
IPSJ Transactions on Mathematical Modeling and Its Applications Vol.8 No.1 1–6 (Mar. 2015)

Regular Paper

Performance Evaluation of Index-less Indexed
Flash Codes for Non-uniform Write Operations

Yuichi Kaji1,a)

Received: May 19, 2014, Revised: July 14, 2014,
Accepted: September 5, 2014

Abstract: A random-walk model is investigated and utilized to analyze the performance of a coding scheme that aims
to extend the lifetime of flash memory. Flash memory is widely used in various products today, but the cells that con-
stitute flash memory wear out as they experience many operations. This issue can be mitigated by employing a clever
coding scheme that is known as a flash code. The purpose of this study is to establish a well-defined random-walk
model of a flash code that is known as an index-less indexed flash code (ILIFC), and clarify the expected performance
of ILIFC. Preliminary study has been made by the author for a simplified model of data operation, and the contribution
of this study is to extend the model of data operation to more general and practical one. Mathematical properties of the
random-walk model is reconsidered, and useful properties are derived that help analyzing the performance of ILIFC
both in non-asymptotic and asymptotic scenarios.

Keywords: flash codes, flash memory, random-walk model, index-less indexed flash codes, coding for storage

1. Introduction

Flash memory is widely used in a number of electronic prod-
ucts today, but data recording in flash memory is not a simple
issue. Flash memory consists of many flash cells that can store
electric charge in their floating gates. Figure 1 illustrates the sim-
plified structure of flash cells [10]. Each cell has its own control

gate, and several cells (three cells in Fig. 1, but as many as 1018 to
1020 cells in practical products [8]) share a single basement and a
back gate. The collection of cells that share a back gate is called
an erase block because of the reason we mention later. There are
insulators that separate floating gates from control gates and the
basement, and therefore floating gates are electrically isolated.
Basically, the amount of charge that is stored in the floating gate
represents the value of the cell. In this study, we let the cell value
be an integer in Aq = {0, . . . , q − 1}, where q is the resolution of
the quantization of the charge. If we apply positive voltage to a
control gate, then, thanks to the quantum tunnel effect, electrons
in the basement “tunnel through” the insulator and they are added
to the floating gate. This operation is called a cell programming,
and is used to raise the value of a selected cell. The charge in a
floating gate remains for a long period of time even if the volt-
age to the control gate is removed, which makes flash memory
nonvolatile. An interesting aspect of flash memory is that the op-
eration to remove charge from a floating gate is not symmetrical
to the cell programming; the charge in a floating gate is removed
by applying positive voltage to the back gate, but this operation
affects all cells in the same erase block. With this block erase

operation, values of all cells in the erase block are reset to 0. The

1 Nara Institute of Science and Technology, Ikoma, Nara 630–0101, Japan
a) kaji@is.naist.jp

block erasure is a quite strong electric operation, and it can de-
teriorate the insulators of the affected cells. The deteriorated in-
sulator cannot prevent the charge in a floating gate from leaking
out, and it is said that flash cells that have experienced thousands
of block erasures are no more suitable for data recording [8]. In
this sense, flash memory has finite lifetime in principle.

A number of efforts have been made to extend the lifetime
span of flash memory products. For example, many flash mem-
ory products are equipped with the mechanism that is known as
wear-leveling [9]. The wear-leveling is a kind of scheduling algo-
rithm, and contributes to prevent excessive use of small number
of specific cells. Recent operating systems inform flash memory
controller of higher-level information of data operation, where
the controller makes use of the information to avoid needless op-
erations. The TRIM command of the Windows operating sys-
tem [12] is an example of this device. We can also investigate
a data structure that is suitable for flash memory. For example,
the file-system architectures of JFFS and JFFS2 are designed to
avoid “in-place” rewritings of journal files that are essential in
hierarchical file-systems [14].

