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Abstract Standard video does not capture the 3D aspect of human motion, which
is important for comprehension of motion that may be ambiguous. In this paper,
we apply augmented reality (AR) techniques to give viewers insight into 3D motion
by allowing them to manipulate the viewpoint of a motion sequence of a human
actor using a handheld mobile device. The motion sequence is captured using a
single RGB-D sensor, which is easier for a general user, but presents the unique
challenge of synthesizing novel views using images captured from a single view-
point. To address this challenge, our proposed system reconstructs a 3D model of
the actor, then uses a combination of the actor’s pose and viewpoint similarity
to find appropriate images to texture it. The system then renders the 3D model
on the mobile device using visual SLAM to create a map in order to use it to
estimate the mobile device’s camera pose relative to the original capturing envi-
ronment. We call this novel view of a moving human actor a reenactment, and
evaluate its usefulness and quality with an experiment and a survey.

Keywords Augmented reality - Mobile - Novel view synthesis - Reenactment

1 Introduction

For people trying to learn actions or watch some performances, directly observing
an instructor or performer who is performing the action can provide the most
immersive experience. Furthermore, they have the freedom to watch the instructor
or performer from any viewpoint they desire; a viewer can move around to see
different sides, stand on tiptoes to watch from above, and so on. However, this
requires the viewer and the instructor/performer to be present at the same time
and the same place, which is not always convenient.
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One alternative that relaxes this limitation is to record the motion in a video,
which allows the viewer to watch it at anytime and is widely accepted, especially for
training videos. Unfortunately, using recorded video in turn poses a problem. The
three-dimensional aspect of human motion may be lost since a standard video is a
sequence of two-dimensional images and can only be watched from the viewpoint
where it was captured. Viewers can, in most situations, infer the three-dimensional
motion from the video. However, in the presence of any ambiguity, viewers may
be unable to comprehend the exact motion, which can be problematic for those
trying to imitate it.

Augmented reality (AR) may offer us a solution to this problem. AR presents
a virtual object, e.g. some textual information or a rendering of a real person, in
a real world environment [4]. An example system that applies AR technology to
human motion is YouMove [3] The system records the instructor’s motion using
an RGB-D camera and displays it in stick figure form on a mirror in front of a
learner who then tries to imitate the motion. One drawback of this system is that
it does not render the appearance of the instructor, which seems essential for a
more immersive experience of learning or watching performances.

In this work, we propose the concept of a reenactment [9]. A reenactment is a
rendering of a human actor, e.g., an instructor or a performer, and is presented to
viewers through their smartphones, tablet PCs, and head-mounted displays. The
reenactment can be viewed from any viewpoint, which is determined interactively
and intuitively using AR technologies. Some types of reenactments are highly
dependent on environment and must be presented at the place where they were
captured, such as a parkour performance. Otherwise, they are independent of the
environment and can be presented anywhere the viewer likes.

One way to generate reenactments is novel view synthesis (NVS), which is a
technique of rendering novel views of an object or scene. NVS specifically of hu-
mans is a well-studied topic [1] [6] [25] [26] [32] and these methods produce lifelike
views, but they are mostly unsuitable for casual users, because their capturing
processes are complicated. For example, all of these studies make use of multi-
camera systems, which must be set up at the target environment and calibrated
before capturing. Additionally, it is next to impossible to capture motions with a
handheld camera.

This paper thus proposes a user-friendly system for capturing, synthesizing,
and viewing reenactments. For easier capturing, it only uses a single RGB-D sen-
sor data. We here focus on location-specific reenactments, but the techniques to
generate these can easily be applied to location-agnostic ones. The main contribu-
tions of this work are:

— We introduce the concept of reenactments, originally proposed in our previous
paper [9]. Reenactments potentially have a wide range of applications, includ-
ing training motions, watching performances, recording sports, etc. Our pro-
posed system implements reenactments with AR technology, which lets users
intuitively choose the viewpoint, and displays the reenactments in a natural
way in the same location that the actor was captured. This kind of presentation
through AR is novel, when compared to the existing methods of NVS. We also
improve on the method described in the previous paper in order to generate
reenactments of higher quality.
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— We propose a new method for NVS from a single RGB-D sensor’s data, using
a combination of Malleson et al.’s method [18] with view-dependent texture
mapping (VDTM) [10]. In Malleson’s method, the human body is modeled
as a piecewise combination of rigid body parts. We texture each body part
individually using VDTM, taking into account the pose of the person in each
captured RGB image as well as the camera positions. The novelty of this
method is that it treats each captured RGB image as a view of each body
part, allowing us to acquire multiple views of each body part with a captured
sequence from a single RGB-D sensor, which VDTM can then use as textures.

