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High-Fidelity Blind Separation of Acoustic Signals Using
SIMO-Model-Based Independent Component Analysis

Tomoya TAKATANI'®, Tsuyoki NISHIKAWA, Student Members, Hiroshi SARUWATARI',

SUMMARY  We newly propose a novel blind separation framework for
Single-Input Multiple-Output (SIMO)-model-based acoustic signals using
an extended ICA algorithm, SIMO-ICA. The SIMO-ICA consists of multi-
ple ICAs and a fidelity controller, and each ICA runs in parallel under the fi-
delity control of the entire separation system. The SIMO-ICA can separate
the mixed signals, not into monaural source signals but into SIMO-model-
based signals from independent sources as they are at the microphones.
Thus, the separated signals of SIMO-ICA can maintain the spatial quali-
ties of each sound source. In order to evaluate its effectiveness, separation
experiments are carried out under both nonreverberant and reverberant con-
ditions. The experimental results reveal that the signal separation perfor-
mance of the proposed SIMO-ICA is the same as that of the conventional
ICA-based method, and that the spatial quality of the separated sound in
SIMO-ICA is remarkably superior to that of the conventional method, par-
ticularly for the fidelity of the sound reproduction.

key words: blind source separation, microphone array, independent com-
ponent analysis, SIMO model

1. Introduction

Source separation of acoustic signals is to estimate the orig-
inal sound source signals from among the mixed signals ob-
served in each input channel. This technique is applicable to
the realization of noise-robust speech recognition and high-
quality hands-free telecommunication systems. As a con-
ventional source separation approach, the method based on
array signal processing, e.g., a microphone array system, is
one of the most effective techniques [1]. The delay-and-
sum (DS) array and the adaptive beamformer (ABF) are
popular microphone arrays currently used for source sep-
aration. However, these methods have the following draw-
backs: The DS array requires a huge number of elements to
achieve high performance, especially in the low frequency
regions. In ABF, the directions of arrival (DOAs) of the sep-
arated source signals must be previously known. Also, the
adaptation procedure should be performed during breaks in
the target signal to avoid any distortion of separated signals,
however, we cannot previously estimate the breaks in con-
ventional use.

In recent years, alternative approaches have been pro-
posed by researchers using information-geometry theory
and neural networks [2]-[6]. Blind source separation (BSS)
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is the approach for estimating original source signals using
only the information of the mixed signals observed in each
input channel, where the independence among the source
signals is mainly used for the separation. This technique is
classified into unsupervised adaptive filtering approach [7],
and provides us with extended flexibility in that the source-
separation procedure requires no training sequences and no
a priori information on the DOAs of the sound sources. In
recent works on BSS based on independent component anal-
ysis (ICA) [5], various methods have been proposed to deal
with a means of separation of acoustical sounds which cor-
responds to the convolutive mixture case [8]-[12]. However,
the conventional ICA-based BSS approaches are basically
means of extracting each of the independent sound sources
as a monaural signal, and consequently they have a serious
drawback in that the separated sounds cannot maintain in-
formation about the directivity, localization, or spatial qual-
ities of each sound source. This prevents any BSS methods
from being applied to binaural signal processing [13], [14]
or high-fidelity sound reproduction systems [15].

In this paper, we propose a new blind separation tech-
nique using a Single-Input Multiple-Output (SIMO)-model-
based ICA (SIMO-ICA). Here the term “SIMO” represents
the specific transmission system in which the input is a sin-
gle source signal and the outputs are its transmitted signals
observed at multiple sensors. The SIMO-ICA consists of
multiple ICA parts and a fidelity controller, and each ICA
runs in paralle] under the fidelity control of the entire separa-
tion system. In the SIMO-ICA scenario, unknown multiple
source signals which are mixed through unknown acoustical
transmission channels are detected at the microphones, and
these signals can be separated, not into monaural source sig-
nals but into SIMO-model-based signals from independent
sources as they are at the microphones. Thus, the separated
signals of SIMO-ICA can maintain the spatial qualities of
each sound source.

In order to evaluate its effectiveness, separation exper-
iments are carried out under nonreverberant and reverberant
conditions. The experimental results reveal that the signal
separation performance of the proposed SIMO-ICA is the
same as that of the conventional ICA, and the sound qual-
ity of the separated signals in SIMO-ICA is remarkably su-
perior to that in the conventional ICA, particularly for the
spatial quality and the fidelity of the sound reproduction.

