40,173
Re-opened Bug Reports 246 927 10,572

Not Re-opened Bug Reports 1,284 13,432 29,601

databases. However, two factors in the bug report dimension are text-based and required spe-
cial processing. Similar to prior work [56,57], we apply a Naive Bayesian classifier [26] on
the description text and comment text factors to determine keywords that are associated with
re-opened and non-reopened bugs. We use a Naive Bayesian classifier since it is commonly
used to process text in spam filters due to its simplicity, its linear computation time and ac-
curacy [58]. For this, we use a training set that is made up of two-thirds randomly selected
bug reports. The Bayesian classifier is trained using two corpora that are derived from the
training set. One corpus contains the description and comment text of the re-opened bugs2
and the other corpus contains the description and comment text of the bugs that were not
re-opened. The content of the description and comments are divided into tokens, where each
token represents a single word. Since the bug comments often contain different types of text
(e.g., code snippets), we did not stem the words or remove stop words. Prior work showed
that stemming and removing stop words has very little influence on the final results [42].

The occurrence of each token is calculated and each token is assigned a probability of
being attributed to a re-opened or none re-opened bug. These probabilities are based on the
training corpus. Token probabilities are assigned based on how far their spam probability
is from a neutral 0.5. If a token has never been seen before, it is assigned a probability of
0.4. The reason for assigning a low probability to new tokens is that they are considered
innocent. The assumption here is that token associated with spam (or in our case re-opened
bugs) will be familiar.

The probabilities of the highest 15 tokens are combined into one [27], which we use
as a score value that indicates whether or not a bug will be re-opened. The choice of 15
tokens is motivated by prior work (e.g., [22]). Generally, the number of tokens provides
a tradeoff between accuracy and complexity (i.e., having too little tokens may not capture
enough information and having too many tokens may make the models too complex). A
score value close to 1 indicates that the bug is likely not to be re-opened and vice versa. The
score values of the description and comment text are then used in the decision tree instead
of the raw text.
Dealing with imbalance in data: One issue that many real-world applications (e.g., in vi-
sion recognition [28], bioinformatics [29], credit card fraud detection [30] and bug predic-
tion [31]) suffer from is data imbalance. What this means is that one class (i.e., majority)
usually appears a lot more than another class (i.e., minority). This causes the decision tree
to learn factors that affect the majority class without trying to learn about factors that affect
the minority class. For example, in Eclipse the majority class is non-reopened bugs which
has 1,284 bugs and the minority class is re-opened bugs, which contains 246 bugs. If the
decision tree simply predicts that non of the bugs will be re-opened, then it will be correct

83.9% of the time (i.e., %). We discuss this observation in more detail in Section 6.

2 For re-opened bugs, we used all the comments posted before the bugs were re-opened.

Studying Re-opened Bugs in Open Source Software 11

To deal with this issue of data imbalance, we must increase the weight of the minority
class. A few different approaches have been proposed in the literature:

1. Re-weighting the minority class: Assigns a higher weight to each bug report of the
minority class. For example, in our data, we would give a weight of 5.2 (i.e., %) to
each re-opened instance.

2. Re-sampling the data: Over- and under- sampling can be performed to alleviate the
imbalance issue. Over-sampling increases the minority class instances to become at the
same level as the majority class. Under-sampling decreases the majority class instances
to reach the same level as the minority class. Estabrooks and Japkowicz [32] recommend
performing both under- and over-sampling, since under-sampling may lead to useful
data being discarded and over-sampling may lead to over-fitted models.

We built models using both re-weighting and re-sampling using the AdaBoost algo-
rithm [33] available in the WEKA machine learning framework [34]. We performed both
over- and under-sampling on the training data and predicted using a non-balanced test data
set. We did the same using the re-weighting approach. Using re-sampling achieves better
prediction results, therefore we decided to only use this in all our experiments. A similar
finding was made in previous work [22].

It is important to note here that we re-sampled the training data set only. The test data set
was not re-sampled or re-weighted in any way and maintained the same ratio of re-opened
to non-re-opened bugs as in the original data set.

5 Case Study Results

In this section, we present the results of our case study on the Eclipse Platform 3.0, Apache
HTTP server and OpenOffice projects. We aim to answer the two research questions posed
earlier. To answer the first question we perform a Top Node analysis [12, 13] using each of
the dimensions in isolation (to determine the best factors within each dimension) and using
all of the dimensions combined (to determine the best factors across all dimensions). Then,
we use these dimensions to build decision trees that accurately predict whether or not a bug
will be re-opened.

Q1. Which of the extracted factors indicate, with high probability, that a bug will be re-
opened?

We perform Top Node analysis to identify factors that are good indicators of whether
or not a bug will be re-opened. In Top Node analysis, we examine the top factors in the
decision trees created during our 10 x 10-fold cross validation. The most important factor is
always the root node of the decision tree. As we move down the decision tree, the factors
become less and less important. For example, in Figure 2, the most important factor in the
tree is time_days. As we move down to level 1 of the decision tree, we can see that last_state
and num_fix_files are the next important factors and so on. In addition to the level of the tree
that a factor appears in, the occurrence of a factor at the different levels is also important.
The higher the occurrence is, the stronger confidence is of the importance of that factor.

12 Emad Shihab* et al.

Team Dimension

Table 4 presents the results of the Top Node analysis for the team dimension. For the Eclipse
project, the reporter name and the fixer name are the most important factors in the team di-
mension. Out of the 100 decision trees created (i.e., 10 x 10-fold cross validation), reporter
name is the most important in 51 trees and fixer name was the most important in the remain-
ing 49 trees. In Apache the reporter name is the most important factor in all 100 decision
trees created for the team dimension. On the other hand, in OpenOffice the fixer name is
the most important factor in all 100 decision trees.

Our finding shows that the reporter name and the fixer name are the most important
factors in the team dimension. This indicates that some reporters and developers are more
likely to have their bugs re-opened than others. The fixer experience is also important, rank-
ing highly in level 1 of the decision trees of the Eclipse and OpenOffice projects.

It is important to note that in level 1 of the tree presented in Table 4, the frequencies of
the attributes sum up to more than 200 (which would be the case when the attributes used
were binary). This is because the Fixer name and reporter name variables are of type string
and are converted to multiple nominal variables. Therefore, the frequencies of the attributes
at level 1 of the tree sum up to more than 200.

This effect also made it hard to understand the concrete effect of the most important
factors in each project. For example, a decision tree would say if developer A is the fixer
and the developer experience is > 10 bugs, then the bug is re-opened. Another branch of the
tree might say if developer B is the fixer ad the developer experience is > 10 bugs, then the
bug is not re-opened. In such a case, it is difficult to determine the effect of the developer
experience factor.

Therefore, in addition to examining the decision trees, we generated logistic regression
models and used the coefficients of the factors to qualify the effect of the factor on a bug
being re-opened [51]. In particular, we report the odds ratios of the analyzed factors. Odds
ratios are the exponent of the logistic regression coefficients and indicate the increase to the
likelihood of a bug being re-opened that 1 unit increase of the factor value causes. Odds
ratios greater than 1 indicate a positive relationship between the independent (i.e., factors)
and dependent variables (i.e., an increase in the factor value will cause an increase in the
likelihood of a bug being re-opened). Odds ratios less than 1 indicate a negative relation-
ship, or in other words, an increase in the independent variable will cause a decrease in the
likelihood of the dependent variable.