— We quantitatively evaluate the performance of our AR reenactment system in
terms of its effectiveness in learning specific poses. We show that by viewing the
AR reenactments, users are more easily able to comprehend ambiguous poses.
We also subjectively survey the visual quality of the synthesized reenactment,
as well as its applicability, and compare it to our previous work [9]. We found
that while the visual quality is not at the level of standard video, it is much
improved, and is enough to be easily comprehensible.

The rest of the paper is organized as follows. We present related work in Section
2. We give the methodology of the system in Section 3. We describe experiments
in Section 4, and summarize this paper in Section 5.

2 Related work

Our system helps users learn motion with AR by utilizing a form of NVS. In this
section, we discuss some prior research in these fields.

2.1 Learning motion with AR

One common usage of AR is displaying virtual markers on real-world objects. For
example, Hondori et al. [14] developed a system for users who have suffered a stroke
that generates AR targets to reach for, grasp, or point to. These are repetitive
motions that are often used in daily life, and are key to the process of rehabilitation.
A similar system has been developed by Velloso, Bulling, and Gellersen [23] for
physical exercises. It automatically provides feedback to the user on the parts of
the motion that need improvement. Virtual arrows and labels can also be overlaid
on specific locations, directing users to correctly perform complicated procedures
such as assembly [12]. Alternately, the assembly components can also be completely
simulated within the AR environment [24]. AR can also aid users who wish to learn,
for example, the drums [28]. The system projects the target timing directly onto
the drum pads, and provides instant feedback to the user, improving the user’s
experience.

The AR used in these applications excel at specifying targets for motion, but
when there is no target or the motion is more complex than just hitting a target,
a more explicit way to display motion is required. One system that does this is
YouMove [3], which overlays an actor’s motions onto the viewer’s reflection in a
mirror, making it easy for viewers to copy difficult motions. The viewers also had
the ability to rotate the motion of the actor to better see where they may have
made mistakes. However, the actor’s motions are overlaid as stick figures and not
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as the appearance of the actor himself, which may introduce some confusion. On
the other hand, we attempt here to render the appearance of the actor performing
the motion using a form of NVS.

2.2 Novel view synthesis

One way to synthesize novel views of an object is by reconstructing and texturing
a 3D model of that object, for example by generating a visual hull [19] from several
images and converting it into the 3D model [17], as Pagés et al. [20] do. This is
model-based rendering, and once the 3D model has been reconstructed, it can
easily be rendered and viewed from any viewpoint. However, it is usually not so
easy to make this kind of rendering realistic, at least in the case of human motion.
Humans move fluidly, folds appear in clothing, skin deforms in a certain way, and
it is difficult to simulate this with simple polygons.

With image-based rendering [22] (IBR), on the other hand, a large number
of images are used to provide the appearance of the object. One major method
of IBR is view-dependent texture mapping (VDTM) [10] which takes a simplified
version of an object’s geometry and chooses images as textures based on viewpoint
similarity. However, it assumes that the object is static, so it cannot be used for
humans in motion. Another class of IBR renders an articulated object, such as an
actor [27] or an article of clothing [11] [13] [31], by first searching for images with
poses similar to the target pose, then slightly warping them to fit.

