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In this paper, we consider the partial gathering problem of mobile agents in asynchronous 
unidirectional rings equipped with whiteboards on nodes. The partial gathering problem 
is a new generalization of the total gathering problem. The partial gathering problem 
requires, for a given integer g, that each agent should move to a node and terminate so that 
at least g agents should meet at the same node. The requirement for the partial gathering 
problem is weaker than that for the (well-investigated) total gathering problem, and thus, 
we have interests in clarifying the difference on the move complexity between them. 
We propose three algorithms to solve the partial gathering problem. The first algorithm 
is deterministic but requires unique ID of each agent. This algorithm achieves the partial 
gathering in O (gn) total moves, where n is the number of nodes. The second algorithm 
is randomized and requires no unique ID of each agent (i.e., anonymous). This algorithm 
achieves the partial gathering in expected O (gn) total moves. The third algorithm is 
deterministic and requires no unique ID of each agent. For this case, we show that 
there exist initial configurations in which no algorithm can solve the problem and agents 
can achieve the partial gathering in O (kn) total moves for solvable initial configurations, 
where k is the number of agents. Note that the total gathering problem requires �(kn)

total moves, while the partial gathering problem requires �(gn) total moves in each 
model. Hence, we show that the move complexity of the first and second algorithms is 
asymptotically optimal.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

1.1. Background and our contribution

A distributed system is a system that consists of a set of computers (nodes) and communication links. In recent years, 
distributed systems have become large and design of distributed systems has become complicated. As an effective way 
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Table 1
Proposed algorithms for the g-partial gathering problem in asynchronous unidirectional rings.

Model 1 (Section 3) Model 2 (Section 4) Model 3 (Section 5)

Unique agent ID Available Not available Not available
Deterministic/Randomized Deterministic Randomized Deterministic
Knowledge of k Not available Available Available
The total moves O (gn) O (gn) O (kn)

Note – – There exist unsolvable configurations

to design distributed systems, (mobile) agents have attracted a lot of attention [1]. Design of distributed systems can be 
simplified using agents because they can traverse the system with carrying information and process tasks on each node.

The total gathering problem is a fundamental problem for cooperation of agents [1–3]. The total gathering problem 
requires all agents to meet at a single node in finite time. The total gathering problem is useful because, by meeting at a 
single node, all agents can share information or synchronize behaviors among them.

In this paper, we consider a new generalization of the total gathering problem, called the partial gathering problem. The 
partial gathering problem does not always require all agents to gather at a single node, but requires agents to gather 
partially at several nodes. More precisely, we consider the problem which requires, for a given integer g , that each agent 
should move to a node and terminate at a node so that at least g agents should meet at the node. We define this problem 
as the g-partial gathering problem. We assume that k is the number of agents. Clearly if k/2 < g ≤ k holds, the g-partial 
gathering problem is equivalent to the total gathering problem. If g ≤ k/2 holds, the requirement for the g-partial gathering 
problem is weaker than that for the total gathering problem, and thus it seems possible to solve the g-partial gathering 
problem with fewer total moves. From a practical point of view, the g-partial gathering problem is still useful because 
agents can share information and process tasks cooperatively among at least g agents.

The contribution of this paper is to clarify the difference on the move complexity between the total gathering problem 
and the g-partial gathering problem. We investigate the difference in asynchronous unidirectional rings equipped with 
whiteboards on nodes. The contribution of this paper is summarized in Table 1, where n is the number of nodes.

First, we propose a deterministic algorithm to solve the g-partial gathering problem for the case that agents have distinct 
IDs. This algorithm requires O (gn) total moves. Second, we propose a randomized algorithm to solve the g-partial gathering 
problem for the case that agents have no IDs but agents know the number k of agents. This algorithm requires expected 
O (gn) total moves. Third, we consider a deterministic algorithm to solve the g-partial gathering problem for the case that 
agents have no IDs but agents know the number k of agents. In this case, we show that there exist initial configurations 
for which the g-partial gathering problem is unsolvable. Next, we propose a deterministic algorithm to solve the g-partial 
gathering problem for any solvable initial configuration. This algorithm requires O (kn) total moves. Note that the total 
gathering problem requires �(kn) total moves regardless of deterministic or randomized settings. This is because in the 
case that all the agents are uniformly deployed, at least half agents require O (n) moves to meet at one node. Hence, the 
first and second algorithms imply that the g-partial gathering problem can be solved with fewer total moves compared 
to the total gathering problem for the both cases. In addition, we show a lower bound �(gn) of the total moves for the 
g-partial gathering problem if g ≥ 2. This means the first and second algorithms are asymptotically optimal in terms of the 
total moves.

1.2. Related works

Many fundamental problems for cooperation of mobile agents have been studied. For example, the searching problem 
[4], the gossip problem [5], the election problem [6], and the gathering problem [1–3,6–16] have been studied.