The rest of this paper is organized as follows. In Sect. 2,
the sound mixing model and conventional ICA is explained.
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In Sect. 3, the proposed SIMO-ICA is described in detail. In
Sections 4 and 5, the signal-separation experiments are de-
scribed and the results are compared with those of the con-
ventional method. Following a discussion on the results of
the experiments, we give conclusions in Sect. 6.

2. Mixing Process and Conventional BSS
2.1 Mixing Process

In this study, the number of array elements (microphones) is
K and the number of multiple sound sources is L. In general,
the observed signals in which multiple sources are mixed
linearly are expressed as

N-1
x(1) = )" a(ms(t—n) = A@s(), )

n=0

where s(¢) is the source signal vector, x(¢) is the observed
signal vector, a(n) is the mixing filter matrix with the length
of N, and A(z) is the z-transform of a(n); these are given as

s(0) = [s1@), -+, s, @)
x(0) = @), xx @O, 3)
an(n) ai(n)
a(n) = : : 5 “
ax1(n) agr(n)
An(2) A1L(2)
A7) = : :
A1) AgL(2)
N-1 N-1
= amz" = [Z aij(n)z-"] : (5)
n=0 n=0 i
where 77! is used as the unit-delay operator, i.e., z™" - x(f) =

x(t — n), ay is the impulse response between the k-th mi-
crophone and the [-th sound source, and [X];; denotes the
matrix which includes the element X in the i-th row and the
Jj-th column. Hereafter, we only deal with the case of K = L
in this paper.

2.2 Conventional ICA-Based BSS Method

In the BSS method, we consider the time-domain ICA
(TDICA), in which each element of the separation matrix
is represented as an FIR filter. In the TDICA, we optimize
the separation matrix by using only the fullband observed
signals without subband processing (see Fig. 1). The sepa-
rated signal y(¢) = [y(¢),- - -, yr()]" is expressed as

D-1
y(o) = ) wmx(t - n) = WEx()
n=0

= W(2)A(2)s(1), (©)

where w(n) is the separation filter matrix, W(z) is the z-
transform of w(n), and D is the filter length of w(n). In
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Fig.1  Configuration of conventional TDICA.
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Fig.2  Input and output relations in conventional ICA. Since B;(z) is pos-
sible to be an arbitrary filter (B(z) # Aw(2)), the separated signals include
the spectral distortions.

our study, the separation filter matrix is optimized by min-
imizing the Kullback-Leibler divergence between the joint
probability density function (PDF) of y() and the product of
marginal PDFs of y(#). The iterative learning rule is given
by [16]

wbt1] (n)
= (n)

D-1
—a) {off-diag (so(ym(t))
d=0

y[j](t Loy d)T>,} . w[j](d), )

where a is the step-size parameter, the superscript [ ] is used
to express the value of the j-th step in the iterations, {-), de-
notes the time-averaging operator, and oft-diagW(z) is the
operation for setting every diagonal element of the matrix
W(z) to be zero. Also, we define the nonlinear vector func-
tion ¢(-) as

@(y(t)) = [tanh(y(?)), - -, tanh(y())]". ®)

2.3 Problems in Conventional ICA

The conventional ICA is basically a means of extracting
each of the independent sound sources as a monaural signal
(see Fig.2). In addition, the quality of the separated sound
cannot be guaranteed, i.e., the separated signals can possibly
include spectral distortions because the modified separated
signals which convolved with arbitrary linear filters are still
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mutually independent. As shown in Fig. 2, y(£) = Bi(2)s,(1),
where Bi(z) (# Aw(z)) is an arbitrary filter, is a possible
solution obtained from the conventional ICA using Eq. (7).
Therefore, the conventional ICA has a serious drawback in
that the separated sounds cannot maintain information about
the directivity, localization, or spatial qualities of each sound
source. In order to resolve the problem, particularly for the
sound quality, Matsuoka et al. have proposed a modified
ICA based on the Minimal Distortion Principle [17]. How-
ever, this method is valid only for monaural outputs, and the
fidelity of the output signals as SIMO-model-based signals
cannot be guaranteed.

