
602
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.3 MARCH 2018

PAPER Special Section on Foundations of Computer Science — Frontiers of Theoretical Computer Science —

Byzantine-Tolerant Gathering of Mobile Agents
in Arbitrary Networks with Authenticated Whiteboards∗

Masashi TSUCHIDA†a), Nonmember, Fukuhito OOSHITA†, Member, and Michiko INOUE†, Senior Member

SUMMARY We propose an algorithm for the gathering problem of mo-
bile agents in arbitrary networks (graphs) with Byzantine agents. Our al-
gorithm can make all correct agents meet at a single node in O(f m) time
(f is the upper bound of the number of Byzantine agents and m is the num-
ber of edges) under the assumption that agents have unique ID and behave
synchronously, each node is equipped with an authenticated whiteboard,
and f is known to agents. Here, the whiteboard is a node memory where
agents can leave information. Since the existing algorithm achieves gath-
ering without a whiteboard in Õ(n9λ) time, where n is the number of nodes
and λ is the length of the longest ID, our algorithm shows an authenticated
whiteboard can significantly reduce the time for the gathering problem in
Byzantine environments.
key words: mobile agent, gathering problem, Byzantine fault

1. Introduction

1.1 Background

Distributed systems, which are composed of multiple com-
puters (nodes) that can communicate with each other, have
become larger in scale recently. This makes it compli-
cated to design distributed systems because developers must
maintain a huge number of nodes and treat massive data
communication among them. As a way to mitigate the dif-
ficulty, (mobile) agents have attracted a lot of attention [2].
Agents are software programs that can autonomously move
from a node to a node and execute various tasks in dis-
tributed systems. In systems with agents, nodes do not need
to communicate with other nodes because agents themselves
can collect and analyze data by moving around the network,
which simplifies design of distributed systems. In addi-
tion, agents can efficiently execute tasks by cooperating with
other agents. Hence many works study algorithms to realize
cooperation among multiple agents.

The gathering problem is a fundamental task to realize
cooperation among multiple agents. The goal of the gath-
ering problem is to make all agents meet at a single node
within a finite time. By achieving gathering, all agents can
communicate with each other at the single node.

Manuscript received March 24, 2017.
Manuscript publicized December 19, 2017.
†The authors are with Nara Institute of Science and Technol-

ogy, Ikoma-shi, 630–0192 Japan.
∗This work was supported by JSPS KAKENHI Grant Numbers

26330084 and 15H00816. The conference version of this work is
published in the 11th International Conference and Workshops on
Algorithms and Computation [1].

a) E-mail: tsuchida.masashi.td8@is.naist.jp
DOI: 10.1587/transinf.2017FCP0008

1.2 Related Works

The gathering problem has been widely studied in litera-
ture [8], [9]. Most studies aim to clarify solvability of the
gathering problem in various environments, and, if it is
solvable, they aim to clarify costs (e.g., time, number of
moves, and memory space) required to achieve gathering.
To do this, many studies have been conducted under vari-
ous environments such that assumptions on synchronization,
anonymity, randomized behavior, topology, and presence of
node memory (whiteboards) are different. Table 1 summa-
rizes some of the results.

For environments such that no whiteboard exists (i.e.,
agents cannot leave any information on nodes), many deter-
ministic algorithms to achieve gathering of two agents have
been proposed. Note that these algorithms can be easily ex-
tended to a case of more than two agents [4]. If agents do not
have unique IDs, they cannnot achieve gathering for some
symmetric graphs. Therefore some works [3]–[5] assume
unique IDs and achieve gathering for any graph. Dessmark
et al. [3] proposed an algorithm that realizes gathering in
Õ(n5

√
τl+n10l) time for any graph, where n is the number of

nodes, l is the length of the smaller ID of agents, and τ is the
difference between activation times of two agents. Kowalski
et al. [4] and Ta-Shma et al. [5] improved the time complex-
ity to Õ(n15+ l3) and Õ(n5l) respectively, which are indepen-
dent of τ. On the other hand, some works [10]–[12] studied
the case that agents have no unique IDs. In this case, gath-
ering is not solvable for some graphs and initial positions
of agents. So the works proposed algorithms only for solv-
able graphs and initial positions. They proposed memory-

Table 1 Gathering of synchronous agents with unique IDs in arbitrary
graphs (n is the number of nodes, l is the length of the smallest ID of agents,
τ is the maximum difference among activation times of agents, m is the
number of edges, λ is the length of the longest ID of agents, f is the upper
bound of the number of Byzantine agents).

Byzantine Whiteboard Time complexity

[3] None None Õ(n5
√
τl + n10l)

[4] None None Õ(n15 + l3)
[5] None None Õ(n5l)

Trivial algorithm None Non-authenticated O(m)
[6] Weak None Õ(n9λ)

Trivial extension of [6] Weak Authenticated O(n5λ)
Proposed algorithm Weak Authenticated O(f m)

[6], [7] Strong None Exponential

Copyright c© 2018 The Institute of Electronics, Information and Communication Engineers

TSUCHIDA et al.: BYZANTINE GATHERING IN NETWORKS
603

efficient gathering algorithms for trees [10], [11] and arbi-
trary graphs [12].

If a whiteboard exists on each node, the time required
for gathering can be significantly reduced. For example,
when agents have unique IDs, they can write their IDs into
whiteboards on their initial nodes. Agents can collect all
the IDs by traversing the network [13], and thus they can
achieve gathering by moving to the initial node of the agent
with the smallest ID. This trivial algorithm achieves gather-
ing in O(m) time, where m is the number of edges. On the
other hand, when agents have no unique IDs, gathering is
not trivial even if they use whiteboards and randomization.
Ooshita et al. [14] clarified the relationship between solv-
ability of randomized gathering and termination detection
in ring networks with whiteboards.