In particular, the gathering problem has received a lot of attention and has been extensively studied in many topologies 
including trees [1,5,12–15], tori [1,8], and rings [1–3,6,7,9,4,11]. The gathering problem for rings has been extensively studied 
because algorithms for such highly symmetric topologies give techniques to treat the essential difficulty of the gathering 
problem such as breaking symmetry.

For example, Kranakis et al. [2] considered the gathering problem for two mobile agents in ring networks. This algorithm 
allows each agent to use a token to select the gathering node based on the token locations. Later this work has been 
extended to consider any number of agents [3,7]. Flocchini et al. [3] showed that if one token is available for each agent, 
the lower bound on the space complexity per agent is �(log k + log log n) bits, where k is the number of agents and n
is the number of nodes. Later, Gasieniec et al. [7] proposed the asymptotically space-optimal algorithm for uni-directional 
ring networks. Barriere et al. [6] considered the relationship between the gathering problem and the leader agent election 
problem. They showed that the gathering problem and the leader agent election problem are solvable under only the 
assumption that the ring has sense of direction and the numbers of nodes and agents are relatively prime.

A fault tolerant gathering problem is considered in [9,10]. Flocchini et al. [9] considered the gathering problem when 
tokens fail and showed that knowledge of n (number of agents) allows better time complexity than knowledge of k (number 
of agents). Dobrev et al. [10] considered the gathering problem for the case that there exists a dangerous node, called a 
black hole. A black hole destroys any agent that visits there. They showed that it is impossible for all agents to gather and 
they considered how many agents can survive and gather.
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A randomized algorithm to solve the gathering problem is shown in [11]. Kawai et al. considered the gathering problem 
for multiple agents under the assumption that agents know neither k nor n, and proposed a randomized algorithm to solve 
the gathering problem with high probability in O (kn) total moves.

1.3. Organization

The paper is organized as follows. Section 2 presents the system models and the problem to be solved. In Section 3 we 
consider the first model, that is, the algorithm is deterministic and each agent has a distinct ID. In Section 4 we consider the 
second model, that is, the algorithm is randomized and agents are anonymous. In Section 5 we consider the third model, 
that is, the algorithm is deterministic and agents are anonymous. Section 6 concludes the paper. Note that in this paper, we 
explain algorithms and proofs at higher level. The readers can see the details in the technical report [17].

2. Preliminaries

2.1. Network model

A unidirectional ring network R is a tuple R = (V , L), where V is a set of nodes and L is a set of unidirectional commu-
nication links. We denote by n (= |V |) the number of nodes. Then, ring R is defined as follows.

• V = {v0, v1, . . . , vn−1}
• L = {(vi, v(i+1) mod n) | 0 ≤ i ≤ n − 1}

We define the direction from vi to vi+1 as the forward direction, and the direction from vi+1 to vi as the backward direction. 
In addition, we define the i-th (i �= 0) forward (resp., backward) agent a′

h of agent ah as the agent that exists in the ah ’s 
forward (resp., backward) direction and there are i − 1 agents between ah and ah′ . Moreover, we call the ah ’s 1-st forward 
and backward agents neighboring agents of ah respectively.

In this paper, we assume nodes are anonymous, i.e., they do not have IDs. Every node vi ∈ V has a whiteboard that 
agents on node vi can read from and write on the whiteboard of vi . We define W as a set of all states (contents) of a 
whiteboard.

2.2. Agent model

Let A = {a1, a2, . . . , ak} be a set of agents. We consider three model variants.
In the first model, we consider agents that are distinct (i.e., agents have distinct IDs) and execute a deterministic algo-

rithm. We model an agent ah as a finite automaton (S, δ, sinitial, sfinal). The first element S is the set of the ah ’s all states, 
which includes initial state sinitial and final state sfinal . When ah changes its state to sfinal , it terminates the algorithm. The sec-
ond element δ is the state transition function. Since we treat deterministic algorithms, δ is a mapping S × W → S × W × M , 
where M = {1, 0} represents whether the agent makes a movement or not in the step. The value 1 represents movement to 
the next node and 0 represents stay at the current node. Since rings are unidirectional, each agent moves only to its forward 
node. Note that if the state of ah is sfinal and the state of its current node’s whiteboard is wi , then δ (sfinal, wi) = (sfinal, wi, 0)

holds. In addition, we assume that each agent cannot detect whether other agents exist at the current node or not. More-
over, we assume that each agent knows neither the number of nodes n nor agents k. Notice that S, δ, sinitial , and sfinal can 
be dependent on the agent’s ID.

In the second model, we consider agents that are anonymous (i.e., agents have no IDs) and execute a randomized 
algorithm. We model an agent similarly to the first model except for state transition function δ. Since we treat randomized 
algorithms, δ is a mapping S × W × R → S × W × M , where R represents a set of random values. Note that if the state 
of some agent is sfinal and the state of its current node’s whiteboard is wi , then δ (sfinal, wi, R) = (sfinal, wi, 0) holds. In 
addition, we assume that each agent cannot detect whether other agents exist at the current node or not, but we assume 
that each agent knows the number of agents k. Notice that all the agents are modeled by the same state machine since they 
are anonymous.

