2版

様 式 F-7-2

科学研究費助成事業(学術研究助成基金助成金)実績報告書(研究実績報告書)

			機関番号	1 4 6 0 3
所属研究機関名称		奈良先端科学技術大学院大学		
研究 代表者	部局	情報科学研究科		
	職	助教		
1000	氏名	新谷 道広		
1 . 研究種目名		若手研究(B)	課題番号	15K15960
3 . 研究課題名		経年劣化の緩和と監視に基づく高信頼プロセッサの研究		
4.補助事	業期間	平成27年度~平成29年度		
5 . 研究実				
セッサの稼働 だと,劣化に ケースの劣(動においては こより最悪遅 化を , 稀少事	経年劣化見積もり手法は,あるワークロードを仮定して,そこから一意の信号確率を抽出して計 ;常に一定ワークロードで動作しているわけではなく,常時刻々と変化している.したがって, 近となるパスを見逃す可能性がある.さらにワークロードの推定はそれ自体が困難な課題である。 象を模擬する手法の1 つであるSubset simulation アルゴリズムを用いて高速に推定する手法を 比較して,計算時間を36 倍高速化できることを示した.	単一のワークI . 本研究では	コードのみを考慮した場合 , ワークロード依存の最悪
6 . キーワ				
MOSFET プロ	コセッサ設計	- 経年劣化 NBTI タイミング解析 回路シミュレーション		

7.研究発表

〔雑誌論文〕 計2件(うち査読付論文 2件/うち国際共著 0件/うちオープンアクセス 0件)

【粧誌冊又】 iT21十(つら宜読1)im又 21十/つら国際共者 U1十/つらオーノノアグセス U1十)	
1.著者名 Song Bian, Shumpei Morita, Michihiro Shintani, Hiromitsu Awano, Masayuki Hiromoto, and Takashi	4 .巻
Sato	E100-A
2. 論文標題	5 . 発行年
Identification and Application of Invariant Critical Paths under NBTI Degradation	2017年
3.雑誌名 IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences	6 . 最初と最後の頁 2797-2806
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
10.1587/transfun.E100.A.2797	有
オープンアクセス オープンアクセスではない、又はオープンアクセスが困難	国際共著

日本学術振興会に紙媒体で提出する必要はありません。

2版

1. 著者名 Shumpei Morita, Song Bian, Michihiro Shintani, Masayuki Hiromoto, and Takashi Sato	4 . 巻 E100-A
2.論文標題 Utilization of Path-Clustering in Efficient Stress-Control Gate Replacement for NBTI Mitigation	5 . 発行年 2017年
3.雑誌名 IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences	6.最初と最後の頁 1464-1472
掲載論文のDOI(デジタルオブジェクト識別子) 10.1587/transfun.E100.A.1464	査読の有無 有
オープンアクセス オープンアクセスではない、又はオープンアクセスが困難	国際共著

〔学会発表〕 計12件(うち招待講演 0件/うち国際学会 8件)

1.発表者名

Song Bian, Michihiro Shintani, Masayuki Hiromoto, and Takashi Sato

2 . 発表標題

LSTA: Learning-Based Static Timing Analysis for High-Dimensional Correlated On-Chip Variations

3 . 学会等名

ACM/IEEE Design Automation Conference (DAC) (国際学会)

4.発表年

2017年

1.発表者名

Michihiro Shintani, Masayuki Hiromoto, and Takashi Sato

2 . 発表標題

Parameter Extraction for MOSFET Current Model Using Backward Propagation of Errors

3 . 学会等名

IEEE/ACM Workshop on Variability Modeling and Characterization (VMC)(国際学会)

4.発表年

2017年

1.発表者名

Fakir Sharif Hossain, Tomokazu Yoneda, Michihiro Shintani, Michiko Inoue, and Alex Orailoglu

