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Abstract—Determining loss minimum configuration in a distri-
bution network is a hard discrete optimization problem involving
many variables. Since more and more dispersed generators are in-
stalled on the demand side of power systems and they are recon-
figured frequently, developing automatic approaches is indispens-
able for effectively managing a large-scale distribution network.
Existing fast methods employ local updates that gradually improve
the loss to solve such an optimization problem. However, they even-
tually get stuck at local minima, resulting in arbitrarily poor re-
sults. In contrast, this paper presents a novel optimization method
that provides an error bound on the solution quality. Thus, the ob-
tained solution quality can be evaluated in comparison to the global
optimal solution. Instead of using local updates, we construct a
highly compressed search space using a binary decision diagram
and reduce the optimization problem to a shortest path-finding
problem. Our method was shown to be not only accurate but also
remarkably efficient; optimization of a large-scale model network
with 468 switches was solved in three hours with 1.56% relative
error bound.

Index Terms—Distribution network, loss minimization, network
reconfiguration, zero-suppressed binary decision diagram.

I. INTRODUCTION

D ISTRIBUTION networks consist of several feeders and
many switches. They are operated to minimize resistive

line losses while satisfying operational constraints on line ca-
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Fig. 1. Distribution network. (a) By configuring switches appropriately, sec-
tions are divided to several partitions, each of which is connected to a feeding
point. (b) Removing feeding points and first junctions, the network is divided
to components.

pacity and voltage drop. As more and more dispersed generators
such as fuel cells and solar cells are installed, the reconfigura-
tion of switches would be more frequently needed to avoid vio-
lating constraints and to preserve resistive loss within an admis-
sible range. Fig. 1 a shows a typical distribution network. Recon-
figuration amounts to optimizing the configuration of switches
such that the power loss is minimized. Since each switch config-
uration is represented as a binary variable (open/closed), this task
is formulated as a discrete optimization problem with a set of bi-
nary variables.As a result of optimization, the network is divided
to several partitions, where a partition represents a set of sec-
tions connected to a feeding point through closed switches. Us-
able configurations must satisfy both topological and electrical
constraints. The topological constraint ensures that each section
is connected to only one feeding point, and there is no loop in any
partition. The electrical constraint keeps line current and voltage
drop within admissible ranges. The lossminimization is a highly
complex combinatorial, nondifferentiable, and nonconvex opti-
mization problem with a large number of variables [1], [2].
Several optimization methods have been recently presented

to solve this problem. Most of them rely on approximate tech-
niques such as heuristics [1], [3]–[5] and metaheuristics [6]–[9].
Although these methods scale well with large distribution net-
works, they provide no guarantee on the quality of the solution.
That is, because the solution can be arbitrarily worse than the op-
timal solution, these approaches may fail to reduce the running
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Fig. 2. Binary decision diagram (BDD) corresponding to a set of bit vectors
satisfying the constraints (2). Each bit vector is represented as a path from the
root node to the terminal. The nodes in a BDD are organized in several levels.
Solid and dotted arrows from level to indicate and , re-
spectively. For example, the path that consists of dotted, solid, solid, and dotted
arrows in this order corresponds to and its cost is .
Note that this is the shortest path from the root to the terminal in the BDD.

cost for managing the network. Although the brute force method
presented in [10] guarantees optimality, its scalability is cur-
rently limited to a network with at most one hundred switches.
In contrast, practical networks usually include several hundred
switches [1], [11], [12].
Heuristics and metaheuristics employ local update rules of

configuration that gradually lead to a smaller loss. Since the
search space is discrete and non-convex, they eventually get
stuck at local minima. The local minima problem can be solved,
however, by organizing the search space in an appropriate way
as in our approach. Consider the following example problem
with four binary variables,

(1)

subject to the constraints

(2)

where denotes the Hamming distance. The optimal
solution is achieved at with optimal value , but it
also has local minima at and with sub-
optimal value . This problem can be reduced to a simple
shortest path-finding problem by means of a binary decision di-
agram (BDD) [13], which is a compact data structure that rep-
resents a set of bit vectors. The BDD corresponding to the con-
straints is shown in Fig. 2, where each bit vector satisfying the
constraints is represented as a path from the root node to the ter-
minal node. The nodes in a BDD are organized in several levels.
Solid and dotted arrows from level to indicate and