Other methods of NVS specifically of humans in motion capture a moving
actor using several cameras simultaneously in order to synthesize novel views.
For example, Zitnick et al. [32], split up a scene into foreground and background,
then interpolate between two captured cameras’ views. Waschbiisch et al. [25] use
depth sensors to capture and merge point clouds. De Aguiar et al. [1] first create
a detailed mesh model of the actor and then deform it using correspondences
from multiple views. Multiple RGB-D sensors may also be used in real-time, e.g.
for the purpose of teleconferencing [2] [5] [8]. The requirement of multiple views,
however, may be difficult to fulfill for the casual user, due to the requirement
of multi-camera systems which are difficult to set up and almost impossible to
use as a mobile application. These may be combined with the pose-based criteria
mentioned above in order to reduce the number of cameras needed for capturing.
Carranza et al. [6] use sillhouette in order to reconstruct a model, which they then
apply texture to. However, this method still requires several cameras in order to
get the sillhouette from multiple angles, as well as to extract the texture. With
depth sensors, the actor’s pose can be more easily estimated using, for example,
skeleton tracking [21]. For example, Ye et al. [29] use three handheld Kinect sensors
in order to capture an outdoor scene with multiple actors. The point clouds from
each Kinect are integrated in order to reconstruct and texture a surface model
of each actor, and the estimated human pose is used to help with this. Another
example is Malleson et al. [18], who use a single Kinect sensor for capturing human
motions and depth images. They take a more model-based approach, shaping each
individual body part with voxels using the depth images and estimated human
pose.

Our previous system [9] uses a model-based approach as well, using a cylinder
as each body part instead of its detailed shape model. In this article, we newly
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Fig. 1: Overview of our proposed system.

adopt Malleson et al.’s method [18] to obtain a body model in order to increase the
quality of the output. Since the appearance of the actor can change in the course
of recording due to, e.g., lighting, we apply view-dependent texture mapping in
order to texture the body model.

3 AR reenactment system

In this section, we describe the proposed AR reenactment system, which renders
an actor’s performance from a novel, user-chosen viewpoint using RGB-D images
captured from a single sensor. Figure 1 illustrates an overview of the system, which
consists of two stages: Capturing stage and reenactment stage. The capturing stage
(1) generates the 3D body model of actors from RGB-D images while estimating
the body pose and relative camera pose for texturing purposes. First, we acquire
RGB-D frames and extract the appearance of an actor by segmenting the actor in
the RGB images (1-a) in each frame. The system also estimates the camera pose
and generates the map of the environment using a simultaneous localization and
mapping (SLAM) system, PTAMM?" [7] (1-b). It creates a map of feature points
purely from RGB images and tracks the camera’s location relative to the map..
Here, the map is constructed as a collection of 3D points with visual information so
that the system can estimate the camera pose in the reenactment stage. Body part
registration (1-c) allows us to estimate the actor’s pose and build the actor’s body

1 PTAMM is a version of Parallel Tracking and Mapping [16], which is a visual SLAM
system.
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model, which is a piecewise model made up of rigid 3D mesh models of body parts.
In each frame, each body part’s pose is estimated, which enables us to reproduce
the motion of the actor in the next stage. In body part voxel reconstruction (1-d),
we combine these estimated poses with the depth image data in order to build
up each body part’s shape. For the capturing stage and the reenactment stage,
we assume that the RGB-D sensor and the viewer’s camera are calibrated using,
e.g., [30].

The reenactment stage (2) renders the virtualized actor on a mobile display in
an AR manner. For this, we use the captured appearance and motion in order to
overlay images of the environment captured in real-time with a reenactment, i.e., a
novel view of the actor. To render the view of the actor at the place the actor was
captured, the proposed system uses the map stored in the database. It tracks the
camera pose relative to the map (2-a), rendering the actor’s reconstructed body
model as if it was being viewed from the viewer’s current location. Next, for each
body part in our virtual view, we select the RGB images based on the similarity
of actor poses (2-b), similar to the VDTM method. Finally, we apply the selected
RGB images as textures to each body part (2-c).

In the following section, we describe the different coordinate systems our sys-
tem uses and how to transform between them, and how we calibrated the depth
sensor to our camera pose tracker. Next, we describe the capturing stage and the
reenactment stage.

3.1 Definition of coordinate systems and sensor calibration

Figure 2 shows the coordinate systems in use. In the system, the world coordinate
system is defined as a unique base of the coordinate system for both the capturing
and reenactment stage, and is set as the camera pose in the first frame in the cap-
turing stage. The camera pose is treated as a transform from a sensor coordinate
system (i.e. RGB-D sensor or viewer’s camera) to the world coordinate system.