The use of flash codes can be regarded as one of such attempts
to extend the lifetime span of flash memory products. The pur-

Fig. 1 Flash memory architecture.

c© 2015 Information Processing Society of Japan 1



IPSJ Transactions on Mathematical Modeling and Its Applications Vol.8 No.1 1–6 (Mar. 2015)

pose of flash codes is to give a clever way of data representation
and data operations in a flash memory. Historically saying, a flash
code can be regarded as a descendant of WOM (write-once mem-
ory) codes that was proposed by Rivest in early 1980s [11]. How-
ever, today’s framework of flash codes owes much to the studies
of Jiang et al. [3], [4], in which K-bit data is stored in one erase
block with N flash cells, and the K-bit data is updated by a write

operation which randomly selects one of K-bits of the data and
flips the binary value of the selected bit. A flash code is designed
to accommodate as many write operations as possible between
two consecutive block erasures. Jiang et al. proposed flash codes
which allow more number of write operations than naive coding
scheme [3], and extended the idea in Ref. [4]. Mahdavifar et al.
improved the idea of Ref. [4], and proposed index-less indexed

flash codes (ILIFC) [8].
The purpose of this study is to analyze the expected perfor-

mance of ILIFC. In the traditional discussion of WOM codes and
flash codes, the worst-case performance has been regarded as sig-
nificant. The worst-case performance gives the guarantee of the
lifetime of a memory product in the most unfortunate case, which
is especially important when the memory is really “write-once.”
However, as stated previously, flash cells today endure thousands
of block erasures. It is quite unlikely that the most unfortunate
scenario is repeated for thousands times, and the expected per-
formance should have strong and direct relation to the lifetime of
mass-produced flash memory products [2], [7]. In Ref. [2], the ex-
pected performance is discussed in terms of “cost” of moves of a
certain Markov chain model, and a flash code with good expected
performance was proposed. The code construction is further im-
proved in Ref. [7], but these two studies do not discuss ILIFC.
Suzuki considered to improve the expected performance of IL-
IFC, and applied the Markov chain formalization of Ref. [2] in
their analysis [13]. The formalization contributes to estimate the
expected performance of ILIFC with small parameters, though,
the approach seems not scalable because we need to construct
and analyze a Markov model whose size is exponential in N. Kaji
modeled the behavior of ILIFC as a multi-token cyclic random-
walk model, and clarified the expected performance of ILIFC in
a uniform writing scenario in which it is assumed that K data bits
are selected by write operations with an equal probability [6].

The contribution of this study is to relax the assumption in
Ref. [6], and to extend the discussion in Ref. [6] to a non-uniform

writing scenario. In many applications of data processing, data
to be handled is not homogeneous. In a practical file-systems,
for example, some files are updated frequently, while many files
remain unchanged for long time. When a user edits an ASCII
encoded text file, the most significant bit hardly changes while
the other seven bits have great probabilities to be modified. This
kind of bias is common in computer system, and the performance
of flash codes for such non-uniform writing scenario has prac-
tical importance. Fortunately, the random-walk model that was
developed in Ref. [6] is still effective for this extended scenario.
Unfortunately, however, the analysis techniques that was used in
Ref. [6] is no more available because bits of the data have dif-
ferent statistical characteristics. In this study, we reorganize the
mathematical discussion in Ref. [6], and refine the analysis tech-

nique so that it can be adopted to the more general class of the
problem.

2. Preliminary

2.1 Flash Codes
Flash codes and related notions are briefly reviewed in this sec-

tion. See Refs. [3], [5] for detailed discussion and background
issues related to these preliminary. An erase block of a flash
memory is an array of N cells, where a cell is an element which
stores an integer value in Aq = {0, . . . , q−1} where q is an integer
greater than one. A cell is said to be empty (resp. full) if its value
is 0 (resp. q − 1). Cells in an erase block are ordered, and the
value of the i-th cell with 0 ≤ i < N is denoted by ci. A Tuple
(c0, . . . , cN−1) ∈ AN

q is used to represent the contents of cells, and
called a state of the erase block. For two states c = (c0, . . . , cN−1)
and c′ = (c′0, . . . , c

′
N−1), we write c � c′ if ci ≤ c′i for all 0 ≤ i < N,

and c ≺ c′ if c � c′ and c � c′. The notion of “states” and
“≺” are extended to subsets of cells in a natural manner. In an
erase block with N cells, we store a value of a K-bit binary data

(b0, . . . , bK−1). The value of the data is changed through a write

operation, which randomly selects one of bits of the data and flips
the binary value of the selected bit. This is a simplified model of
the data operation for a memory with the striping architecture. In
the following discussion, we write pi with 0 ≤ i < K for the prob-
ability of the i-th bit of the data be selected by a write operation.