Different fixer and reporter names were associated with different effects on a bug being
re-opened. For the sake of privacy, we do not mention the effect of specific fixer and reporter
names, and only discuss the effect of the fixer and reporter experience on a bug being re-
opened.

In Eclipse, we found negative, but weak, effect between the reporter experience (odds
ratio 0.99) and developer experience (odds ratio 0.99) and the likelihood of a bug being re-
opened. This means that more experienced reporters and developers are less likely to have
their bugs re-opened. In Apache we also found a negative and weak effect on reporter expe-
rience (odds ratio 0.99) and the likelihood of a bug being re-opened. In OpenOffice negative
and weak effect between the developer experience (odds ratio 0.99) and the likelihood of a
bug being re-opened.

Studying Re-opened Bugs in Open Source Software 13

Table 4 Top Node Analysis of the Team Dimension

[Eclipse Apache OpenOffice
Level || # | Attribute | # | Attribute | # | Attribute

0 51 Reporter name 100 Reporter name 100 Fixer name
49 Fixer name

1 315 Fixer experience 1098 Fixer name 1490 Fixer experience
277 Reporter name 1013 Fixer experience 480 Reporter name
248 | Reporter experience 862 Reporter experience 176 Reporter experience
202 Fixer name

Work Habit Dimension

Table 5 shows the results of the Top Node analysis for the work habit dimension. In Eclipse
and Apache, the day of the year and the day of the month the bug was closed on were
the most important factors. In the 100 decision trees created, the day of the year was the
most important factor 76 and 97 times for Eclipse and Apache, respectively. For Apache,
another important factors (i.e., in level 1) is the weekday that the bugs were closed in. For
OpenOffice, the week day factor is the most important factor in 90 of the decision trees built
for the OpenOffice project. The time factor was the most important in 10 of the 100 decision
trees. Similar to the Eclipse and Apache projects, the day of the year was also important for
the OpenOffice project (i.e, in level 1).

Examining the effect of the important factors for Eclipse showed that bugs closed later
on in the year (i.e., day of the year) are more likely to be re-opened (odds ratio 1.05). We also
find that bugs reported later in the month are less likely to be re-opened (odds ratio 0.95).
In Apache, bugs closed later in the year have a negative, but weak, effect on bug re-opening
(odds ratio 0.99). In OpenOffice, we found a negative relationship to bug re-opening for
bugs closed on all days of the week (odds ratios in the range of 0.79 - 0.99), except for
Wednesday where there was a positive relationship (odds ratio 1.03). For time, we find a
weak and positive relationship between bugs closed in the morning (odds ratio 1.07) or at
night (odds ratio 1.04) with bug re-opening.

Table 5 Top Node Analysis of the Work Habit Dimension

| Eclipse Apache OpenOffice
Level | # | Attribute || # | Attribute || # | Attribute
0 76 | Day of year 97 | Day of year 90 Week day
20 | Month day 3 Month day 10 Time
2 Time
1 Week day

1 Month day
1 39 | Day of year 73 Week day 412 | Day of year

31 Month day 68 | Month day 134 Time
22 Month 30 | Day of year 73 Month
20 Time 7 Time 28 Month day
15 Week day 3 Month 23 Week day

6 | Day of year

14 Emad Shihab* et al.

Bug Fix Dimension

Table 6 presents the Top Node analysis results for the bug fix dimension. For Eclipse, the
time days factor, which counts the number of days it took from the time the bug was opened
until its initial closure (i.e., the time it took to initially resolve the bug), is the most important
factor in the fix dimension in 90 of the 100 decision trees. The number of files touched to
fix the bug and the last status the bug was in when it was closed were the most important
factor in 5 of the 100 trees. In the case of Apache and OpenOffice, the last status the bug
was in when it was closed (i.e., before it was reopened) was the most important factor in all
100 decision trees. Also important are the time days and number of files in the fix, as shown
by their importance in levels 1 of the decision trees.

As for the effect of the factors, in Eclipse we found that there exists a positive, but
very weak, effect between the number of days it takes to close a bug (odds ratio 1.0)
and the likelihood of a bug being re-opened. In addition, we found that bugs in the “re-
solved_duplicate”, “resolved_worksforme” and “resolved_invalid” states before their final
closure had the strongest chance of being re-opened. This means that when a bug is in any
of those three aforementioned states before being closed, it should be closely verified since
it is likely that it will be re-opened.

For Apache, bugs in the “resolved_duplicate”, “resolved_wontfix”, “resolved_invalid”,
“verified_invalid” and “resolved_worksforme” states were the most likely to be re-opened.
In OpenOffice, we found that bugs in the “resolved_duplicate”, “verified_wontfix”, “veri-
fied_invalid” and “verified_worksforme” states prior to being closed were the most likely to
be re-opened.

Table 6 Top Node Analysis of the Bug Fix Dimension

\ Eclipse Apache OpenOffice
Level | # | Attribute || # | Attribute || # | Attribute
0 90 Time days 100 Last status 100 | Last status
5 No. fix files
5 Last status
1 93 | No. fix files 261 Time days 293 Time days
57 Last status 210 | No. fix files 62 No. fix files
38 Time days

Bug Report Dimension

The Top Node analysis results of the bug report dimension are shown in Table 7. For the
Eclipse project, the comment text content included in the bug report factor is the most
important in this dimension, showing up as the most important in 94 of the 100 decision
trees.

We examine the words that appear the most in the description and comments of the
bugs. These are the words the Naive Bayesian classifier associates with re-opened and

not re-opened bugs. Words such as “control”, “background”, “debugging”, “breakpoint”,
“blocked” and “platforms” are associated with re-opened bugs. Words such as “verified”,

Studying Re-opened Bugs in Open Source Software 15

CLINNT3 LL T3S LT3

“duplicate”, “screenshot”, “important”,
that are not re-opened.

testing” and “warning” are associated with bugs

To shed some light on our findings, we manually examined 10 of the re-opened bugs.
We found that three of these re-opened bugs involved threading issues. The discussions
of these re-opened bugs talked about running processes in the “background” and having
“blocked” threads. In addition, we found that bugs that involve the debug component were
frequently re-opened, because they are difficult to fix. For example, we found comments
such as “Verified except for one part that seems to be missing: I think you forgot to add
the...” and “This seems more difficult that[than] is[it] should be. I wonder if we can add...”.

For Apache, the description text is the most important factor in the bug report dimen-
sion. This finding is contrary to our observation in the Eclipse project, in which the comment
text is shown to be the most important factor. However, the comment text is also of impor-
tance in the Apache project, appearing in level 1 of the decision trees.

The words that the Naive Bayesian classifier associates with re-opened bugs included
words such as “cookie”, “session”, “block™ and ‘“hssfeventfactory” are associated with re-
opened bugs. Words such as “attachment”, “message”, “ant”, “cell” and “code” are associ-

ated with bugs that are not re-opened.