Here, it should be noted that in practice, 3D points regained from the depth
sensor on the RGB-D sensor and those in the SLAM system’s map are usually in
different coordinate systems. Additionally, the depth sensor is distinct from the
RGB camera, and thus there may be some slight translation or rotation between
them. In order to correctly render our reenactment with the model, we must cal-
ibrate the transformation parameters, i.e. rotation R, translation t and scale s,
among the coordinate systems.

Fortunately, PTAMM [7] tracks a number of map points, which are feature
points with estimated 3D coordinates in the world coordinate system. We can
project each map point into the depth image to get the corresponding pairs of 3D
points, which then gives us the transformation parameters. Given M map points,
with pm as the position of the m-th map point relative to the RGB camera and qm,
as the corresponding point based on the depth image, we obtain the transformation
from the skeleton tracker coordinate system to the RGB camera coordinate system

as follows:
M

(R,t,5) = argmin Y _||pm — (sRam + t)[*. (1)
(R,t,s) me—1
This least squares problem can be solved by using singular value decomposition.

From this point on, all points based on the depth sensor are assumed to have been
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Fig. 2: Relationship among RGB-D sensor coordinates, viewer’s camera coordi-

nates, and world coordinates.

transformed into the unique world coordinate system defined in the RGB camera
coordinate system, i.e. the camera pose estimated from SLAM.

3.2 Capturing stage

In this section, we detail the processes (1-a) to (1-d), which estimate the camera’s
and actor’s pose in each frame and reconstruct the actor’s body model. As the
input for the processes, a user captures a sequence of RGB-D frames of an actor
performing a motion sequence, consisting of RGB images {I,|n = 1,..., N} and
depth images {Dn|n =1,...,N}.

(1-a) RGB image segmentation

We segment the actor from the background of the RGB images in order to achieve
correct body part registration and correct texturing in the reenactment stage. Here,
we employ the “BodyIndexFrame” functionality from the Kinect SDK, which tells
us which depth pixels belong to our actor and which belong to the background.
(1-b) RGB-D sensor pose tracking and mapping

To obtain camera pose C,, for the n-th frame, we use PTAMM [7]. C,, can also be
interpreted as the transformation from the current camera coordinate system to
the world coordinate system. PTAMM also provides a map of the environment that
is constructed of 3D points gained during visual SLAM, as well as their descriptors.
This map is in the world coordinate system, which in our system is equivalent to
the camera pose in the first frame, i.e. C; is the 4 x 4 identity matrix.
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(1-c) Body part registration

In order to build an accurate model of the actor’s body, we use Malleson et al.’s
method, described in [18]. They define a model of the actor’s body that consists of
body parts. In each frame n, each body part b has transform Ty j,,, which defines
its pose, i.e., its rotation and translation, for that frame. Each body part also has
a voxel volume V3, which defines its shape. Pose and shape are closely related,
because the accuracy of the reconstructed shape depends on the accuracy of the
estimated transforms: in order to correctly shape each body part, each volume
must be correctly aligned in each depth image, and this process is called body
part registration.

For body part registration, Malleson et al. use a combination of point-to-point
and point-to-plane ICP, with an additional constraint given by Kinect skeletal pose
estimation, in order to register each body part in each frame. ICP works better
with incremental transforms, and so given the previous frame’s transform T ,_1,
the current frame’s transform T} ,, is defined using a transform delta AT:

Ty =ATTy, 1. (2)

AT is calculated over a number of iterations, until convergence, by minimizing
the cost function:

Epn(AT) = Ef , (AT) + wo By n (AT) + ws By, (AT), (3)

where Eﬁn(AT) is the point-to-plane term, Ey ,,(AT) is the point-to-point term,
and £y, (AT) is the skeletal pose constraint term. Relative weighting coefficients
w, and ws are applied to the terms. For our system, w, is set to 1 and ws is set to
half of the number of voxels in V}. For the point-to-plane term and point-to-point
terms, we register the body part by attempting to fit the 3D points belonging to
the body part on frame n — 1 to the 3D points on frame n, taking into account the
difference in camera pose. The 3D points that belong to the body part are obtained
by calculating the 3D coordinate of each depth pixel in depth image D, —1 and
taking those 3D points that are within the volume corresponding to the body part.
Each volume has predefined dimensions according to the body part and takes the
body part transform Ty ,,—1. For the first frame, we set each body part transform
to the one estimated by the Kinect skeleton tracker.