3. Proposed Algorithm; SIMO-ICA

In order to resolve the above-mentioned fundamental prob-
lems, we propose a new blind separation method for SIMO-
model-based acoustic signals using SIMO-ICA. The SIMO-
ICA consists of multiple ICA parts and a fidelity controller,
and each ICA runs in parallel under the fidelity control of the
entire separation system (see Fig. 3). The separated signals
of the [-th ICA in SIMO-ICA are defined by

Yicall) = [yil)(t)]kl

Il

D-1
Z wica(m)x(t — n)
n=0

Wica(2)x(1), )

where wica(n) is the separation filter matrix in the /-th ICA,
Wicai(2) is the z-transform of wica/(n). Regarding the fi-
delity controller, we newly introduce the following cost
function to be minimized,

Cwicar(n) . .., wicar(n)

|

where || x || is the Euclidean norm of vector x. The cost
function Eq. (10) means a degree of similarity between the
sum of all ICA’s output Yf, yica/(f) and the sum of all
SIMO components [}, Ax(t = D/2)}x1(= x(t — D/2). Here

2

> , (10)

t

L
> Yicalld) - x(t = D/2)
=1

Source Observed
signals signals

Dty
P :
Sl:(t) Au(2)s,(2) 0 :

Ay = D_ ' ° '
sE,[(}r)<(Z)s'(I) iy
]

Fidelity Controller
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the delay of D/2 is used to deal with nonminimum phase
systems. Using Eq.(9) and Eq. (10), we can obtain the ap-
propriate separated signals and maintain their spatial quali-
ties as follows.

Theorem: The output signals converge on unique solu-
tions, Eq. (11), up to the permutation, if and only if the in-
dependent sound sources are separated by Eq.(9), and si-
multaneously Eq. (10) is minimized to be zero.

Yical®) = diag [AQP]| Pis(c - D/2), (11)

where P; (I = 1,..., L) are exclusively-selected permutation
matrices which satisfy

L
> Pi= [y (12)

=1

Proof of Theorem: First, the necessity is shown below.
Obviously the solution Eq.(11) holds in Eq.(9) because
the elements of Eq. (11) are mutually independent in each
Yica) 0 = 1,...,L). Also, the following equation holds
with Eq. (11).

L L
Z Yicallt) = Z diag [A(Z)P,T] P;s(t — D/2)
=1 =1

L
= [Z Au(@)si(t - D/2>]
=1 k1
= A(z)s(t — D/2). (13)

This results in x(¢t — D/2), and makes the cost function
Eq. (10) be zero. This completes the proof of the necessity
in Theorem.

Next, the sufficiency is shown below. Let D)(z) (I =
1,...,L) be arbitrary diagonal polynomial matrices and Q,
be arbitrary permutation matrices. If one of the precondi-
tions (“independent sound sources have been separated by
Eq. (9)”) holds, the general expression of the /-th ICA’s out-
put is given by

Yical(t) = Di(2)Q;s(t — D/2). (14)
-y (H)— AH(Z);YI (t-D12) ) Separated signals

y(LI-)h? )= A(’--M)l(%)s] (t-p12)
YO (t)—|__An(2)s1(-D12)
v (1) — Au(Z);Tl(t'D/Z) o AmmaRaRdEn Snaan bR, &
: 1 SIMO-model-based !
YO ()—| Au(@)s;(t-Di2) [ signals :
i i corresponding to s,(1):
VOO A (t-p) e
Y (O)—( Au(2)s.(t-Dr2)
Y10~ Acsnn(2)s,(t-D2)

YOO—|  Au@s(-Dr)

Fig.3 Example of input and output relations in proposed SIMO-ICA, where exclusively-selected
permutation matrices P; are given by Eq.(19). The SIMO-ICA consists of multiple ICA parts and
a fidelity controller, and each ICA runs in parallel under the fidelity control of the entire separation
system. In this system, the separated signals maintain their spatial qualities.
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If Q, are not exclusively-selected matrices, i.e., Z,L:I 0, #+
[1];j, then there exists at least one element of Zle Yical(t)
which does not include all components of s;(t — D/2) (I =

., L). This obviously makes the cost function Eq. (10)
be nonzero because the observed signal vector x(t — D/2)
includes all components of s;(t — D/2) in each element. Ac-
cordingly, Q, should be P; specified by Eq. (12), and we ob-
tain