, respectively. The main advantage of BDD is that, in cer-
tain settings, the BDD size grows only polynomially even if the
number of represented bit vectors grows exponentially [13]. Let
us assign the coefficients in the objective function (1) to solid
arrows as edge weights. Zero weights are assigned to dotted ar-
rows. Now, the optimal solution corresponds to the shortest path
from the root node to the terminal and can easily be obtained by
invoking search algorithms such as Dijkstra’s algorithm.
If BDD is used to solve the loss minimization problem, we

must overcome the following two difficulties. First, BDDs rep-
resenting topological and electrical constraints have to be con-
structed efficiently. We present novel algorithms for BDD con-
struction specifically designed for electrical networks. Second,
since the power loss is not a linear function, more measures
are necessary to reduce it to the shortest path-finding problem.
When the network is small enough and has only one feeding
point, the power loss can be computed for every path in the

BDD and thus the global optimal solution is attained. We will
demonstrate in Section V that this simple approach is actually
feasible for the 32-bus network introduced by Baran and Wu
[4]. For larger networks, however, the distribution network is
divided into several components [Fig. 1(b)], where the total loss
is tightly approximated as the sum of those of individual compo-
nents. The BDD is transformed into a component-level diagram
by aggregating binary variables into categorical variables. No-
tably, an error bound of our solution can be derived, thus one
can always evaluate the quality of our solution in comparison
to the global optimal solution. So far, such a guarantee is not
available in the other methods except brute-force.
The construction of BDD is performed under a full-blown

support of a collection of algorithms implemented in BDD soft-
ware packages such as CUDD1 and Buddy2. They usually sup-
port reduction, reordering of variables and all kinds of binary
operations. They are highly optimized via extensive use of cache
to prevent unnecessary computation.
In experiments, we use a novel large-scale model network3

developed in 2006 by Fukui University and Tokyo Electric
Power Company (TEPCO) [14]. It closely models a typical
Japanese distribution network including 72 feeding points and
468 switches. The network consists of residential, industrial,
and commercial areas. Each section has a different time-course
load profile that is deliberately determined by expert curators.
To our best knowledge, there are no benchmark networks
that compare to this size and specificity. For example, the
benchmark networks by IEEE power and energy society4

have at most 12 switches, and those by North Dakota State
University5 have at most 27 switches. Our experimental results
showed remarkable efficiency and reliability of the algorithm;
by representing 1.5 feasible configurations as a compact
BDD, the solution was obtained in less than three hours using
one CPU core and the relative error bound was about 1–2%.
It implies that our novel BDD-based approach to global opti-
mization can be successfully applied to solve general complex
problems.
The rest of this paper is organized as follows. Section II intro-

duces the loss minimization problem. Section III describes al-
gorithms to construct BDDs for topological and electrical con-
straints. Section IV explains the variable aggregation method
for reducing the problem to a shortest path-finding problem.
Section V reports our experimental results and Section VI con-
cludes the paper.

II. LOSS MINIMIZATION PROBLEM

This section formulates the loss minimization problem. The
distribution network is an undirected graph where vertices are
either feeding points, switches or junctions and links are sec-
tions. A junction has more than two links attached but it has no
switching function. Computing the power loss with respect to
a given switch configuration is not a trivial problem, because it
requires power flow calculation [15]. Thus, most loss minimiza-
tion studies (e.g., [4], [7], [16]) employ a simplified flow model

1http://vlsi.colorado.edu/~fabio/CUDD/
2http://buddy.sourceforge.net/manual/main.html
3Available from http://www.hayashilab.sci.waseda.ac.jp/RIANT/riant_test_

feeder.html
4http://www.ewh.ieee.org/soc/pes/dsacom/testfeeders/
5http://venus.ece.ndsu.nodak.edu/~kavasseri/reds.html
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Fig. 3. An example of the power flow model of [7]. Given a switch configura-
tion , it determines downstream sections as shown in
the figure. Line current is also given by (3). Although section load is
assumed as uniformly distributed in the model, it is shown as point load in the
figure for readability.