Recently some works [6], [7] have considered gath-
ering in the presence of Byzantine agents, which can be-
have arbitrarily. They modeled agents controlled by crack-
ers or corrupted by software errors as Byzantine agents.
These works assume agents have unique IDs, behave syn-
chronously, and cannot use whiteboards. They consider
two types of Byzantine agents. While a weakly Byzan-
tine agent can make arbitrary behavior except falsifying
its ID, a strongly Byzantine agent can make arbitrary be-
havior including falsifying its ID. Dieudonné et al. [6] pro-
posed algorithms to achieve gathering in arbitrary graphs
against weakly Byzantine agents and strongly Byzantine
agents, both when the number of nodes n is known and
when it is unknown. For weakly Byzantine agents, when
n is known, they proposed an algorithm that achieves gath-
ering in 4n4 · P(n, λ) time, where P(n, l) is the time required
for gathering of two correct agents with unique IDs (l is the
length of the smaller given ID) and λ is the length of the
longest ID among all agents. Since two agents can meet in
P(n, l) = Õ(n5l) time [5], the algorithm achieves gathering
in Õ(n9λ) time. For weakly Byzantine agents, when n is
unknown, they also proposed a polynomial-time algorithm.
However, for strongly Byzantine agents, they proposed only
exponential-time algorithms. Bouchard et al. [7] minimized
the number of correct agents required to achieve gathering
for strongly Byzantine agents, however the time complexity
is still exponential.

1.3 Our Contributions

The purpose of this work is to reduce the time required
for gathering by using a whiteboard on each node. How-
ever, if Byzantine agents can erase all information on white-
boards, correct agents cannot see the information and thus
whiteboards are useless. For this reason, we assume that an
authentication function is available on the system and this
provides authenticated whiteboards. In authenticated white-
boards, each agent is given a dedicated area to write infor-
mation. In other words, each agent can write information to
the dedicated area and cannot write to other areas. Regard-
ing read operations, each agent can read information from
all areas on the whiteboards. In addition, we assume, by

using the authentication function, each agent can write in-
formation with signature that guarantees the writer and the
writing node.

No gathering algorithms have been proposed for en-
vironments with whiteboards in the presence of Byzantine
agents. However, since two agents can meet quickly by us-
ing authenticated whiteboards, the time complexity of an
algorithm in [6] can be reduced. More specifically, each
agent can explore the network in O(m) time by the depth-
first search (DFS), and after the first exploration it continues
to explore the network in O(n) time for each exploration. By
applying this to Dessmark’s algorithm [3], two agents can
meet in P(n, l) = O(nl) time. Thus, for weakly Byzantine
agents, agents can achieve gathering in O(n5λ) time.

In this work, we propose a new algorithm to achieve
gathering in shorter time. Similarly to [6], we assume agents
have unique IDs and behave synchronously. When at most
f weakly Byzantine agents exist and f is known to agents,
our algorithm achieves gathering in O(f m) time by using
authenticated whiteboards. That is, our algorithm signifi-
cantly reduces the time required for gathering by using au-
thenticated whiteboards. To realize this algorithm, we newly
propose a technique to simulate message-passing algorithms
by agents. Our algorithm overcomes difficulty of Byzan-
tine agents by simulating a Byzantine-tolerant consensus al-
gorithm [15]. This technique is general and not limited to
the gathering problem, and hence it can be applied to other
problems of agents.

2. Preliminaries

2.1 A Distributed System and Mobile Agents

A distributed system is modeled by a connected undirected
graph G = (V, E), where V is a set of nodes and E is a set of
edges. The number of nodes is denoted by n = |V |. When
(u, v) ∈ E holds, u and v are adjacent. A set of adjacent nodes
of node v is denoted by Nv = {u|(u, v) ∈ E}. The degree of
node v is defined as d(v) = |Nv|. Each edge is labeled locally
by function λv : {(v, u)|u ∈ Nv} → {1, 2, · · · , d(v)} such that
λv(v, u) � λv(v, w) holds for u � w. We say λv(v, u) is a port
number (or port) of edge (v, u) on node v.

Each node does not have a unique ID. Each node has a
whiteboard where agents can leave information. Each agent
is assigned a dedicated writable area in the whiteboard, and
the agent can write information only to that area. On the
other hand, each agent can read information from all areas
(including areas of other agents) in the whiteboard.

Multiple agents exist in a distributed system. The num-
ber of agents is denoted by k, and a set of agents is denoted
by A = {a1, a2, · · · , ak}. Each agent has a unique ID, and the
length of the ID is O(log k) bits. The ID of agent ai is de-
noted by IDi. Each agent knows neither n nor k. Each agent
can move to an adjacent node by choosing an outgoing port.
That is, when an agent stays at v and moves via port p, it
moves to node w such that p = λv(v, w) holds. When the
agent reaches w, it gets the port number λw(v, w), that is, it

604
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.3 MARCH 2018

finds from which port it came.
Each agent is modeled as a state machine (S, δ). The

first element S is the set of agent states, where each agent
state is determined by values of variables in its memory. The
second element δ is the state transition function that decides
the behavior of an agent. The input of δ is the current agent
state, the content of the whiteboard in the current node, and
the incoming port number. The output of δ is the next agent
state, the next content of the whiteboard, whether the agent
stays or leaves, and the outgoing port number if the agent
leaves.

Agents move in synchronous rounds. That is, the time
required for each correct agent to move to the adjacent node
is identical. In the initial configuration, each agent is in-
active and stays at an arbitrary node. Some agents sponta-
neously become active and start the algorithm. When active
agent ai encounters inactive agent a j at some node v, agent
ai can make a j active. In this case, a j starts the algorithm
before ai executes the algorithm at v.