In the third model, we consider agents that are anonymous and execute a deterministic algorithm. We also model an 
agent similarly to the first model. We assume that each agent knows the number of agents k. Note that all the agents are 
modeled by the same state machine.

2.3. System configuration

In an agent system, (global) configuration c is defined as a product of states of agents, states of nodes (whiteboards’ 
contents), and locations of agents. We define C as a set of all configurations. In initial configuration c0 ∈ C , we assume that 
no pair of agents stay at the same node. We assume that each node v j has boolean variable v j .initial at the whiteboard 
that indicates existence of agents in the initial configuration. If there exists an agent on node v j in the initial configuration, 
the value of v j .initial is true. Otherwise, the value of v j .initial is false.



4 M. Shibata et al. / Theoretical Computer Science 617 (2016) 1–11
Let Ai be an arbitrary non-empty set of agents. When configuration ci changes to ci+1 by the step of every agent in 
Ai , we denote the transition by ci

Ai−−→ ci+1. In one atomic step, each agent a ∈ A j executes the following series of events: 
1) reads the contents of its current node’s whiteboard, 2) executes local computation, 3) updates the contents of the node’s 
whiteboard, and 4) moves to the next node or stays at the current node. We assume that agents move instantaneously, 
that is, agents always exist at nodes (do not exist at links). If multiple agents at the same node are included in Ai , the 
agents take steps in an arbitrary order. When Ai = A holds for every i, all agents take steps every time. This model is called 
the synchronous model. Otherwise, the model is called the asynchronous model. In this paper, we consider the asynchronous 
system.

If sequence of configurations E = c0, c1, . . . satisfies ci
Ai−−→ ci+1 (i ≥ 0), E is called an execution starting from c0 by 

schedule A1, A2, . . . . We consider only fair schedules, where every agent appears infinitely often. Execution E is infinite, or 
ends in final configuration cfinal where every agent’s state is sfinal .

2.4. Partial gathering problem

The requirement of the partial gathering problem is that, for a given integer g , each agent should move to a node and 
terminate so that at least g agents should meet at every node where an agent terminates. Formally, we define the g-partial 
gathering problem as follows.

Definition 1. Execution E solves the g-partial gathering problem when the following conditions hold:

• Execution E is finite (i.e., all agents terminate).
• In the final configuration, all agents are in the finial states, and for any node v j where an agent terminates, there exist 

at least g agents on v j .

For the g-partial gathering problem, we have the following lower bound on the total number of agent moves. This lemma 
holds in both deterministic and randomized algorithms.

Theorem 1. The total number of agent moves required to solve the g-partial gathering problem is �(gn) if g ≥ 2.

Proof. We consider an initial configuration such that all agents are scattered evenly (i.e., all the agents have the same 
distances to their nearest agents). We assume n = ck holds for some positive integer c. Let V ′ be the set of nodes where 
agents exist in the final configuration, and let x = |V ′|. Since at least g agents meet at v j for any v j ∈ V ′ , we have k ≥ gx.

For each v j ∈ V ′ , we define A j as the set of agents that meet at v j and T j as the total number of moves of agents in A j . 
Then, among agents in A j , the i-th smallest number of moves to get to v j is at least (i − 1)n/k. Hence, we have

T j ≥
|Ai |∑

i=1

(i − 1) · n

k

≥
g∑

i=1

(i − 1) · n

k
+ (|A j| − g) · gn

k

= n

k
· g(g − 1)

2
+ (|A j| − g) · gn

k
.

Therefore, the total number of moves is at least

T =
∑

v j∈V ′
T j

≥ x · n

k
· g(g − 1)

2
+ (k − gx) · gn

k

= gn − gnx

2k
(g + 1).

Since k ≥ gx holds, we have

T ≥ n

2
(g − 1).

Thus, the total number of moves is at least �(gn). �
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3. The first model: a deterministic algorithm for distinct agents

In this section, we propose a deterministic algorithm to solve the g-partial gathering problem for distinct agents (i.e., 
agents have distinct IDs). The basic idea is that agents elect a leader and then the leader instructs other agents which nodes 
they meet at. However, since �(n log k) total moves are required to elect one leader [5], this approach cannot lead to the 
g-partial gathering in asymptotically optimal total moves (i.e., O (gn)). To achieve the partial gathering in O (gn) total moves, 
we elect multiple agents as leaders by executing the leader agent election partially. By this behavior, the number of moves 
for the election can be bounded by O (n log g). In addition, we show that the total number of moves for agents to move to 
their gathering nodes by leaders’ instruction is O (gn). Thus, our algorithm solves the g-partial gathering problem in O (gn)

total moves.
The algorithm consists of two parts. In the first part, multiple agents are elected as leader agents. In the second part, 

the leader agents instruct the other agents which nodes they meet at, and the other agents move to the nodes by the 
instruction.

