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Reducing Computation Time of the Rapid Unsupervised Speaker
Adaptation Based on HMM-Sufficient Statistics

Randy GOMEZ ', Nonmember, Tomoki TODA", Hiroshi SARUWATARI',

SUMMARY  In real-time speech recognition applications, there is a
need to implement a fast and reliable adaptation algorithm. We propose
a method to reduce adaptation time of the rapid unsupervised speaker
adaptation based on HMM-Sufficient Statistics. We use only a single ar-
bitrary utterance without transcriptions in selecting the N-best speakers’
Sufficient Statistics created offline to provide data for adaptation to a tar-
get speaker. Further reduction of N-best implies a reduction in adaptation
time. However, it degrades recognition performance due to insufficiency
of data needed to robustly adapt the model. Linear interpolation of the
global HMM-Sufficient Statistics offsets this negative effect and achieves
a 50% reduction in adaptation time without compromising the recogni-
tion performance. Furthermore, we compared our method with Vocal Tract
Length Normalization (VTLN), Maximum A Posteriori (MAP) and Maxi-
mum Likelihood Linear Regression (MLLR). Moreover, we tested in office.
car, crowd and booth noise environments in 10dB, 15dB. 20dB and 25 dB
SNRs.

key words:  HMM-sufficient statistics, unsupervised, rapid adaptation,
speech recognition

1. Introduction

Research in speech recognition has advanced very rapidly.
With the availability of free softwares, speech database and
tools, this field has become more accessible with a wider
spectrum of applications. It is expected for this application
to have a wide variety of users. Mismatch due to differ-
ent age-groups and genders causes a problem of speaker
variability which degrades the performance of the recog-
nizer[1]. In line of the abovementioned application in
speech recognition, it is imperative to design a flexible sys-
tem that can adapt from various users and most importantly,
can carry out adaptation rapidly using a minimum amount
of arbitrary adaptation data.

Using multiple training database of different genders
and age-group is inevitable to train an accurate Speaker-
Independent (SI) acoustic model. However, this SI model
will have an increase in variance due to the wide varieties of
speakers in the multiple training database. There are several
methods in addressing this problem [2]. A trivial approach
to deal with speaker variability problem is to train multi-
ple classes of acoustic models with smaller variances. An
improvement in the recognition performance using cluster-
based modeling approach is possible [3] especially when us-
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ing an appropriate model selection method. The utiliza-
tion of normalization techniques such as VTLN [4], [5] ef-
fectively compensates the different sizes of speakers’ vocal
tracts through frequency warping. Experiments in adult and
children data yielded an improvement in recognition accu-
racy when using VTLN [6].

Model adaptation effectively adjusts the SI model to
reflect the inherent characteristics of the adaptation data to
the adapted model. MLLR [7] and MAP [8] for example are’
proven to be very effective. Another method is the trans-
formation and combination of HMMs [9] and the smooth
N-best based speaker adaptation approach [10]. Works rel-
evant to fast speaker adaptation include the linear combi-
nation of rank-one matrices, which can handle very short
adaptation data[l1]. Also, a very fast compact context-
dependent eigenvoice model adaptation works even with
minimal amount of data [12].

Unsupervised speaker adaptation based on HMM-
Sufficient Statistics is a promising approach for a fast adap-
tation using only one adaptation utterance [13]. We pro-
posed multi-template HMM-Sufficient Statistics adaptation
and further improved recognition performance while keep-
ing adaptation time within 10sec[14],[15]. In this pa-
per we further improved[15] by looking into the pos-
sibility of further reducing the current adaptation time
(10sec)[15]. Techniques such as weighting of the N-
best HMM-Sufficient Statistics, interpolation of the global
HMM-Sufficient Statistics combining with the clustered
speakers are explored. The proposed method has achieved
50% adaptation time reduction compared to [15] without de-
grading the recognition performance