Each agent ai can sign a value x that guarantees its
ID IDi and its current node v. That is, any agent identi-
fies an ID of the signed agent and whether it is signed at
the current node or not from the signature. We assume ai

can use signature function Signi,v(x) at v and we denote the
output of Signi,v(x) by 〈x〉 : (IDi, v). Each agent ai can
compute Signi,v(x) for value x at v, however cannot compute
Sign j,w(x) for either j � i or w � v. Therefore, it is guaran-
teed that signed value 〈x〉 : (IDi, v) is created by ai at v. For
signed value x = 〈value〉 : (id1, v1) : (id2, v2) : · · · : (id j, v j),
the output of Signi,v(x) is denoted by 〈value〉 : (id1, v1) :
(id2, v2) : · · · : (id j, v j) : (IDi, v). Agents can copy the signed
value to any whiteboard, but cannot modify it while keeping
its validity. In this paper, when an algorithm treats a signed
value, it first checks the validity of signatures and ignores
the signed value if it includes wrong signatures. We omit
this behavior from descriptions, and assume all signatures
of every signed value are valid.

Byzantine agents may exist in a distributed system.
Each Byzantine agent behaves arbitrarily without being syn-
chronized with other agents. However, each Byzantine
agent cannot change its ID. In addition, even if agent ai is
Byzantine, ai cannot compute Sign j,v(x)(j � i) for value x,
and therefore ai cannot create 〈x〉 : (IDj, v) for j � i. We
assume the number of Byzantine agents is at most f < k and
f is known to each agent.

2.2 The Gathering Problem

The gathering problem is a problem to make all correct
agents meet at a single node and declare termination. In the
initial configuration, each agent stays at an arbitrary node
and multiple agents can stay at a single node. If an agent
declares termination, it never works after that.

To evaluate the performance of the algorithm, we con-
sider the time required for all agents to declare termination
after some agent starts the algorithm. We assume the time
required for a correct agent to move to the adjacent node

is one unit time, and we ignore the time required for local
computation.

3. A Byzantine-Tolerant Consensus Algorithm for
Message-Passing Systems [15]

In this section, we explain a Byzantine-tolerant consensus
algorithm in [15] that will be used as building blocks in our
algorithm.

3.1 A Message-Passing System

The consensus algorithm is proposed in a fully-connected
synchronous message-passing system. That is, we assume
that processes form a complete network. We assume the
number of processes is k and denote a set of processes by
P = {p1, p2, . . . , pk}. Each process has a unique ID, and the
ID of pi is denoted by IDi. All processes execute an algo-
rithm in synchronous phases. In the 0-th (or initial) phase,
every process computes locally and sends messages (if any).
In the r-th phase (r > 0), every process receives messages,
computes locally, and sends messages (if any). If process pi

sends a message to process p j in the r-th phase, p j receives
the message at the beginning of (r + 1)-th phase.

Similarly to Sect. 2, each process pi has signature func-
tion Signi(x). The output of Signi(x) is denoted by 〈x〉 : IDi,
and only pi can compute Signi(x).

Some Byzantine processes may exist in the message-
passing system. Byzantine processes can behave arbitrar-
ily. But even if pi is Byzantine, pi cannot compute Signj(x)
(j � i) for value x. We assume the number of Byzantine
processes is at most f < k and f is known to each process.

3.2 A Byzantine-Tolerant Consensus Algorithm

In this subsection, we explain a Byzantine-tolerant consen-
sus algorithm in [15]. In the consensus algorithm, each pro-
cess pi is given at most one value xi as its input. If pi is not
given an input value, we say xi = ⊥. The goal of the con-
sensus algorithm is to agree on the set of all input values.
Of course, some Byzantine processes behave arbitrarily and
forge inconsistent input values. However, by the consensus
algorithm in [15], all correct agents can agree on the same
set X ⊇ Xc, where Xc is a set of all values input by correct
processes.

We show the details of the consensus algorithm. Each
process pi has one variable pi.W to keep a set of input val-
ues, and initially pi.W = ∅ holds. The algorithm consists of
f + 2 phases (from the 0-th phase to (f + 1)-th phase). After
processes terminate, they have the same values in W.

In the 0-th phase, if pi is given an input value xi(� ⊥),
process pi broadcasts Signi(xi) = 〈xi〉 : IDi to all processes
and adds xi to variable pi.W. If pi is not given an input value,
it does not do anything.

In the r-th phase (1 ≤ r ≤ f + 1), pi receives all mes-
sages (or signed values) broadcasted in (r− 1)-th phase. Af-
ter that, for every received message, process pi checks its

TSUCHIDA et al.: BYZANTINE GATHERING IN NETWORKS
605

validity. We say message t = 〈x〉 : id1 : id2 : · · · : idy is
valid if and only if t satisfies all the following conditions.

1. The number y of signatures in t is equal to r.
2. All signatures in t are distinct.
3. Message t does not contain pi’s signature.
4. Value x is not in pi.W.

If message t = 〈x〉 : id1 : id2 : · · · : idy is valid, pi broadcasts
Signi(t) = 〈x〉 : id1 : id2 : · · · : idy : IDi to all processes (if
r ≤ f) and adds x to variable pi.W.

For this algorithm, the following theorem holds.

Theorem 1: [15] After all processes terminate, all the fol-
lowing holds.

1. For any correct process pi, xi ∈ pi.W holds if xi � ⊥.
2. For any two correct processes pi and p j, pi.W = p j.W

holds.