Point-to-plane ICP term: The point-to-plane ICP term E}  (AT) returns the
sum of squared distances between each 3D point belongihg to body part b
on frame n — 1, which is regained from depth image D, _1, and the tangent
plane on the corresponding point on the surface of frame n, which is a set
of 3D points regained from depth image D,. The point correspondences for
point-to-plane ICP are defined as the point pairs having the same depth pixel
coordinates across D, and D, _1, taking into account the difference in camera
pose between C,,_1 and C,, and the body part transform delta AT.

Point-to-point ICP term: The point-to-point ICP term Ey ,,(AT) similarly re-
turns the sum of squared distances between each 3D point belonging to body
part b on frame n — 1, which is regained from depth image D,,_1, and the cor-
responding point on the surface of frame n, which is a set of 3D points regained
from depth image D,,, with the difference being that the point correspondences
are calculated using optical flow between color images I,—1 and I,,.
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Skeleton constraint term: The skeleton constraint term Ej ,(AT) returns a
measure of distance between the calculated body part transform Ty ,, and the
estimated body part transform T} ,, acquired from the Kinect skeleton tracker.

In order to be able to solve the cost function linearly the small rotation angle
assumption is used to define the transform AT as:

1 a —vts
AT = [ARJAt] = | @ jﬁ i (4)
0 0 0 1

The derivative of Ej ,,(AT) can then be computed for each component (a, 8,7,
te,ty,t.), obtaining a 6 X 6 symmetric linear system, which is solved as in [15].
AT is composed onto Ty, ,, after each iteration.

(1-d) Body part mesh reconstruction

After estimating transform Ty, for body part b in frame n, the corresponding
depth image D, is then used to reconstruct its 3D shape as a mesh model. For
this process, we basically follow the method [18], with a slight modification. Here,
the 3D shape of each body part is reconstructed as a surface model using the voxel-
space signed distance function (SDF) [15] and the marching cubes algorithm [17].
Voxel volume V;, has predefined width W3, height Hp, and depth D; and contains
Wi, x Hy, x Dy, voxels. For each voxel, scores can be calculated indicating the average
observed signed distance from the surface. Due to such uncertainties as fluctuating
depth measurements, each depth image’s contribution should be limited. Thus, the
SDF is truncated to the range [—pu, p]. In addition to this, signed distances beneath
the opposite side of the surface will usually be incorrect, as the opposite side is
unobserved; therefore, to make the truncated SDF calculation more robust, each
frame’s contribution that are less than —pu is ignored in order to avoid interfering
with any possible surfaces on the other side. More concretely, the score is defined
as follows:

N
AUED LT 6
0 cop<n(v)
Fp,(v)=4n(v) : —p<nv)<p, (6)
0 n(v) < —p

where 1(v) is the signed distance from the surface to voxel v taking into account
the transform Ty ,, p is a predefined constant to truncate the SDF, and N*(v) is
the number of frames excluding those with n(v) < —pu. In the original method [18],
depth pixels are assigned to body part volumes in order to avoid updating the
wrong body part; however, we do not do this in our method. The volumes that
we used had many overlapping regions at the joints, and assigning depth pixels to
one body part or the other interfered with the voxel building. Skipping this depth
pixel assignment usually results in slightly larger body part models; however, since
we use view-dependent texturing, the quality of the output does not degrade.

Finding the zero-crossings will thus give an estimate of surface locations. We
apply the marching cubes algorithm [17] in order to convert these voxels into a
mesh for each body part, as in Fig. 3.
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Fig. 3: The generated body part meshes from different angles.

The system stores segmented RGB images {I,|n = 1,..., N}, camera poses
{Cnln = 1,...,N}, body part transforms {Ts ,|b = 1,..., B,n = 1,..., N}, body
part meshes {M|b = 1, ..., B}, and the map in the database.