which allows to compute the power loss with relative ease. In
this paper, we use the model by Nara et al. [7], where each sec-
tion has load current6 , impedance and re-
sistance . Section load is assumed as uniformly distributed on
a section.
The configuration of switches is described as an -dimen-

sional binary vector , where closed switches are
denoted as one. Given feeding points, a valid configuration
of switches divides the set of sections into partitions, each of
which is connected exclusively to a feeding point. Additionally,
each partition must be loop-free. Once the partition is fixed, the
set of upstream sections is defined as those on the path
from the feeding point to section (including ). Similarly, the
set of downstream sections is defined as those farther
from section (excluding ). According to the model by Nara et
al. [7], the line current at section is determined as the sum
of the downstream load current,

(3)

We give an example of the line current in Fig. 3. The voltage
drop at the end of section is described as

(4)

Finally, the loss minimization problem is formulated as follows,

(5)

(6)

(7)

Constraints (6) and (7) will be referred to as the topological con-
straint and the electrical constraint later on. The electrical con-
straint ensures that the current and voltage are within admissible
limits everywhere.

6If the load is represented as power, the load currect can be estimated by
dividing it by the sending line voltage.

Fig. 4. Dual representation of the distribution network in Fig. 1. Basically, each
switch corresponds to an edge and a section is represented as a node. Exception-
ally, a set of sections connected with a junction is also represented as a node. A
feeding point and adjacent sections are represented as a feeding node.

III. BINARY DECISION DIAGRAMS

ABDD, such as depicted in Fig. 2, is a loopless directed graph
with one root node and one terminal node. Each non-terminal
node has solid and dotted arrows called one-arc and zero-arc,
respectively. A path from the root to the terminal corresponds
to a bit vector. An advantage of BDD is that binary operations
for two BDDs, such as union and intersection, can be performed
without transforming the BDDs into any other data structures.
For example, given two BDDs representing
and , a new BDD representing

can be constructed efficiently and directly
by the intersection operation [13].
As mentioned in Section I, we reduce the optimization

problem to the shortest path-finding problem. As the first
step, all bit vectors satisfying the topological constraint are
represented as a BDD. All bit vectors satisfying each electrical
constraint are also represented as a BDD. The final BDD that
contains all bit vectors satisfying all constraints is created via
taking an intersection of multiple BDDs using a BDD package.
This section employs a dual representation of the distribution

network (Fig. 4). Basically, a switch corresponds to an edge and
a section is represented as a node. A set of sections connected
by a junction is also represented as a node. A feeding point with
all neighboring sections is described as a special node called
feeding node. If a switch is open, the corresponding edge is re-
moved. Once a configuration of switches is defined, its corre-
sponding subgraph of the original graph is uniquely determined.
Since each partition has to be a tree rooted on the feeding node,
the topological constraint requires the subgraph to be a rooted
spanning forest.

A. Topological Constraint

Let us consider a small graph with two feeding nodes such as
depicted upper left in Fig. 5, and assume the order of edges is
determined as shown. All rooted spanning forests of this graph
can be represented with the inclusion-exclusion tree in Fig. 5.
One-arcs at level indicate that the -th edge is included in the
subgraph and zero-arcs indicate exclusion. By looking at the
conditions of the edges on a path from the root of a leaf, its
corresponding subgraph is determined. The inclusion-exclusion
tree is constructed level-by-level. Given the subtree up to level

, all candidate subgraphs for level are created and those
with paths between feeding nodes (i.e., shortcuts), loops or un-
reachable nodes are removed.
Let denote the Boolean function that returns one if

switch configuration leads to a rooted spanning forest and zero
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Fig. 5. Inclusion-exclusion tree representing all rooted spanning forests. The solid line (1-arc) at the -th level indicates the -th edge is included and the dotted
line (0-arc) indicates exclusion. The leaf nodes correspond to all rooted spanning forests of the graph shown above.

