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PAPER

A Single Agent Exploration in Unknown Undirected Graphs with
Whiteboards∗∗

Yuichi SUDO†,††a), Daisuke BABA†††, Junya NAKAMURA††††, Nonmembers, Fukuhito OOSHITA††∗, Member,
Hirotsugu KAKUGAWA††, Nonmember, and Toshimitsu MASUZAWA††, Member

SUMMARY We consider the exploration problem with a single agent
in an undirected graph. The problem requires the agent starting from an
arbitrary node to explore all the nodes and edges in the graph and return to
the starting node. Our goal is to minimize both the number of agent moves
and the memory size of the agent, which dominate the amount of commu-
nication during the exploration. We focus on the local memory called the
whiteboard of each node. There are several exploration algorithms which
are very fast (i.e. the exploration is completed within a small number of
agent moves such as 2m and m + 3n) and do not use whiteboards. These
algorithms, however, require large agent memory because the agent must
keep the entire information in its memory to explore a graph. We achieve
the above goal by reducing the agent memory size of such algorithms with
using whiteboards. Specifically, we present two algorithms with no agent
memory based on the traditional depth-first traversal and two algorithms
with O(n) and O(n log n) space of agent memory respectively based on the
fastest algorithms in the literature by Panaite and Pelc [J. Alg., Vol.33 No.2,
1999].
key words: graph exploration, mobile agent, whiteboard

1. Introduction

We consider the exploration problem with a single agent in
an undirected graph. We assume that the agent has to ex-
plore all the nodes and edges in the graph and return to the
starting node. No a priori knowledge about the graph (e.g.
topology or the number of nodes) is given to the agent. Ex-
ploration is one of the most fundamental problems in agent
systems. For example, in a computer network, the agent can
search data at unknown computer nodes by visiting all of
the nodes, or can find broken communication channels by
traversing all of the channels.

We focus on the total amount of communication re-
quired for graph exploration. There are two complexities
related to the total amount of communication, the number
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of agent moves and the size of agent memory. In computer
networks, a move of the agent between two computers is im-
plemented as a send of a message containing the contents of
the agent memory. Therefore, the total amount of communi-
cation during exploration over the whole graph is estimated
by the product of the number of moves and the size of agent
memory. Thus, it is important to minimize both of the two
complexities.

In this paper, we propose exploration algorithms for
arbitrary undirected graphs with a small number of moves
and small agent memory. The algorithms are based on al-
gorithms DFS and PP proposed in [10]. Algorithms DFS
and PP work with a small number of moves but require
large agent memory to memorize all information needed to
explore the whole graph. We reduce the size of the agent
memory by adopting a whiteboard (or local memory) at
each node and storing the information distributedly over the
whiteboards of nodes.

However, dispersion of the information on whiteboards
makes the exploration over the whole network difficult. In
DFS and PP, the agent always keeps all information it has
ever collected (such as a partial map of the graph) in its
memory. Hence, at any node, it can determine the next move
using the full information. This is the best condition to min-
imize the number of moves. On the other hand, in our algo-
rithms, the agent stores most of the information distributedly
on whiteboards and carries only a small part of the informa-
tion in its memory. At node v, the agent has to determine
the next move depending on only the information stored on
its memory and v’s whiteboard. In this light, even if infi-
nite space of the whiteboard is available at each node, there
is a trade-off between the number of moves and the size of
agent memory. This paper tackles an interesting question,
“How much agent memory size can we reduce by utilizing
whiteboards without increasing the number of moves?”.

Related Works

Graph exploration has been widely studied in the literature.
The study of graph exploration can be loosely classified by
the anonymity and the topology of the graph. If all the nodes
in a graph have unique identifiers, the graph is called la-
beled. On the contrary, if any node has no identifier, the
graph is called anonymous.

When the graph is labeled, the exploration problem
can be easily solved. For example, the agent can ex-
plore all nodes and edges in an arbitrary labeled graph with
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2m moves by the simple depth-first search (abbreviated to
DFS), where m is the number of edges in the graph. Panaite
and Pelc [2] improved DFS and proposed an algorithm with
a smaller number of moves: the agent explores an arbitrary
undirected graph within m + 3n moves, where n is the num-
ber of nodes in the graph. We denote this algorithm by PP.
When the agent moves through an already traversed edge,
the move is said to be a penalty move. While DFS requires
m penalty moves, PP achieves O(n) penalty moves, which
is asymptotically optimal: When the agent begins the explo-
ration at the center node of a line graph, n penalty moves
are necessary to visit all nodes. The exploration of labeled
directed graphs were studied in [3]–[5].

Exploring an anonymous graph is a more demanding
task. Budach [6] proved that the agent cannot explore an ar-
bitrary anonymous graph without the ability to mark nodes
in some way. Therefore, anonymous graph exploration has
been studied with assuming that the agent can mark nodes
in some way [7]–[10] or that the topology of the graph is
restricted [11], [12]. In the model where the agent can put
and retrieve a finite number of pebbles on nodes, Bender et
al. [7] analyzed the necessary and sufficient number of peb-
bles to explore an arbitrary directed graph with a polynomial
number of moves. In the model where an unmovable token
is located on the starting node and the agent can recognize
the token, Chalopin et al. [8] presented an exploration al-
gorithm for any arbitrary undirected graph. Dieudonné et
al. [13] studied the extended model where (i) unmovable to-
kens are located on some nodes of the graph, and (ii) some
of the tokens are Byzantine, that is, sometimes invisible to
the agent. (The adversary decides the visibility of Byzan-
tine tokens at each step.) The closest study to ours is the one
of Fraigniaud et al. [9]. They minimized the agent memory
size by using whiteboards and proposed an algorithm with
a constant size agent memory which explores arbitrary di-
rected graphs. However, they did not pay much attention to
the number of moves; In a directed graph, the agent cannot
perform backtracking, and this fact makes it very difficult
to devise an exploration algorithm with a small number of
moves. Das et al. [10] considered the exploration by k agents
in the whiteboard model. They proposed an exploration al-
gorithm that costs only O(m log k) agent moves. Here the
agents have to accomplish not only graph exploration but
also constructing the same map of the graph. Hence, the
size of agent memory was not their concern.

The rotor-router model or the rotor-router mechanism,
proposed by Priezzhev et al. [14], achieves a perpetual graph
exploration i.e. repeated graph explorations without stop. In
this mechanism, all edges incident to each node v are lo-
cally referred at v by ports 0, . . . , δ(v) − 1 where δ(v) is the
degree of node v, and each node v memorizes the port πv
through which the agent moves on the last exit from v. When
the agent visits node v, it moves to the next node through
port (πv + 1) mod δ(v). This simple mechanism achieves a
perpetual graph exploration for any anonymous undirected
graph. Regardless of initial value of πv for all nodes v,
from some point, the agent periodically moves through an

Eulerian cycle, i.e. a cycle of length 2m where each edge
(u, v) appears exactly twice, once in each direction. It takes
O(mD) moves until the agent starts perpetual traversals on
the Eulerian cycle where D is the diameter of the graph [15].
Obviously, this mechanism is implemented with the agent
of zero memory and the whiteboards on each node v with
O(log δ(v)) space of memory. It is interesting that the rotor-
router mechanism also makes a dynamic spanning tree; at
any step after the agent enters an Eulerian cycle, the n − 1
edges indicated by πv of all nodes v other than vcur forms a
spanning tree rooted at vcur where vcur is the node that the
agent currently exists on.