3.3 Reenactment stage

In the reenactment stage, the viewer captures environment images in real-time
using a mobile device and the system overlays these images of the real world
with the reenactment, in the manner of AR. The following details the process for
reenacting the pose (i.e., the pose of each body part b, T4 ) in the n-th frame
overlaid on the real-time image I*.
(2-a) Camera pose tracking
In order to render the reenactment in the place it was captured, we first estimate
the viewer camera pose C* for real-time image I™* captured by the viewer, again
using the visual SLAM technique [7], allowing us to estimate the camera pose in
the world coordinate system which was defined in the capturing stage.

We use the tracked camera pose C* in order to transform each body part to
the viewer camera coordinates:

Ty = C*C,,' Ty, (7)

where b is the body part id and n is the frame.

(2-b) Similar rotation search

We then apply the appearance of the actor to the transformed body parts by using
view-dependent texture mapping. Most existing techniques for NVS use multiple
RGB/RGB-D cameras and sensors in order to reduce invisible regions due to
occlusion [32] [6] [1] [25]. Since our system captures from a single RGB-D sensor,
it instead uses appropriate RGB images over the course of the entire recording. We
find appropriate textures for each body part using the similarity of the rotation
components of their transforms as a metric. As in Fig. 4, we want to find frame n
with the rotation that is closest to the rotation computed by equation (7):

fiy = argmin ®(RiR;,,), (8)

where ®(R) converts rotation matrix R into its axis-angle form and returns the
angle, i.e., the magnitude of the rotation.
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Fig. 4: The difference between captured body part rotation Rp ,, and virtual ro-
tation Ry is expressed as another rotation RZRbTm.

Fig. 5: Left: checking for occlusions by projecting different body part volumes onto
a texture. Right: unoccluded regions for the chest body part.

(2-c) Applying textures
We map all x*, the 3D positions of all visible pixels on the surface of the body
parts, onto the corresponding transformed mesh as x7,, which are then projected
onto the 2D image in order to get the color at the corresponding pixel of RGB
image Ip,.

X, = Ton, Ty 'x", 9)

Xop = p(Xa,), (10)

where p(x) transforms a point into pixel coordinates by multiplying by the camera
matrix and dividing by the z-coordinate.

Since the actor is reenacted from a viewpoint different from those at which the
textures were originally captured, it should be noted that x5, can be occluded by
other body parts as shown in Fig. 5. Background pixels can be detected by referring
to the results of actor/background segmentation. In this case, we consider it to be
an extraneous part caused by the simplified geometry model, and we show instead
the corresponding pixel on the real-time image. To handle occlusion, we take the
following strategy. First, the system detects the occlusion in I5, for body part b by
projecting each body part in the appropriate pose for the n,-th frame, i.e. Ty 5,
onto the I,, testing for depth map rendered for all body parts(see Fig. 5). If the
body part is not occluded, the projected body part and the depth map coincide.
Otherwise the body part lies farther than the depth map and the system finds the
next-best frame instead of I, and repeats the process until it finds one in which
the corresponding pixel is not occluded. The output is shown in Fig. 6.

Finally, we overlay the environment image with the synthesized reenactment,
as shown in Fig. 7.



12 Fabian Lorenzo Dayrit et al.

Fig. 6: Textured meshes for the surface model shown in Fig 3.

Fig. 7: Environment image overlayed with reenactment.

4 Experiment

We implemented the proposed reenactment viewing system on a mobile device and
evaluated its effect on users’ comprehension of actor’s poses. In this experiment, the
effectiveness of the system is evaluated by checking the pose errors defined between
the true pose and the pose recognized by subjects from the system’s output. We
then confirm the quality and applicability of the proposed reenactment system
compared to the previously developed system.

4.1 Implementation

We captured motion sequences of performances using a Microsoft Kinect 2. We
implemented our AR reenactment system on a Microsoft Surface Pro 2 with 4GB
RAM and 1.60GHz processor. For skeleton tracking as well as actor-background
segmentation, we relied on the implementation in the Kinect SDK [21]. Our body
model contains 15 body parts, seen in Fig. 8. With this configuration, we achieved
an interactive FPS ranging from 8 to 12 frames per second during reenactment.