Manual examination of 10 of the re-opened bugs shows that four of the re-opened bugs
in Apache are related to compatibility issues. For example, in one of the bugs examined,
the bug was re-opened because the initial fix cloned a piece of code but did not modify
the cloned code to handle all cases in its context. We found comments that said “...The
Jix for this bug does not account for all error cases. I am attaching a document for which
the code fails...”. A later comment said “...I see what’s missing. We borrowed the code
from RecordFactory.CreateRecords but forgot to handle unknown records that happen to be
continued...”.

In another example, the bug was being deleted because it was difficult to fix, and even
after a fix was done, it did not fix the bug entirely. One of the comments that reflects the
difficulty of the bug says “...This bug is complex to fix, and for this reason will probably
not be fixed in the 4.0.x branch, but more likely for 4.1. This will be mentioned in the re-
lease notes...”. After the bug was initially fixed, a later comment attached by the developer
who re-opened the bug says “While the new session is now being created and provided to
the included resource, no cookie is being added to the response to allow the session to be

retrieved when direct requests to the included context are recieved...”

Similar to the Eclipse project, in OpenOffice the comment text is the most important
factor in the bug report dimension. The description text and the number of comments are
also shown to be important, appearing in level 1 of the decision trees.

The Naive Bayesian classifier associates words such as “ordinal”, “database”, “dpcc”,
“hsqldb” and “sndfile” with re-opened bugs, whereas words such as “attached”, “menu”,
“button”, “wizard” and “toolbar” were associated with bugs that are not re-opened.

A manual examination of 10 of the re-opened bugs shows that seven of the re-opened
bugs in OpenOffice are related to database access issues. In one of the examined bugs,
the issue was related to a limitation of the HSQL database engine being used, where the
reporter says “Fields (names, data types) in HSQL-based tables cannot be modified after
the table has been saved..”. The bug is closed since this seemed to be a limitation of the
HSQL database engine, as reported in this comment “that would be nice, however I think
it’s (currently) a limitation of the used hsqldb database engine”. Later on, support was added
and the bug was re-opened and fixed.

16 Emad Shihab* et al.

Table 7 Top Node Analysis of the Bug Report Dimension

\ Eclipse Apache OpenOffice
Level | # Attribute || # Attribute || # Attribute
0 94 Comment text 100 Description text 100 Comment text
6 Description text
1 181 Description text 105 Comment text 101 Description text
16 Comment text 89 No. of comments 84 No. of comments
1 Severity changed 1 Description size 9 No. in CC list
5 Comment text
1 Comment size

All Dimensions

Thus far, we looked at the dimensions in isolation and used Top Node analysis to determine
the most important factors in each dimension. Now, we combine all of the dimensions to-
gether and perform the Top Node analysis using all of the factors. The Top Node analysis of
all dimensions is shown in Table 8.

In Eclipse, the comment text is determined to be the most important factor amongst all
of the factors considered in this study. In addition, the description text content is the next
most important factor. For Apache, the last status of the bug when it is closed is the most im-
portant factor, followed by the description and comment text. Similar to the Eclipse project,
in OpenOffice the comment text is shown to be the most important factor. The next most
important factor is the last status factor, which appears in level 1 of the decision trees.

The comment text is the most important factor for the Eclipse and OpenOf-
fice projects, while the last status is the most important one for Apache.

Table 8 Top Node Analysis Across All Dimensions

\ Eclipse Apache OpenOffice
Level | # Attribute [| # Attribute [| # Attribute
0 96 Comment text 100 Last status 100 | Comment text
4 Description text
1 180 | Description text 280 Description text 200 Last status
11 Comment text 132 Comment text
Severity changed 2 Time
1 Time 19 Month
1 Description size
10 Month day
8 No. of fix files
37 No. of comments
1 Severity
3 Fixer experience

Q2. Can we accurately predict whether a bug will be re-opened using the extracted fac-
tors?

Studying Re-opened Bugs in Open Source Software 17

Following our study on which factors are good indicators of re-opened bugs, we use
these factors to predict whether a bug will be re-opened. First, we build models that use only
one dimension to predict whether or not a bug will be re-opened. Then, all of the dimensions
are combined and used to predict whether or not a bug will be re-opened.

Table 9 shows the prediction results produced using decision trees. The results are the

averages of the 10 times 10-fold cross validation. The variance of the measures is shown in
brackets besides each average value. Ideally, we would like to obtain high precision, recall
and F-measure values, especially for the re-opened bugs.
Eclipse: Out of the four dimensions considered, the bug report dimension was the best
performing. It achieves a re-opened precision of 51.3%, a re-opened recall of 72.5% and
59.5% re-opened F-measure. The bug report dimension was also the best performer for
not-reopened bugs; achieving a not re-opened precision of 94.3%, not re-opened recall of
86.2% and 89.9% not re-opened F-measure. The overall accuracy achieved by the bug report
dimension is 83.9%. The rest of the dimensions did not perform nearly as well as the bug
report dimension.

To put our prediction results for re-opened bugs in perspective, we compare the perfor-

mance of our prediction models to that of a random predictor. Since the re-opened class is
a minority class that only occurs 16.1% of the time, a random predictor will be accurate
16.1% of the time. Our prediction model achieves 51.3% precision, which is approximately
a three-fold improvement over a random prediction. In addition, our model achieves a high
recall of 72.5%.
Apache: The bug fix dimension is the best performing dimension. It achieves a re-opened
precision of 40.1%, a re-opened recall of 89.8% and F-measure of 55.4%. The bug fix dimen-
sion also achieves the best not re-opened precision of 99.2%, recall of 90.7% and F-measure
of 94.7%. The overall accuracy of the bug fix dimension is 90.6%.

Combining all of the dimensions improves the re-opened precision to 52.3%, the re-
opened recall to 94.1% and the re-opened F-measure to 67.2%. Furthermore, combining
all of the dimensions improves the not re-opened precision to 99.6%, recall to 94.1% and
F-measure to 96.7%. The overall accuracy is improved to 94.0%.

In the case of Apache, re-opened bugs appear in only 6.5% of the total data set. This

means that our re-opened precision improves over the random precision by more than 8
times. At the same time, we are able to achieve a very high recall of 94.1%.
OpenOffice: Similar to the Eclipse project, the bug report dimension is the best performing
dimension for the OpenOffice project. The re-opened precision is 63.4%, the re-opened
recall is 87.3% and the re-opened F-measure is 71.3%. The not re-opened precision is 93.0%,
recall of 83.2% and not re-opened F-measure of 87.6%. The overall accuracy of the bug
report dimension is 82.7%.

Using all of the dimensions in combination improves the re-opened precision to 78.6%
(a three-fold improvement over a random predictor), the re-opened recall to 89.3% and the
re-opened F-measure to 83.6%. The not re-opened precision improves to 95.9%, the not re-
opened recall improves to 91.3% and the not re-opened F-measure improves to 93.6%. The
overall accuracy improves to 90.8%.