The purpose of a flash code is to give correspondence between
{0, 1}K (the values of the K-bit data) and AN

q (states of N cells),
and to determine how to operate cell values for a requested write
operation. Indeed, a flash code is defined as a pair of func-
tions C = (E,D). The decoding function D is a mapping from
AN

q to {0, 1}K , and used to translate the state of the block to a
K-bit data value. The encoding function E is a mapping from
{0, . . . ,K − 1} × AN

q to AN
q ∪ {E}, where E is a special symbol

which is called block erasure, and determines how to operate cell
values. It is required that, if c′ = E(i; c) and c′ � E, then c ≺ c′,
and D(c) and D(c′) differ at the i-th bit position only. If there is
no c′ that satisfies the above conditions, then E must return E. It
is assumed that, at the initial moment, all cells are empty and the
K-bit data is (0, . . . , 0). Write operations are then performed re-
peatedly, and the encoding function E is executed for each write
operation. Because the state of the block increases monotonically
with respect to ≺, the encoding function eventually returns E. Let
T denote the number of write operations that were accommodated
before E returns E (i.e., E is returned at the (T + 1)-th call of E).
In general, the value of T depends on the bit positions that were
selected by the write operations, and hence T is regarded as a ran-
dom variable. It is understood that T ≤ N(q − 1), and therefore

Δ = N(q − 1) − T,

which is called a write deficiency, indicates the “overhead” that
was induced by using the flash code. Obviously, a smaller value
of Δ is more favorable. The maximum Δ is called the worst-
case write deficiency, and the expected value of Δ is called the
expected write deficiency.

c© 2015 Information Processing Society of Japan 2



IPSJ Transactions on Mathematical Modeling and Its Applications Vol.8 No.1 1–6 (Mar. 2015)

2.2 Index-less Indexed Flash Codes
An index-less indexed flash code (ILIFC) [8] has two different

“stages” in encoding. Asymptotically saying, using both of the
first and the second stages is good to reduce the worst-case write
deficiency [8]. However, the asymptotic difference is so small that
the use of the second stage gives very little contribution for prac-
tical choices of N. Indeed it often happens that the performance
is improved by omitting the second stage of ILIFC [6]. For this
reason, we consider ILIFC with the first stage only.

In ILIFC, N cells in an erase block are divided into slices with
each slice consists of K cells. For simplicity, we assume that N

is a multiple of K and there are N/K slices in one erase block.
We also assume that K(q − 1) is an even number, which is es-
sential for the consistency of ILIFC. A slice consists of K cells
sm = (cmK , . . . , cmK+K−1) with 0 ≤ m < N/K. A slice is empty

(resp. full) if its state is (0, . . . , 0) (resp. (q − 1, . . . , q − 1)). A
slice which is neither of empty nor full is said to be active. The
weight of a slice is defined as the sum of values of cells in the
slice. The key idea of ILIFC is to devise a coding scheme which
allows a slice to simultaneously represent the value and the index

of one of bits of the data. For integers i and w with 0 ≤ i < K and
0 ≤ w ≤ K(q − 1), let define c[i]

w as follows;
• c[0]

0 = (0, . . . , 0),
• c[0]

w+1 is obtained from c[0]
w by increasing the value of the left-

most non-full cell in c[0]
w by one, and

• c[i+1]
w is obtained from c[i]

w by cyclically shifting c[i]
w to the

right direction by one position.
For example, if q = 3 and K = 4, then c[0]

0 , . . . , c
[0]
K(q−1) are

0000, 1000, 2000, 2100, 2200, 2210, 2220, 2221, 2222,

respectively. States c[2]
0 , . . . , c

[2]
K(q−1) are obtained by cyclically

shifting the above states by two-bits each;

0000, 0010, 0020, 0021, 0022, 1022, 2022, 2122, 2222.