This paper is organized as follows. In Sect.2, we in-
troduce the HMM-Sufficient Statistics adaptation together
with the problems of reducing adaptation time when using
the conventional approach. Sect. 3 discusses the proposed
interpolation of the global HMM-Sufficient Statistics. In
Sect.4 we discuss the technique of weighting the HMM-
Sufficient Statistics. Experimental results are presented in
Sect. 5 with comparisons of different adaptation techniques
such as VTLN, MAP and MLLR, and combining MAP and
MLLR with VTLN. Finally. we conclude this paper in
Sect. 6.
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2. HMM-Sufficient Statistics Adaptation
2.1 Background

Sufficient Statistics summarizes all the information in a sam-
ple about a target parameter which allows for an observation
(training data) which is huge in size to be compactly repre-
sented in low-dimensional parameters. In our application,
these parameters are as follows:

L= NS . (1)
m = S 0oy 2)
Vi = Z v Z L0070, 3)

L’;:,kr is the accumulated probability of the state occupancy

spkr spkr

while m;, = and v, = are the mean and variance of a partic-
ular state / and mixture component m respectively as rep-
resented by the subscript im, Ry, is the total number of
speakers in the training data and O is the observation vector.

The concept of the unsupervissd HMM-Sufficient
Statistics speaker adaptation is summarized in two steps.
First, we estimate the individual Sufficient Statistics of
each speaker in the training database (offline) given by the
Eqgs. (1)—=(3). Next step is to make use of these Sufficient
Statistics to provide data for adaptation to a target speaker
through N-best speaker selection. Since estimation of Suf-
ficient Statistics can be done offline, adaptation will not re-
quire any model estimation. Only updating of the model
parameters using the Sufficient Statistics is needed. This
renders the proposed method to execute very fast.

2.2 Conventional HMM-Sufficient Statistics Adaptation

Model adaptation by means of Sufficient Statistics refers to
the updating of the target speaker’s model parameters using
the pre-estimated HMM-Sufficient Statistics through N-best
speaker selection. The updated model parameters are as fol-

lows:
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Fig.1  Block diagram of the conventional HMM-Sufficient Statistics
adaptation.
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where C; ", g, " X 7. and a;;" are the updated mix-
ture, mean weight, covariance mamx and updated transi-
tion probability respectively. L,m, Lfﬂ mi}l, and vim are the
probability of mixture component occupancy, the accumu-
lated probability of the state occupancy, means and variance
respectively.

Figure 1 is a block diagram of the conventional
HMM-Sufficient Statistics adaptation. First, the Speaker-
Independent (SI) model is trained regardless of classes using
all of the training data from the JNAS adult database consist-
ing of 60 K-utterance from 301 male and female speakers
and the S-JNAS Senior database with 53 K-utterance from
260 male and female speakers[l]. From this SI model,
multi-template HMM models are created namely: Adult
male, Adult female, Senior male and Senior female. Con-
sequently, four sets of HMM-Sufficient Statistics for each
speaker are created which are equivalent to one-iteration
of the Expectation Maximization (E-M) training with four
multi-template HMMs.

2.3 N-Best Speaker Selection

Speaker selection process starts with 1) the denoising of
the noisy test utterance using Spectral Subtraction (SS),
then the parameterization to MFCC. To reduce the effects
of the residual noise that is present in the silence or un-
voiced region of the speech utterance, the low power parts
are removed prior to speaker selection. 2) We find the
log-likelihood scores given the arbitrary test utterance and
the individual-speaker GMMs. 3) From the log-likelihood
scores, only N-best speakers are selected for adaptation. 4)
From the N-best list, a class count is performed for the 4
different templates. Class counting is carried out using the
speaker labels that are present in the speaker IDs, and tem-
plate model is selected based on the class count. 5) Template
model and N-best HMM-Sufficient Statistics are prepared
for adaptation.
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2.4 Limitations of the Conventional HMM-Sufficient
Statistics Adaptation

The recognition performance and adaptation speed of this
approach are dependent on the number of N-best speak-
ers, S. Experiments showed that the optimal N-best is
S opiimar = 40 which corresponds to a 10-second adapta-
tion time [13],[14],[17]. If § is further reduced such that
S < S, primar- adaptation time is reduced with a trade-off of
the recognition performance as illustrated in Fig. 2. This is
attributed to the fact that further decreasing S would result
to insufficient data necessary to robustly estimate the target
speaker’s HMMs.