Final remarks

As shown in Table 9, the precision varies across projects. For example, for Eclipse the
precision is 52.1%, whereas for OpenOffice it is 78.6%. One factor that influences the pre-
cision value of prediction models is the ratio of re-opened to not re-opened bug reports [53].
This ratio is generally used a a baseline precision value [52,54]. Table 3 shows that the base-

line precision for Eclipse is 225 = 16.1%, whereas the baseline precision for OpenOffice

1530
is }18‘;’;5 = 26.3%. Therefore, we expect our prediction models to perform better in the case

18 Emad Shihab* et al.

Table 9 Prediction results

Dimension | Re-opened Re-opened Re-opened Not Re-reopened | Not Re-opened | Not Re-opened | Accuracy
Precision Recall F-measure Precision Recall F-measure

i Team 18.3(0.13)% | 45.5(1.1) % | 25.9(0.26) % | 85.4(0.05) % 61.0(0.29) % 71.0(0.15) % 58.5(0.19) %
= | Workhabit | 21.8(0.14) % | 54.1(1.2) % | 30.9(0.28) % | 87.7(0.07) % 62.5(0.36) % 72.8(0.19) % 61.2(0.23) %
= Fix 18.9(0.06) % | 68.2(2.0) % | 29.5(0.17) % | 88.2(0.13) % 44.1(0.94) % 58.1(0.70) % 47.9(0.46) %
Bug 51.3(0.74) % | 72.5(0.81) % | 59.5(0.48) % | 94.3(0.03) % 86.2(0.22) % 89.9(0.07) % 83.9(0.15) %

| All | 52.1(0.99)% | 70.5(0.69) % | 59.4(0.55)% | 93.9(0.02) % | 86.8(0.21) % | 90.2(0.07) % | 84.2(0.15) %

2 Team 8.4(0.01) % | 46.7(0.29) % | 14.4(0.02) % | 94.7(0.00) % 65.3(0.04) % 77.2(0.02) % 64.1(0.03) %
§ Work habit | 7.0(0.01) % | 38.3(0.32)% | 11.9(0.03) % | 93.9(0.00) % 65.1(0.02) % 76.9(0.01) % 63.4(0.02) %
< Fix 40.1(0.08) % | 89.8(0.12) % | 55.4(0.08) % | 99.2(0.00) % 90.7(0.01) % 94.7(0.00) % 90.6(0.01) %
Bug 28.5(0.06) % | 73.3(0.18) % | 40.9(0.08) % | 97.9(0.00) % 87.2(0.02) % 92.2(0.01) % 86.3(0.02) %

| All | 52.3(0.09)% | 94.1(0.05) % | 67.2(0.07)% | 99.6(0.00) % | 94.1(0.01) % | 96.7(0.00) % | 94.0(0.00) %

E Team 57.5(0.02) % | 71.9(0.03) % | 63.8(0.01) % | 88.8(0.00) % 81.0(0.01) % 84.8(0.00) % 78.6(0.01) %
8 Work habit | 50.2(0.01) % | 75.6(0.03) % | 60.3(0.01) % | 89.4(0.00) % 73.2(0.02) % 80.5(0.01) % 73.9(0.01) %
g Fix 44.0(0.01)% | 87.3(0.04) % | 58.5(0.01)% | 93.0(0.01) % 60.3(0.04) % 73.1(0.02) % 67.4(0.01) %
8- Bug 63.4(0.01) % | 81.4(0.02) % | 71.3(0.01) % | 92.6(0.00) % 83.2(0.01) % 87.6(0.00) % 82.7(0.00) %
| All | 78.6(0.02)% | 89.3(0.01)% | 83.6(0.01)% | 95.9(0.00) % | 91.30.01) % | 93.6(0.00) % | 90.8(0.00) %

of OpenOffice compared to Eclipse. Another factor that influences the variation in predic-
tion results is the fact that we are using the same factors for all projects. In certain cases,
some factors may perform better for some projects than others.

Overall, our results show that fairly accurate prediction models can be created using a
combination of the four dimensions. However, although combining all of the dimensions
provides a considerable improvement over using the best single dimension for the Apache
and OpenOffice projects, it only provides a slight improvement for the Eclipse project. Hav-
ing a predictor that can perform well without the need to collect and calculate many complex
factors makes it more attractive for practitioners to adopt the prediction approach practice.

We can build explainable prediction models that can achieve a precision
of 52.1-78.6% and a recall of 70.5-94.1% recall when predicting whether
a bug will be re-opened and a precision between 93.9-99.6% and recall of
86.8-94.1% when predicting if a bug will not be re-opened.

6 Comparison with Other Prediction Algorithms

So far, we used decision trees to predict whether a bug will be re-opened. However, deci-
sion trees are not the only algorithm that can be used. Naive Bayes classifier and Logistic
regression are two very popular algorithms that have been used in many prediction studies
(e.g., [9]). In this section, we compare the prediction results of various prediction algorithms
that can be used to predict whether or not a bug will be re-opened. In addition, we used the
prediction from the Zero-R algorithm as a baseline for the prediction accuracy. The Zero-R
algorithm simply predicts the majority class, which is not re-opened in our case.

The prediction results using the different algorithms are shown in Table 10. Since differ-
ent algorithms may provide a tradeoff between precision and recall, we use the F-measure

Studying Re-opened Bugs in Open Source Software 19

Table 10 Results using different prediction algorithms

Algorithm Re-opened Re-opened Re-opened Not Re-reopened | Not Re-opened | Not Re-opened | Accuracy
Precision Recall F-measure Precision Recall F-measure

i Zero-R NA 0% 0% 83.9(0.00) % 100(0.00) % 91.3(0.00) % 83.9(0.00) %
&= | Naive Bayes | 49.0(0.33)% | 73.9(0.81) % | 58.7(0.34) % | 94.5(0.03) % 85.1(0.10) % 89.5(0.03) % 83.3(0.08) %
R | Logistic Reg | 45.3(0.41)% | 67.2(0.77) % | 53.8(0.35)% | 93.1(0.03) % 84.1(0.15) % 88.1(0.15) % 81.4(0.10) %

C4.5 52.1(0.99) % | 70.5(0.69) % | 59.4(0.55) % | 93.9(0.02) % 86.8(0.21) % 90.2(0.07) % 84.2(0.15) %
2 Zero-R NA 0% 0% 93.5(0.00) % 100(0.00) % 96.7(0.00) % 93.5(0.00) %
i Naive Bayes | 46.5(0.10) % | 69.8(0.35) % | 55.7(0.10) % | 97.8(0.01) % 94.4(0.01) % 96.1(0.00) % 92.8(0.00) %
< | LogisticReg | 46.5(0.15)% | 78.3(0.23) % | 58.2(0.14) % | 98.4(0.01) % 93.7(0.01) % 96.0(0.00) % 92.7(0.01) %

C4.5 52.3(0.09) % | 94.1(0.05) % | 67.2(0.07) % | 99.6(0.00) % 94.1(0.01) % 96.7(0.00) % 94.0(0.00) %
51 Zero-R NA 0% 0 % 73.7(0.00) % 100(0.00) % 84.8(0.00) % 73.7(0.00) %
g Naive Bayes | 48.7(0.06) % | 90.5(0.02) % | 63.3(0.04) % | 95.1(0.00) % 65.7(0.13) % 77.7(0.06) % 72.3(0.06) %
§ | LogisticReg | 69.8(0.01)% | 88.9(0.01)% | 78.2(0.01) % | 95.6(0.00) % 86.3(0.01) % 90.7(0.00) % 86.9(0.00) %
é‘* C4.5 78.6(0.02) % | 89.3(0.01)% | 83.6(0.01) % | 95.9(0.00) % 91.3(0.01) % 93.6(0.00) % 90.8(0.00) %

to compare the different prediction algorithms. As expected, the Zero-R algorithm achieves
the worst performance, since it does not detect any of the re-opened bugs. The Naive Bayes
algorithm performs better in some cases. For example, for the Eclipse project the Naive
Bayes algorithm achieves a re-opened recall of 73.9% and not re-opened precision of 94.5%.
The Logistic Regression model performs slightly worse achieving re-opened F-measure of
53.8% (precision: 45.3%, recall: 67.2%) and not re-opened F-measure of 88.1% (preci-
sion: 93.1%, recall: 84.1%). Decision trees perform slightly worse (in some cases) than
Naive Bayes for Eclipse, Apache and OpenOffice. More importantly however is that deci-
sion trees provide explainable models. Practitioners often prefer explainable models since it
helps them understand why the predictions are the way they are.