If the state of a slice equals to c[i]
w , then we say that the slice has an

index i and a binary value b = w mod 2. An update is an opera-
tion to modify the state of a slice from c[i]

w to c[i]
w+1 where 0 ≤ i < K

and 0 ≤ w < K(q−1)−1. Note that an update operation increases
the weight of a slice by one, and flips the binary-value of the slice.
The index of the slice stays unchanged by update operations.

ILIFC manages cell values in such a way that the i-th bit of the
K-bit data is 1 if and only if there is an active slice whose index is
i and whose binary value is 1. If there is no active slice with index
i, or, if there is an active slice with index i but its binary value is
0, then the i-th bit of the data is interpreted as 0. Consider for
example that a value (b0, b1, b2, b3) of the K-bit data is recorded
as the state in Fig. 2 (a), where we assume that N = 24, K = 4
and q = 4. In this case N = 24 cells are divided into six slices
with K = 4 cells each as in Fig. 2 (b). We can determine that
the slice s0 has an index 1 and a binary value of 1, which means
that b1 = 1. The slices s1 and s3 have indexes 0 and 2, respec-
tively, and their binary values are both 0. Consequently we have
b0 = b2 = 0. There is no active slice with index 3 in Fig. 2 (b),
and b3 is interpreted as 0. Summarizing, the state in Fig. 2 (b) is
decoded to the data value (b0, b1, b2, b3) = (0, 1, 1, 0).

Fig. 2 Illustration of ILIFC.

The encoding function E operates cell values so that the state
is decoded to the current value of the K-bit data. Consider that a
write operation requests to flip the i-th bit of the data. The first
attempt the encoding function tries is to look for an active slice
with index i, and to update the found slice. If there is no active
slice with index i, then the function chooses one of empty slices,
and activates the slice to become c[i]

1 . In case there is no empty
slice available, then E returns E. Again consider that the state of
the block is given by Fig. 2 (b). If a write operation requests to
flip b2, then the encoding function spots and updates s3 because
its index is 2. The encoding results in Fig. 2 (c). With one more
write operation of b2, the state becomes as in Fig. 2 (d). Note that
there is no active slice with index 2 in Fig. 2 (d), but this is not
a problem because b2 = 0 at this moment. If another write op-
eration is performed for b2, then the encoding function activates
an empty slice, for example s2, and the encoding continues. Con-
sider that we have reached Fig. 2 (f), and a write operation of b2

is requested. In this case, the erase block has no room to accom-
modate the request, and a block erasure E is returned.

3. Cyclic Random-walk Model

The purpose of this section is to define a mathematical model
that contributes to analyze the performance of ILIFC. The model
characterizes the distribution of weights of slices that are asso-
ciated with the bits of the data. A fundamental property of the
model is discussed in this section, which will be utilized in the
next section for the performance analysis of ILIFC.

3.1 Definition of the Model
In the following discussion, we let Z = K(q − 1) which equals

to the weight of a full slice. Consider a structure that consists of
Z places Q0, . . . ,QZ−1 and K tokens τ0, . . . , τK−1. Figure 3 illus-
trates a simple example of such a structure with six states and four
tokens, where tokens are represented by numbered small circles.
The places are cyclically connected, and we say that Qw+1 mod Z

is the next place of Qw. The tokens are initially put in the place
Q0, and moved to the next places according to the execution of
the encoding function E; if E is invoked for a bit position i with
0 ≤ i < K, then the i-th token τi is moved to the next place. From
the characteristic of the encoding function, we have the relation-
ship that a token τi is in the place Qw with 1 ≤ w < Z (note that
w = 0 is not included here) if and only if there is an active slice
whose index is i and whose weight is w. The token τi is in Q0 if
and only if there is no active slice whose index is i.

c© 2015 Information Processing Society of Japan 3



IPSJ Transactions on Mathematical Modeling and Its Applications Vol.8 No.1 1–6 (Mar. 2015)

Fig. 4 Convergence of Y(t)
i to the stationary vector.