3.1. The first part: leader election

The aim of the first part is to elect leaders that satisfy the following conditions called leader election conditions: 1) at least 
one agent is elected as a leader, and 2) there exist at least g − 1 non-leader agents between two leader agents. To attain 
this goal, we use a traditional leader election algorithm [18]. However, the algorithm in [18] is executed by nodes and the 
goal is to elect exactly one leader. Hence we modify the algorithm to be executed by agents, and then agents elect multiple 
leader agents by executing the algorithm partially.

During the execution of leader election, the states of agents are divided into the following three types:

• active: The agent is performing the leader agent election as a candidate of leaders.
• inactive: The agent has dropped out from the candidate of leaders.
• leader: The agent has been elected as a leader.

First, we explain the idea of leader election by assuming that the ring is bidirectional. The algorithm consists of several 
phases. In each phase, each active agent compares its own ID with IDs of its backward and forward neighboring active 
agents. More concretely, each active agent ah writes its own ID id2 on the whiteboard of its current node, and moves 
backward and forward. Then, ah observes ID id1 of its backward active agent and id3 of its forward active agent. After this, 
ah decides if it remains active or drops out from the candidates of leaders. Concretely, if its own ID id2 is the smallest among 
the three IDs, ah remains active (as a candidate of leaders) in the next phase. Otherwise, ah drops out from the candidate 
of leaders and becomes inactive. Note that, in each phase, neighboring active agents never remain as candidates of leaders. 
Thus, at least half active agents become inactive in each phase. Moreover from [18], after executing j phases, there exist 
at least 2 j − 1 inactive agents between two active agents. Thus, after executing 	log g
 phases, the following properties 
are satisfied: 1) at least one agent remains as a candidate of leaders, and 2) the number of inactive agents between two 
active agents is at least g − 1. Therefore, all remaining active agents become leaders since they satisfy the leader election 
conditions. Note that, before executing 	log g
 phases, the number of active agents may become one. In this case, the active 
agent immediately becomes a leader.

Now, we implement the above algorithm in unidirectional rings by applying a traditional technique [18]. Let us consider 
the behavior of active agent ah . In unidirectional rings, ah cannot move backward and cannot observe the ID of its backward 
active agent. Instead, ah moves forward until it observes IDs of two active agents. Then, ah observes IDs of three successive 
active agents. We assume ah observes id1, id2, id3 in this order. Note that id1 is the ID of ah . Here this situation is similar to 
that the active agent with ID id2 observes id1 as its backward active agent and id3 as its forward active agent in bidirectional 
rings. For this reason, ah behaves as if it would be an active agent with ID id2 in bidirectional rings. That is, if id2 is the 
smallest among the three IDs, ah remains active as a candidate of leaders. Otherwise, ah drops out from the candidate of 
leaders and becomes inactive. After the phase if ah remains active as a candidate, it assigns id2 to its ID and starts the next 
phase.1 Agents repeat these behaviors until they complete the 	log g
-th phase.

For example, consider the initial configuration in Fig. 1 (a). In the figures, the number near each agent is the ID of the 
agent and the box of each node represents the whiteboard. First, each agent writes its own ID on the whiteboard of its 
initial node. Next, each agent moves forward until it observes two IDs, and then the configuration is changed to the one in 
Fig. 1 (b). In this configuration, each agent compares three IDs. The agent with ID 1 observes IDs (1, 8, 3), and hence it drops 
out from the candidate because the middle ID 8 is not the smallest. The agents with IDs 3, 2, and 5 also drop out from the 
candidates. The agent with ID 7 observes IDs (7, 1, 8), and hence it remains active as a candidate because the middle ID 1 
is the smallest. Then, it updates its ID to 1 and starts the next phase. The agents with IDs 8, 4, and 6 also remain active as 
candidates and similarly update their IDs and start the next phase.

1 We imitate the way in [18], but active agent ah may still use its own ID id1 in the next phase.
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Fig. 1. An execution example of the leader election part (k = 8, g = 3).

Note that during the execution of the leader election, it is possible that ah becomes the only one candidate of leaders. In 
this case, ah immediately becomes a leader. In addition since agents move asynchronously, it may happen that some agent 
ah passes another agent ai . In this case, ah needs to waits for ai at some node, and we explain the detail in the full version. 
We can prove the following lemmas similarly to [18].

Lemma 1. The leader election algorithm eventually terminates, and the configuration satisfies the following properties.

• There exists at least one leader agent.
• There exist at least g − 1 inactive agents between two leader agents.

Proof. We omit the proof that the algorithm eventually terminates. First, we show that there exists at least one leader 
agent. In each phase if id2 is the smallest of the three IDs, ah remains active. Otherwise, ah becomes inactive. Since each 
agent uses a unique ID, if there exist at least two active agents in some phase i, at least one agent remains active after 
executing the phase i. In addition, if there exists exactly one candidate of leaders and the other agents remain inactive, the 
candidate becomes a leader. Therefore, there exists at least one leader agent.