As well as this paper, some studies aimed to mini-
mize both the number of agent moves and the agent mem-
ory space on variant models of graph exploration. For ex-
ample, Cohen et al. [16] showed that the agent can explore
any anonymous undirected graph within O(m) agent moves,
with O(1) space of agent memory, and without using white-
boards if the nodes of the graph are appropriately colored
with only three colors. Menc et al. [17] focused on the
model where the agent is not able to know the incoming port
of the current node (i.e. the agent cannot know from which
port it came into the current node), hence the agent cannot
backtrack. In this model, they presented an exploration al-
gorithm for any anonymous undirected graph such that the
number of agent move is O(m), the agent memory space is
1 (i.e. only one bit), and the whiteboard memory space of
node v is O(log δ(v)).

A Universal Exploration Sequence (UXS) is a concept
which is closely related to graph exploration. A UXS for a
class G of graphs is a sequence of integers x = (x1, x2, ..., xk)
that enables the agent to explore any graph G of G starting
on any node v1 in G. At the first move, the agent moves
though the first edge† of the starting node v1. At the i-
th move (2 ≤ i ≤ k + 1), the agent moves through the
((li + xi−1 − 1) mod δ(vi) + 1)-th edge of the current node
vi, where li is the label of the edge {vi−1, vi} at vi. After the
agent performs k+1 moves and reaches node vk+2, it is guar-
anteed that all nodes and edges are explored by the agent.
Reingold [18] develops an algorithm that computes, with
O(log N) memory space, a UXS for any undirected graph
with at most N nodes. This result directly implies that an
agent exploration for any anonymous undirected graph can
be performed with O(log N) space of agent memory when
an upper bound N of the graph size is known to the agent.
Furthermore, since the length of a UXS that Reingold’s al-
gorithm generates is polynomial of N, the exploration costs
only a polynomial number of agent moves.

Our Contribution

In this paper, we present four algorithms WDFS1, WDFS2,
WPP1 and WPP2. These algorithms are based on the ex-
isting algorithms DFS and PP [2]. We reduce their agent
memory space with the help of whiteboards. Algorithms

†It is assumed that all edges incident to node v are locally la-
beled at v. (We shall see later in Sect. 2.)
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Table 1 Performances of algorithms. (δ(v) is the degree of node v.)

#moves agent memory memory of node v

DFS 2m O(m + n log n) -
PP[2] m + 3n O(m log n) -

WDFS1 2m 0 O(δ(v))
WDFS2 4m 0 O(log δ(v))
WPP1 m + 3n O(n) O(n)
WPP2 m + 3n O(n log n) O(δ(v) + log n)

DFS2 4m O(n log n) -
PP2 m + 3n O(m + n log n) -

WDFS1 andWDFS2 are designed based on DFS, and algo-
rithms WPP1 and WPP2 are designed based on PP.

The performances of these algorithms are summarized
in Table 1. The two algorithms DFS and PP guarantee a
small number of moves without using whiteboards but re-
quire relatively large agent memory. In algorithm DFS, the
agent uses O(m + n log n) bits of its memory to remember
all the already visited nodes and all the already traversed
edges. In algorithm PP, the agent uses O(m log n) bits of
its memory to remember the map of the explored part of
the graph. Our proposed algorithms reduce these relatively
large spaces of the agent memory by utilizing whiteboards.
Algorithms WDFS1 and WDFS2 simulate DFS without re-
quiring agent memory, and algorithms WPP1 and WPP2
simulate PP with O(n) and O(n log n) bits of agent memory
respectively. All of them, except forWDFS2, keep the same
number of moves as the original existing algorithms while
the number of moves of WDFS2 is at most twice as that
of DFS. There are two trade-offs; one is between WDFS1
and WDFS2 and the other is between WPP1 and WPP2.
Algorithm WDFS2 has a smaller whiteboard memory but
costs a larger number of moves compared toWDFS1. Algo-
rithm WPP2 has a smaller whiteboard memory but requires
a larger agent memory compared to WPP1.

Our main contributions are WPP1 and WPP2. Origi-
nal PP is the fastest in the literature but highly complicated
algorithm. It is hard to distribute the contents of the agent
memory of such a complicated algorithm adequately over
the whiteboards. WPP1 andWPP2 defeat this difficulty. On
the other hand, the aim of presenting WDFS1 and WDFS2
is to provide good examples showing how much agent mem-
ory space can be reduced by utilizing whiteboards. Since
WDFS1 and WDFS2 are naive algorithms, they may have
existed as informal results while the authors have not found
a publication that presents them.

All algorithms, WDFS1, WDFS2, WPP1 and WPP2,
work even on an anonymous graph while the two existing al-
gorithms require unique labels of all the nodes. In WDFS1
and WDFS2, the agent does not use labels. In WPP1 and
WPP2, the agent can easily assign unique labels to all nodes
using O(log n) space of both the agent memory and the
whiteboard of each node. However, for simplicity, we as-
sume the unique node labels in this paper.

It is worth mentioning that a space-efficient algorithm
that does not use whiteboards can be obtained from the

space-efficient one that uses whiteboards. Assume that we
have an algorithm that uses whiteboards, and let x, y and z(v)
denote the number of moves, the agent memory space and
the whiteboard memory space of node v of the algorithm.
Then, we can transform this algorithm into an algorithm that
does not use whiteboards such that the number of moves and
the agent memory space are x and y+

∑
v z(v)+n log n respec-

tively. In the transformed algorithm, the agent simulates the
moves of the original algorithm by remembering its original
memory of size y and the contents of all the whiteboards.
The additional n log n space is used to store the identifiers
of n nodes.

By applying this transformation over WDFS2 and
WPP2, we can obtain new no-whiteboard algorithms DFS2
and PP2 respectively (Table 1). Algorithm DFS2 reduces
the agent memory of DFS from O(m+ n log n) to O(n log n)
at the expense of the number of moves (from 2m to 4m).
Algorithm PP2 decreases the agent memory of PP from
O(m log n) to O(m+ n log n) and does not increase any com-
plexities of PP. Note that algorithms obtained by this trans-
formation, such as DFS2 and PP2, require unique labels of
each node.

2. Preliminaries

The environment is represented by a simple undirected con-
nected graph G = (V, E, p) where V is the set of nodes and
E is the set of edges. We denote |V | and |E| by n and m re-
spectively. The set N(v) of neighboring nodes of v is defined
by {u ∈ V | {v, u} ∈ E}. We denote the degree of v (i.e. the
number of edges incident to v) by δ(v). A port labeling p is
a collection of functions (pv)v∈V where each pv uniquely as-
signs a port number in {1, 2, . . . , δ(v)} to every edge incident
to node v. The agent needs these port numbers to distinguish
edges incident to v when located at v. The port labeling p is
locally independent: two port numbers pu(e) and pv(e) are
independent for any edge e = {u, v} ∈ E. Every node v ∈ V
has the unique identifier id(v) ∈ N. The size of the identi-
fier space is polynomial in n, that is, maxv∈V id(v) ∈ O(nc) is
assumed for some constant c.