Fig. 3 Cyclic random-walk model with multiple tokens.

This place-and-token structure can be regarded as a cyclic

random-walk model with multiple tokens [1]. At each move of
the model, one of tokens is selected according to the probabilities
p0, . . . , pK−1 (remind that pi is the probability that a write opera-
tion selects the i-th bit of the data), and moved to the next place.
We are interested in the distribution of the tokens after t moves of
this model, where t is an arbitrary positive integer. For 0 ≤ w < Z

and t ≥ 0, let X(t)
w be a random variable of the number of tokens

in the place Qw after t moves. The expected value of X(t)
w , which

we denote by E
[
X(t)
w

]
, plays a significant role in the analysis of

ILIFC. Because it is not easy to derive a closed-form formula of
E
[
X(t)
w

]
, we consider to express E

[
X(t)
w

]
as a linear combination

of simpler and more manageable quantities.

3.2 Investigation on the Expected Value
For 0 ≤ w < Z, 0 ≤ i < K and t ≥ 0, let Y (t)

w,i be a random
variable which is 1 if the i-th token τi is in the place Qw after t

moves of the random-walk model, and 0 otherwise. Obviously

X(t)
w =

K−1∑
i=0

Y (t)
w,i,

and we have the following lemma due to the linearity of the ex-
pected values.

Lemma 3.1

E
[
X(t)
w

]
=

K−1∑
i=0

E
[
Y (t)
w,i

]
.

�
The realized value of Y (t)

w,i is either of 0 or 1, and therefore

E
[
Y (t)
w,i

]
equals to the probability of Y (t)

w,i = 1. For t ≥ 0,

let define a vector of expected values (probabilities) as Y(t)
i =(

E
[
Y (t)

0,i

]
, . . . , E

[
Y (t)

Z−1,i

])
. Because all tokens are initially in Q0,

we have Y(0)
i = (1, 0, . . . , 0) for any 0 ≤ i < K. A token τi stays

at the same place with probability 1 − pi, and moves to the next
place with probability pi. Consequently
(
Y(t)

i

)T
= Wi

(
Y(t−1)

i

)T
= Wt

i

(
Y(0)

i

)T
,

where T denotes the transposition of a vector and

Wi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − pi 0 . . . 0 pi

pi 1 − pi

. . .
. . . O

O
. . .

. . .

pi 1 − pi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (1)

Lemma 3.2 limt→∞ E
[
Y (t)
w,i

]
= 1/Z.

Proof: We can regard that the token τi and places Q0, . . . ,QZ−1

define a Markov model. The vector Y(t)
i is a state probability vec-

tor at time t, and Eq. (1) is the state transition matrix of the defined
Markov model. It is easily understood that this Markov model is
irreducible, and has a unique stationary vector which is given as
V = (1/Z, . . . , 1/Z) (confirm that VT = WiVT). Because an arbi-
trary state probability vector converges to the stationary vector V,
we have

lim
t→∞Y(t)

i = V (2)

for any 0 ≤ i < K, and the lemma holds. �
Corollary 3.3 limt→∞ E

[
X(t)
w

]
= K/Z = K/K(q − 1). �

We note that the speed of the convergence Eq. (2) depends on
the probability pi that the token τi moves. Figure 4 illustrates
how Y(t)

i changes as the value of t increases, where Z = 16 and
pi = 0.1 (left), 0.5 (center) and 0.8 (right). Each illustration con-
sists of arrays of square tiles, where the color of the (w, t′) compo-
nent (the top-left tile is the (0,0) component) represents the value
of E
[
Y (5t′)
w,i

]
, and therefore one column shows the component val-

ues of Y(5t′)
i . A tile with denser color means greater probability

(expected value); black is 1, white is 0, and gray color represents
an intermediate probability. We can see from the figure that Y(t)

i

shows different characteristics for different values of pi, but it
eventually converges to the stationary vector V = (1/Z, . . . , 1/Z).