3. HMM-Sufficient Statistics Adaptation with Linear
Interpolation

3.1 Effects of Linear Interpolation

To address the problem discussed in Sect.2.4, we intro-
duced linear interpolation using the global Sufficient Statis-
tics. Figure 3 shows the proposed weighting of the global
Sufficient Statistics. The proposed method makes it possible
to robustly estimate the target speaker’s HMMs even with N-
best reduced (S < S, imu) since the weighted global Suf-
ficient Statistics offsets the negative effect of the removed
statistical information. The adapted HMM parameters are

as follows:
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mixture weight, means, covariance matrix and updated tran-
sition probability using linear interpolation. Lin, Lfﬂ. mS,
vﬁ” are the probability of mixture component occupancy,
the accumulated probability of the state occupancy, means
and variance respectively of the selected N-best speakers
SoLs L v are the probability of the
mixture occupancy, the accumulated probability of the state
occupancy, means and variance respectively which are es-
timated using all of the training data which constitute the
global Sufficient Statistics. w is the weighting factor of the
¢lobal HMM-Sufficient Statistics.

In Fig.4 we show the graph of the HMM-Sufficient
Statistics particularly the mixture component occupancy (in
logscale) versus the pool of all Gaussian mixtures. In this
figure, we show the effect of merely reducing N-best from
40 to 25 (without interpolation). This is manifested by a
decrease in the mixture component occupancy as depicted
by the shifting of the envelope (N-best=25) downwards rel-
ative to N-best=40. This can be translated to a reduction in
the recognition performance because reducing the number
of selected N-best means reducing the adaptation data. On
the other hand, the effect of the proposed linear interpola-

tion pushes back the envelope of the N-best=25 close to N-
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best=40. The supposed decrease in the mixture component
occupancy is compensated by the interpolation of the global
HMM-Sufficient Statistics. This would mask the detrimen-
tal effect in the recognition performance brought by decreas-
ing N-best.

3.2 Clustered Speakers” HMM-Sufficient Statistics

We extended the proposed adaptation method by clustering
the speakers in the database as opposed to using only in-
dividual speakers. In this scheme, the individual-speaker
GMMs are changed to cluster-based GMMs. Likewise, the
individual HMM-Sufficient Statistics are changed to clus-
tered speakers” HMM-Sufficient Statistics. The N-best gen-
erates the list of clusters that are close to the target speaker.
The motivation of this approach is to further reduce adapta-
tion time by reducing N-best. Although, a further reduction
of N-best poses a problem due to the insufficient statistical
data, this problem is minimized by combining 2 speakers
statistical information in each cluster and at the same time
incorporate linear interpolation. In order to keep the statis-
tical information uniform in the N-best list, we impose that
each cluster be composed of a uniform number of speakers
(i.e 2 speakers per cluster) by using Minimax [18]. We also
implemented K-means clustering but the former has a better
recognition performance.

4. Sufficient Statistics Weighting

HMM-Sufficient Statistics adaptation makes use of the N-
best speakers to select the HMM-Sufficient Statistics as
adaptation data. The selected N-best speakers has a corre-
sponding likelihood scores. We utilize this likelihood scores
to introduce weighting of the individual sufficient statistics
prior to adaptation as shown in Fig. 5. Weighting of the N-
best HMM-Sufficient Statistics emphasizes the ones that are
close to the test utterance while it attenuates those that are
not so close. In effect, it would be possible to reduce the
N-best needed for adaptation. The weight of the HMM-
Sufficient Statistics is defined as,

P(Ol4;)

PNCISE

where W; is the weight, P(O|4;) is the likelihood of the ob-
servation O given the GMM model A and S is the the number
of selected speakers.

Figure 6 shows the mixture component occupancy of
the selected N-best speakers (top) and its corresponding
likelihood scores (bottom). On top, the light shaded bars
are the unweighted mixture component occupancy (HMM-
Sufficient Statistics) which is in general, flat over N-best
while the dark bars represent its weighted version, based
on likelihood. Furthermore, the weigted HMM-Sufficient
Statistics has a decreasing trend over N-best speakers de-
pending on the likelihood scores of the individual speaker
as shown in the bottom.