otherwise. The inclusion-exclusion tree is an uncompressed
representation of all configurations satisfying . This
tree can be compressed to the form of a BDD by merging tree
nodes with “equivalent” downstream subtrees into one node.
For example, the three nodes highlighted with arrows in Fig. 5
are equivalent and can thus be merged. Internal nodes and
corresponding to decision paths and ,

respectively, are defined to be equivalent iff

This indicates that and has the the same set of downstream
decisions after taking paths and , respec-
tively.
Due to excessive time and memory cost, it is not desirable to

construct the whole tree before compression. Thus we need to
merge the tree nodes on the fly when new candidates are cre-
ated at each level. Our approach identifies equivalent subgraphs
by looking at the color profile of “frontier nodes.” At the -th
level, edges are not yet processed. Frontier nodes refer
to the nodes adjacent to at least one unprocessed edge. As shown
in Fig. 5, the nodes connected to a feeding node via processed
edges are distinguished by color. The nodes not yet connected
to any feeding node are left uncolored. Interestingly, two sub-
graphs with the same set of frontier nodes are equivalent if they
have the same color profile. When candidate subgraphs for a
new level are created, those with shortcuts, loops and unreach-
able nodes are removed. This removal decision depends only
on the color profile of frontier nodes, hence the whole down-
stream subtree depends only on the profile. By merging equiva-
lent nodes on the fly, a compact BDD is produced in a top-down
manner with remarkable efficiency.
Historically, Coudert was the first to construct a BDD rep-

resenting substructures of a graph [17]. This algorithm was in-
efficient, because it employed a bottom-up procedure of aggre-
gating small BDDs by binary operations. Recently, Knuth pre-
sented a revolutionary top-down path enumeration algorithm,
Simpath, based on a similar frontier property [18]. Our algo-
rithm can be seen as an extension of Simpath for rooted span-
ning forests. To our best knowledge, this extension is novel and
plays an indispensable role for the success of loss minimization.

B. Electrical Constraints

The electrical constraint with respect to a feeding point spec-
ifies the limit on line current at the feeding point and voltage
drop at the leaves of the corresponding partition. These values
depend only on the corresponding partition and are irrelevant
to the other partitions. Due to this property, a BDD representing
each electrical constraint typically includes only a small number
of variables.
In constructing the BDD for a feeding point, edges (i.e.,

switches) are ordered in a breadth-first manner starting from
the corresponding feeding node [19]. Then, we start to construct
an inclusion-exclusion tree. Given the tree up to the -th
level, candidates for new nodes are created. The candidates vi-
olating any electrical constraint are removed at this point. This
procedure is valid due to the monotonicity of line current and
voltage drop; they only increase when the partition expands.
After the whole tree is generated, it is reduced to a BDD using
the BDD package.

IV. VARIABLE AGGREGATION

Since the resistive loss is a nonlinear function of the switch
configuration , we need to transform the final BDD into the
search space by aggregating the variables in a component of the
distribution network. As shown in Fig. 1(b), network compo-
nents are defined as the connected components of the distribu-
tion network after removing the root sections (i.e., sections adja-
cent to feeding points) and the first junctions (i.e., junctions ad-
jacent to root sections). If the number of components is , each
switch is assigned to one of the subsets depending
on the component it belongs to. For the example network of
Fig. 1(b), , ,

. Then the configuration vector is divided in
subvectors such that consists of the variables cor-
responding to the switches in . In addition, let us represent
non-root sections of each component as , and the set
of root sections as . Using this notation, the objective function
(5) is rewritten as

(8)
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Fig. 6. Variable aggregation. Boundary nodes are shown as bold circles. In the
component-level diagram, two nodes are connected if there is a path between
them in the BDD.

Importantly, the loss at a non-root section depends only on the
configuration of switches in its component, because the line cur-
rent at a section depends only on downstream sections of that
section.