Yicalt) = Di(2)Pis(t — D/2). (15)

In Eq. (15) under Eq.(12), the arbitrary diagonal matrices
D(z) can be substituted by diag[B(z)PT], where B(z) =
[Bij(z)];j is a single arbitrary matrix, because all di-
agonal entries of dlag[B(z)PT] for all [ are also exclusive.
Thus,

Yicallt) = diag [BQ)P] | Pis(t - D/2), (16)

and consequently

L L
D Ve = [Z Bu(@)si(t - D/2>] . (17
=1 =1 Xl

Substitution of Eq.(17) in Eq.(10) leads to the following

equation.

C(wicai(n),. .., wicar(n))

L
=<|| [Z Bu(@)si(t - D/2>]
=1 ki
L 2
- ‘Z Ap(z)si(t = D/2)] ” >
=1 kot

I K

=>" > (Bu@ - Au@)* - (st - D/2P),  (18)
=1 k=1

where we used the relation, (s;(t—D/2)sy(t—=D/2));, =0 (I #

I). Since (s;(t — D/2)?), are positive, the cost function given

by Eq. (18) becomes zero if and only if By(z) = Au(z) for

all k and [. Thus, Eq. (16) results in Eq. (11). This completes

the proof of the sufficiency in Theorem.

Obviously the solutions given by Eq. (11) provide nec-
essary and sufficient SIMO components, Ay (2)S (1t — D/2),
for each [-th source. However, the condition Eq. (12) allows
multiple possibilities for the combination of P;. For exam-
ple, one possibility is shown in Fig. 3 and this corresponds
to

P = [Sim,p Jxis (19)

where ¢;; is Kronecker’s delta function, and

o k+l-1  (k+1-1<D)
m(k’l)_{k+l—1-L k+1-1>1L) (20
In this case, Eq. (11) yields
Yicalt) = [Anged Smikt)(t = D2kt (21)

In order to obtain Eq. (11), the natural gradient [6], [18] of
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Eq. (10) with respect to wyca () should be added to the iter-
ative learning rule of the separation filter. The natural gradi-
Wicai@™) Wicai(z)

ent of Eq. (10) is given as (see Appendix)
2
d L D
{6wICA,(n) < =1 x(t " 3) > }
t
D=L L
D
= 2 Z <(Z yICAl(t) =X (t = E))
d=0 =1
“Yeat —n + d)T>’ - wical(d). (22)

By combining Eq. (7) with Eq. (22), we can obtain the new
iterative algorithm of SIMO-ICA as

?&ii (n)

ICAl(n)

—-a Z {off -diag < yE’C]Al(z))

d=0
Yl e-n+ d)T>,
D

+ﬁ<( Z Yol == (t o 5))

Yo (E -+ d)T>t} wigy, (@), (23)
,“c*,i%m)

ICAI(n)

p Z {off diag < (¥ ®)

yICAl(t e s d)T>'

+B<( ZyICAI(t) -X (f = g))

' y}gm(’ =1+ d)T>t} ICA[(d) (24)
I“&un)

ICAL(”)

- Z {off—diag < y%JC]AI (t))
d=0

i t-n+ d)T>
t

ool R st -<(-3))
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'-’/}jc]AL(’ L d)T>t} ICAL(d) (25)

where @ and B are the step-size parameters; a is for the
control of the total update quantity and S is for the fidelity
control. In Esq.(23)—(25) the updating wica;(n) should
be simultaneously performed in parallel because each it-
erative equation is associated with the others via y{’c] N
W{g 4,(2)x(2). Also, the initial values of wycas(n) for all [
should be different.

After the iterations, 'the separated signals should be
classified into SIMO components of each source because
the permutation arises. This can be easily achieved by using
a cross correlation between time-shifted separated signals,
max,,(y (t)y(l)(t —n)), where [ # I’ and k # k’. The large

value of the correlation indicates that y(l)(t) and yi’,’)(t) are
SIMO components of the same sources.