W, = (12)
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5. Experimental Evaluation

Phonetically tied mixture models (PTM) [16] are trained by
superimposing 25 dB office noise to the database [17] in cre-
ating the multi-template models. In the acoustic modeling
part, office noise is superimposed to the clean speech from
the database that results to 25dB SNR [17] which is used
in training. In the adaptation part, the single arbitrary noisy
utterance is denoised with SS which is used for speaker se-
lection as outlined in Sect. 3.1. Lastly, for the actual recog-
nition test, the SS-denoised test utterances are superimposed
with 30 dB office noise prior to recognition to neutralize the
residual noise. Recognition experiments are carried out us-
ing JULIUS with 20 K-word on Japanese newspaper dicta-
tion task from JNAS. The language model is provided by the
IPA dictation toolkit. Summary of the basic experimental
condition parameters used in this set-up is provided in Ta-
ble 1. The test set is composed of four classes, namely: adult
male, adult female, senior male and senior female. Each
class is of 100 utterances from 23 speakers which are taken
outside of the training speakers. This sums up to 400 total
test utterances from 92 test speakers across different genders
and age-groups. The speakers used in testing are differents
speakers from that of the training database.

5.1 HMM-Sufficient Statistics Set-up

The JNAS database is composed of Adult and Senior. The
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Table 1 System specifications.
Sampling frequency 16 kHz
Frame length 25ms
Frame period 10 ms
Pre-emphasis 1-0977"
Feature vectors 12-order MFCC,
12-order AMFCCs
l-order AE
HMM PTM. 2000 states
Training data Adult and Senior by JNAS
Test data Adult and Senior by JNAS
Table 2 Set-up of the HMM-Suflicient Statistics using JNAS Adult and
Senior Database.
Gender No. of Speakers | Utterances per speaker
Adult Male 150 150
Adult Female 150 150
Senior Male 130 200
Senior Female 130 200
0.02500 - -
E A Sy AVAY S AN
S 0.02375 /& o ©
= g 4 o;/ / 3 0@ 9\ & B
S 0.02125 [ $ |/ / / &
o o/ / / Y ™
o VS S e L
S oowers /S L &
s | & F g 7% &
S oomwes B 8 ¥ A N
E v £ D ‘96‘\3
»n A X N N & <L > |
S 001375 BN 2 , i
2 ‘%\ %y NS e &
8 oot125 | k ‘ p '
4 % % : g
(= © A %Q/’
2 0.00875 B\ \
Q \ & AN g Vv
5 | % \5'\9 | e { el &
@ 000625 ¢ @7& : ! " P 1
0.00500 ‘ : G . :
15 20 25 30 35

Selected N-best Speakers

Fig.7  Setting the value of the multiplying factor for interpolation.

speakers are classified as Adult Male, Adult Female, Senior
Male and Senior Female. Every speaker in the database has
four HMM-Sufficient Statistics corresponding to the four
classes. Each of these is of approximately 5.5 MB in size
stored in the disk. Details of the number of speakers and ut-
terances used in creating HMM-Sufficient Statistics offline
1s given in Table 2.

5.2 Optimization of w

In our experiment, the value of the multiplying factor used
for interpolation is set heuristically to maximize the recog-
nition performance of the testing database. Figure 7 is the
contour plot of the WA at different values of the multiply-
ing constant w and corresponding N-best speakers selected.
With the aid of this figure we set w = 0.015 with N-best=25.

5.3 General Results
In Fig. 8, the WA when using no adaptation is 84.1% (A),

while the conventional HMM-Sufficient Statistics adapta-
tion is 85.4% using N-best S = 40 (B). It is apparent that
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Fig.8  Recognition performance for 25 dB Office noise environment.

when N-best is reduced to § = 25 (C), the WA drops to
85.2%. This points to the fact that merely reducing the
selected N-best in the conventional approach results to an
insufficient statistical data needed to robustly estimate the
target speaker’s HMMs as mentioned in Sect. 2.4. The pro-
posed HMM-Sufficient Statistics adaptation with linear in-
terpolation has a recognition performance of 85.9% which
is approximately 0.7% higher than (C) when using the same
amount of N-best § = 25. It also outperforms the con-
ventional approach even when using the optimal N-best
S oprimar = 40. 1t clearly shows that the negative effect in the
estimation of the HMMs caused by reducing N-best from
Sopiima = 40 to § = 25 is compensated by the linear in-
terpolation of the global Sufficient Statistics. As a result,
execution time becomes faster owing to fewer N-best.