7 Discussion: Commit vs. Bug Work Habits

Our work habits factors are based on the time that the bug was initially closed. The reason for
using the time the bug was initially closed was due to the fact that we wanted to investigate
whether developers were more inclined to close bugs during specific times (e.g., to reduce
their work queue). However, another side that may contribute to bug re-opening is the work
habits factors of the commit or change performed to the address the bug. For example,
commits made specific times may be associated with a higher change of a bug being re-
opened later on.

To examine the effect of the commit work habits dimension, we extract the same factors
for the work habits dimension for each commit. The factors are shown in Table 11. Since
not all bugs could be linked to a commit and we need all of the factors to perform our
analysis, our dataset reduced in size. For Eclipse, we were able to link 1,144 bugs where
187 were re-opened and 957 were not. For OpenOffice, we were able to link 19,393 bugs
where 7181 were re-opened and 12,212 were not. For Apache were were only able to link
278 bug reports. After examination of the linked data, we decided to perform the analysis
for Eclipse and OpenOffice, but not for Apache (i.e., due to the low number of linked bug
reports).

First, we redo the top node analysis of the work habits factors, this time including both
bug closing and commit work habits. The results are shown in Table 12. To be clear, we

20

Emad Shihab* et al.

Table 11 Commit Work Habits Factors

Dim| Factor | Type | Explanation | Rationale
= Change Nominal| Time in hours (Morning, Afternoon, Evening, | Changes made to address bugs at certain times in the day
E time Night) when the change to address the bug was | (e.g., late afternoons) are more/less likely to be re-opened.
> made.
5 Change Nominal| Day of the week (e.g., Mon or Tue) when the | Changes made to address bugs on specific days of the week
E weekday change to address the bug was first made. (e.g., Fridays) are more/less likely to be re-opened.
2 Change Numeric| Calendar day of the month (0-30) when the | Changes made to address bugs at specific periods like the
= month changes to address the bug was made. beginning, mid or end of the month are more/less likely to
© day be re-opened.
Change Numeric| Month of the year (0-11) when the change to ad- | Changes made to address bugs in specific months (e.g., dur-
month dress the bug was made. ing holiday months like December) are more/less likely to
be re-opened.
Change Numeric| Day of the year (1-365) when the change to ad- | Changes made to address bugs in specific times of the
day of dress the bug was made. year(e.g., later on in the year) are more/less likely to be
year re-opened.

explicitly label each factor with its association to bugs or commits, shown in brackets. We
observe that for both projects, the work habits factors from the initial bug closure are the
most important factors. In particular, the day of year and the month were the most important.
Commit work habits factors are placed in level 1 of the decision tress, showing that they are
also important, but clearly less important than the initial bug closure.

To examine whether including the commit work habit factors improves prediction accu-
racy, we present the prediction results in Table 13. For each project, the first row presents the
prediction results when the bug work habits are only considered. The second row presents
the prediction results when the commit and bug work habits factors are combined. We see
that for both, Eclipse and OpenOffice, the prediction results improve. For Eclipse, we see
an improvement of 3.8% in re-opened precision and 4.5% in re-opened recall, whereas, for
OpenOffice we see an improvement in prediction results of 19.6% in re-opened precision
and 15.4% improvement in re-opened recall.

8 Threats to Validity

In this section, we discuss the possible threats to validity of our study.

Threats to Construct Validity consider the relationship between theory and observa-
tion, in case the measured variables do not measure the actual factors. Some of the re-opened
bugs considered in our study were re-opened more than once. In such cases, we predict for
the first time the bug was re-opened. In future studies, we plan to investigate bugs that are
re-opened several times.

One of the attributes used in the People dimension is the fixer name. We extracted the
names of the fixers from the committed CVS changes. In certain cases, the fixer and the
committer of the changes are two different people. In the future, we plan to use heuristics
that may improve the accuracy of the fixer name factor.

For the work habits dimension, we use the dates in the Bugzilla bug tracking system.
These times refer to the server time and may not be the same as the local user time. Fur-
thermore, we do not take timezone information into account since such information is not
available. These threats show that in some cases, our work habits may not directly measure
the commit habits of developers.

Studying Re-opened Bugs in Open Source Software 21

Table 12 Top Node Analysis of the Commit and Bug Work Habit Dimension

| Eclipse OpenOffice
Level | # | Attribute || # | Attribute

0 66 (Bug) Day of year 100 (Bug) Day of year
21 (Bug) Month
5 (Bug) Time
3 (Commit) Month
2 (Bug) Week day
2 (Commit) Time
1 (Commit) Month day

1 16 (Bug) Week day 106 | (Commit) Day of year
5 (Commit) Month day 94 (Commit) Month
11 (Bug) Month

25 (Commit) Month
36 (Bug) Day of year

9 (Commit) Weekday
12 (Bug) Time

20 (Bug) Month day
37 | (Commit) Day of year
14 (Commit) Time

Table 13 Prediction Results when Considering Commit Work Habits

Dimension Re-opened Re-opened Re-opened Not Re-reopened | Not Re-opened | Not Re-opened | Accuracy
Precision Recall F-measure Precision Recall F-measure
% Work habit | 20.7(0.17) % | 50.6(1.2) % | 29.2(0.32) % | 86.5(0.07) % 61.7(0.47) % 71.8(0.26) % 59.9(0.32) %
= | (bugonly)
2 | Work habit 24.5(0.23) % | 55.1(1.5) % | 33.8(0.43) % | 88.4(0.08) % 66.7(0.33) % 75.9(0.17) % 64.7(0.24) %
(bug and
commit)
E Work habit | 62.7(0.04) % | 75.4(0.06) % | 68.4(0.02)% | 83.6(0.01) % 73.5(0.07) % 78.2(0.02) % 74.2(0.02) %
= (bug only)
% Work habit | 82.3(0.02) % | 87.3(0.02) % | 84.7(0.01) % | 92.3(0.00) % 88.9(0.01) % 90.6(0.00) % 88.3(0.01) %
2 | (bug and
=) .
commit)

Threats to Internal validity refers to whether the experimental conditions makes a
difference or not, and whether there is sufficient evidence to support the claim being made.