A. Approximation

Minimizing is extremely difficult due to global depen-
dencies of at root sections. However, when root sections are
ignored as

the global optimal solution minimizing under the topo-
logical and electric constraints can be obtained by the following
procedure of variable aggregation. Let us define the aggregated
categorical variable for as . Although
might take different values in the worst scenario, the

domain is much smaller in most cases due to topological and
electric constraints.
A component-level diagram is created as follows. First, the

BDD is rearranged such that the variables in a component are
aligned next to each other. The set of nodes located at the top
level in each component is called boundary nodes (Fig. 6). As
the first step, only the boundary nodes are copied to the compo-
nent-level diagram. Edges between these nodes are then created
by enumerating all BDD paths between the boundary nodes.
More specifically, if there is a path in BDD, an edge is created
in the component-level diagram. A BDD path from component
to specifies a configuration of switches for in the -th
component. We compute the total loss in the component corre-
sponding to the BDD path and assign it as the weight of the new
edge in the component-level diagram. If there are multiple BDD
paths, the minimum loss is taken as the weight. Finally, the op-
timal solution is obtained as the shortest path from the root node
to the terminal in the component-level diagram.

Fig. 7. The 32-bus network by Baran and Wu. Optimal switch configuration
determined by our method is shown here.

B. Error Bound

Since the above solution is merely the global optimal solu-
tion to an approximated problem, the achieved loss for the orig-
inal problem is suboptimal, i.e., . Nevertheless, an
error bound can be derived theoretically. Let
us revise the original optimization problem as follows: Mini-
mize (5) subject to (6), (7) and a new constraint

(9)

It indicates that the sum of line current at the root sections is
equal to the sum of load of all non-root sections. Since this con-
straint holds for any satisfying the topological constraint, the
optimal solution remains unchanged even after introducing the
new constraint. Now, assume that is not a function of
and is regarded as a new free variable ,

(10)

subject to (6), (7) and (9). Here the optimal solution to is
and

It always holds because relaxes the original
problem. The error bound is therefore finally obtained as

. Similarly, the relative error of is bounded as

(11)

V. EXPERIMENTS

In this section, our method is applied to two model networks.
The experiments were conducted using a single core in Intel
Xeon CPU E31290 (3.60 GHz).
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Fig. 8. BDDs for the 32-bus network. Each BDD has 37 levels corresponding to switches in the network. (a) BDD for topology constraint. (b) BDD for electrical
constraints. (c) BDD for all constraints.

A. 32-Bus Network

The first model network is the 32-bus network introduced by
Baran and Wu [4] (Fig. 7). It has 37 switches and only one

feeding point. There is one load profile presented for the net-
work. The sending line voltage is 12.66 kV, and the maximum
voltage drop must be within 10% of the sending voltage. This
model does not have line current constraints, so the minimum
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TABLE I
NUMBER OF FEASIBLE CONFIGURATIONS FOR THE 32-BUS NETWORK

TABLE II
COMPARISON OF POWER LOSS TO THE REPORTED RESULTS FOR THE 32-BUS

NETWORK

TABLE III
SPECIFICATION OF THE FUKUI-TEPCO NETWORK

Fig. 9. Switch configuration of the Fukui-TEPCO network determined by our
method for the load profile at 4 A.M.

loss configuration is searched for under the voltage constraint
only.
The number of all possible configurations is , but the

number of feasible configurations satisfying the topological
and electrical constraints is much smaller. As discussed in
Section III, we created two BDDs representing each constraint
and then combined them into one BDD via the intersection
operation (Fig. 8). Construction of topological and electorical
BDDs took 0.14 second and 15 692 seconds (about 4 hours
and 20 minutes), respectively. This huge difference is due to
the efficient top-down algorithm for topological BDD. The
intersection operation took only 0.018 second, thus almost
negligible. As shown in Table I, the number of feasible solu-
tions turned out to be only 50 728. It allowed us to compute
the power loss for all feasible solutions in 167 seconds and
select the global optimal solution. The variable aggregation

Fig. 10. Computation time of the proposed method and the brute force method.

Fig. 11. (Left) Relative error bound of the solutions. (Right) True relative error
of the solutions up to 78 switches.

procedure in Section IV was not necessary, because it has only
one component.
Table II summarizes the power loss and the solution obtained

by ourmethod. It is observed that our solution was slightly better
than that of existing methods [20]–[22]. The difference, how-
ever, was not significant. It may be due to different flow models
they employ and their solution might have been the global op-
timal solution in terms of their model. The important point is
rather that our solution is proven to be global optimal in terms
of our flow model. In general, heuristic algorithms can only re-
turn solutions that are probably global optimal but have no the-
oretical guarantee on global optimality.