In Table 2. the summary of recognition performance i
office, crowd, car and booth noise environments with dif-
ferent SNRs are given. Here, it is shown that reducing N-
best of the conventional approach to § = 25 degrades the
recognition performance of the conventional approach us-
ing S, pima = 40. However, when using the proposed lin-
ear interpolation, we can use § = 25 without degrading the
recognition performance. More interestingly, the result is
consistent in all noisy environments and SNRs.

5.4 Results of Clustered Speakers” HMM-Sufficient
Statistics

Figure 9 is the plot of the WA comparing 1) individ-
ual speakers (unclustered) with interpolation, 2) clustered
speakers with and without linear interpolation as a function
of N-best. The N-best list for the unclustered speakers are
the individual speakers itself while the latters’ N-best list is
composed of clustered speakers. The proposed linear inter-
polation improves the performance of the clustered speak-
ers as opposed to the clustered speakers without linear in-
terpolation. More interestingly, the clustered speakers with
linear interpolation using N-best =20 can achieve the same
recognition performance with that of using the individual
speakers (unclustered) with N-best = 25, thus a reduction in
adaptation time is further achieved.

The results in different noisy environment condi-
tions and different SNRs using clustered speakers” HMM-
Sufficient Statistics are given in Table 3. In this table. it is



GOMEZ et al.: REDUCING COMPUTATION TIME OF THE RAPID UNSUPERVISED SPEAKER ADAPTATION

Table 3  Word accuracy using individual speakers’ HMM-Sufficient Statistics (conventional:
S optimal = 40/ conventional: § = 25/ proposed with linear interpolation S = 25).
Noise 10dB 15dB 20dB 25dB
office | 66.5/66.1/67.0 | 76.7/76.3/77.2 | 83.1/82.7/83.5 | 85.4/852/859
car 80.0/79.7/81.4 | 850/849/85.1 | 858/85.6/86.3 | 86.6/86.3/87.0
crowd | 65.5/65.1/658 | 79.0/78.6/79.3 | 83.5/83.1/83.7 | 84.2/83.9/84.5
booth | 44.3/44.0/44.6 | 68.7/68.4/69.1 | 82.5/82.1/82.8 | 83.2/82.8/83.4
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Table 4 WA using clustered speakers” HMM-Suflicient Statistics (con-
ventional: § = 20/ proposed: with linear interpolation S = 20).

Noise 10dB 15dB 20dB 25dB
office | 62.3/67.1 | 743/77.2 | 78.9/83.6 | 82.4/859
car 76.8/81.5 | 82.0/85.1 | 83.3/86.4 | 84.2/87.0
crowd | 61.5/659 | 73.9/79.3 | 79.8/83.8 | 80.6/84.5
booth | 40.3/44.6 | 64.7/69.2 | 78.6/829 | 80.1/83.4

apparent that employing linear interpolation improves WA
performance. Also, the recognition performance did not
show any degradation with § = 20 relative to S = 25 of Ta-
ble 4. Thus, a further reduction of N-best is possible when
using linear interpolation with clustered speakers” HMM-
Sufficient Statistics.