4.2 Evaluation

In order to evaluate the system, we experimentally tested users’ comprehension
of actor’s poses with the reenactment compared with their comprehension with
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Fig. 8: 15 body parts used for body modeling.

conventional 2D images and video using 21 subjects. The experiment consists of
two parts.

Pose angle estimation. In the first part of experiments, users were tasked with
estimating the angle of the actor’s arm. The actor was asked to form four different
poses with specific angles between his arm and torso, and we captured these poses
with both our proposed system and a conventional camera, as shown in Fig. 9.
Each pose was captured from a different viewing angle, as illustrated in Fig. 10
and detailed in Table 1, in order to test the effect of viewing direction on angle
comprehension. In order to aid our system in collecting textures, we also captured
the actor from different points of view, asking him to hold the pose as still as
he could. For each pose, we showed half of our users the conventional image,
and the other half were made to view the pose as an AR reenactment using our
proposed system. Users alternately viewed either the conventional image or the
AR reenactment per pose. Specifically, users were divided into Group A and Group
B. Users in Group A were shown Pose (1-1) and (1-3) in conventional images and
Pose (1-2) and (1-4) using the proposed system, while those in Group B were
shown the opposite.

Users were asked to form the angle using a compass while viewing the pose.
We then calculated the mean absolute error (MAE) for all users for the viewers of
the conventional image and of the proposed system.

Table 1 also shows the results of the experiment. The proposed system’s errors
were generally lower than the conventional result. We can see that as the viewing
angle of the conventional image increases, the arm angle estimation error also
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Fig. 9: Conventional images depicting the poses which were shown to the users
for pose angle estimation. In each pose, the actor forms a different angle with his
arm. Each image is also taken from a different viewing angle.

Arm direction

Actor's front

Fig. 10: Viewing angle shown from the top. A value of 0°means that the actor is
facing the camera. Arm direction is always perpendicular to the actor’s front.

Table 1: Pose angle estimation results. For the users’ answers, the mean absolute
errors (MAE) for both the conventional images (conv.) and the proposed system

(prop.) were calculated.

Arm angle

Viewing angle

Conv. MAE Prop. MAE

Pose (1-1)
Pose (1-2)
Pose (1-3)
Pose (1-4)

47°
68°
95°
32°

OO
26°
46°
57°

7.25°
6.70°
10.48°
10.59°

7.62°
9.01°
3.11°
4.90°
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Fig. 11: Poses (1-1)—(1-4) for pose angle estimation from the front (top row) and
side (bottom row), viewed using the AR reenactment system.



16 Fabian Lorenzo Dayrit et al.

Table 2: Pose matching results. Conventional and proposed system results refer to
the rate of correct answers.

Correct answer  Conventional result  Proposed system result

Pose (2-1) C 80% 82%
Pose (2-2) B 40% 73%
Pose (2-3) C 55% 100%
Pose (2-4) A 36% 80%

tends to increase. Because the proposed system allows users to view the actor’s
pose from wherever they want (see Fig. 11), they could choose to view it from the
viewpoint that allows for the easiest estimation, i.e. from directly in front of the
actor.

We also note that for the proposed system, the MAE is higher for Poses (1-1)

and (1-2) than for (1-3) and (1-4). We consider that this may be caused by the
order of poses which are shown to users: group A users are shown Pose (1-1) first,
then Pose (1-3), while group B users are shown Pose (1-2) first, then (1-4). This
means that it takes some time to get used to our system.
Pose matching. In the second part of experiments, users were tasked with dis-
cerning the actor’s pose. We formed four poses with a small mannequin and had
the actor perform these poses, which we captured both with a conventional camera
and our proposed system (Figs. 12 and 13). Similarly to the angle estimation, we
captured the actor from different points of view in order to aid our texture selec-
tion, asking him to hold the pose as still as he could. For each of the four initial
poses, we also formed two similar poses with the mannequin, shown in Fig. 14,
making 12 poses in all. We alternately showed users the conventional image, and
the AR reenactment. Users in Group A viewed Pose (2-1) and (2-2) using the
conventional images and (2-3) and (2-4) using the proposed system, and users in
Group B viewed the opposite.