An agent A = (P,M) consists of a constant-size pro-
gram (algorithm) P and a finite memory M. The agent
exists on exactly one node v ∈ V at any time, and moves
through an edge incident to v. Program P specifies the
movement of the agent. The current node that the agent
currently exists on is denoted by vcur. The previous node
that the agent existed just before moving to vcur is denoted
by vpre. Port pin is defined as pvcur ({vpre, vcur}), via which the
agent comes to vcur. For simplicity, we suppose vpre = null
and pin = 0 at the beginning of exploration. Every node
v ∈ V has a whiteboard w(v), which the agent can ac-
cess freely at the visit of v. Agent memory M and white-
board w(v) consists of bit sequences. Initially, M = ε and
w(v) = ε for any v ∈ V hold where ε represents the null
string. Program P is invoked every time the agent visits
a node or when the exploration begins. It takes 5-tuple
(δ(vcur), pin,M, w(vcur), id(vcur)) as the input, and returns 3-
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tuple (pout,M′, w′) as the output. Here pout is a port number
of v, and both M′ and w′ are bit sequences. After obtain-
ing the output from P, the agent performs two substitutions
M := M′ and w(vcur) := w′, and then, moves to the next
node through port pout. The agent terminates when pout = 0.

Exploration Problem

The agent starts exploration on an arbitrary node vst of V ,
which we call the starting node. The goal of the agent is
to traverse all edges† in the graph and return to the starting
node. More precisely, we say that algorithm P solves the
exploration problem if the following conditions hold for any
graph G and any starting node vst: (i) agent A = (P,M)
eventually terminates, (ii) the agent traverses every edge at
least once before it terminates, and (iii) vcur = vst holds when
the agent terminates.

We measure efficiency of program (algorithm) P by
three metrics: the number of moves, the agent memory
space, and the whiteboard memory space. The first one is
defined as the number of moves that the agent makes during
the exploration. The memory spaces of the agent and the
whiteboard on node v are defined as the maximum number
of bits used for M and w(v) respectively, taken over all of
the exploration. All the above metrics are evaluated in the
worst-case manner with respect to G and vst.

In what follows, we say that a node (or edge) is ex-
plored when the node (edge) is already visited (traversed)
at the time. Otherwise, the node (edge) is unexplored. We
say that port q ∈ {1, 2, . . . , δ(v)} of node v is explored if edge
p−1
v (q) is explored††. A node v is saturated if all edges inci-

dent to v are explored.

Algorithm Description

This paper presents seven algorithm descriptions. Each de-
scription specifies agent variables, whiteboard variables and
pseudo code of instructions the agent performs. Agent vari-
ables are stored in the agent memory. If initialization is
specified for an agent variable (e.g. flag(v) in Algorithm 6),
the variable is set to the specified value at the start of explo-
ration. Whiteboard variables are stored in the whiteboard of
every node. In our algorithms, whiteboards of all nodes have
the same set of variables. If initialization is specified for a
whiteboard variable (e.g. precent(v) in Algorithm 2), the vari-
able is set to the specified value when the agent makes the
first visit on node v.††† If initialization is not specified for
an agent or whiteboard variable, the value of the variable is
undefined (or “DON’T CARE”) before the first substitution
to the variable.

3. Algorithms Based on DFS

In this section, we present algorithmsWDFS1 andWDFS2,
†Then, it is guaranteed that all nodes are also visited.
††Function p−1

v is the inverse of pv. Hence, p−1
v (q) denotes edge

e that satisfies pv(e) = q.
†††The agent can easily detect the first visit on v because w(v) = ε

holds. Then, the agent writes “INITIALIZATION DONE” in w(v).

Fig. 1 The flow chart of DFS.

Fig. 2 Example of depth-first search on G. The numbers represent the
order of moves. (e.g. Number “7” represents the 7-th move.)

both of which are based on algorithm DFS. In the original
DFS, the agent memorizes, for each node v ∈ V and each
port q ∈ {1, 2, . . . , δ(v)}, whether the agent has visited v be-
fore or not and whether the agent has moved through q from
v or not. Clearly, O(m + n log n) space of agent memory is
enough to store these information.

With these information, the agent performs the well
known depth-first search on the graph. Figures 1 and 2
show the flow chart of DFS and an example of the depth
first search on G respectively. As long as an unexplored
port exists at the current node vcur, the agent keeps on mov-
ing forward through the port (moves of type (a) in Fig. 1,
and the 1-4th, 8-9th and 11th moves in Fig. 2). On moving
forward, if the arrival node has already been visited before,
the agent backtracks to the last visited node (moves of type
(c) in Fig. 1, and the 5th and 12th moves in Fig. 2). If it is
the first time to visit vcur, the agent memorizes port pin in a
variable preturn(vcur) of agent memory. The agent backtracks
through this port preturn(vcur) when the agent cannot find any
unexplored port at vcur (moves of type (b) in Fig. 1, and the 6-
7th, 10th and 13-14th moves in Fig. 2). The agent terminates
when it goes back to vst and vst is saturated. The number of
agent moves is exactly 2m since the agent makes exactly one
forward move and exactly one backtracking over every edge
in the graph.
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Algorithm 1 WDFS1
Variable in v’s Whiteboard

explored(v) ∈ {0, 1} // Initially, explored(v) = 0
Pexp(v) ∈ 2{1,2,...,δ(v)} // Initially, Pexp(v) = ∅
preturn(v) ∈ {0, 1, . . . , δ(v)}

Program
1: while true do // Always start from this line on visiting v
2: FIRST_TIME_TO_VISIT := (explored(vcur) = 0)?
3: LAST_MOVE_IS_FORWARD := (pin � Pexp(vcur))?
4: explored(vcur) := 1
5: if pin � 0 then Pexp(vcur) := Pexp(vcur) ∪ {pin}
6: if FIRST_TIME_TO_VISIT is true then
7: preturn(vcur) := pin // pin = 0 if vcur = vst

8: else if LAST_MOVE_IS_FORWARD is true then
9: Move through pin and go to Line 1 // backtracking (type (c))

10: end if
11: if ∃q ∈ {1, 2, . . . , δ(vcur)} \ Pexp(vcur) then
12: Pexp(vcur) := Pexp(vcur) ∪ {q}
13: Move through port q // forward move (type (a))
14: else if preturn(vcur) � 0 then // vcur � vst ⇔ preturn(vcur) � 0
15: Move through port preturn(vcur) // backtracking (type (b))
16: else
17: TERMINATE() // vcur = vst holds and vst is saturated
18: end if
19: end while

WDFS1

In WDFS1, the agent completely simulates the move of
DFS with no agent memory by using O(δ(v)) space of
w(v) (Algorithm 1). To this end, it is sufficient for the
agent to get the following information locally at node v:
(i) whether v is explored or not, (ii) whether each port
at v is explored or not, (iii) the value of preturn(v) and
(iv) whether the last move is forward (a move by Line
13) or not. The agent record the information of (i), (ii)
and (iii) on whiteboard variables explored(v), Pexp(v) and
preturn(v) (Lines 4, 7 and 12). Clearly, O(δ(v)) space of
w(v) is enough to store them. Furthermore, the agent can
evaluate the condition of (iv) with only local information:
the last move is forward if and only if edge p−1

vcur
(pin) (=

{vpre, vcur}) was unexplored before the last move (Line 3).
Note that the agent does not store any information on
its own memory (Variables FIRST_TIME_TO_VISIT and
LAST_MOVE_IS_FORWARD are used only for local com-
putation and their values are never moved between nodes
with the agent).