4. Expected Write Deficiency of ILIFC

Lemma 3.1 gives the baseline of the performance analysis of
ILIFC, but we need to employ different techniques to utilize
Lemma 3.1 according to our target. We first consider a non-

asymptotic scenario in which N is rather small, and the block
erasure is returned while the random-walk model is still in the
transient behavior. In the second asymptotic scenario, we deal
with the case that N is quite large and sufficiently many write op-
erations are performed before the block erasure is returned by the
encoding function.

4.1 Non-asymptotic Discussion
Remind that the encoding function of ILIFC performs either

c© 2015 Information Processing Society of Japan 4



IPSJ Transactions on Mathematical Modeling and Its Applications Vol.8 No.1 1–6 (Mar. 2015)

Fig. 5 The accumulation of activated slices (single bit).

one of two actions; increase the weight of an active slice, or “ac-
tivate” an empty slice (i.e., choose an empty slice and raise its
weight by one). The block erasure is requested when the encod-
ing function tries to perform the N/K + 1-th activation, because
the number of slices in the erase block is only N/K. Note that the
activation of a slice is made when a write operation tries to flip
a data bit, say i-th bit, that does not have a corresponding active
slice. In this case, the token τi must be in the place Q0 due to the
correspondence between the behavior of the encoding function
and the random-walk model. Consequently, the probability that
an activation of a slice takes place at the t-th write operation is
given by

∑K−1
i=0 piE

[
Y (t−1)

0,i

]
. This probability can be also regarded

as the expected number of slices that are newly activated at the
t-th write operation, and the accumulation of this value

S t =

t∑
l=1

K−1∑
i=0

piE
[
Y (l−1)

0,i

]
=

K−1∑
i=0

t∑
l=1

piE
[
Y (l−1)

0,i

]
(3)

gives the expected number of slices which have been activated by
t write operations performed so far. Since the block erasure is
needed when (N/K + 1)-th activation is tried, the smallest t with
S t > N/K + 1 gives the estimation of the number of write opera-
tions that causes the block erasure. The expected write deficiency
is therefore estimated as Δ = N(q − 1) − t where t is the smallest
integer with S t > N/K + 1.

Figure 5 shows how the inner summation
∑t

l=1 piE
[
Y (l−1)

0,i

]
in

Eq. (3) changes where the value of t is varied from 0 to 80. Four
different values pi = 0.1, 0.3, 0.5 and 0.8 are sketched. Intu-
itively, this graph shows the expected number of slices that have
been used to represent a certain bit of the data. For example, we
can read that the values of the curves for p = 0.1 and 0.3 at t = 40
are 0.99 and 1.06, respectively. This suggests that a data bit with
probability 0.1 (resp. 0.3) should consume approximately 0.99
(resp. 1.06) slices after t = 40 write operations. The accumulation
of these values gives the total number of slices that are used by ei-
ther bit of the K-bit data. For example, if K = 4 and four bits are
selected by write operations with probabilities 0.1, 0.3, 0.3 and
0.3, then, after 40 write operations, 0.99 + 1.06 × 3 = 4.17 slices
are expected to be in use. We let this example as “case 1.” In the
“case 2,” we consider that four bits are selected by write opera-
tions with probabilities 0.1, 0.1, 0.3 and 0.5. In this case, the ex-
pected number of slices in use will be 0.99×2+1.06+1.87 = 4.91
after 40 write operations. The expected number of slices for these
two cases, and the expected number of slices for “uniform” write
operations (case 3, in which all four bits are selected with the

Fig. 6 The accumulation of activated slices (multiple bits).

same probability 0.25), are illustrated in Fig. 6. If an erase block
contains only four slices (and hence 4 × 4 = 16 cells), then block
erasure occurs when the encoding function tries to activate the
fifth slice. From Fig. 6, we can see that the expected number of
slices exceeds 5 at t = 51 for the case 1, t = 43 for the case 2,
and t = 58 for the case 3. This means that ILIFC shows different
performance for different probability distribution; among these
three cases, the case 3 is the most favorable, and we can have
58 − 43 = 15 more write operations compared to the case 2. We
can see that the non-uniform nature of write operations affects the
performance of ILIFC for relatively small N.