4. Experiment and Results for Two-Source Case
4.1 Conditions for Experiment

In this section, we consider a case of K = L = 2. A two-
element array with an interelement spacing of 4 cm is as-
sumed. The speech signals are assumed to arrive from two
directions, —30° and 40°. The distance between the micro-
phone array and the loudspeakers is 1.15 m. Two kinds of
sentences, spoken by two male and two female speakers se-
lected from the ASJ continuous speech corpus for research
[19], are used as the original speech samples. Using these
sentences, we obtain 6 combinations. The sampling fre-
quency is 8 kHz and the length of speech is limited to 3
seconds. The source signals are the original speech con-
volved with two kinds of impulse responses specified by the
different reverberation times (RTs), O ms (time lag between
microphones only is considered) and 150 ms. The impulse
response in the case of RT=150 ms is recorded in the experi-
mental room as shown in Fig. 4. These sound data which are
artificially convolved with the real impulse responses have
the following advantages: (1) we can use the realistic mix-
ture model of two sources neglecting the affection of back-
ground noise, (2) since the mixing condition is explicitly
measured, we can easily calculate a reliable objective score

: 5.73m
/ & Loudspeakers
8 @(Helght 1.35m)
- 115m
€
5E «— 2.15 L °300 ,,,,,,,,
o 5 m \ 400
Microphone .
array
(Height : 1.35 m)
(Room height : 2.70 m)

Fig.4 Layout of reverberant room used in experiments (K = L = 2).
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to evaluate the separation performance as described in the
next section.

The length of w(n) is set to be 128 (RT = O ms) or 512
(RT = 150ms), and the initial value is Null-Beamformer
[11] whose directional null is steered to +60°. The num-
ber of iterations in ICA is 5000. Regarding the conventional
ICA given for comparison, we used Esq.(23)—(25) in the
case of 8 = 0.

4.2 Objective Evaluation Score

In this experiment, three objective evaluation scores are de-
fined as described below.

First, noise reduction rate (NRR), defined as the out-
put signal-to-noise ratio (SNR) in dB minus the input SNR
in dB, is used as the objective indication of separation per-
formance, where we do not take into account the distortion
of the separated signal. The SNRs are calculated under the
assumption that the speech signal of the undesired speaker
is regarded as noise. The NRR is defined as

ZZ: 22: OSNR/"“A¥

I=1

- ISNRE‘CA"’), (26)
I A @) P

T THA st P

o | Au@)si(e) 2

2 | An(@)sa(®) P
X | Hi 22 @)sa(0) P

: > L HSA2(@)si(t) P

2 | An(@)sa(0) I

2l Au@)si(0) 27

where OSNR{“** and ISNR“** are the output SNR and

the input SNR for ICAk, respectively, and [ # n. Also,
H}jCA"(z) is the element in the i-th row and the j-th column

of the matrix H'°**(z) = Wicax(2)A(2).
Secondly, sound quality (SQ), defined as described be-
low, indicates the sound quality of the separated signal,

2 2
5Q=3. 50, en

Sl An@si() ?

ol An@si(0) - HSAM @)s1(e) P
Yol Ap(@)sa(n) 2

T 1 An@sa(t) - HISA2(2)sy(0) 2
Sl A @si() P

T 1A @s1(0) = HSA(2)s1(0) P
> 1 An(@)s(t) 2

Y | An(@)52() — HSA @)so(2) 2

where SQ o is the sound quality of the separated signal y,

N

OSNR{“A = 10log,

ISNRI“V = 10log9

OSNR{“*? = 10log;

ISNR{“*? = 10log,o

SQy<]n = 10log,,

SQy(Zl) = 1010g10

SQy<12) = 1010g10

SQy(ZZ) = IOIOgm

(n)
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Fig.5 Results of (a) NRR, (b) SQ, and (c) F in conventional ICA and
proposed SIMO-ICA (K = L = 2). The reverberation time is Oms (time
lag between microphones only is considered).

Lastly, fidelity (F) indicates the accuracy of the sound
reproduction in the entire system. It is defined by

(1> e )

(1 22 e - x- DI )

F = 10log,, :
t

(28)
4.3 Results and Discussion

4.3.1 Nonreverberant Case (RT=0ms)

The step-size parameter a is changed from 1.0 x 1076 to
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Fig.6 Results of (a) NRR, (b) SQ, and (c) F in conventional ICA and
proposed SIMO-ICA (K = L = 2). The reverberation time is 150 ms.