4. Our Algorithm

4.1 Overview

First, we give an overview of our algorithm. When agent
ai starts the algorithm, ai leaves its starting information to a
whiteboard at its initial node v. The starting information in-
cludes IDi, and consequently it can notify other agents that
ai starts at v. After that, ai explores the network and collects
starting information of all agents. If no Byzantine agent ex-
ists, all agents collect the same set of starting information,
and thus all agents can meet at a single node by visiting the
node where the agent with the smallest ID leaves the starting
information.

However, when some Byzantine agent exists, it can
write and delete its starting information repeatedly so that
only a subset of agents see the information. This implies
some agents may obtain a set of starting information differ-
ent from others and thus may fail to achieve gathering.

To overcome this difficulty, our algorithm makes all
correct agents agree on the same set of starting informa-
tion at each node. That is, letting ai.Xv be the set of start-
ing information that ai obtains at node v, we guarantee
that ai.Xv = a j.Xv holds for any two correct agents ai and
a j. In addition, we also guarantee that, if correct agent ac

starts at v, then ai.Xv contains ac’s starting information and
ai.Xw(w � v) does not contain ac’s starting information. We
later explain the details of this procedure.

After that, each agent ai can obtain ai.Xall =
⋃
v∈V ai.Xv,

and clearly ai.Xall = a j.Xall holds for any two correct agents
ai and a j. Consequently each agent ai can compute the same
gathering node based on ai.Xall as follows. First ai removes
all duplicated starting information from ai.Xall because a
Byzantine agent may leave its starting information at sev-
eral nodes. After that, ai finds the starting information of
the agent with the smallest ID and selects the node with the
starting information as the gathering node. By this behavior,
all correct agents can meet at the same gathering node.

In the rest of this subsection, we explain the way to
make all correct agents agree on the same set of starting
information at each node. To realize this, our algorithm
uses a Byzantine-tolerant consensus algorithm in Sect. 3. At
each node, agents simulate the consensus algorithm and then
agree on the same set. However, since the consensus al-
gorithm is proposed for synchronous message-passing sys-
tems, we need additional synchronization mechanism. We
realize this by using the depth-first search (DFS).

4.2 DFS and Round Synchronization

The DFS is a well-known technique to explore a graph. In
the DFS, an agent continues to explore a port as long as it
visits a new node. If the agent visits an already visited node,
it backtracks to the previous node and explores another un-
explored port. If no unexplored port exists, the agent back-
tracks to the previous node again. By repeating this behav-
ior, each agent can visit all nodes in 2m unit times, where
m is the number of edges. Note that, since each agent can
realize the DFS by using only its dedicated area on white-
boards, Byzantine agents cannot disturb the DFS of correct
agents.

To simulate the consensus algorithm, we realize round
synchronization of agents by the DFS. More specifically, we
guarantee that, before some agent ai makes the r-th visit to
v, all agents finish the (r − 1)-th visit to v. To realize this,
each agent ai executes the following procedure in addition
to the DFS.

• If ai finds an inactive agent, ai makes the agent active.
• Every time ai completes a DFS, it waits for the same

time as the exploration time. That is, ai waits for 2m
unit times after each DFS.

We define the r-th exploration period of ai as the period
during which ai executes the r-th DFS exploration, and de-
fine the r-th waiting period of ai as the period during which
ai waits after the r-th DFS exploration. In addition, we de-
fine the r-th round of ai as the period from the beginning
of the r-th exploration period to the end of the r-th waiting
period. As shown in the Fig. 1, before some agent starts the
r-th exploration period, every correct agent completes the
(r − 1)-th exploration period.

4.3 Simulation of Consensus Algorithm

In the following, we explain the way to apply the con-
sensus algorithm in Sect. 3. The goal is to make all cor-
rect agents agree on the same set of starting information at

Fig. 1 Exploration and waiting periods.

606
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.3 MARCH 2018

Fig. 2 Virtual processes.

each node. To achieve this, we assume k virtual processes
v.p1, v.p2, . . . , v.pk exist at each node v and form a message-
passing system in Sect. 3 (See Fig. 2). When agent ai visits
node v, it simulates v.pi’s behavior of the consensus algo-
rithm.

In the consensus algorithm on node v, each virtual pro-
cess decides its input value as follows. If ai starts the al-
gorithm at v, the input of virtual process v.pi is the starting
information of ai. Otherwise, the input of virtual process
v.pi is not given. Thus, after completion of the consensus
algorithm, all virtual processes at v agree on the same set Xv
of starting information. From the property of the consen-
sus algorithm, Xv contains starting information of all correct
agents that start at v.

Next, we explain how to simulate the behaviors of vir-
tual processes. Each agent ai simulates the r-th phase of
virtual process v.pi when ai visits v for the first time in the
exploration period of r-th round. Recall that, by the round
synchronization, when some correct agent ai starts the ex-
ploration period of the r-th round, all correct agents have
already completed the exploration period of the (r − 1)-th
round. This implies, ai can simulate the r-th phase of virtual
process v.pi after all virtual processes complete the (r−1)-th
phase.

To simulate v.pi, ai uses variables v.wb[IDi].T and
v.wb[IDi].W in the whiteboard of node v. We denote vari-
able var in the dedicated area of ai by v.wb[IDi].var. Agent
ai uses v.wb[IDi].T to simulate communications among vir-
tual processes. That is, when v.pi sends some messages
to other processes, ai stores the messages in v.wb[IDi].T
so that other virtual processes read the messages. Here,
to guarantee that the messages are available on only node
v, ai stores Signi,v(t) instead of message t. Agent ai uses
v.wb[IDi].W to memorize variables of v.pi. By using these
variables, ai can simulate the r-th phase of v.pi as follows:

1. By reading from all variables v.wb[id].T (for some id),
ai receives messages that virtual processes have sent to
v.pi in the (r − 1)-th phase.