Next, we show that there exist at least g − 1 inactive agents between two leader agents. At first, we show that after 
executing j phases, there exist at least 2 j − 1 inactive agents between two active agents. We show it by induction on the 
phase and by using the fact that in each phase if agent ah remains as a candidate of leaders, then its backward and forward 
active agents drop out from candidates of leaders. For the case j = 1, there exists at least 1 = 21 −1 inactive agents between 
two active agents. For the case j = l, we assume that there exist at least 2l − 1 inactive agents between two active agents. 
Then, after executing l + 1 phases, since at least one of neighboring active agents becomes inactive, the number of inactive 
agents between two active agents is at least (2l − 1) + 1 + (2l − 1) = 2l+1 − 1. Hence, we can show that after executing j
phases, there exist at least 2 j − 1 inactive agents between two active agents. Therefore, after executing 	log g
 phases, there 
exist at least g − 1 inactive agents between two leader agents. �
Lemma 2. The total number of agent moves to elect multiple leader agents is O (n log g).

Proof. In each phase, each active agent moves until it observes two IDs of active agents. This costs O (n) moves in total 
because each communication link is passed by two agents. Since agents execute 	log g
 phases, we have the lemma. �
3.2. The second part: movement to gathering nodes

The second part achieves the g-partial gathering by using leaders elected in the first part. Let leader nodes (resp., inactive 
nodes) be the nodes where agents become leaders (resp., inactive agents) in the first part. In this part, states of agents are 
divided into the following three types:

• leader: The agent instructs inactive agents where they should move.
• inactive: The agent waits for the leader’s instruction.
• moving: The agent moves to its gathering node.

The idea of the algorithm is to divide agents into groups each of which consists of at least g agents. Concretely, first 
each leader agent ah writes 0 on the whiteboard of the current node (i.e., the leader node). Next, ah moves to the next 
leader node, that is, the node where 0 is already written on the whiteboard. While moving, whenever ah visits an inactive 
node v j , it counts the number of inactive nodes that ah has visited. If the number plus one is not a multiple of g , ah writes 
0 on the whiteboard. Otherwise, ah writes 1 on the whiteboard. These numbers are used to indicate whether the node is a 
gathering node or not. The number 0 means that agents do not meet at the node and the number 1 means that at least g
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Fig. 2. The realization of partial gathering (g = 3).

agents meet at the node. When ah reaches the next leader node, it changes its own state to a moving state, and we explain 
the behavior of moving agents later. For example, consider the configuration in Fig. 2 (a). In this configuration, agents a1
and a2 are leader agents. First, a1 and a2 write 0 on their current whiteboards (Fig. 2 (b)), and then they move and write 
numbers on whiteboards until they visit the node where 0 is already written on the whiteboard. Then, the system reaches 
the configuration in Fig. 2 (c).

Each non-leader (i.e., inactive agent) ah waits at the current node until the value of the whiteboard is updated. When 
the value is updated, ah changes its own state to a moving state. Each moving agent moves to the nearest node where 1 
is written on the whiteboard. For example, after the configuration in Fig. 2 (c), each non-leader agent moves to the node 
where 1 is written on the whiteboard and the system reaches the configuration in Fig. 2 (d). After that, agents can solve 
the g-partial gathering problem.

We have the following lemma about the algorithm in Section 3.2.

Lemma 3. After the leader agent election, agents solve the g-partial gathering problem in O (gn) total moves.

Proof. At first, we show the correctness of the proposed algorithm. Let v g
0 , v g

1 , . . . , v g
l be nodes written 1 on their white-

boards after all leader agents complete their behaviors, and we call these nodes gathering nodes. From the algorithm, each 
moving agent moves to the nearest gathering node v g

j (0 ≤ j ≤ l). By Lemma 1, there exist at least g − 1 moving agents be-

tween v g
j and v g

j+1 Hence, agents can solve the g-partial gathering problem. In the following, we consider the total number 
of moves required to execute the algorithm.

First, the total number of moves required for each leader agent to move to its next leader node is obviously n. Next, let 
us consider the total number of moves required for each moving agent to move to nearest gathering node v g

j (for example, 
the total moves from Fig. 2 (c) to Fig. 2 (d)). Remind that there are at least g − 1 inactive agents between two leader agents 
and each leader agent ah writes 1 after writing 0 g − 1 times. Hence, there are at most 2g − 1 moving agents between v g

j

and v g
j+1. Thus, the total number of these moves is O (gn) because each link is passed by at most 2g agents. Therefore, we 

have the lemma. �
From Lemmas 2 and 3, we have the following theorem.