4.2 Asymptotic Discussion
If there are so many cells in the erase block, then it is expected

that many write operations are performed before block erasure
occurs. In this case, the asymptotic discussion is feasible and we
can take purely analytic approach.

Assume that t write operations have been successfully per-
formed, and a block erasure occurs when the (t + 1)-th write
operation is tried. In ILIFC, the encoding function selects one
slice and increases its weight by one. This means that the sum
of weights of slices equals to the number of write operations per-
formed so far. The write deficiency Δ is consequently determined
as Δ = N(q−1)− t = N(q−1)−W where W is the sum of weights
of all slices at the time just after the t-th write operation.

Lemma 4.1 For very large N, the expected write deficiency
E[Δ] of ILIFC is (K − 1)(K(q − 1) − 1)/2.
Proof: In the above discussion, assume without loss of general-
ity that the (t + 1)-th write operation tries to flip the 0th-bit of the
data. Then, there are three types of slices in the erase block after
the t-th write operation.
type 1 one full slice that was most-recently used to record the
0th-bit of the data.

type 2 K − 1 active or full slices that are (were most-recently)
used to record the remaining K − 1 bits of the data.

type 3 N/K − K full slices that are neither of type 1 nor type 2.
Similar to the random variable X(t)

w that was considered in a pre-
vious section, let Z(t)

w with 0 ≤ w < K(q− 1) be a random variable
of the number of slices that are type-2 and with weight w. To sim-
plify the notation, we let Z(t)

K(q−1) = Z(t)
0 . By using these random

variables, the sum W of weights of slices can be written as

W = K(q − 1) +
K(q−1)∑
w=1

wZ(t)
w +

(N
K
− K
)

K(q − 1) (4)

c© 2015 Information Processing Society of Japan 5



IPSJ Transactions on Mathematical Modeling and Its Applications Vol.8 No.1 1–6 (Mar. 2015)

where the first, second and the third terms in Eq. (4) are contribu-
tions of the types 1, 2 and 3 slices, respectively (note that one full
slice contributes K(q − 1) to the weight). Remind the definition
of Z(t)

w , and it is understood that

lim
t→∞ E

[
Z(t)
w

]
= lim

t→∞

K−1∑
i=1

E
[
Y (t)
w,i

]
=

K − 1
K(q − 1)

.

We have

lim
t→∞ E[W] = K(q − 1) +

K(q−1)∑
w=1

w
(
lim
t→∞ E

[
Z(t)
w

])

+

(N
K
− K
)

K(q − 1)

= K(q − 1) +
K(q − 1)(K(q − 1) + 1)

2
K − 1

K(q − 1)

+ N(q − 1) − K2(q − 1)

= N(q − 1) − 1
2

(K − 1)(K(q − 1) − 1),

and

lim
t→∞ E[Δ] =

1
2

(K − 1)(K(q − 1) − 1).

This completes the proof because t → ∞ if N is very large. �
We remark that the probabilities p0, . . . , pK−1 do not affect the

expected write deficiency in this asymptotic scenario, which is an
interesting contrast to the non-asymptotic case.

5. Conclusion

The expected write deficiency of ILIFC is studied for non-
uniform write operation. The write deficiency of ILIFC has
strong relation to the weight distribution of active slices. The
transition of weight distribution can be modeled as a cyclic
random-walk with multiple tokens, and the analysis of the model
can be decomposed to a simpler problem over a irreducible
Markov model. Based on this decomposition, the expected write
deficiency is determined for non-asymptotic scenario with the
aid of computation. For asymptotic case with very large N, the
weight distribution converges to a certain value, and the write de-
ficiency is not affected by the non-uniform nature of write opera-
tions. This is an interesting contrast to the non-asymptotic discus-
sion in which the non-uniform nature affects the write deficiency
in general. From the practical viewpoint, it is important to clarify
which types of discussion is appropriate for a given parameter. It
is not easy to answer to this question, but the author conjectures
that the asymptotic discussion seems more significant in practical
parameters. As stated in Ref. [8], N can be a quite large number
such as 1018 to 1020. On the other hand, the performance of ILIFC
fatally degrades if K >

√
N, and K is expected to be chosen as

a number that is much smaller than N. In this parameter setting,
there should exist large number of slices, and the non-uniform
nature of the write operations will not affect to the performance
of ILIFC.