The percentage of bug reports that met the prerequisites to be included in our study is
small (e.g., for Eclipse we were able to extract a total of 18,312 bug reports, of which 1,530
met our prerequisites). At first glance, this seems to be a low bug reports used to extracted
bug reports ratio. However, such a relatively low ratio is a common phenomenon in studies
using bug reports [9, 10]. In addition, we would like to note that the percentage of open-to-
reopened bugs in the data set used and the original data set are quite close. For example,
in the Eclipse project, 16.1% of the bug reports were re-opened, whereas 10.2% of the bug
reports were re-opened in the original data set.

We use 24 different factors that cover four dimensions to predict re-opened bugs. Al-
though this set of factors is large, it is only a subset of factors that may be used to predict

22 Emad Shihab* et al.

re-opened bugs. Other factors such as social networks factors for example can be used to
further improve the prediction results.

Bird et al. [48] showed that bias due to imperfect linking between historical databases
is common and may impact the performance of prediction techniques.

Threats to External Validity consider the generalization of our findings. In this study,
we used three large, well established Open Source projects to conduct our case study. Al-
though these are large open source projects, our results may not generalize (and as we have
seen do not generalize) to all open source or commercial software projects.

We use decision trees to perform our prediction and compared our results to 3 other pop-
ular prediction algorithms. Decision trees performed well, for all three projects, compared
to the 3 algorithms we compared with, however, using other prediction algorithms may
produce different results. One major advantage to using decision trees is that they provide
explainable models that practitioners can use to understand the prediction results.

In our manual examination of the re-opened bugs, we only examined a very small sam-
ple of 10 bug reports. The purpose of this analysis was to shed some light on the type of
information that we were able to get from the re-opened bug reports. Our findings do not
generalize to all re-opened bugs.

9 Related Work

We divide the related work into two parts: the work related to the dimension used and work
related to bug report quality and triage.

9.1 Work Related to Dimensions Used

The work closest to this paper is the work by Zimmermann et al. [55] which characterizes
and predicts re-opened bugs in Windows. The authors perform a qualitative and quantitative
study and find that some of the reasons for bug reopens are the fact that bugs were difficult
to reproduce, developers misunderstood the root cause, bug reports had insufficient infor-
mation and the fact that priority of the bug may have been initially underestimated. Through
their quantitative analysis, the authors find that bugs reported by customers or found dur-
ing system testing are more likely to be re-opened. Also, bugs that are initially assigned to
someone on a different team or geographic location are more likely to be re-opened. In many
ways this paper complements our study since we both focus on bug reopens. However, our
study is done on OSS projects, whereas Zimmermann et al. use commercial systems. Also,
their study surveys Microsoft developers and provides more insight about the reasons for
bug re-opens at Microsoft.

Work habit dimension: Anbalagan and Vouk [17] performed a case study on the Ubuntu
Linux distribution and showed that the day of the week on which a bug was reported impacts
the amount of time it will take to fix the bug. Sliwerski et al. [16] measured the frequency of
bug introducing changes on different days of the week. Through a case study on the Eclipse
and Mozilla projects, they showed that most bug introducing changes occur on Fridays.
Hassan and Zhang [12] used the time of the day, the day of the week and the month day to
predict the certification results of a software build and Ibrahim et al. [22] used the time of
the day, the week day and the month day that a message was posted to predict whether a
developer will contribute to that message. Eyolfson et al. [50] examine the effect of time of
day and developer experience on commit bugginess in two open source projects. The authors

Studying Re-opened Bugs in Open Source Software 23

find that approximately 25% of commits are buggy, that commits checked in between 00:00
and 4:00 AM are more likely to be buggy, developers who commit on a daily basis write less-
buggy commits and bugginess for commits per day of the week vary for different projects.
No prediction was performed.

The work habit dimension extracts similar information to those used in the aforemen-

tioned related work. However, our work is different in that we use the information to inves-
tigate whether these work habit factors affect the chance of a bug being re-opened.
Bug report dimension: Mockus et al. [18] and Herraiz et al. [35] used information con-
tained in bug reports to predict the time it takes to resolve bugs. For example, in [18], the
authors showed that in the Apache and Mozilla projects, 50% of the bugs with priority P1
and P3 were resolved within 30 days and half of the P2 bugs were resolved within 80 days.
On the other hand, 50% of the bugs with priority P4 and P5 took much longer to resolve
(i.e., their resolution time was in excess of 100 days). They also showed that bugs logged
against certain components were resolved faster than others.

Similar to the previous work, we use the information included in bug reports, however,

we do not use this information to study the resolution time of a bug. Rather, we use this
information to predict whether or not a bug will be re-opened.
Bug fix dimension: Hooimeijer et at. [19] built a model that measures bug report quality
and predicts whether a developer would choose to fix the bug report. They used the total
number of attachments that are associated with bug reports as one of the features in the
model. Similarly, Bettenburg et al. [36] used attachment information to build a tool that
recommends to reporters how to improve their bug report. Hewett and Kijsanayothin [37]
used the status of a bug (e.g., Worksforme) as one of the features to model the bug resolution
time.

Similar to the previous studies, we use information about the initial bug fix as input into

our model, which predicts whether or not a bug will be re-opened.
People dimension: Schroter et al. [38] analyzed the relationship between human factors and
software reliability. Using the Eclipse bug dataset, they examined whether specific develop-
ers were more likely to introduce bugs than others. They observed a substantial difference in
bug densities in source code developed by different developers. Anvik ef al. [39] and Jeong
et al. [40] were interested in determining which developers were most suitable to resolve a
bug.

We use the names and the experience of the bug reporters and fixers to predict whether
or not a bug will be re-opened. Although our paper is similar to other previous work in terms
of the factors used, to the best of our knowledge, this paper is the first to empirically analyze
whether or not a bug will be re-opened.

9.2 Work on Bug Report Quality and Triage

Antoniol et al. [49] use decision trees, naive bayes and logistic regression to correctly clas-
sify issues in bug tracking systems as bugs or enhancements. Bettenburg et al. [36] investi-
gate what makes a good bug report. They find that there is a mismatch between information
that developers need (i.e., stack traces, steps to reproduce and test cases) and what users
supply. Aranda and Venolia [44] report a field study of coordination activities related to bug
fixing. They find that data stored in repositories can be incomplete since they do not take
into account social, organizational and technical knowledge. Bettenburg et al. [45] examine
the usefulness of duplicate bug reports and find that duplicate bug reports contain valuable
information that can be combined with other bug reports. Guo et al. [46] chaterize factors

24 Emad Shihab* et al.

that affect whether a bug is fixed in Windows Vista and Windows 7. They find that bugs re-
ported by people with better reputation, and on the same team or within the same geographic
proximity are more likely to get fixed.

Another line of work aims to assist in the bug triaging process. This work focused on
predicting who should be assigned to fix a particular bug [39], the analysis of bug report
reassignments [40] and predicting the severity of bug reports [47]. In contrast to prior work,
in this work we focus on re-opened bugs.