Theorem 2. When agents have distinct IDs, our deterministic algorithm solves the g-partial gathering problem in O (gn) total 
moves. �
4. The second model: a randomized algorithm for anonymous agents

In this section, we propose a randomized algorithm to solve the g-partial gathering problem for anonymous agents 
under the assumption that each agent knows the total number k of agents. The idea of the algorithm is the same as that in 
Section 3. In the first part, agents execute the leader election partially and elect multiple leader agents. In the second part, 
the leader agents determine gathering nodes and all agents move to the nearest gathering nodes. In the previous section 
each agent uses distinct IDs to elect multiple leader agents, but in this section each agent is anonymous and uses random 
IDs. We also show that the g-partial gathering problem is solved in O (gn) expected total moves.

4.1. The first part: leader election

In this subsection, we explain a randomized algorithm to elect multiple leaders by using random IDs. Similarly to Sec-
tion 3.1, the aim in this part is to satisfy the following conditions (leader election conditions): 1) at least one agent is 
elected as a leader, and 2) there exist at least g − 1 non-leader agents between two leader agents. The basic idea is the 
same as Section 3.1, that is, each active agent moves in the ring and compares three random IDs. If the ID in the middle 
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Fig. 3. An example that some agent observes the same random IDs.

is the smallest of the three random IDs, the active agent remains active. Otherwise, the active agent drops out from the 
candidate of leaders.

Now we explain details of the algorithm. In the beginning of each phase, each active agent selects 3 log k random bits as 
its own ID. After this, each agent executes in the same way as Section 3.1, that is, each active agent moves until it observes 
two random IDs of active agents and compares three random IDs. If the observed three IDs are distinct, the agent can 
execute the leader agent election similarly to Section 3.1. In addition to the behavior of the leader election in Section 3.1, 
when an agent becomes a leader at node v j , the agent sets a leader-flag at v j , and we explain how leader-flags are used 
later. If no agent observes a same random ID, the total number of moves for the leader agent election is the same as in 
Section 3.1, that is, O (n log g). In the following, we consider the case that some agent observes a same random ID.

Let ah.id1, ah.id2, and ah.id3 be random IDs that an active agent ah observes in some phase. If ah.id1 = ah.id3 �= ah.id2
holds, then ah behaves similarly to Section 3.1, that is, if ah.id2 < ah.id1 = ah.id3 holds, ah remains active and ah becomes 
inactive otherwise. For example, let us consider a configuration of Fig. 3 (a). Each active agent moves until it observes 
two random IDs (Fig. 3 (b)). Then, agent a1 observes three random IDs (2, 1, 2) and remains active because a1.id2 < a1.id1 =
a1.id3 holds. On the other hand, agent a2 observes three random IDs (3, 4, 3) and becomes inactive because a2.id2 > a2.id1 =
a2.id3 holds. The other agents do not observe same random IDs and behave similarly to Section 3.1, that is, if their middle 
IDs are the smallest, they remain active and execute the next phase. If their middle IDs are not the smallest, they become 
inactive.

Next, we consider the case that either ah.id2 = ah.id1 or ah.id2 = ah.id3 holds. In this case, ah changes its own state to 
a semi-leader state. A semi-leader is an agent that has a possibility to become a leader if there exists no leader agent in 
the ring. When at least one agent becomes a semi-leader, each active agent becomes inactive. The outline of the behavior 
of each semi-leader agent is as follows: First each semi-leader travels once around the ring. After this, if there already 
exists a leader agent in the ring, each semi-leader becomes inactive. Otherwise, the leader election is executed among all 
semi-leader agents, and exactly one semi-leader is elected as a leader and the other agents become inactive (including 
active agents). Note that, we can show that the probability some active agent becomes a semi-leader is sufficiently low 
and the expected number of semi-leader agents during the leader election is also sufficiently small. Hence even when each 
semi-leader travels once around the ring several times, the expected total moves to complete the leader agent election can 
be bounded by O (n log g).

Now, we explain the detailed behavior for semi-leader agents. When an active agent ah becomes a semi-leader, it sets 
a semi-leader-flag on its current whiteboard. In the following, the node where the semi-leader flag is set (resp., not set) 
is called a semi-leader node (resp., a non-semi-leader node). After that, semi-leader agent ah travels once around the ring. 
In the travel, when ah visits a non-semi-leader node v j where there exists an agent in the initial configuration, that is, a 
non-semi-leader node v j such that v j .initial = true holds, ah sets the tour-flag at v j . This flag is used so that other agents 
notice the existence of a semi-leader and become inactive. Moreover when ah visits a semi-leader node, ah compares its 
random ID with the random ID written on the current whiteboard. Then, ah memorizes whether its random ID is smaller 
or not and whether another semi-leader has the same random ID as its random ID or not.