B. Fukui-TEPCO Network

Asmentioned in Section I, we employ the Fukui-TEPCO net-
work including 72 feeders and 468 switches (Table III). The net-
work has 63 components. The number of switches in a compo-
nent is 7.43 on average, while the minimum and maximum are
3 and 20, respectively. We also generated subsampled versions
of the network containing 20, 39, 59, 78, 99, 118, 235, and 352
switches. Among hourly load profiles, the peak load at 2 P.M.
and the baseline load at 4 A.M. were used in the experiments.
Fig. 10 shows the computation time of our method and that

of the brute force method for networks of different sizes and
two time points (2 P.M. and 4 A.M.). Fig. 11, left, plots the rel-
ative error bound (11) of our solutions. Our solution for 4 A.M.
is partly visualized in Fig. 9. Our method finished the whole
optimization procedure in less than three hours for the full net-
work with 468 switches and the relative error bound was 1.56%
at most. The power loss of our solutions at 2 P.M. and 4 A.M.
was 2 507 336W and 557 660W, which amounts to 0.874% and



INOUE et al.: DISTRIBUTION LOSS MINIMIZATION WITH GUARANTEED ERROR BOUND 109

TABLE IV
NUMBERS OF FEASIBLE CONFIGURATIONS IN A NETWORK OF 468 SWITCHES

Fig. 12. Computation time of each process in the proposed method.

Fig. 13. BDD size for the constraints.

Fig. 14. Number of feasible configurations.

0.494% of the total load, respectively. As expected, the com-
putational time of the brute-force approach exploded quickly.
With a time limit of 10 000 seconds, the global optimal solution
was obtained only up to 78 switches. Fig. 11, right, shows the
true relative error of our solutions up to 78 switches. In many
cases, our solution was indeed optimal (i.e., the relative error
was zero). The maximum relative error was about 0.0225%;
much smaller than the theoretical bound.

Fig. 12 shows the computation time required by each process.
The construction of BDDs for electrical constraints takes the
largest fraction of the computation time. This is because large
inclusion-exclusion trees are produced without on-the-fly
merging, and computing voltage drop for each subgraph is
time-consuming. In contrast, the construction for the topolog-
ical constraint finished in less than one second even for up
to 468 switches, clearly indicating the significant importance
of on-the-fly merging. The BDD construction for electrical
constraints took significantly more time for the 4 A.M. time
point; Since the section loads were smaller at night, a larger
inclusion-exclusion tree had to be explored to reach the line
current capacity.
The number of nodes in the BDDs for the constraints are

shown in Fig. 13. Since a single BDD node requires about 32
bytes, this figure indicates that the amount of memory required
to store the BDD was about 100 MB and 100 KB for 2 P.M.
and 4 A.M., respectively. Given a BDD, it is easy to count the
number of represented bit vectors by a recursive algorithm [23].
We therefore computed the number of feasible configurations
for the topological constraint and all constraints combined. The
results are shown in Fig. 14 and Table IV. Interestingly, such a
large number of feasible configurations is compressed to a small
BDD. Larger BDDs do not necessarily represent larger numbers
of bit vectors. Intuitively, the BDD size gets smaller if the set of
bit vectors has some kind of regularity. In general, however, it is
hard to predict the size of BDDs in advance for a given problem.

VI. CONCLUSION

In this paper, we have developed an efficient network recon-
figuration method that yields an error bound. In the real-world
settings, heuristic algorithms without solution quality guar-
antee are unlikely to be used because of the danger of returning
solutions incurring an excessive running cost for managing the
network. It may be possible to reduce the probability of such
a catastrophic failure caused by local-update-based methods,
e.g., by using multiple starting points. However, since distribu-
tion networks are fundamental infrastructure, failures cannot
be allowed even with the smallest probability. Although global
optimal solutions cannot always be attained in large-scale
networks, users are at least notified of a bound of power loss
due to the configuration our algorithm returns. In contrast, such
bounds cannot be estimated for the configurations generated by
heuristic methods. In this respect, we believe that this work is
an important step towards automated network reconfiguration.
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