This paper is an extension of an earlier conference version of the paper [41] in which
we conduct our study on two additional Open Source systems, Apache and OpenOffice. We
also contrast the findings from the three projects, in terms of which factors best predict re-
opened bugs and their prediction accuracy, and report our findings. We provide insight about
the way in which the most important factors impact the likelihood of a bug being re-opened
and examine work habits of the commit.

10 Conclusion

Re-opened bugs increase maintenance costs, degrade the overall user-perceived quality of
the software and lead to unnecessary rework by busy practitioners. Therefore, practitioners
are interested in identifying factors that influence the likelihood of a bug being re-opened
to better deal with, and minimize the occurrence of re-opened bugs. In this paper, we used
information extracted from the bug and source code repositories of the Eclipse, Apache and
OpenOffice open source projects to derive 24 different factors, which make up four different
dimensions, to predict whether or not a bug will be re-opened. We performed Top Node
analysis to determine which factors are the best indicators of a bug being re-opened. The
Top Node analysis showed that the factors that best indicate re-opened bugs depends on
the project. The comment text is the most important factor for the Eclipse and OpenOffice
projects, while the last status is the most important one for Apache. In addition, we provide
insight about the way in which the important factors impact the likelihood of a bug being re-
opened. Then, with the derived factors, we can build explainable prediction models that can
achieve 52.1-78.6% precision and 70.5-94.1% recall when predicting whether a bug will
be re-opened. The findings of this work contributes towards better understanding of what
factors impact bug re-openings so they can be carefully examine. Doing so will reduce the
number of re-opened bugs and the maintenance costs associated with them.

Acknowledgments

This research is being conducted as a part of the Next Generation IT Program and Grant-in-
aid for Young Scientists (B), 22700033, 2010 by the Ministry of Education, Culture, Sports,
Science and Technology, Japan. In addition, it is supported in part by research grants from
the Natural Science and Engineering Research Council of Canada.

References

1. L. Erlikh, “Leveraging legacy system dollars for e-business,” IT Professional, vol. 2, no. 3, pp. 17-23,
2000.

2. T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for eclipse,” in PROMISE ’07: Proceed-
ings of the Third International Workshop on Predictor Models in Software Engineering, 2007, p. 9.

Studying Re-opened Bugs in Open Source Software 25

3. M. Cataldo, A. Mockus, J. A. Roberts, and J. D. Herbsleb, “Software dependencies, work dependencies,
and their impact on failures,” IEEE Transactions on Software Engineering, vol. 99, no. 6, pp. 864-878,
2009.

4. M. D’Ambros, M. Lanza, and R. Robbes, “On the relationship between change coupling and software
defects,” Reverse Engineering, Working Conference on, vol. 0, pp. 135-144, 2009.

5. T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, “Predicting fault incidence using software change
history,” IEEE Transactions of Software Engineering, vol. 26, no. 7, pp. 653-661, July 2000.

6. R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis of the efficiency of change metrics and
static code attributes for defect prediction,” in ICSE '08: Proceedings of the 30th international conference
on Software engineering, 2008, pp. 181-190.

7. C.Bird, N. Nagappan, P. Devanbu, H. Gall, and B. Murphy, “Does Distributed Development Affect Soft-
ware Quality? An Empirical Case Study of Windows Vista,” ICSE '09: Proceedings of the 31st Interna-
tional Conference on Software Engineering, pp. 518-528, 2009.

8. N. Nagappan, B. Murphy, and V. Basili, “The influence of organizational structure on software quality:
an empirical case study,” in ICSE '08: Proceedings of the 30th international conference on Software engi-
neering, 2008, pp. 521-530.

9. L. D. Panjer, “Predicting eclipse bug lifetimes,” in MSR ’07: Proceedings of the Fourth International
Workshop on Mining Software Repositories, 2007, p. 29.

10. C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller, “How long will it take to fix this bug?” in MSR
'07: Proceedings of the Fourth International Workshop on Mining Software Repositories, 2007, p. 1.

11. S. Kim and E. J. Whitehead, Jr., “How long did it take to fix bugs?”” in MSR ’06: Proceedings of the 2006
international workshop on Mining software repositories, 2006, pp. 173-174.

12. A. E. Hassan and K. Zhang, “Using decision trees to predict the certification result of a build,” in ASE
'06: Proceedings of the 21st IEEE/ACM International Conference on Automated Software Engineering,
2006, pp. 189-198.

13. J. Sayyad and C. Lethbridge, “Supporting software maintenance by mining software update records,” in
ICSM ’01: Proceedings of the IEEE International Conference on Software Maintenance (ICSM’01), 2001,
p- 22.

14. “Bugzilla,” http://www.bugzilla.org/.

15. “Bugzilla a bug’s life cycle,” https://bugs.eclipse.org/bugs.

16. J. Sliwerski, T. Zimmermann, and A. Zeller, “When do changes induce fixes?” in MSR ’05: Proceedings
of the 2005 international workshop on Mining software repositories, 2005, pp. 1-5.

17. P. Anbalagan and M. Vouk, “’days of the week” effect in predicting the time taken to fix defects,” in
DEFECTS ’09: Proceedings of the 2nd International Workshop on Defects in Large Software Systems,
2009, pp. 29-30.

18. A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies of open source software development:
Apache and mozilla,” ACM Trans. Softw. Eng. Methodol., vol. 11, no. 3, pp. 309-346, 2002.

19. P. Hooimeijer and W. Weimer, “Modeling bug report quality,” in ASE '07: Proceedings of the twenty-
second IEEE/ACM international conference on Automated software engineering, 2007, pp. 34—43.

20. A. E. Hassan, “Predicting faults using the complexity of code changes,” in ICSE "09: Proceedings of the
2009 IEEE 31st International Conference on Software Engineering, 2009, pp. 78-88.

21. J.R. Quinlan, C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc., 1993.

22. W. M. Ibrahim, N. Bettenburg, E. Shihab, B. Adams, and A. E. Hassan, “Should i contribute to this
discussion?” in MSR ’10: Proceedings of the 2010 international working conference on Mining software
repositories, 2010.

23. S. Kim, J. E. James Whitehead, and Y. Zhang, “Classifying software changes: Clean or buggy?” IEEE
Transactions on Software Engineering, vol. 34, pp. 181-196, 2008.

24. B. Efron, “Estimating the error rate of a prediction rule: Improvement on cross-validation,” Journal of
the American Statistical Association, vol. 78, no. 382, pp. 316-331, 1983.

25. W. Shang, Z. M. Jiang, B. Adams, and A. E. Hassan, “Mapreduce as a general framework to support
research in mining software repositories (MSR),” in MSR '09: Proceedings of the Fourth International
Workshop on Mining Software Repositories, 2009, p. 10.

26. T. A. Meyer and B. Whateley, “SpamBayes: Effective open-source, Bayesian based, email classification
system,” Proceedings of the First Conference on Email and Anti-Spam, 2004.

27. P. Graham, “A plan for spam,” 2002.

28. J. S. Sanchez, R. Barandela, A. I. Marqués, and R. Alejo, “Performance evaluation of prototype selec-
tion algorithms for nearest neighbor classification,” in SIBGRAPI ’01: Proceedings of the XIV Brazilian
Symposium on Computer Graphics and Image Processing, 2001, p. 44.