2.0 x 1075 and B is changed from 2.0 x 107> to 4.0 x 10~
in order to find the optima which minimize Eq. (10). Fig-
ure 5(a) shows the results of NRR for different speaker com-
binations. The bars on the right of this figure correspond to
the averaged results of each combination. In the averaged
scores, the deterioration of NRR in SIMO-ICA is 4.4dB
compared with that in the conventional ICA. However, the
absolute NRR score is more than 30 dB and consequently
the deterioration of NRR is relatively small and negligible
from the practical viewpoint.

Figures 5(b) and (c) show the results of SQ and F for
different speaker combinations. The bars on the right of
each figure correspond to the averaged results of each com-
bination. In the averaged scores, compared with the conven-
tional ICA, the improvement of SQ is 16.1dB, and that of
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F is 26.1 dB. From these results, it is evident that the sound '

quality of the separated signals in SIMO-ICA is remarkably 4 5.73m

superior to that of the separated signals in the conventional J:_ AN
oudspeakers

ICA-based method. « g O Height : 1.35 m)

— 215 m‘§£:.}gé --------- D]
The step-size parameter « is changed from 5.0 x 107 to Microphone
1.0 x 10~ and B is changed from 1.0 x 1072 to 7.0 x 107 array
in order to find the optima which minimize Eq. (10). Fig- (Height : 1.35 m) é
ure 6(a) shows the results of NRR for different speaker com- 0
binations. The bars on the right of this figure correspond to Fig.7 Layout of artificial reverberant room used in experiments (K =
the averaged results of each combination. In the averaged L=3)
scores, the deterioration of NRR in SIMO-ICA is 0.2dB
compared with that in the conventional ICA. From these re-
sults, it is evident that the signal separation performance of ™
the proposed SIMO-ICA is almost the same as that of the (@
conventional ICA-based method.
Figures 6(b) and (c) show the results of SQ and F for 10
different speaker combinations. The bars on the right of
each figure correspond to the averaged results of each com-
bination. In the averaged scores, compared with the conven-
tional ICA, the improvement of SQ is 3.3 dB, and that of F
is 31.8 dB. From these results, it is evident that the sound
quality of the separated signals in SIMO-ICA is obviously 2
superior to that of the separated signals in the conventional
ICA-based method, particularly in terms of the fidelity of ! 2 S 4 Average
the sound reproduction. Regarding the SQ score, the im- Comblantlon of Spesiers
provement in SIMO-ICA is not large compared with that in

4.3.2 Reverberant Case (RT=150ms)

3.12m

(Room height : 2.70 m)

NRR [dB]
-

O Conventional ICA
H Proposed SIMO-ICA

SQ [dB]
»

SIMO-ICA in the nonreverberant case described in the pre- (b)
vious section. The main reason for this is the insufficiency
of the source-separation performance. In order to improve 6
this, the separation filter should be lengthened beyond the 5
length of the reverberation time; this remains an open prob-
lem for future study. .

Overall, the results indicate the following points. (1) . .I .I .I
In SIMO-ICA, the addition of a fidelity controller is effec- 2
tive in compensating for the spatial qualities of the separated : . I RS on KA
SIMO-model-based signals. (2) There is no deterioration in . P' b
the separation performance (NRR) even with the additional 1 2 3 4 Average
compensation of sound quality in SIMO-ICA. Therefore, we Combinatige of Speakers
can conclude that the proposed SIMO-ICA is applicable to
pinaural signal processing and high-fidelity sound reproduc- i © O Conventional ICA
tion systems. B Proposed SIMO-ICA

5. Experiment and Results for Three-Source Case

F [dB]

5.1 Conditions for Experiment

In this section, we consider a case of K = L = 3. A three-
element array with an interelement spacing of 4 cm is as-
sumed. The speech signals are assumed to arrive from three
directions, —30°, 0°, and 40°. The distance between the mi- 1 2 13 4 Average

crophone array and the loudspeakers is 1.15 m. The same Combination of Speakers

speech samples (two males and two females) as described Fig.8 Results of (a) NRR, (b) SQ, and (c) F inconventional ICA and
in the previous Sect. 4 are used, and we obtain 4 combina- proposed SIMO-ICA (K = L = 3). The reverberation time is 150 ms.
tions. In order to generate the room impulse responses, we
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use the image method [20] assuming the artificial room as
shown in Fig. 7, where the RT is set to be 150 ms.