2. From v.pi’s variables stored in v.wb[IDi].W and mes-
sages received in 1, agent ai simulates local computa-
tion of v.pi’s r-th phase.

3. Agent ai writes updated variables of v.pi to
v.wb[IDi].W. If v.pi sends some messages, ai writes
the messages with signatures to v.wb[IDi].T .

Note that, since only agent ai can update variables
v.wb[IDi].T and v.wb[IDi].W, agent ai simulates the correct
behavior of v.pi if ai is correct. This implies that the sim-
ulated message-passing system contains at most f Byzan-
tine processes. Consequently (correct) virtual processes can

Algorithm 1 main()
1: —Variables in the whiteboard of node v—
2: var v.wb[IDi].T and v.wb[IDi].W
3: var v.wb[IDi].round
4: var v.wb[IDi]. f rom_port
5: var v.wb[IDi].unexplored_port
6: —Variables of agent ai—
7: var ai.node_num = 0 // count the number of nodes
8: var ai.all_edge_num = 0 // count the number of edges
9: var ai.r = 0 // keep the current round

10: var ai.W = ∅ // collect a set of starting informa-
tion

11: ——————————–
12: consensus()
13: for ai.r = 1 to f + 1 do
14: ai.node_num = 1
15: ai.all_edge_num = 0
16: DFS(null)
17: wait ai.all_edge_num × 2
18: end for
19: Delete duplicated candidate from ai.W
20: Move to a node where the minimum candidate in ai.W is written
21: Declare termination

Algorithm 2 DFS(f port)
1: make an inactive agent active if such an agent exists at v
2: if v.wb[IDi].round � ai.r then
3: v.wb[IDi].round = ai.r
4: v.wb[IDi]. f rom_port = f_port
5: if f port = null then
6: v.wb[IDi].unexplored_port = {1, . . . , d(v)}
7: else
8: v.wb[IDi].unexplored_port = {1, . . . , d(v)} \ { f_port}
9: end if

10: ai.node_num + +
11: consensus()
12: if ai.r = f + 1 then
13: for all candidate in v.wb[IDi].W do
14: ai.W = ai.W ∪ {(candidate, ai.node_num)}
15: end for
16: end if
17: while v.wb[IDi].unexplored port � ∅ do
18: x = min(v.wb[IDi].unexplored port)
19: ai.all_edge_num + +
20: v.wb[IDi].unexplored_port =

v.wb[IDi].unexplored_port \ {x}
21: Go to the next node via port x
22: DFS(Port number via which ai enters the current node)
23: end while
24: Backtrack via port v.wb[IDi]. f rom_port. If it is null, do not move.
25: else
26: v.wb[IDi].unexplored_port =

v.wb[IDi].unexplored_port \ { f_port}
27: Backtrack via port f_port. If it is null, do not move.
28: end if

agree on the same set by the consensus algorithm that can
tolerate at most f Byzantine processes. Thus correct agents
can agree on the same set of starting information at v.

4.4 Details

The pseudo-code of the algorithm is given in Algorithms 1,
2, and 3. Simply put, functions main() and DFS() realize

TSUCHIDA et al.: BYZANTINE GATHERING IN NETWORKS
607

Algorithm 3 consensus()
1: if ai.r = 0 then
2: v.wb[IDi].T = {Signi,v(IDi)}
3: v.wb[IDi].W = {IDi}
4: else
5: for all t such that t ∈ v.wb[id].T for some id do
6: if (t is valid) then
7: v.wb[IDi].T = v.wb[IDi].T ∪ {Signi,v(t)}
8: v.wb[IDi].W = v.wb[IDi].W ∪ {value(t)}
9: end if

10: end for
11: end if

the DFS traversal of agent ai. When ai starts the algorithm,
ai executes consensus() once to simulate the 0-th phase of
virtual process v.pi. After that, for each node v, ai calls
consensus() to simulate the r-th phase of v.pi when it vis-
its v for the first time during the r-th round.

4.4.1 Function main()

The main function main() of this algorithm is shown in Al-
gorithm 1. Each agent starts the algorithm at an arbitrary
node v. Recall that, in the initial configuration, every agent
is inactive, and some agent spontaneously becomes active
and starts the algorithm. We denote by v.wb[IDi] the ded-
icated writable area of agent ai in the whiteboard on node
v. We assume that, variables on the whiteboard of all agents
of all nodes initialized by null. Throughout the algorithm,
variable ai.r implies ai executes the ai.r-th round.

When agent ai starts the algorithm, it executes func-
tion consensus() once and writes its starting information to
the whiteboard of the current node v (line 12). After that,
ai executes the consensus algorithm to agree on the set of
starting information. To do this, ai explores the network by
the DFS and executes the consensus algorithm during the
exploration (lines 13 to 18). We explain the details of the
consensus algorithm later. After each exploration, ai waits
for the same time as the exploration time to realize round
synchronization (line 17).

After ai completes the (f + 1)-th round, it obtains a set
of starting information such that all correct agents agree on
the set. By using the information, ai computes the gathering
node and moves there (lines 19 to 20). We explain the details
of this behavior later.