References

[1] Feller, W., An Introduction to Probability Theory and Its Applications,
Third Edition, Wiley (1968).

[2] Finucane, H., Liu, Z. and Mitzenmacher, M.: Designing Floating

Codes for Expected Performance, Proc. 46th Allerton Conf. Commu-
nication, Control and Computing, pp.1389–1396 (2008).

[3] Jiang, A., Bohossian, V. and Bruck, J.: Floating Codes for Joint In-
formation Storage in Write Asymmetric Memories, Proc. 2007 Intl.
Symp. Inf. Theory, pp.1166–1170 (2007).

[4] Jiang, A. and Bruck, J.: Joint Coding for Flash Memory Storage, Proc.
2008 Intl. Symp. Inf. Theory, pp.1741–1745 (2008).

[5] Jiang, A., Mateesch, R., Schwartz, M. and Bruck, J.: Rank Modulation
for Flash Memories, IEEE Trans. Inf. Theory, Vol.55, No.6, pp.2659–
2673 (2009).

[6] Kaji, Y.: The Expected Write Deficiency of Index-Less Indexed Flash
Codes, IEICE Trans. Fundamentals of Electronics, Communications
and Computer Sciences, Vol.E95-A, No.12, pp.2130–2138 (2012).

[7] Kamabe, H.: Floating Codes with Good Average Performance, Proc.
32nd Symp. Inf. Theory and Its Applications, pp.856–861 (2009).

[8] Mahdavifar, H., Siegel, P.H., Vardy, A., Wolf, J.K. and Yaakobi,
E.: A Nearly Optimal Construction of Flash Codes, arXiv:0905.1512
(2009).

[9] MicronTechnology, Inc.: Wear Leveling in Micron NAND Flash
Memory, Technical Note, TN-29-61 (2010) (retrieved on May 12,
2014), available from 〈http://www.micron.com/-/media/Documents/
Products/Technical Note/NAND Flash/tn2961 wear leveling in nand.
pdf〉.

[10] Olson, A.R. and Langlois, D.J.: Solid State Drives Data Reliability
and Lifetime, Imation Corporation White Paper (2008) (retrieved on
May 12, 2014), available from 〈http://www.csee.umbc.edu/˜squire/
images/ssd1.pdf〉.

[11] Rivest, R.L. and Shamir, A.: How to Reuse a ‘Write-Once’ Memory,
Information and Control, Vol.55, p.1.19 (1982).

[12] Shu, R.: Windows 7 Enhancements for Solid-State Drives, 2008
Windows Hardware Engineering Conference (2008) (retrieved on
May 14, 2014), available from 〈http://download.microsoft.com/
download/F/A/7/FA70E919-8F82-4C4E-8D02-97DB3CF79AD5/
COR-T558 Shu Taiwan.pdf〉.

[13] Suzuki, R. and Wadayama, T.: Modified Index-less Indexed Flash
Codes for Improving Average Performance, IEICE Trans. Fundamen-
tals (Japanese Edition), Vol.J94-A, No.12, pp.991–1000 (2011) (in
Japanese).

[14] Woodhouse, D.: JFFS2: The Journalling Flash File System, version
2 (2003) (retrieved on May 14, 2014), available from 〈https://www.
sourceware.org/jffs2/〉.

Yuichi Kaji was born in Osaka, Japan, on
December 23, 1968. He received his B.E.,
M.E., and Ph.D. degrees in information
and computer sciences from Osaka Uni-
versity, Osaka, Japan, in 1991, 1992 and
1994, respectively. In 1994, he joined
Graduate School of Information Science,
Nara Institute of Science and Technology,

Nara, Japan. In 2003 and 2004, he visited the University of Cali-
fornia Davis and the University of Hawaii at Manoa as a visiting
researcher. His current research interests include the theory of
error correcting codes, fundamental techniques for information
security, and the theory of automata and rewriting systems. He is
a member of IPSJ and IEEE.

c© 2015 Information Processing Society of Japan 6