Theorem 1: WDFS1 solves the exploration problem for
any undirected graph. The number of moves, the agent
memory space, and the whiteboard memory space of node v
are 2m, 0, and O(δ(v)) respectively.

WDFS2

In WDFS2 (Algorithm 2), the agent uses only O(log δ(v))
space on whiteboard w(v). With such small space, the agent
can store information (i) and (iii) but cannot record infor-
mation (ii), that is, whether each port of v is explored or not.
To explore all edges incident to v without this information,

Algorithm 2 WDFS2
Variable in v’s Whiteboard

explored(v) ∈ {0, 1} // Initially, explored(v) = 0
precent(v) ∈ {0, 1, . . . , δ(v)} // Initially, precent(v) = 0
preturn(v) ∈ {0, 1, . . . , δ(v)}

Program (Main changes fromWDFS1 are Lines 3, 10-12.)

1: while true do // Always start from this line on visiting v
2: FIRST_TIME_TO_VISIT := (explored(vcur) = 0)?
3: LAST_MOVE_IS_FORWARD := (pin � precent(vcur))?
4: explored(vcur) := 1
5: if FIRST_TIME_TO_VISIT is true then
6: preturn(vcur) := pin // pin = 0 if vcur = vst

7: else if LAST_MOVE_IS_FORWARD is true then
8: Move through pin and go to Line 1 // backtracking (type(c))
9: end if

10: if ∃q, precent(vcur) < q ≤ δ(vcur) ∧ q � preturn(vcur) then
11: precent(vcur) := (minimum number of such q)
12: Move through port precent(vcur) // forward move (type (a))
13: else if preturn(vcur) � 0 then // vcur � vst ⇔ preturn(vcur) � 0
14: Move through port preturn(vcur) // backtracking (type (b))
15: else
16: TERMINATE() // vcur = vst holds and vst is saturated
17: end if
18: end while

the agent uses whiteboard variable precent(v), which mem-
orizes the most recently used port to move forward from v.
By using variable precent(v), the agent makes a forward move
through every port p ∈ {1, 2, . . . , δ(v)} other than preturn(v) in
ascending order (Lines 10-12 in Algorithm 2). Note that,
with precent(v), the agent knows the set of explored ports of v
through which the agent made forward moves from v to v’s
neighbors, but the agent does not know the set of explored
ports of v through which the agent made forward moves
from v’s neighbors to v (and backtracks from v), which leads
to more penalty moves than WDFS1. Variable precent(v) is
also used to evaluate (iv): the last move is a forward move
if and only if pin � precent(vcur) holds (Line 3).

Indeed WDFS2 solves the exploration problem for any
undirected graph, but it costs a larger number of agent
moves than DFS (and WDFS1). The agent may traverse
some edge four times in WDFS2 while it traverses every
edge exactly twice in DFS. For example, consider the sit-
uation that the agent moves from node u to v through edge
{u, v}, and then, v was already visited before (e.g. the fourth
move in Fig. 2). Then, the agent knows that v is already
explored and backtracks to node u. However, unlike in
WDFS1, the agent does not record in w(v) that port pv({u, v})
has been explored. If precent(v) < pv({u, v}) holds at this time,
the agent will eventually move forward from v to u, and soon
after that, backtrack from u to v. Thus, the agent traverses
edge {u, v} four times.

Theorem 2: WDFS2 solves the exploration problem for
any undirected graph. The number of moves, the agent
memory space, and the whiteboard memory space of each
node v are at most 4m, 0, and O(log δ(v)) respectively.

Proof: Since the agent memory space and the whiteboard
memory space are clearly 0 and O(log δ(v)), we prove that
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the number of moves is at most 4m. The number of for-
ward moves from node v is at most δ(v) since precent(v) is
monotonically increasing over the execution. Hence, the to-
tal number of forward moves is at most 2m. Since the num-
ber of backward moves is equal to the number of forward
moves, the number of moves of WDFS2 is at most 4m. �

4. Algorithms Based on PP

In this section, we present algorithms WPP1 and WPP2
both of which are based on algorithm PP developed by
Panaite and Pelc [2]. At first, we introduce the original al-
gorithm PP.

4.1 Algorithm PP [2]

The algorithm PP solves the exploration problem in any
undirected graph with no whiteboard and O(m log n) agent
memory. During the execution of PP, the agent constructs
the map of the explored part of graph G and stores it in its
memory of O(m log n) space. The map H = (VH , EH , pH)
consists of the explored nodes and edges, that is, VH = {v ∈
V | v is explored} and EH = {e ∈ E | e is explored}. In ad-
dition, for every edge {u, v} ∈ EH , the corresponding port
numbers pu({u, v}) and pv({u, v}) are stored in pH . The agent
can easily construct the map H thanks to identifiers of nodes
and port numbers that the agent can obtain locally. We omit
the map construction part of algorithm PP from the pseudo
code (Algorithm 3).

The algorithm PP, presented in Algorithm 3, consists
of two parts: the main routine and subroutine Saturate(r).
The agent can invoke Saturate(r) on node r. As we shall see
later, Saturate(r) makes the agent explore all the unexplored
edges incident to r and return to r. When the execution of
Saturate(r) finishes, it is guaranteed that r is saturated and
the agent exists on r. Importantly, if node v is saturated, map
H is complete around v. Thus, for any port q of v, the agent
knows which node the agent will reach if it leaves through
q.

In the main routine, the agent performs the depth-first
traversal on the graph with at most n invocations of Satu-
rate(). When an exploration starts or every time the agent
visits a node in the main routine, the agent marks vcur on
variable mark(vcur) and invokes Saturate(vcur) (Lines 2-3).
If vcur is saturated, the invocation is omitted. Thereafter,
map H is complete around vcur and the agent knows whether
an unmarked neighboring node exists or not. If such a
node u exists, it moves to u and memorizes port number
pin = pu({vcur, u}) in variable pparent(u) for backtracking
(Lines 4-6). If such node does not exist, the agent goes back
through port pparent(vcur) (Lines 7-8). The agent repeats the
above operations until the agent goes back to the starting
node vst and all the nodes around vst are marked. Clearly, all
the nodes and edges are explored when this repetition ends.