4.4.2 Function DFS()

The DFS function DFS(f port) is shown in Algorithm 2.
This function realizes exploration of all nodes by the DFS.
Function DFS(f port) is defined as a recursive function,
and it is called every time an agent visits a node. The pa-
rameter f port denotes the port number through which an
agent enters the current node. At the beginning of each ex-
ploration period, DFS(null) is called in line 16 of function
main(). When ai visits node v, if an inactive agent a j exists,
ai makes a j active. In this case, agent a j starts the algorithm
before ai executes the algorithm at v. Thus, ai can read in-

formation written by a j at that time.
At first, ai checks v.wb[IDi].round to determine

whether ai visits v for the first time during the current
round. If v.wb[IDi].round � ai.r holds, ai visits v for
the first time. In this case, ai sets v.wb[IDi].round =
ai.r (line 3) and memorizes the incoming port by setting
v.wb[IDi]. f rom port = f port (line 4). It also initializes
v.wb[IDi].unexplored port, which contains an unexplored
port during the current round (lines 5 to 9). Next, ai in-
crements ai.node num (line 10). Note that, since ai visits
nodes in the same order for every round, ai can use this
value as a unique ID of v for ai. Actually ai later uses this
value to recognize the gathering point. After that, agent ai

executes consensus() to simulate the ai.r-th phase of the
consensus algorithm at node v. In lines 12 to 16, ai col-
lects the results of the consensus algorithm in the (f + 1)-
th round. After executing consensus(), agent ai explores
unexplored port in v.wb[IDi].unexplored port (lines 17 to
23). Agent ai recursively calls DFS(p) where p is the
port number through which ai enters the next node. Agent
ai also counts the number of edges by ai.all edge num,
which is used to calculate the duration of the waiting pe-
riod. If no unexplored port exists, ai backtracks to the
previous node via port v.wb[IDi]. f rom port (line 24). If
v.wb[IDi]. f rom port = null holds, ai completes the explo-
ration period of the current round. If v.wb[IDi].round = ai.r
holds, ai has already visited v. In this case, ai just updates
v.wb[IDi].unexplored port and backtracks to the previous
node via port f port (lines 26 and 27).

4.4.3 Function consensus()

Function consensus() in Algorithm 3 simulates the con-
sensus algorithm in Sect. 3 by following the strategy in
Sect. 4.3. In the 0-th round, ai simulates the 0-th phase of
the consensus algorithm. That is, ai makes virtual process
v.pi broadcast a signed value Signi,v(xi) if v.pi is given an in-
put value xi. Recall that v.pi is given starting information of
ai as an input if ai starts at v. This means the simulation of
the 0-th phase is required only for the initial node of ai. In
other words, ai completes the 0-th round without exploring
the network. Specifically, ai adds Signi,v(IDi) to v.wb[IDi].T
as its stating information, and adds IDi to v.wb[IDi].W (lines
1 to 3).

In the r-th round (lines 4 to 11), ai simulates the r-th
phase of the consensus algorithm. To realize this, for every
node v, ai simulates the r-th phase of v.pi when it visits v
for the first time during the round. Specifically, for every
message received by v.pi, ai checks its validity. Note that
messages received by v.pi are stored in

⋃
a j∈A v.wb[IDj].T .

We say message t = 〈x〉 : (id1, v1) : (id2, v2) : · · · : (idy, vy)
is valid if and only if t satisfies all the following conditions,
where we define value(t) = x and initial(t) = id1.

1. The number y of signatures in t is equal to r.
2. All signatures in t are distinct.
3. Message t does not contain ai’s signature.

608
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.3 MARCH 2018

4. value(t) is not in v.wb[IDi].W.
5. value(t) = initial(t) holds.
6. All the y signatures are given at the current node.

Conditions 1–4 are identical to conditions in Sect. 3. Con-
dition 5 is introduced to assure that value IDi in messages
is originated from ai. Note that, since correct agent ai can
initially add 〈IDi〉 : (IDi, v) to v.wb[IDi].T , every message
t forwarded by correct agents satisfies value(t) = initial(t).
This implies condition 5 does not discard messages orig-
inated from and forwarded by correct agents, and conse-
quently does not influence the simulation of correct pro-
cesses. Condition 6 is introduced to assure that message
t is generated at the current node. If t is valid, ai adds
Signi,v(t) to v.wb[IDi].T to simulate broadcast of Signi,v(t)
by virtual process v.pi. At the same time, ai adds value(t) to
v.wb[IDi].W.

In the (f + 1)-th round, all agents complete simu-
lating the consensus algorithm. That is, v.wb[IDi].W =

v.wb[IDj].W holds for any two correct agents ai and a j. Dur-
ing the (f + 1)-th round, ai collects contents in v.wb[IDi].W
for all v by variable ai.W (lines 12 to 16 of DFS()). Recall
that v.wb[IDi].W includes IDs of agents that start at v. When
ai memorizes candidate ∈ v.wb[IDi].W, ai memorizes it as
a pair (candidate, ai.node num) to recognize the node later.

After that, ai computes the gathering node from the col-
lected information in ai.W (lines 17 to 18 in main()). Since
IDs of Byzantine agents may appear more than once in ai.W,
ai deletes all pairs from ai.W such that candidate is dupli-
cated. Then ai finds the pair such that candidate is the small-
est, and it selects the node of the pair as the gathering node.

Note that the pair includes candidate and ai.node num.
Hence ai can move to the gathering node by executing the
DFS until ai.node num becomes the same number as the
pair (this procedure is omitted in main()).

5. Correctness of Our Algorithm

Lemma 1: For any two correct agents ai and a j, before ai

starts the exploration period of the r-th round, a j completes
the waiting period of the (r − 1)-th round.

proof : Immediately after correct agent ai becomes active,
ai starts the DFS and explores all nodes. During the explo-
ration, if ai encounters an inactive agent, ai makes it active.
For this reason, all agents become active before ai completes
the exploration period of the first round.

In addition, every correct agent requires exactly 2m
unit times to complete the exploration period or the wait-
ing period. Thus, every correct agent a j completes the ex-
ploration period of the first round before ai starts the ex-
ploration period of the second round. Similarly, for r > 2,
every correct agent a j completes the exploration period of
the (r− 1)-th round before ai starts the exploration period of
the r-th round.