2 . 発表標題

Intra-Die-Variation-Aware Side Channel Analysis for Hardware Trojan Detection

3. 学会等名

IEEE Asian Test Symposium (ATS)(国際学会)

4.発表年

2017年

2版

1.発表者名
Shumpei Morita, Song Bian, Michihiro Shintani, Masayuki Hiromoto, and Takashi Sato
2. 25 = 4885
2.発表標題
Efficient Worst-case Timing Analysis of Critical-Path Delay under Workload-Dependent Aging Degradation
3.学会等名
IEEE/ACM Asia and South Pacific Design Automation Conference (ASP-DAC)(国際学会)
, , , , ,

1.発表者名

4 . 発表年 2018年

া . সংক্ষান Zuitoku Shin, Shumpei Morita, Song Bian, Michihiro Shintani, Masayuki Hiromoto, and Takashi Sato

2 . 発表標題

A Study on NBTI-induced Delay Degradation Considering Stress Frequency Dependence

3 . 学会等名

International Symposium on Quality Electronic Design (ISQED)(国際学会)

4 . 発表年 2018年

1. 発表者名

Michihiro Shintani, Masayuki Hiromoto, and Takashi Sato

2.発表標題

Efficient Parameter-Extraction of SPICE Compact Model through Automatic Differentiation

3. 学会等名

IEEE International Conference on Microelectronic Test Structures (ICMTS)(国際学会)

4 . 発表年 2018年

1.発表者名

Zuitoku Shin, Shumpei Morita, Song Bian, Michihiro Shintani, Masayuki Hiromoto, and Takashi Sato

2 . 発表標題

Comparative Study of Delay Degradation Caused by NBTI Considering Stress Frequency Dependence

3 . 学会等名

Workshop on Synthesis And System Integration of Mixed Information technologies (SASIMI)(国際学会)

4 . 発表年 2018年

日本学術振興会に紙媒体で提出する必要はありません。

2版

1	 	Þ

Mamoru Ishizaka, Michihiro Shintani, and Michiko Inoue

2 . 発表標題

Area-Efficient Memristor-Crossbar-Based Error Correcting Code Circuit

3. 学会等名

Workshop on Security, Reliability, Test, Privacy, Safety and Trust of Future Devices (SURREALIST)(国際学会)

4.発表年

2018年

1.発表者名

新瑞徳, 森田俊平, 新谷道広, 廣本正之, 佐藤高史

2 . 発表標題

トランジスタ劣化の永続・回復可能成分を考慮したしきい値電圧変動の時間依存モデル

3. 学会等名

回路とシステムワークショップ (於 北九州国際会議場)

4.発表年

2017年

1. 発表者名

Fakir Sharif Hossain, Tomokazu Yoneda, Michihiro Shintani, Michiko Inoue, and Alex Orailoglu

2 . 発表標題

A Golden-Free Hardware Trojan Detection Technique Considering Intra-Die Variation

3.学会等名

電子情報通信学会技術研究報告(ディペンダブルコンピューティング研究会)

4.発表年

2018年

1.発表者名

石坂守,新谷道広,井上美智子

2.発表標題

メモリスタ論理による誤り訂正符号回路の設計と評価

3 . 学会等名

電子情報通信学会技術研究報告(ディペンダブルコンピューティング研究会)

4 . 発表年

2018年

2版

1.発表者名 石坂守,新谷道広,井上美智子
2 . 発表標題 メモリスタニューラルネットワークにおける縮退故障による識別性能への影響
3.学会等名 電子情報通信学会総合大会
4 . 発表年 2018年
〔図書〕 計0件
8.研究成果による産業財産権の出願・取得状況
計0件(うち出願0件/うち取得0件)
9 . 科研費を使用して開催した国際研究集会
計0件

10.本研究に関連して実施した国際共同研究の実施状況

1 1 . 備考		
ディペンダブルシステム学研究室 http://dslab.naist.jp/ 個人ページ		
https://sites.google.com/view/shintanimichihiro/		

(5/5)