Let us observe how Saturate(r) saturates node r. All
the moves of the agent are performed by two subrou-

Algorithm 3 PP [2]
Variable in Agent

RP // a path from node r to vcur used in Saturate(r)
H // a map of the graph constructed during exploration
pparent(v) ∈ {1, 2, . . . , δ(v)} // store the port leading to the parent node
mark : V → {0, 1} // Initially, mark(v) = 0 for any node v

{The conditions in Lines 3, 4, 10, 12 and 13 are evaluated with map H.}

Main Routine:

1: repeat
2: mark(vcur) := 1
3: if vcur is not saturated then Saturate(vcur)
4: if ∃u ∈ N(vcur), mark(u) = 0 then
5: Move through edge {vcur, u}
6: pparent(vcur) := pin // vcur = u at this line
7: else
8: Move through port pparent(vcur)
9: end if

10: until vcur = vst and ∀u ∈ N(vcur), mark(u) = 1

Saturate(r):
{vcur = r must hold when Saturate(r) starts.}

11: RP := (r) // initialize return path RP
12: while not (vcur = r and vcur is saturated) do
13: if unexplored edge e incident to vcur exists then
14: GetForward(e)
15: else
16: GoBack()
17: end if
18: end while

GetForward(e):
{Let RP = (v0, e1, v1, . . . , ek , vk) (k ≥ 0).}

19: Move through edge e
20: RP := (v0, e1, v1, . . . , ek, vk , e, vcur) // Append (e, vcur) to the tail of RP
21: if vi = vcur for some i (0 ≤ i ≤ k) then
22: RP := (v0, e1, v1, . . . , ei, vi) // Delete a cycle from RP
23: end if

GoBack():
{Let RP = (v0, e1, v1, . . . , ek′ , vk′ ) (k′ ≥ 1).}

24: RP := (v0, e1, v1, . . . , ek′−1, vk′−1) // Delete (ek′ , vk′ ) from RP
25: Move through ek′

tines, GetForward(e) and GoBack(). During the execu-
tion of Saturate(r), the agent keeps the return path RP =
(v0, e1, v1, e2, . . . , vk), v0 = r, vk = vcur in its memory M
(see the above part of Fig. 3), which is updated and used
in GetForward(e) and GoBack(). The initial value of RP
is (r). When GetForward(e) is invoked, the agent moves
through edge e, and then appends (e, vcur) to the tail of
RP (Line 20). If this makes a cycle in RP, the agent
deletes the cycle to shorten the return path RP. More pre-
cisely, if vcur = vi holds for some i (0 ≤ i ≤ k) in
RP = (v0, e1, v1, . . . , ek, vk, e, vcur), then the agent assigns
(v0, e1, v1, . . . , ei, vi) to RP (Line 22). When GoBack() is
invoked, the agent retrieves and deletes the last two ele-
ments (ek′ , vk′ ) from RP = (v0, e1, v1, . . . , ek′ , vk′ ) and moves
through edge ek′ (Lines 24-25). Note that GoBack() is well-
defined: GoBack() is invoked only when vcur � r, and
thus, k′ ≥ 1 is satisfied when GoBack() is invoked. The
agent keeps on traversing unexplored edge e by invoking
GetForward(e) as long as an unexplored edge incident to
vcur exists (Lines 13-14). The agent backtracks along RP
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by invoking GoBack() when no unexplored edge incident to
vcur exists(Line 16). Since the agent always maintains re-
turn path RP and invokes GetForward() only finite times (at
most m), the agent eventually goes back to r, and eventually
saturates r and terminates.

We analyze the number of moves required for explo-
ration by PP in what follows. Note that the agent invokes
GoBack() only when the current node is saturated. Consider
the case that the agent has just performed GoBack() and
backtracked from node v. Then, v is saturated and RP does
not include v. Hence, after that, the agent never visits v dur-
ing the execution of Saturate(u) for any u ∈ V . This means
that the total number of invoking GoBack() is at most n in
all the executions of Saturate() during the exploration. The
number of invoking GetForward() is at most m. (Every invo-
cation consumes one unexplored edge). Hence, the number
of moves performed during the executions of Saturate() is at
most m + n. The number of moves during the execution of
the main routine is exactly 2(n− 1) since the agent moves to
an unmarked node (by Line 5) n − 1 times and goes back to
the parent node (by Line 8) n − 1 times. Summing up these
upper bounds, we see that the number of moves of PP is at
most m + 3n.

Proposition 1 (Panaite and Pelc [2]): Without whiteboards,
an agent A = (PP,M) completes exploration for any undi-
rected graph G = (V, E) and any starting node v ∈ V with at
most m + 3n moves.

4.2 Algorithms WPP1 and WPP2

In this section, we present our two algorithms, WPP1 and
WPP2. Using whiteboards, these two algorithms simulate
PP with less agent memory space. Algorithm WPP1 uses
O(n) agent memory space and O(n) space on each white-
board while algorithmWPP2 uses O(n log n) agent memory
space and O(δ(v) + log n) space on each whiteboard w(v).

In both the two algorithms, we assume the followings:

(i) the agent knows if it already visited vcur before or not,
(ii) the agent knows which ports of v are explored, and
(iii) 1 ≤ id(v) ≤ n holds for v ∈ V .

These assumptions do not lose generality. For assumption
(i), it is sufficient that the agent marks the current node as
“an explored node“ on w(vcur) at the start of exploration and
every time it visits an unmarked node. For assumption (ii),
it is sufficient that the agent marks ports pu(u, v) and pv(u, v)
as “an explored port” on w(u) and w(v) respectively when it
moves from u to v. For assumption (iii), it is sufficient that
the agent records the number of times it visits unexplored
nodes on agent variable count and stores count + 1 on w(v)
as the new label of v when it visits an unexplored node v.
These procedure can be performed with O(log n) space of
agent memory and O(log n+ δ(v)) space of each whiteboard
w(v).

In the rest of this section, we illustrate how WPP1 and
WPP2 simulate the subroutine Saturate(r) (Sect. 4.2.1) and

the main routine of PP (Sect. 4.2.2).

4.2.1 Saturate(r) with Whiteboards

The algorithms to simulate Saturate(r) in WPP2 and WPP1
are shown in Algorithms 4 and 5 respectively. The diffi-
culty of simulating Saturate(r) exists only in maintaining the
return path RP in the subroutines GetForward() and GoB-
ack(). Other instructions (i.e. Lines 11-18 in Algorithm 3)
can be easily simulated with node identifiers and knowledge
of explored ports (assumption (ii)) as in Lines 2-8 in Algo-
rithm 4 and Lines 3-9 in Algorithm 5. Note that there is
no difference in the agent moves between moving through
unexplored edge e incident to vcur in Algorithm 3 and mov-
ing through unexplored port q of vcur in Algorithms 4 and
5. Therefore, the simulation succeeds if the agent maintains
RP correctly. In what follows, we explain how the agent
maintains RP with the agent memory restrictions in WPP1
and WPP2. Remind that RP = (v0, e1, v1, . . . , ek, vk), v0 =
r, vk = vcur is the path such that:

• RP = (r) holds at the start of Saturate(r),
• when the agent moves from v to u in GetForward({v, u}),

({v, u}, u) is appended to the tail of RP,
• if the above creates a cycle in RP, that is, u = vi holds

for some i (0 ≤ i < k), then the cycle is deleted and RP
becomes (v0, e1, v1, . . . , ei, vi), and
• when the agent backtracks from vk to vk−1 in GoBack(),

(ek, vk) is deleted from the tail of RP.

The two sub-routines, BeforeMove() and AfterMove()
(Lines 9, 11 and 18 in Algorithm 4 and Lines 10, 12 and 20
in Algorithm 5) are invoked to construct a spanning tree for
the main-routine and do not affect the moves of Saturate() at
all. These sub-routines are explained in Sect. 4.2.2.

