2版

様 式 F-7-1

科学研究費助成事業(学術研究助成基金助成金)実施状況報告書(研究実施状況報告書)(平成30年度)

			機関番号	1 4 6 0 3
所属研究	機関名称	奈良先端科学技術大学院大学		
	部局	先端科学技術研究科		
研究 代表者	職	教授		
10421	氏名	廣田 俊		
1 . 研究種目名		挑戦的研究(萌芽) 2	. 課題番号 [18K19146
3 . 研究課	題名	レーザートラッピング法を利用したシトクロムcのアミロイド線維形成機構の解	明	
4.補助事	業期間	平成30年度~令和元年度		
5 . 研究実	2績の概要			
した。各変 ド架橋し、2 る。波でレー・ ドメインス「 短りしよる でンメイン が が が が が が が が が が が が が が が が が が が	異体をイオン 量体をイオン 量体を作製 は nmの連続 ガー光とングし ると、度が観 質微鏡で観察 ィド架橋2量	配位しているMet80と同じループ領域に含まれるAIa83をCysに置換したA83C変異体と、C未端ので換力ラムクロマトグラフィー及びゲルろ過クロマトグラフィーにより精製した後、挿入したした。各変異体の2量体ではCys近傍の構造が固定化されるため、これらの領域の柔軟性がアミ皮レーザーを用いたレーザートラッピング法により、分子間ジスルフィド架橋されたE104C2量位2量体を含む重水溶液中に集光すると、集光点に直径約4 μm の凝集体が形成されることが、た野生型シトクロムcの2量体のレーザートラッピングの結果と類似していた。光圧により生成12 μmの凝集体の中心部分の透過率が減少した。その後、凝集体の中心部分の透過でが減少した。その後、液集体の中心部分の透過でが減少した。その後、液集体の中心部分の透過でが減少した。このでは、東光点を移動することによりE104C変異体の凝集体を連続的に作製し、じしたところ、幅数mmのアミロイド線維が集まって幅数十mのパンドル構造を形成していた。じしたところ、幅数mのアミロイド線維が、まって幅数十mのパンドル構造を形成していた。以本は光圧によってアミロイド線維化し、Glu104周りの構造を固定化しても、アミロイド線維が、イド線維形成機構の解明に有用である。	ECysを介して各: ロイド線維形成に 体のアミロイド 顕微鏡観察により はしたE104Cを異も に収縮するとと生 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	変異体を分子間ジスルフィ こ及ぼす影響が特定でき 線維形成を調べた。対物レ 〕判明した。この現象は、 本の凝集体にレーザー光を に、共存させたチオフラビ 処理によってほどいた後、 ロムcのE104C変異体の分子
6.キーワ				
タンパク質	レーザート	ラッピング法 光圧 アミロイド線維 ドメインスワッピング ジスルフィド結合		
7 . 現在ま				
区分 (2 理由) ភ ភបង្គា	酒調に進展している。		
シトクロムc		本とE104C変異体を作製した。各変異体を精製後、各変異体を分子間ジスルフィド架橋し、2量 鏡観察、共存チオフラビンTの蛍光観察、さらに凝集体の透過型電子顕微鏡を行うことができ		:1040 2量体のレーザート

(1/4)

【研究代表者・所属研究機関控】

日本学術振興会に紙媒体で提出する必要はありません。

2版

9.次年度使用が生じた理由と使用計画 ジスルフィド結合で架橋したシトクロムc変異体の2量体の作製と精製法を確立するのに時間を要したため。 新しいシトクロムc変異体の2量体のアミロイド形成挙動を調べるため、タンパク質の作製や精製、レーザーラッピング法などの消耗品費として使用する。

10.研究発表(平成30年度の研究成果)

「雑誌論文〕 計1件(うち査読付論文 1件/うち国際共著 0件/うちオープンアクセス 0件)

「粧砂調文」 計「什(つら直読刊調文 「什/つら国際共者」「什/つらオーノファクセス」「什)	
1.著者名	4 . 巻
Shun Hirota	194
2.論文標題	5 . 発行年
Oligomerization of Cytochrome c, Myoglobin, and Related Heme Proteins by 3D Domain Swapping	2019年
3.雑誌名	6.最初と最後の頁
Journal of Inorganic Biochemistry	170-179
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
10.1016/j.jinorgbio.2019.03.002	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

〔学会発表〕 計4件(うち招待講演 4件/うち国際学会 2件)
1.発表者名
Shun Hirota
2.発表標題
Supramolecular Assemblies of c-Type Cytochromes Based on 3D Domain Swapping
3 . 学会等名
3 . 学会等名 233rd ECS Meeting (招待講演) (国際学会)
233rd ECS Meeting(招待講演)(国際学会)

2版

4	翌丰业农	
- 1	発表者名	

Shun Hirota

2 . 発表標題

Construction of Protein Supramolecules by 3D Domain Swapping

3.学会等名

The 18th Annual Meeting of the Protein Science Society of Japan (Workshop: 35th Anniversary of Protein Engineering since 1983) (招待講演)

4.発表年

2018年

1.発表者名

Shun Hirota, Satoshi Nagao, Masaru Yamanaka, Yoshiki Higuchi

2.発表標題

Domain Swapping-Based Assemblies of c-Type Cytochromes

3 . 学会等名

Tenth International Conference on Porphyrins and Phthalocyanines (ICPP-10)(招待講演)(国際学会)

4.発表年

2018年

1. 発表者名

廣田俊、太虎林、樋口芳樹、柳澤幸子、小倉尚志

2 . 発表標題

 $\label{thm:conditional} \mbox{ Vibrational Spectroscopic Studies of Cytochrome } \mbox{ c and Hydrogenase}$

3 . 学会等名

第56回日本生物物理学会年会(シンポジウム:ピコバイオロジーが目指すもの)(招待講演)

4.発表年

2018年

〔図書〕 計0件

11.研究成果による産業財産権の出願・取得状況

計0件(うち出願0件/うち取得0件)

12.科研費を使用して開催した国際研究集会

計0件

【研究代表者・所属研究機関控】

日本学術振興会に紙媒体で提出する必要はありません。

2版

13.本研究に関連して実施した国際共同研究の実施状況

共同研究相手国	相手方研究機関				
台湾	National Chiao Tung University	-	-	-	
-	-	-	-	-	
-	-	-	-	-	
-	-	-	-	-	
-	-	-	-	-	
-					

14.備考

-