Users chose the closest pose from three mannequins’ poses (Fig. 14). We de-
cided to let the users choose between mannequin poses because these would not
contain cues, e.g. clothing folds, shadows, etc., that would relate them to the con-
ventional image. Users were encouraged to view the AR reenactment from different
viewpoints.

Table 2 shows the results for this experiment. Users scored higher with our
system than with conventional images for all poses. We consider that this is because
the poses are not very discriminative from the frontal views that were shown to
the users, while our system can provide side views.

4.3 Survey

We gave users a survey on the quality and applicability of the system, comparing it
to the quality and applicability of our previous system [9]. First, users were shown
the “Exercise” motion sequence rendered using our previous method, i.e., using
cylinders for each body part, as in Fig. 15 (left). Users were then asked to answer
the survey in Table 3. Next, users were shown the same sequence rendered using
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Fig. 12: Conventional images depicting the four poses that were shown to the users
for pose matching.

Fig. 14: The mannequins to match the poses to. Correct answers are C for 1, B
for 2, C for 3, and A for 4.

our proposed method, as in Fig. 15 (right)Q. Users were then asked to answer the
same questions a second time for the proposed system.

The survey shows that while users were not entirely satisfied with the quality,
they were positive toward the reenactment. The answers to Q1 shows that enough

2 A visual comparison of the two rendering methods can be found at
http://yokoya.naist.jp/ fabian-d/arreenactment.htm
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Fig. 15: Left: “Exercise” sequence viewed with the previous, cylinder-based system.
Right: The same frames viewed with the proposed system.

holes and artifacts exist in the rendering that they disturb the users’ experience
of the previous system. These holes are the result of the rough 3D modeling of
the target. The output quality has been improved for the proposed system by
employing the state of the art body modeling method [18]. Q2 shows that most of
the users thought that the motion was smooth enough, with the proposed system
scoring higher. Q3 asks whether the synthesized reenactment looks like the original
video. If viewed from the original capture point, it should strongly resemble the
video since it is using the same video frames as textures. If viewed from elsewhere,
however, it must be believable enough to look like it was captured from that
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Table 3: Survey, answers are from 1 (strongly disagree) to 5 (strongly agree).

Question Ave. ([9]) Ave. (proposed)
Q1 I am not bothered by holes and artifacts in the reenactment. 2.62 3.86
Q2  The reenactment’s motion is smooth. 3.71 4.29
Q3  The reenactment resembles the conventional video. 3.81 4.24
I would prefer to watch the reenactment over the conventional video for...
Q4  ...performances. 3.10 3.62
Q5  ...training videos. 4.05 4.57
Q6  ...sports recordings. 3.52 4.05
Q7 ...videos of daily life. 2.43 3.29

viewpoint, and as the answers to Q3 show, most users felt that it accomplished
this task, with the proposed system’s output being closer to the conventional video
due to having a more accurate body model. Reactions to the listed applications
were also positive. The highest-scoring application were training videos and sports
recordings. Users scored our proposed system higher in all aspects compared to
our previous system, which shows a marked improvement in quality.

5 Conclusion

In this work, we have developed and implemented a system to capture human
motion and show its virtualized motion. The process of capturing only requires a
single RGB-D camera, which makes it easier for non-expert users. For showing the
motion, the system synthesizes reenactments that can be viewed from arbitrary
viewpoints using a mobile device. The reenactments are rendered by reconstructing
the actor’s body parts using 3D mesh models and texturing them using the RGB
video sequence. The reenactment’s virtual view is based on a map of feature points
in the environment which we generate using visual SLAM during capturing and
reuse in order to render the reenactment relative to its original capturing location.
The reenactments are comprehensible by users and generally resemble the video
they were based on. Users of the system are able to more precisely estimate body
angles at any viewing angle. For cases involving ambiguous poses, the proposed
system benefits the users by allowing them to view the pose from multiple angles.
Its output quality is also higher, compared to our previous system.

For future work, we would like to explore additional applications of the system.
Users indicated that they would use the system for watching training videos, and
we agree that the ability to watch a motion from any desired angle would be a
boon to learners. Reducing the holes and artifacts in the output until it completely
resembles a conventional video is another possible avenue of research.
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