The length of w(n) is set to be 1024, and the initial
value is Null-Beamformer whose directional null is steered
to —60°, 5°, and 60°. The number of iterations in ICA is
20000.

5.2 Results and Discussion

Figures 8(a), (b) and (c) show the results of NRR, SQ and F
for different speaker combinations. The bars on the right of
each figure correspond to the averaged results of each com-
bination. In the averaged scores, compared with the con-
ventional ICA, the deterioration of NRR is 0.8 dB, but the
improvement of SQ is 2.7 dB, and that of Fis 17.2 dB. From
these results, we can conclude that the sound quality of the
separated signals in SIMO-ICA is superior to that of the sep-
arated signals in the conventional ICA-based method. This
is a promising evidence that the proposed SIMO-ICA algo-
rithm can work even in the case of K = L = 3 as well as
K=L=12

6. Conclusion

We propose a new blind separation framework for SIMO-
model-based acoustic signals using the extended ICA al-
gorithm, SIMO-ICA. SIMO-ICA is an algorithm for sepa-
rating the mixed signals, not into monaural source signals
but into SIMO-model-based signals of independent sources
without loss of their spatial qualities. In order to evaluate
its effectiveness, separation experiments are carried out us-
ing two microphones and two sources under the conditions
that the RTs are set to be Oms and 150 ms. The experi-
mental results reveal that the signal separation performance
of the proposed SIMO-ICA is the same as that of the con-
ventional ICA-based method, and the spatial qualities of the
separated sound in SIMO-ICA are remarkably superior to
that in the conventional ICA-based method, particularly in
terms of the fidelity of the sound reproduction. In addi-
tion, we carry out the experiments using three microphones
and three sources. This results also show that the proposed
method outperforms the conventional method in the sound
quality of the separated signals. Therefore, we can conclude
that the proposed SIMO-ICA is applicable to binaural signal
processing and high-fidelity sound reproduction systems.

Further development extended to binaural signals re-
mains an open problem for the future. Also, the robustness
against the background noise should be studied.
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Appendix: The Derivation of Eq. (22)

The (standard) gradient of Eq. (10) with respect to wica(n)

is given as
2
ZL: 0 -x(t- 9)
Z Yical 3 ,

—2q2hm¢0 @——ﬂwaﬁﬁ>.

t

S
Owrcai(n)

(A-1)

Here x(t — n)" is expressed as the following equation from
Eq.(9):

x(t = )T = yreat =) Wicai@) ™", (A-2)

where the superscript —T represents the transposed inverse
matrix. By using Eq. (A- 2), Eq. (A- 1) is expanded as

2
6waAl('l)< i (t - g) >I
_ 2([2 e~ x(t- )
=1

“Yreallt — ’l)TWICAz(Z)-T> .
t

(A-3)

Here, we substitute Wica/(z)™' with Vicai(z) = Y54 v(d)
4 then Eq. (A- 3) is rewritten as
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where J(n + d) represents'the matrix in which each element
is the time sequence of not the index ¢ but the index n be-
cause the index ¢ vanishes under the averaging (-); this is
defined as

L
Ju) = <[Z Yicalt) — x (t - g))
=1
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-mmﬁ—mﬁ. (A-5)
t
Equation (A- 4) is rewritten as
D-1
2 Z J(n + dyvica(@)”
0 D-1 7
=2 Z J (n)(UICAI(d)Zd)
d=0
= 2J(mVicac™)’ (A-6)

Therefore, the standard gradient of Eq. (10) with respect to
wica(n) is given as

2%&«1(’) o x(t P g)

i
dwicar(m) \||

=2 <(Z Yieal®) — x (’ . g)]
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t

2

t

A7)

From Eq. (A-7), the natural gradient [6], [18] of Eq. (10) is

given as
2
i S D
{3WICA1(H) < o W= x(t - E) >t}

Wicaz™) Wica(z)
L D
=2<( y (t)—xt—-——]
; ICAl ( 2)

“Yrealt - n)T> - Wicai(z)

;)Z«Zym:(t) «(r-2)
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t

(A-8)

Therefore, we have Eq. (22).
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