Procedure in WPP2

As for WPP2, the solution is easy (Algorithm 4). The agent
can memorize the entire return path in its memory M of
O(n log n) space. The agent keeps the return path RP =
(v0, e1, . . . , ek, vk) as an alternating sequence of node iden-
tifiers and port numbers RP2 = (id(v0), q1, . . . , qk, id(vk)),
where qi = pvi (ei) holds for every i, 1 ≤ i ≤ k. Since the
length of the return path is at most n − 1, agent memory of
O(n log n) space is enough to keep RP2. Since the agent has
RP2 in its memory, the agent can maintain RP2 in exactly
the same way as the agent does in PP: the agent appends the
incoming port and the current node to RP2 (Line 12), deletes
a cycle if created (Lines 13-15), and deletes the last two ele-
ments (a port number and a node identifier) from RP2 (Line
16). Hence, the agent in Saturate(r) of WPP2 moves in the
exactly same way as the agent does in Saturate(r) of PP.

Lemma 1: The subroutine Saturate(r) of WPP2 simulates
Saturate(r) of PP. It uses O(n log n) memory space of the
agent memory and O(log n + δ(v)) memory space of w(v).

Procedure in WPP1

Since WPP1 allows the agent to have only O(n) memory
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Algorithm 4 Saturate(r) in WPP2
Variable in Agent

RP2 : an alternating sequence of node identifiers and port numbers

Saturate(r):
{vcur = r must hold when Saturate(r) starts.}

1: RP2 := (id(r)) // initialize return path RP
2: while not (id(vcur) = id(r) and all ports of vcur are explored) do
3: if an unexplored port q of vcur exists then
4: GetForward(q)
5: else
6: GoBack()
7: end if
8: end while

GetForward(q):
{Let RP2 = (id(v0), q1, id(v1), . . . , qk, id(vk)) (k ≥ 0).}

9: BeforeMove(q)
10: Move through port q
11: AfterMove()
12: RP2 := (id(v0), q1, id(v1), . . . , qk, id(vk), pin, id(vcur))
13: if id(vi) = id(vcur) for some i (0 ≤ i ≤ k) then
14: RP2 := (id(v0), q1, id(v1), . . . , qi, id(vi)) // Delete a cycle from RP2

15: end if

GoBack():
{Let RP2 = (id(v0), q1, id(v1), . . . , qk′ , id(vk′ )) (k′ ≥ 1).}

16: RP2 := (id(v0), q1, id(v1), . . . , qk′−1, id(vk′−1))
17: Move through port qk′
18: AfterMove()

space, the agent cannot keep the return path RP. Thus, the
information of RP should be dispersed among nodes. But
this makes it difficult to detect a cycle in RP. Readers may
think of the following simple mechanism for the cycle de-
tection of RP: When the agent moves from u to v in Get-
Forward(), it writes the mark as “this node belongs to RP”
on w(v), and when the agent backtracks from v, it deletes the
mark from w(v). The agent knows that a cycle is created in
RP if it finds this mark just after the move in GetForward().
But this mechanism does not work well: to avoid subsequent
false detection of a cycle, the agent has to remove the marks
of the nodes in the deleted cycle, which requires additional
moves of the agent.

AlgorithmWPP1 maintains RP in a sophisticated way.
With O(n) space of agent memory, the agent cannot store the
entire return path RP = (v0, e1, v1, . . . , ek, vk) in its memory
M. Hence, WPP1 maintains RP by storing it separately on
the agent memory and the whiteboards of all the nodes in
RP (Fig. 3). The agent memorizes the set of node identifiers
{id(v j) | 0 ≤ j ≤ k} in the variable RP1 instead of the se-
quence of the identifiers. (Memory space required to store
the set of identifiers is n since every identifier id(v) satisfies
1 ≤ id(v) ≤ n.) Each whiteboard w(vi) contains port num-
ber pvi (ei) in the variables preturn(vi). The set RP1 is used to
detect a cycle in RP in GetForward(e), and preturn(v) is used
to come back along RP in GoBack(). In addition, the set of
identifiers {id(v j) | 0 ≤ j ≤ i} is stored in the whiteboard
variable hist(vi) of node vi (Fig. 4). This variable is used to
identify the nodes constituting the cycle, which the agent
should delete from RP1.

Fig. 3 How the return path is memorized in PP and WPP1.

Fig. 4 Histories at whiteboards of nodes.

The pseudo code of Saturate(r) in WPP1 is given in
Algorithm 5. When Saturate(r) is invoked, the agent ini-
tializes both variables RP1 and hist(r) to {id(r)} (Lines 1-2).
When GetForward(q) is invoked, the agent moves through
port q, and then checks whether this move creates a cycle on
the return path. This check is easily done: a cycle is created
if and only if the detecting condition id(vcur) ∈ RP1 holds
(Line 13). If the condition does not hold, the agent extends
the return path by updating RP1 and preturn(vcur) (Line 16
and 17). At the same time, the agent stores the copy of RP1

in hist(vcur) (Line 18). If the detecting condition holds, the
agent substitute hist(vcur) to RP1 (Line 14). This substitu-
tion realizes deletion of the cycle. (Consider the case that
the agent moves from node 3 to node 5 in Fig. 4. This move
changes RP1 from {1, 3, 4, 5} to {1, 5}, which realizes dele-
tion of the cycle (5, 4, 3, 5).) When GoBack() is invoked, the
agent removes node vcur (= vk) from RP1, and then moves
through port preturn(vcur) (= pvk (ek)).

Let RP = (v0, e1, v1, . . . , ek, vk). We say that RP1 is
correct when RP1 = {id(v j) | 0 ≤ j ≤ k} holds. We say
that whiteboard information is correct about histories when
hist(vi) = {id(v j) | 0 ≤ j ≤ i} holds for all i (0 ≤ i ≤ k). We
say whiteboard information is correct about local directions
when preturn(vi) = pvi (ei) holds for all i (1 ≤ i ≤ k).

Lemma 2: Let α be the total number of invocations of Get-
Forward() and GoBack() in Saturate(r) and let i be any pos-
itive integer such that 1 ≤ i ≤ α. Then, RP1 is correct at the
start of the i-th invocation of the sub-routines in Saturate(r).
Whiteboard information is also correct both about histories
and about local directions at the start of the i-th invocation
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Algorithm 5 Saturate(r) of WPP1
Variable in Agent

RP1 ∈ 2{1,2,...,n}

Variables in v’s Whiteboard
preturn(v) ∈ {1, 2, . . . , δ(v)}
hist(v) ∈ 2{1,2,...,n}

Saturate(r):
{vcur = r must hold when Saturate(r) starts.}

1: RP1 := {id(r)} // initialize return path RP
2: hist(vcur) = RP1 // Store the current RP1 on the whiteboard
3: while not (id(vcur) = id(r) and all ports of vcur are explored) do
4: if an unexplored port q of vcur exists then
5: GetForward(q)
6: else
7: GoBack()
8: end if
9: end while

GetForward(q)
10: BeforeMove(q)
11: Move through port q
12: AfterMove()
13: if id(vcur) ∈ RP1 then
14: RP1 := hist(vcur) // Delete a detected cycle
15: else
16: RP1 := RP1 ∪ {id(vcur)} // Extend the return path
17: preturn(vcur) := pin
18: hist(vcur) := RP1 // Store the current RP1 on the whiteboard
19: end if
GoBack()
18: RP1 := RP1 \ {vcur}
19: Move through preturn(vcur)
20: AfterMove()

of the sub-routines in Saturate(r).