After traveling once around the ring, ah decides if it becomes a leader or inactive. While traveling in the ring, if ah
observes a leader-flag, it learns that there already exists a leader agent in the ring. In this case, ah becomes inactive. 
Otherwise, ah decides if it becomes a leader or inactive depending on random IDs. Let ah.id be ah ’s random ID and Amin

be the set of semi-leaders such that each semi-leader ah ∈ Amin has the smallest random ID idmin among all semi-leaders. 
In this case, each semi-leader ah /∈ Amin clears a semi-leaders-flag and becomes inactive. On the other hand, if ah has the 
unique minimum random ID (i.e., |Amin| = 1), ah becomes a leader. Otherwise, ah selects a random ID again, writes the ID 
on the current whiteboard, travels once around the ring. Then, ah obtains new random IDs of semi-leaders. Each semi-leader 
ah repeats such a behavior until |Amin| = 1 holds.

We have the following lemmas similarly to Section 3.1.

Lemma 4. The leader agent election algorithm eventually terminates, and the condition satisfies the following properties.



M. Shibata et al. / Theoretical Computer Science 617 (2016) 1–11 9
• There exists at least one leader agent.
• There exist at least g − 1 inactive agents between two leader agents.

Proof. The above properties are the same as Lemma 1. Thus, if no agent becomes a semi-leader during the algorithm, each 
agent behaves similarly to Section 3.1 and the above properties are satisfied. Moreover if at least one agent becomes a 
semi-leader, exactly one semi-leader is elected as a leader and the other agents become inactive. Then, the above properties 
are clearly satisfied. Therefore, we have the lemma. �
Lemma 5. The expected total number of agent moves to elect multiple leader agents is O (n log g).

Proof. If there exist no neighboring active agents having the same random IDs, the algorithm works similarly to Section 3.1, 
and the total number of moves is O (n log g). In the following, we consider the case that some neighboring active agents 
have the same random IDs.

Let l be the length of a random ID. Then, the probability that two active neighboring active agents have the same random 
ID is ( 1

2 )l . Thus, when there exist ki active agents in the i-th phase, the probability that there exist neighboring active agents 
having the same random IDs is at most ki × ( 1

2 )l . Since at least half active agents drop out from candidates in each phase, 
the probability that neighboring active agents have the same random IDs until the end of the 	log g
 phases is at most 
k × ( 1

2 )l + k
2 × ( 1

2 )l + · · · + k
2	log g
−1 × ( 1

2 )l < 2k × ( 1
2 )l . Since l = 3 log k holds, the probability is at most 2

k2 < 1
k . We assume 

that k active agents become semi-leaders and circulate around the ring because this case requires the most total moves. 
Then, each semi-leader ah compares its random ID with random IDs of each semi-leader. Let Amin be the set of semi-leader 
agents whose random IDs are the smallest. If |Amin| = 1 holds, agents finish the leader agent election and the total number 
of moves is at most O (kn). Otherwise, at least two semi-leaders have the same smallest random IDs. This probability is 
at most k × ( 1

2 )l . In this case, each semi-leader ah updates its phase and random ID again, travels once around the ring, 
and obtains new random IDs of each semi-leader. Each semi-leader ah repeats such a behavior until |Amin| = 1 holds. We 
assume that t = k × ( 1

2 )l and semi-leaders complete the leader agent election after they circulate around the ring s times. 
In this case, before they circulate around the ring s − 1 times, |Amin| �= 1 holds every time they circulate around the ring. 
In addition when they circulate around the ring s times, |Amin| = 1 holds, and the probability such that |Amin| = 1 holds 
is clearly less than 1. Hence, the probability such that agents complete the leader election after they circulate around the 
ring s times is at most ts−1 × 1 = ts−1, and the total number of moves is at most skn. Since the probability that at least 
one agent becomes a semi-leader is at most 1

k , the expected total number of moves for the case that some agents become 
semi-leaders and complete the leader agent election is at most O (n log g) + 1

k × ∑∞
s=1 ts−1 × skn = n 

∑∞
s=1 sts−1. Let Sn be 

1 × 1 + 2 × t + · · · + ntn−1. Then, we have Sn = (ntn+1 − (n − 1)tn + 1)/(1 − t)2. When n = ∞, we have Sn = 1/(1 − t)2. 
Moreover since t = k × ( 1

2 )l and l = 3 log k hold, we have t < 1
2 and Sn < 4. Furthermore, the expected total number of 

moves is at most O (n). Since the total moves to elect multiple leaders for the case that no agent becomes a semi-leader is 
O (n log g), the expected total moves for the leader election is O (n log g).

Therefore, we have the lemma. �
4.2. The second part: movement to gathering nodes

After executing the leader agent election in Section 4.1, the conditions shown by Lemma 4 is satisfied, that is, 1) at least 
one agent is elected as a leader, and 2) there exist at least g − 1 inactive agents between two leader agents. Thus, we can 
execute the algorithms in Section 3.2 after the algorithms in Section 4.1. Therefore, agents can solve the g-partial gathering 
problem.

From Lemmas 3, 4, and 5, we have the following theorem.