29. R. Barandela, J. S. Sanchez, V. Garcia, and E. Rangel, “Strategies for learning in class imbalance prob-
lems,” Pattern Recognition, vol. 36, no. 3, pp. 849-851, 2003.

26 Emad Shihab* et al.

30. P. Chan and S. J. Stolfo, “Toward scalable learning with non-uniform class and cost distributions: A
case study in credit card fraud detection,” in In Proceedings of the Fourth International Conference on
Knowledge Discovery and Data Mining, 1998, pp. 164-168.

31. J. Sayyad and C. Lethbridge, “Supporting software maintenance by mining software update records,” in
ICSM ’01: Proceedings of the IEEE International Conference on Software Maintenance (ICSM’01), 2001,
p. 22.

32. A. Estabrooks and N. Japkowicz, “A mixture-of-experts framework for learning from imbalanced data
sets,” in IDA ’01: Proceedings of the 4th International Conference on Advances in Intelligent Data Analysis,
2001, pp. 34-43.

33. Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and an application
to boosting,” 1995.

34. 1. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques (Second
Edition). Morgan Kaufmann Publishers Inc., 2005.

35. I. Herraiz, D. M. German, J. M. Gonzalez-Barahona, and G. Robles, “Towards a simplification of the bug
report form in eclipse,” in MSR ’08: Proceedings of the 2008 international working conference on Mining
software repositories, 2008, pp. 145-148.

36. N. Bettenburg, S. Just, A. Schréter, C. Weiss, R. Premraj, and T. Zimmermann, “What makes a good
bug report?” in SIGSOFT ’08/FSE-16: Proceedings of the 16th ACM SIGSOFT International Symposium
on Foundations of software engineering, 2008, pp. 308-318.

37. R. Hewett and P. Kijsanayothin, “On modeling software defect repair time,” Empirical Softw. Engg.,
vol. 14, no. 2, pp. 165-186, 2009.

38. A. Schroter, T. Zimmermann, R. Premraj, and A. Zeller, “If your bug database could talk...” in ISESE
"06: Proceedings of the 5th International Symposium on Empirical Software Engineering. Volume II: Short
Papers and Posters, 2006, pp. 18-20.

39. J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in ICSE’06: Proceedings of the 28th
international conference on Software engineering, 2006, pp. 361-370.

40. G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage with bug tossing graphs,” in ESEC/FSE
'09: Proceedings of the the 7th joint meeting of the European software engineering conference and the
ACM SIGSOFT symposium on The foundations of software engineering, 2009, pp. 111-120.

41. E. Shihab, A. Thara, Y. Kamei, W.M. Ibrahim, M. Ohira, B. Adams, A.E. Hassan, K. Matsumoto, “Pre-
dicting Re-opened Bugs: A Case Study on the Eclipse Project” in WCRE’10: Proceedings of the 17th
Working Conference on Reverse Engineering, 2010, pp. 249-258.

42. 1. Androutsopoulos, J. Koutsias and K. V. Cb and C. D. Spyropoulos, “An Experimental Comparison of
Naive Bayesian and Keyword-Based Anti-Spam Filtering with Personal E-mail Messages” in Proceedings
of the 23rd annual international ACM SIGIR conference on Research and development in information
retrieval, 2000, pp. 160-167.

43. M. Fischer, M. Pinzger and H. Gall, “Populating a Release History Database from Version Control and
Bug Tracking Systems” in ICSM’03: Proceedings of the International Conference on Software Mainte-
nance, 2003, pp. 23-32.

44. J. Aranda and G. Venolia, “The secret life of bugs: Going past the errors and omissions in software
repositories” in ICSE '09: Proceedings of the 31st International Conference on Software Engineering,
2009, pp. 298-308.

45. N. Bettenburg, R. Premraj, T. Zimmermann and S. Kim, “Duplicate bug reports considered harmful
really?” in ICSM ’08: Proceedings of International Conference on Software Maintenance, 2008, pp. 337-
345.

46. P.J. Guo and T. Zimmermann N. Nagappan and B. Murphy, “Characterizing and predicting which bugs
get fixed: an empirical study of Microsoft Windows” in ICSE ’10: Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 1, 2010, pp. 495-504.

47. A.Lamkanfi, S. Demeyer, E. Giger and B. Goethals, “Predicting the severity of a reported bug” in /CSE
"06: Proceedings of the IEEE Working Conference on Mining Software Repositories, 2010, pp. 1- 10.

48. C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov and P. Devanbu, “Fair and Balanced?
Bias in Bug-Fix Datasets” in ESEC/FSE’09: Proceedings of the the Seventh joint meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of Software
Engineering, 2009, pp. 121- 130.

49. G. Antoniol, K. Ayari, M. Di Penta, F. Khomh and Y. Guéhéneuc, “Is it a bug or an enhancement?: a
text-based approach to classify change requests” in CASCON ’08: Proceedings of the 2008 conference of
the center for advanced studies on collaborative research: meeting of minds, 2008, pp. 304-318.

50. J. Eyolfson, L. Tan and P. Lam, “Do Time of Day and Developer Experience Affect Commit Bugginess?”
in MSR ’11: Proceedings of the 8th Working Conference on Mining Software Repositories, 2008, pp. 153-
162.

Studying Re-opened Bugs in Open Source Software 27

51. A. Mockus, “Organizational volatility and its effects on software defects” in FSE '10: Proceedings of
the Eighteenth ACM SIGSOFT International Symposium on Foundations of Software Engineering, 2010,
pp. 117-126.

52. T. Lee, J. Nam and D. Han, S. Kim and H. In, “Micro interaction metrics for defect prediction” in
ESEC/FSE ’11: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering, 2011, pp. 311-321.

53. T. Menzies, A. Dekhtyar, J. Distefano and J. Greenwald, “Problems with Precision: A Response to Com-
ments on Data Mining Static Code Attributes to Learn Defect Predictors” IEEE Transactions on Software
Engineering, vol. 33, pp. 637-640, 2007.

54. E. Shihab, A. Mockus, Y. Kamei, B. Adams and A.E. Hassan, “High-impact defects: a study of breakage
and surprise defects” in ESEC/FSE ’11: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering, 2011, pp. 300-310.

55. T. Zimmermann, N. Nagappan, P. J. Guo and B. Murphy, “Characterizing and Predicting Which Bugs
Get Reopened” in ICSE ’12: Proceedings of the 34th International Conference on Software Engineering,
2012, pp. 495-504.

56. O. Mizuno and H. Hata, “An integrated approach to detect fault-prone modules using complexity and
text feature metrics” in Proceedings of the 2010 international conference on Advances in computer science
and information technology, 2010, pp. 457-568.

57. O.Mizuno, S. Ikami, S. Nakaichi and T. Kikuno, “Spam Filter Based Approach for Finding Fault-Prone
Software Modules” in MSR’07: Proceedings of the Fourth International Workshop on Mining Software
Repositories, 2007, pp. 4-8.

58. E. Michelakis, I. Androutsopoulos, G. Paliouras, G. Sakkis and P. Stamatopoulos, “Filtron: A Learning-
Based Anti-Spam Filter” in PROCEEDINGS OF THE 1ST CONFERENCE ON EMAIL AND ANTI-SPAM,
2004.