5.5 Results of Individually Weighting the N-Best Speak-
ers’ HMM-Sutfficient Statistics

In Fig. 10, it is shown that in both cases (1) and (2)
where interpolation is not carried out, the word accuracy
performance benefits from weighting the HMM-Sufficient
Statistics. The graph shows that with N-best=34, (2) can
achieve its best performance while it takes N-best=38 for
(1). In cases of (3) and (4) where linear interpolation is
implemented, the performance of both weighting and no-
weighting is at par with N-best<30. With very few N-best,
the system suffers from insufficiency of adaptation data (see
Fig. 2). Thus interpolation of HMM-Sutflicient Statistics far
outweighs the effect of weighting when using only few N-
best. On the othe hand, as N-best is further increased way
passed N-best=30, weighting the HMM-Sufficient Statis-
tics (4) tends to be robust in degradation of the recogni-
tion performance as opposed to (3). It is in this condition
where the system is faced with too much adaptation data
(see Fig.2) and suffers a decrease in the recognition perfor-

Word Accuracy (%)

20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
N-best speakers

(1 )o-- W/o interpolation, w/o weighting ( 3 ) =& - With interpolation, w/o weighting

(2 )—s— W/o interpolation, with weighting (4 ) = = = With interpolation, with weighting

Fig. 10  Recognition performance using weighted HMM-Sufficient
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mance. The negative effect of too much adaptation data is
reduced through HMM-Sufficient Statistics weighting.

5.6  Comparisons with VTLN, MAP and MLLR

We carried out experiments with MAP and MLLR. We also
combined VTLN with MLLR (VTLN+MLLR) and VTLN
with MAP (VTLN+MAP). Figure 11 shows the case of
combining VTLN and MAP/MLLR. In the offline part of
this figure, we search for the warping parameter « that max-
imizes the log-likelihood score of the training database. This
is used to warp all of the training utterances and used to re-
estimate the VTLN-adapted model. Consequently, in the
online part, we do the same process of finding @ of the
adaptation utterances using the VTLN-adapted model and
warped these utterances prior to MLLR/MAP adaptation.
The process of finding « is repeated again for the last time
using the MLLR/MAP adapted model to the test utterances.
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Finally, we warp the testing utterances for recognition ex-
periment.

In Fig. 12, we show the recognition performance us-
ing MAP, MLLR, VTLN+MAP and VTLN+MLLR. In
the abscissa, the labels 10 and 50 utterances correspond to
the adaptation data for the MLLR and MAP variants. The
proposed method works best among the supervised MLLR,
MAP, VTLN+MAP and VILN+MLLR when using 10-
utterance adaptation data. When using 50 utterances, MLLR
and VTLN+MLLR has a better performance compared to
the proposed method, while MAP and VTLN+MAP are still
outperformed by our proposed method. It should be noted
that when using 50-utterances of adaptation data, MLLR
and MAP are performed offline while the proposed method
can adapt in 5 sec time using only a single arbitrary adapta-
tion utterance without transcriptions. We have succesfully
reduced the adaptation time from 10sec[15] to 6 sec when
using linear interpolation of the global HMM-Sufficient
Statistics as shown in Fig. 13. A further reduction to 5 sec is
obtained by clustering the speakers” HMM-Sufficient Statis-
tics together with the proposed linear interpolation. In the
case of the supervised MLLR and MAP using 50 utterances,
execution time can be as high as 60 sec excluding the time to
collect and transcribed these utterances. On the other hand,
VTLN+MLLR and VTLN+MAP require much more time
to carry out adaptation.

6. Conclusion

In this paper, we proposed linear interpolation of the global
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HMM-Sufficient Statistics to reduce adaptation data by re-
ducing N-best speakers HMM-Sufficient Statistics to reduce
adptation time. The reduction of adaptation time is achieved
without degrading the recognition performance. Further-
more, the system works well under office, crowd, booth and
car noise and in different SNRs. With the proposed linear
interpolation of the HMM-Sufficient Statistics, it is possible
to reduce N-best and adapt to a robust model. We will focus
our future research to make use of existing powerful adap-
tation techniques to using HMM-Sufficient Statistics for a
more rapid adaptation and an improved recognition perfor-
mance.

Acknowledgment

This work is supported by the Japanese MEXT e-Society
project.

References

[1] A. Baba, S. Yoshizawa, M. Yamada, A. Lee, and K. Shikano, “El-
derly acoustic model for large vocabulary continuous speech recog-
nition,” Proc. EUROSPEECH, pp.1657-1660, 2001.

[2] C.Huang, T. Chen, S. Li, and J.L. Zhou, “Analysis of speaker vari-
ability,” Proc. Eurospeech, vol.2, pp.1377-1380, Sept. 2001.