Proof: We prove the lemma by induction on 1 ≤ i ≤ α
(or ordinal number of invocation of GetForward() and GoB-
ack() in Saturate(r)). The predicate of the lemma trivially
hold for i = 1 since RP = (r) and RP1 = hist(r) = {id(r)}
holds at the start of the first invocation. Then, we prove the
predicate for any i > 1 assuming that RP1 and whiteboard
information about histories and local directions are correct
at the start of the t-th invocation for any t (0 ≤ t < i). Let
RP = (v0, e1, v1, . . . , ek, vk) at the start of the (i − 1)-th invo-
cation. The following three cases of the (i − 1)-th invoca-
tion exist: (i) The (i − 1)-th invocation is GetForward() and
this invocation creates a cycle in the return path, (ii) The
(i − 1)-th move is GetForward() and this invocation does
not create a cycle in the return path, and (iii) The (i − 1)-
th invocation is GoBack(). It trivially holds for cases (ii)
and (iii) that RP1 and whiteboard information about histo-
ries and local directions are correct at the start of the i-th
invocation. Hence, it suffices to prove the correctness for
case (i). Let us consider that the agent moves from vk to
v at this invocation of GetForward() without loss of gener-
ality. In this case, v j = v holds for some j (0 ≤ j ≤ k).
Thus, RP becomes (v0, e1, v1, . . . , e j, v j) after the (i − 1)-th
move by the cycle deletion. Because of the correctness of
RP1, the agent detects the cycle at Line 13. Then, the agent
substitutes hist(v) to RP1 by Line 14, the value of which is

{id(v0), id(v1), . . . , id(v j)} since hist(v) is correct at the start
of the (i − 1)-th invocation. Thus, RP1 is correct at the start
of the i-th invocation. Whiteboard information about histo-
ries and local directions is also correct at the start of i-th in-
vocation because the agent does not modify hist() or preturn()
of any node at the (i − 1)-th invocation. �

Lemma 3: The subroutine Saturate(r) of WPP1 simulates
Saturate(r) of PP. It uses O(n) space of the agent memory
and O(n) space of w(v).

Proof: Since whiteboard information is always correct
about local directions at the start of invocation of GoBack()
by Lemma 2, the agent in WPP1 always selects the same
edge to go back as in PP. Thus, the subroutine Saturate(r)
of WPP1 simulates Saturate(r) of PP. Memory spaces of
the agent and each node are O(n) since the variables RP1

and hist(v) can be implemented as n-bit arrays. �

4.2.2 Main Routine with Whiteboards

Both WPP1 and WPP2 perform the main routine in the
same way. In this section, we call them WPP collectively.

The goal of the main routine is to visit all the nodes
with at most 2n moves. The original PP achieves this goal
in a simple way: if unmarked node u exists in N(vcur) then
the agent moves to and marks u; Otherwise, the agent back-
tracks to the parent node of vcur (in the depth first tree). In
PP, the agent can determine whether an unmarked node
exists in N(vcur) or not by referring a map of the graph.
However, in WPP, the agent does not have any map of the
graph, thus it cannot detect existence of an unmarked node
in N(vcur) by the same way as PP. Hence, another mecha-
nism is needed to visit all the nodes with at most 2n moves.

Roughly speaking, our solution is as follows: (i) Dur-
ing executions of Saturate(), we construct a spanning tree
on the graph and store its edges on whiteboards, and (ii) in
the main routine, the agent visits all the nodes with 2(n − 1)
moves by exploring the spanning tree. Before presenting the
solution in detail, we introduce directed tree D = (VD, ED),
which expands dynamically as the agent moves: (i) Initially,
VD = {vst} and ED = ∅, and (ii) every time the agent visits
an unexplored node, node vcur and directed edge (vpre, vcur)
is added to VD and ED respectively. We say that node u is a
child of node v if edge (v, u) exists in ED, and define children
port set of v as CD(v) = {pv({v, u}) | (v, u) ∈ ED}.

In WPP, the agent stores CD(v) in variable Pchild(v) of
v’s whiteboard. To maintain Pchild(v), the agent executes
sub-routines BeforeMove() and AfterMove() in Saturate(r)
(Lines 9, 11 and 18 in Algorithm 4 and Lines 10, 12 and
20 in Algorithm 5). The pseudo codes of BeforeMove() and
AfterMove() are shown in Algorithm 6. The idea of these
sub-routines is simple. Consider the case that the agent has
just moved from node u to node v, and v is unexplored be-
fore the move. Then, by raising a flag on u (agent vari-
able flag(id(u))), the agent remembers that u has a new child
(Lines 2 and 4). When the agent visits u again after that,
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the agent knows from the flag that u has a new child, and
then adds pu({u, v}) to Pchild(u) (Lines 6-7). This addition
is realized by storing port number pu({u, v}) on w(u) every
time it moves from u to v (Line 1). Note that we invoke Be-
foreMove() only before the move in GetForward() and not
before the move in GoBack(), because the agent never finds
an unexplored node at moves in GoBack().

Lemma 4: When the agent exists on node v, Pchild(v)
equals to CD(v).

Proof: We prove the lemma by induction on the number
of the agent’s visits on v. At the time of the first visit on
v, we have Pchild(v) = CD(v) since both are empty sets.
In the following, we prove that, under the assumption that
Pchild(v) = CD(v) holds at the time of the i-th visit on v,
Pchild(v) = CD(v) also holds at the time of the (i + 1)-th visit
on v. Let u ∈ N(v) be the node to which the agent moves just
after the i-th visit on v.

Case 1: u is explored at the time of the i-th visit on v.
In this case, neither Pchild(v) nor CD(v) changes, and
Pchild(v) = CD(v) holds at the (i + 1)-th visit on v.
Case 2: u is unexplored at the time of the i-th visit on v.
In this case, pv({v, u}) is added to CD(v) when the agent ar-
rives at u just after the i-th visit on v. The agent raises
flag(id(v)) at this time, and the flag never goes down until
the (i + 1)-th visit on v. Hence, at the (i + 1)-th visit on
v, the agent recognizes the raised flag and adds pv({v, u})
to Pchild(v). Meanwhile, no other update can happen on
Pchild(v) or CD(v). Thus, Pchild(v) = CD(v) holds at the (i+1)-
th visit on v. �

We denote D at the end of the exploration by Dfinal =

(VDfinal , EDfinal ). By the definition of D, CD(v) = CDfinal (v)
always holds after node v is saturated. Therefore, by Lemma
4, Pchild(v) = CDfinal (v) holds after v is saturated.