Lemma 2: For any two correct agents ai and a j, there ex-
ists exactly one node v such that IDi ∈ v.wb[IDj].W holds.

proof : First, we show that there exists at least one node v
such that IDi ∈ v.wb[IDj].W holds. Let v be the initial node
of ai. Then, in the 0-th round, ai adds its starting informa-
tion Signi,v(IDi) to v.wb[IDi].T and adds IDi to v.wb[IDi].W.
Clearly, if ai = a j holds, IDi ∈ v.wb[IDj].W holds. If
ai � a j holds, when a j visits v in the first round, a j reads
t = Signi,v(IDi) from v.wb[IDi].T . Then, since t is valid,
a j adds IDi to v.wb[IDj].W. Therefore, IDi ∈ v.wb[IDj].W
holds.

Next, we show by contradiction that there exists at most
one node v such that IDi ∈ v.wb[IDj].W holds. For contra-
diction, we assume that, for some distinct nodes v1 and v2,
both IDi ∈ v1.wb[IDj].W and IDi ∈ v2.wb[IDj].W hold.

From the first part of the proof, when v is the initial
node of ai, IDi ∈ v.wb[IDj].W holds. Without loss of gener-
ality, we assume v1 is the initial node of ai. Clearly, v2 is not
the initial node of ai. To satisfy IDi ∈ v2.wb[IDj].W, a j must
read some valid message t = 〈IDi〉 : (id1, v2) : (id2, v2) : · · · :
(idr, v2) from v2.wb[IDx].T for some ax and add value(t) to
v2.wb[IDj].W. Since message t is valid, value(t) = initial(t)
holds and thus IDi = id1 holds. However, since v2 is not
the initial node of ai, ai never leaves Signi,v(IDi) = 〈IDi〉 :
(IDi, v2) in the whiteboard on v2. This implies no agent can
create message t = 〈IDi〉 : (IDi, v2) : (id2, v2) : · · · : (idr, v2)
on v2. This is a contradiction. Therefore, the lemma holds.

Lemma 3: After all correct agents complete the (f + 1)-th
round, for any node v and any two correct agents ai and a j,
v.wb[IDi].W = v.wb[IDj].W holds.

proof : In the r-th round, each correct agent ai simulates
the r-th phase of the virtual process v.pi for every node v.
That is, v.pi reads every message t ∈ v.wb[IDx].T sent by
v.px in the previous phase, and if the message is valid, v.pi

sends message Signi,v(t) (i.e., writes it to v.wb[IDi].T) and
adds value(t) to v.wb[IDi].W. Note that we add conditions
5 and 6 to the validity conditions of the original consen-
sus algorithm. Condition 6 assures that every valid mes-
sage is generated in the consensus algorithm at the current
node v. This implies every message generated at other nodes
does not influence the consensus algorithm at v. Condition 5
does not influence the simulation at v because every message
originated from and forwarded by correct processes always
satisfies condition 5. Condition 6 also does not influence the
simulation at v because every message generated at v satis-
fies condition 6. This implies these two additional condi-
tions do not influence the simulation at v. In addition, from
Lemma 1, for any correct agent ai, virtual process v.pi can
receive every message sent in the previous phase. Conse-
quently, virtual processes can correctly execute the consen-
sus algorithm in Sect. 3. Therefore, from Theorem 1, we
have the lemma.

Lemma 4: All correct agents obtain the same gathering
node.

proof : We consider two correct agents ai and a j. Each
agent ai collects all starting information from every node
during the (f + 1)-th round. That is, for every node v

TSUCHIDA et al.: BYZANTINE GATHERING IN NETWORKS
609

and every candidate ∈ v.wb[IDi].W, ai adds a 2-tuple
(candidate, ai.node num) to variable ai.W (ai.node num is
used to identify v). Agent aj also collects such information
in a j.W. From Lemma 3, v.wb[IDi].W = v.wb[IDj].W holds
for every node v. Therefore, a set of candidate contained in
ai.W and a j.W is identical.

To obtain the gathering node, each agent ai deletes ele-
ments with duplicated candidate from ai.W, and then com-
putes the node where the smallest candidate in ai.W is writ-
ten. From Lemma 2, for correct agent ax, there exists an
exactly one node v such that IDx ∈ v.wb[IDi].W. Con-
sequently, there exists at least one element in ai.W such
that candidate is unique. Therefore, agent ai can computes
the node with the smallest candidate as the gathering node.
Since a j.W contains the same set of candidate as ai.W, agent
a j can obtain the same node as the gathering node.

Theorem 2: Our algorithm solves the gathering problem
in O(f m) unit times.

proof : From Lemma 4, all correct agents obtain the same
gathering node. Therefore, all correct agents can meet at a
single node and declare termination.

In this algorithm, each agent requires (f + 1) rounds to
execute the consensus algorithm. Each round requires 2m
unit times for the exploration period, and requires 2m unit
times for the waiting period. After the (f +1)-th round, each
agent requires at most 2m unit times to go to the gathering
node. Thus, our algorithm requires (2m+2m)×(f+1)+2m =
O(f m) unit times.

6. Conclusion

In this paper, we proposed a Byzantine-tolerant gathering
algorithm for mobile agents in synchronous networks with
authenticated whiteboards. In our algorithm, each agent first
writes its starting information to the initial node, and then
each agent executes a consensus algorithm so that every cor-
rect agent agrees on the same set of starting information.
Once correct agents obtain the set, they can calculate the
same gathering node. By this algorithm, all correct agents
can achieve gathering in O(f m) time. where f is the up-
per bound of the number of Byzantine agents and m is the
number of edges. An important open problem is to develop
a Byzantine-tolerant gathering algorithm in asynchronous
networks with authenticated whiteboards. Since the consen-
sus algorithm is proven to be unsolvable in asynchronous
networks, we must consider other approaches.