[3] B. Xiang, L. Nguyen, S. Matsoukas, and R. Schwartz, “Cluster-
dependent acoustic modeling,” Proc. ICASSP, vol.1, pp.677-680,
2005.

[4] D. Pye and P.C. Woodland, “Experiments in speaker normalisa-
tion and adaptation for large vocabulary adaptation,” Proc. ICASSP,
vol.2, no.1, pp.1047-1051, April 1997.

[5] P. Zhan, M. Westphal, M. Finke, and A. Waibel, “Speaker normal-
ization and speaker adaptation—A combination for conversational
speech recognition,” Proc. Eurospeech, vol.10, pp.2087-2090, Sept.
1997.

[6] D. Giuliani and M. Gerosa. “Investigating recognition of children’s
speech,” Proc. ICASSP, vol.2, pp.137-140, April 2003.

[7] C.J. Leggeter and P.C. Woodland, “Maximum likelihood linear
regression for speaker adaptation of continuous density hidden
Markov models,” Proc. Computer Speech and Language, vol.9,
pp-171-185, 1995.

[8] J. Gauvain and C.H. Lee, “Maximum a posteriori estimation for

multivariate Gaussian mixture observation of Markov chains,” IEEE

Trans. Speech Audio Process., vol.2, no.2, pp.291-298, 1994.

C. Huang, T. Chen, and E. Chan, “Transformation and combina-

tion of hidden Markov models for speaker selection training,” Proc.

ICSLP, pp.1377-1380, 2004.

[10] T. Matsui, T. Matsuoka, and S. Furui, “Smoothed N-best based
speaker adaptation for speech recognition,” Proc. ICASSP, pp.1015-
1018, 1997.

[11] G. Vaibhava, V. Karthik, and G. Ramesh, “Rapid adaptation with
linear combinations of rank-one matrices,” Proc. ICASSP, vol.1,
pp.581-584, 2002.

[12] R. Kuhn, E Perronnin, P. Nguyen, J. Junqua, and L. Rigazio,
“Very fast adaptation with a compact context-dependent eigenvoice
model,” Proc. ICASSP, vol.1, pp.373-376, 2001.

[13] S. Yoshizawa, A. Baba, K. Matsunami, Y. Mera, M. Yamada, and
K. Shikano, “Unsupervised speaker adaptation based on sufficent
HMM statistics of selected speakers,” Proc. ICASSP, pp.341-344,
2001.

[14] R. Gomez, A. Lee, H. Saruwatari, and K. Shikano, “Rapid unsuper-
vised speaker adaptation based on multi-template HMM sufficient
statistics in noisy environments,” Proc. EUROSPEECH, pp.296—
301, 2005.

[9



GOMEZ et al.: REDUCING COMPUTATION TIME OF THE RAPID UNSUPERVISED SPEAKER ADAPTATION

[15] R. Gomez, A. Lee, T. Toda, H. Saruwatari, and K. Shikano, “Im-
proving rapid unsupervised speaker adaptation based on HMM-
sufficient statistics in noisy environments using multi-template mod-
els.” IEICE Trans. Inf. & Syst., vol.E89-D, no.3, pp.998-1005.
March 2006.

[16] A. Lee, T. Kawahara, K. Takeda, and K. Shikano. “A new phonetic
tied-mixture model for efficient decoding,” Proc. ICASSP, pp.1269—
1272, 2000.

{17] S. Yamade, K. Matsunami, A. Baba, A. Lee, H. Saruwatari, and
K. Shikano, “Spectral subtraction in noisy environments applied
to speaker adaptation based on HMM sufficient statistics,” Proc.
ICSLP, pp.1-1045-1048, 2000.

{18] R. Gomez, A. Lee, H. Saruwatari, and K. Shikano, “Speaker-class
reduction for HMM-sufficient statistics adaptation using multiple
acoustic models.” Proc. Acoustical Society of Japan, pp.133-134,
March 2005.