The goal of the main routine, which is described in Al-
gorithm 7, is to explore Dfinal. At Lines 3-9, we can assume
vcur is saturated thanks to Line 2, and hence, Pchild(vcur) =
CDfinal (vcur) holds. With whiteboard variables Pchild(), the
agent can explore Dfinal in the depth-first fashion: it moves
through an unexplored port q as long as such a port q exists
among Pchild(vcur) and it backtracks to the parent node of vcur

when such a port does not exist (Lines 3-9). All the nodes in
the graph are explored when the agent goes back to vst and
all ports in Pchild(vst) are already explored. Then, the agent
terminates the exploration.

Thus, the agent eventually visits all the nodes of Dfinal

in the main routine of WPP. Hence, proving VDfinal = V suf-
fices to prove the correctness of WPP.

Lemma 5: Dfinal is a spanning tree on G. (i.e. VDfinal = V).

Proof: By definition of D, if node v ∈ VD is saturated, all
nodes neighboring v are included in D. Since the agent visits
and saturates all the nodes in Dfinal, all the nodes connected
to vst are included in Dfinal. �

The number of moves performed in the main routine is
exactly 2(n − 1) since the agent moves every edge in Dfinal

Algorithm 6 BeforeMove(q) and AfterMove()
Variables in Agent

flag : {1, . . . , n} → {0, 1} : Initially, ∀i ∈ [1, n], flag(i) = 0
labelpre ∈ {1, . . . , n}

Variables in v’s Whiteboard
precent(v) ∈ {1, 2, . . . , δ(v)}
Pchild(v) ∈ 2{1,2,...,δ(v)} : Initially, ∀v ∈ V, Pchild(v) = ∅

BeforeMove(q):
{the agent is going to move through port q.}

1: precent(vcur) := q
2: labelpre := id(vcur)

AfterMove()
3: if vcur is not visited before then
4: flag(labelpre) := 1
5: end if
6: if flag(id(vcur)) = 1 then
7: Pchild(vcur) := Pchild(vcur) ∪ {precent(vcur)}
8: flag(id(vcur)) := 0
9: end if

Algorithm 7 The main routine of WPP
Variables in v’s Whiteboard

Pchild(v) ∈ 2{1,2,...,δ(v)}: read only
Pexp(v) ∈ 2{1,2,...,δ(v)} : Initially, ∀v ∈ V, Pexp(v) = ∅
pparent(v) ∈ {1, 2, . . . , δ(v)}

Main Routine:

1: repeat
2: if vcur is not saturated then Saturate(vcur)
3: if port q ∈ Pchild(vcur) \ Pexp(vcur) exists then
4: Pexp(vcur) := Pexp(vcur) ∪ {q}
5: Move through port q
6: pparent(vcur) := pvcur ({vpre, vcur})
7: else
8: Move through port pparent(vcur)
9: end if

10: until vcur = vst and Pchild(vcur) = Pexp(vcur)

twice (once in each direction). And, the number of moves
during all executions of Saturate() is at most m + n (Lem-
mas 1 and 3). Consequently, we obtain the following two
theorems.

Theorem 3: WPP1 solves the exploration problem for any
undirected graph. The number of moves, the agent memory
space, and the whiteboard memory space of node v are at
most m + 3n, O(n), and O(n) respectively.

Theorem 4: WPP2 solves the exploration problem for any
undirected graph. The number of moves, the agent memory
space, and the whiteboard memory space of node v are at
most m + 3n, O(n log n), and O(δ(v) + log n) respectively.

5. Conclusion

In this paper, we proposed four exploration algorithms in
the whiteboard model. By using whiteboards, they solve
the exploration problem for any undirected graph with a
small number of moves and a small agent memory. In ad-
dition, our proposed algorithms give us efficient implemen-
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tations of DFS and PP with smaller agent memory in the
no-whiteboard model.

Acknowledgments

This work is supported in part by JSPS KAKENHI Grant
Numbers 24650012, 26280022, and 26330084.

References

[1] Y. Sudo, D. Baba, J. Nakamura, F. Ooshita, H. Kakugawa, and T.
Masuzawa, “An agent exploration in unknown undirected graphs
with whiteboards,” Proc. Third International Workshop on Reliabil-
ity, Availability, and Security — WRAS’10, pp.1–6, 2010.

[2] P. Panaite and A. Pelc, “Exploring unknown undirected graphs,” J.
Algorithms, vol.33, no.2, pp.281–295, 1999.

[3] S. Albers and M.R. Henzinger, “Exploring unknown environments,”
Proc. Twenty-Ninth Annual ACM Symposium on Theory of Com-
puting — STOC’97, pp.416–425, 1997.

[4] X. Deng and C.H. Papadimitriou, “Exploring an unknown graph,” J.
Graph. Theor., vol.32, no.3, pp.265–297, 1999.

[5] R. Fleischer and G. Trippen, “Exploring an unknown graph effi-
ciently,” Algorithms — ESA 2005, Lecture Notes in Computer Sci-
ence, vol.3669, pp.11–22, Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2005.

[6] L. Budach, “Automata and labyrinths,” Math. Nachr., vol.86, no.1,
pp.195–282, 1978.

[7] M.A. Bender, A. Fernández, D. Ron, A. Sahai, and S. Vadhan, “The
power of a pebble: Exploring and mapping directed graphs,” Inform.
Comput., vol.176, no.1, pp.1–21, 2002.

[8] J. Chalopin, S. Das, and A. Kosowski, “Constructing a map of an
anonymous graph: Applications of universal sequences,” Princi-
ples of Distributed Systems, Lecture Notes in Computer Science,
vol.6490, pp.119–134, Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2010.

[9] P. Fraigniaud and D. Ilcinkas, “Digraphs exploration with lit-
tle memory,” STACS 2004, Lecture Notes in Computer Science,
vol.2996, pp.246–257, Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2004.

[10] S. Das, P. Flocchini, S. Kutten, A. Nayak, and N. Santoro, “Map
construction of unknown graphs by multiple agents,” Theor. Com-
put. Sci., vol.385, no.1-3, pp.34–48, 2007.

[11] K. Diks, P. Fraigniaud, E. Kranakis, and A. Pelc, “Tree exploration
with little memory,” J. Algorithms, vol.51, no.1, pp.38–63, 2004.

[12] L. Gasieniec, A. Pelc, T. Radzik, and X. Zhang, “Tree exploration
with logarithmic memory,” Proc. Eighteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, p.594, 2007.

[13] Y. Dieudonné and A. Pelc, “Deterministic network exploration by a
single agent with byzantine tokens,” Inform. Process. Lett., vol.112,
no.12, pp.467–470, 2012.

[14] V.B. Priezzhev, D. Dhar, A. Dhar, and S. Krishnamurthy, “Eulerian
walkers as a model of self-organized criticality,” Phys. Rev. Lett.,
vol.77, no.25, pp.5079–5082, 1996.

[15] V. Yanovski, I.A. Wagner, and A.M. Bruckstein, “A distributed ant
algorithm for efficiently patrolling a network,” Algorithmica, vol.37,
no.3, pp.165–186, 2003.

[16] R. Cohen, P. Fraigniaud, D. Ilcinkas, A. Korman, and D. Peleg, “La-
bel-guided graph exploration by a finite automaton,” ACM Trans.
Algorithms, vol.4, no.4, pp.1–18, 2008.
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