Theorem 3. When agents have no IDs, our randomized algorithm solves the g-partial gathering problem in expected O (gn) total 
moves. �
5. The third model: a deterministic algorithm for anonymous agents

In this section, we consider a deterministic algorithm to solve the g-partial gathering problem for anonymous agents. At 
first, we show that there exist unsolvable initial configurations in this model. Later, we propose a deterministic algorithm 
that solves the g-partial gathering problem in O (kn) total moves for any solvable initial configuration.

5.1. Existence of unsolvable initial configurations

To explain unsolvable initial configurations, we define the distance sequence of a configuration. For configuration c, we 
define the distance sequence of agent ah as Dh(c) = (dh

0(c), . . . , dh
k−1(c)), where dh

i (c) is the distance between the i-th 
forward agent of ah and the (i + 1)-th forward agent of ah in c. Then, we define the distance sequence of configuration c
as the lexicographically minimum sequence among {Dh(c)|ah ∈ A}, and we denote it by D(c). In addition, we define several 
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functions and variables for sequence D = (d0, d1, . . . , dk−1). Let shift(D, x) = (dx, dx+1, . . . , dk−1, d0, d1, . . . , dx−1) and when 
D = shift(D, x) holds for some x such that 0 < x < k holds, we say D is periodic. Moreover, we define period of D as the 
minimum (positive) value such that shift(D, period) = D holds.

Then, we have the following theorem.

Theorem 4. Let c0 be an initial configuration. If D(c0) is periodic and period is less than g, the g-partial gathering problem is not 
solvable.

Proof. Let m = k/period. Let A j (0 ≤ j ≤ period − 1) be a set of agents ah such that Dh(c0) = shift(D(c0), j) holds. Then, 
when all agents move in the synchronous manner, all agents in A j continue to do the same behavior and thus they cannot 
break the periodicity of the initial configuration. Since the number of agents in A j is m and no two agents in A j stay at the 
same node, there exist m nodes where agents stay in the final configuration. However, since k/m = period < g holds, it is 
impossible that at least g agents meet at the m nodes. Therefore, the g-partial gathering problem is not solvable. �
5.2. Proposed algorithm

In this section, we propose a deterministic algorithm to solve the g-partial gathering problem in O (kn) total moves 
for solvable initial configurations. Let D = D(c0) be the distance sequence of initial configuration c0. From Theorem 4, the 
g-partial gathering problem is not solvable if period < g . On the other hand, our proposed algorithm solves the g-partial 
gathering problem if period ≥ g holds. In this section, we assume that each agent knows the number k of agents.

The idea of the algorithm is as follows: First each agent ah travels once around the ring and obtains the distance 
sequence Dh(c0). After that, ah computes D and period. If period < g holds, ah terminates the algorithm because the g-partial 
gathering problem is not solvable. Otherwise, agent ah identifies nodes such that agents in {a�|D = D�(c0)} initially exist. 
Then, ah moves to the nearest node among them. Clearly period (≥ g) agents meet at the node, and the algorithm solves 
the g-partial gathering problem.

We have the following theorem.

Theorem 5. When agents have no IDs, our deterministic algorithm solves the g-partial gathering problem in O (kn) total moves if the 
initial configuration is solvable.

Proof. At first, we show the correctness of the algorithm. Each agent ah travels once around the ring, and computes the 
distance sequence D and period. If period < g holds, the g-partial gathering problem is not solvable from Theorem 4 and ah
terminates the algorithm. In the following, we consider the case that period ≥ g holds. Each agent ah moves to the nearest 
node such that the agent in {a�|D = D�(c0)} initially exists. Since period (≥ g) agents move to the node, the algorithm solves 
the g-partial gathering problem.

Next, we analyze the total moves required to solve the g-partial gathering problem. From the algorithm, all agents 
circulate the ring, which requires O (kn) total moves. After this, each agent moves at most n times to meet other agents, 
which requires O (kn) total moves. Therefore, agents solve the g-partial gathering problem in O (kn) total moves. �
6. Conclusion

In this paper, we have proposed three algorithms to solve the g-partial gathering problem in asynchronous unidirectional 
rings. The first algorithm is deterministic and works for distinct agents. The second algorithm is randomized and works 
for anonymous agents under the assumption that each agent knows the total number of agents. The third algorithm is 
deterministic and works for anonymous agents under the assumption that each agent knows the total number of agents. 
In the first and second algorithms, several agents are elected as leaders by executing the leader agent election partially. 
The first algorithm uses agents’ distinct IDs and the second algorithm uses random IDs. In the both algorithms, after the 
leader election, leader agents instruct the other agents where they meet. On the other hand, in the third algorithm, each 
agent travel once around the ring and moves to a node and terminates so that at least g agents should meet at the same 
node. We have showed that the first and second algorithms requires O (gn) total moves, which is asymptotically optimal. 
The future work is to analyze the lower bound under the assumption that the algorithm is deterministic and each agent 
is anonymous. We conjecture that it is �(kn), and if the conjecture is correct, we can show that the third algorithm is 
asymptotically optimal in terms of total moves.
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