References

[1] M. Tsuchida, F. Ooshita, and M. Inoue, “Byzantine gathering in net-
works with authenticated whiteboards,” The 11th International Con-
ference and Workshops on Algorithms and Computation, 2017.

[2] J. Cao and S.K. Das, Mobile agents in networking and distributed
computing, Wiley-Interscience, 2012.

[3] A. Dessmark, P. Fraigniaud, D.R. Kowalski, and A. Pelc, “Determin-
istic rendezvous in graphs,” Algorithmica, vol.46, no.1, pp.69–96,
2006.

[4] D.R. Kowalski and A. Malinowski, “How to meet in anonymous
network,” International Colloquium on Structural Information and
Communication Complexity, Lecture Notes in Computer Science,
vol.4056, pp.44–58, Springer, Berlin, Heidelberg, 2006.

[5] A. Ta-Shma and U. Zwick, “Deterministic rendezvous, treasure
hunts, and strongly universal exploration sequences,” ACM Trans.
Algorithms (TALG), vol.10, no.3, Article No.12, 2014.

[6] Y. Dieudonné, A. Pelc, and D. Peleg, “Gathering despite mischief,”
ACM Trans. Algorithms (TALG), vol.11, no.1, Article No.1, 2014.

[7] S. Bouchard, Y. Dieudonné, and B. Ducourthial, “Byzantine gather-
ing in networks,” Distributed Computing, vol.29, no.6, pp.435–457,
2016.

[8] E. Kranakis, D. Krizanc, and E. Markou, “The mobile agent ren-
dezvous problem in the ring,” Synthesis Lectures on Distributed
Computing Theory, vol.1, no.1, pp.1–122, 2010.

[9] A. Pelc, “Deterministic rendezvous in networks: A comprehensive
survey,” Networks, vol.59, no.3, pp.331–347, 2012.

[10] J. Czyzowicz, A. Kosowski, and A. Pelc, “Time versus space
trade-offs for rendezvous in trees,” Distributed Computing, vol.27,
no.2, pp.95–109, 2014.

[11] P. Fraigniaud and A. Pelc, “Delays induce an exponential mem-
ory gap for rendezvous in trees,” ACM Trans. Algorithms (TALG),
vol.9, no.2, Article No.17, 2013.

[12] J. Czyzowicz, A. Kosowski, and A. Pelc, “How to meet when you
forget: Log-space rendezvous in arbitrary graphs,” Distributed Com-
puting, vol.25, no.2, pp.165–178, 2012.

[13] Y. Sudo, D. Baba, J. Nakamura, F. Ooshita, H. Kakugawa, and
T. Masuzawa, “A single agent exploration in unknown undirected
graphs with whiteboards,” IEICE Trans. Fundamentals, vol.E98-A,
no.10, pp.2117–2128, Oct. 2015.

[14] F. Ooshita, S. Kawai, H. Kakugawa, and T. Masuzawa, “Ran-
domized gathering of mobile agents in anonymous unidirectional
ring networks,” IEEE Trans. Parallel Distrib. Syst., vol.25, no.5,
pp.1289–1296, 2014.

[15] D. Dolev and H.R. Strong, “Authenticated algorithms for
Byzantine agreement,” SIAM Journal on Computing, vol.12, no.4,
pp.656–666, 1983.

Masashi Tsuchida received the M.S. degree
in Nara Institute of Science and Technology in
2017. He is now Ph.D. course in Nara Institute
of Scienced and Technology.

Fukuhito Ooshita received the M.E. and
D.I. degrees in computer science from Osaka
University in 2002 and 2006. He had been an
assistant professor in the Graduate School of
Information Science and Technology at Osaka
University during 2003–2015. He is now an as-
sociate professor of Graduate School of Infor-
mation Science, Nara Institute of Science and
Technology (NAIST). His research interests in-
clude parallel algorithms and distributed algo-
rithms. He is a member of ACM, IEEE, and

IPSJ.

http://dx.doi.org/10.1007/s00453-006-0074-2
http://dx.doi.org/10.1007/11780823_5
http://dx.doi.org/10.1145/2601068
http://dx.doi.org/10.1145/2629656
http://dx.doi.org/10.1007/s00446-016-0276-9
http://dx.doi.org/10.2200/s00278ed1v01y201004dct001
http://dx.doi.org/10.1002/net.21453
http://dx.doi.org/10.1007/s00446-013-0201-4
http://dx.doi.org/10.1145/2438645.2438649
http://dx.doi.org/10.1007/s00446-011-0141-9
http://dx.doi.org/10.1587/transfun.E98.A.2117
http://dx.doi.org/10.1109/tpds.2013.259
http://dx.doi.org/10.1137/0212045

610
IEICE TRANS. INF. & SYST., VOL.E101–D, NO.3 MARCH 2018

Michiko Inoue received her B.E., M.E, and
Ph.D. degrees in computer science from Osaka
University in 1987, 1989, and 1995 respectively.
She worked at Fujitsu Laboratories Ltd. from
1989 to 1991. Currently, she is a Professor of
Graduate School of Information Science, Nara
Institute of Science and Technology (NAIST), a
Program Officer of Japan Society for the Promo-
tion of Science (JSPS) Research Center for Sci-
ence Systems and a member of Science Coun-
cil of Japan. Her research interests include dis-

tributed algorithms, parallel algorithms, graph theory and design and test of
digital systems. She is a senior member of IEEE and the Institute of Elec-
tronics, Information and Communication Engineers (IEICE), a member of
the Information Processing Society of Japan (IPSJ) and Japanese Society
for Artificial Intelligence.