Randy Gomez was born in Cebu City,
Philippines on December 11, 1976. He re-
ceived his B.S. degree in Electronics and Com-
munication Engineering at the Mindanao State
University-Iligan Institute of Technology in
1998 and served as an instructor immediately af-
ter graduation. Received the M. of Eng. Sci. de-
gree in Electrical Engineering at the University
of New South Wales (UNSW) in Sydney Aus-
tralia in 2002. He obtained his Ph.D. in 2006
from the Graduate School of Information Sci-
ence in Nara Institute of Science and Technology (NAIST). His research
interests include robust acoustic modelling and rapid speaker adaptation for
practical speech recognition applications. Currently he is connected with
the Speech and Acoustics Laboratory in NAIST as a postdoctoral fellow.
He is a member of Acoustical Society of Japan, IEEE, and ISCA.

Tomoki Toda was born in Aichi, Japan on
January 18, 1977. He received the B.E. degree
in electrical engineering from Nagoya Univer-
sity in 1999 and the M.E. and Ph.D. degrees in
engineering from the Graduate School of Infor-
mation Science, Nara Institute of Science and
Technology (NAIST) in 2001 and 2003, respec-
tively. During 2001-2003, he was an intern re-
searcher and a visiting researcher at ATR Spo-
ken Language Translation Research Laborato-
ries. He was a Research Fellow of the Japan
Society for the Promotion of Science (JSPS) in Graduate School of Engi-
neering, Nagoya Institute of Technology during 2003-2005. He was a vis-
iting researcher at Language Technologies Institute, Carnegie Mellon Uni-
versity from October 2003 to September 2004. He is currently an Assistant
Professor of the Graduate School of Information Science, NAIST and a vis-
iting researcher at ATR Spoken Language Communication Research Lab-
oratories. His research interests include speech synthesis, speech analysis
and speech recognition. He received the TELECOM System Technology
Award for Student from the Telecommunications Advancement Foundation
in 2003. He is a member of ASJ, IEEE, and ISCA.

561

Hiroshi Saruwatari was born in Nagoya,
Japan, on July 27, 1967. He received the B.E.,
ML.E. and Ph.D. degrees in electrical engineering
from Nagoya University, Japan, in 1991, 1993

and 2000, respectively. He joined Intelligent
: Systems Laboratory, SECOM CO., LTD., Mi-
taka, Tokyo, Japan, in 1993, where he engaged

in the research and development on ultrasonic

a array system for the acoustic imaging. He is cur-

Q rently an associate protessor of Graduate School

of Information Science, Nara Institute of Sci-

ence and Technology. His research interests include array signal process-
ing, blind source separation, and sound field reproduction. He received the
Paper Awards from IEICE in 2000, and from TAF in 2004. He is a member
of the IEEE, the VR Society of Japan, and the Acoustical Society of Japan.

Kiyohiro Shikano received the B.S.,
M.S. and Ph.D. degrees in electrical engineer-
ing from Nagoya University in 1970, 1972 and
1980, respectively. He is currently a profes-
sor of Nara Institute of Science and Technol-
ogy (NAIST), where he is directing speech and
acoustics laboratory. His major research areas
are speech recognition, multi-modal dialogue
systems, speech enhancement, adaptive micro-
phone array, and acoustic field reproduction.
From 1972, he had been working at NT Labora-
tories, where he had engaged in speech recognition research. During 1990—
1993, he was the executive research scientist at NTT Human Interface
Laboratories, where he supervised the research of speech recognition and
speech coding. During 1986—-1990, he was the Head of Speech Processing
Department at ATR Interpreting Telephony Research Laboratories, where
he was directing speech and speech synthesis research. During 19841986,
he was a visiting scientist in Carnegie Mellon University, where he was
working on distance measures, speaker adaptation, and statistical language
modeling. He received the Yonezawa Prize from IEICE in 1975, the Signal
Processing Society 1990 Senior Award from IEEE in 1991, the Techni-
cal Development Award from ASJ in 1994, IPSJ Yamashita SIG Research
Award in 2000, and Paper Award from the Virtual Reality Society of Japan
in 2001. He is a member of the Information Processing Society of Japan,
the Acoustical Society of Japan, Japan VR Society, the Institute of Electri-
cal and Electronics Engineers (IEEE), and International Speech Communi-
cation Society.



