
Doctoral Dissertation

A Study on Automatic Parallelization with OpenMP
using Large Language Model

Soratouch Pornmaneerattanatri
Program of Information Science and Engineering

Graduate School of Science and Technology
Nara Institute of Science and Technology

Supervisor: Professor Hajimu Iida
Software Design and Analysis Lab. (Division of Information Science)

Submitted on September 12, 2024

A Doctoral Dissertation
submitted to Graduate School of Science and Technology,

Nara Institute of Science and Technology
in partial fulfillment of the requirements for the degree of

Engineering

Soratouch Pornmaneerattanatri

Thesis Committee:
Supervisor Hajimu Iida

(Professor, Division of Information Science)
Kazutoshi Fujikawa
(Professor, Division of Information Science)
Kohei Ichikawa
(Associate Professor, Division of Information Science)
Keichi Takahashi
(Assistant Professor, Tohoku University)
Yutaro Kashiwa
(Assistant Professor, Division of Information Science)

A Study on Automatic Parallelization with OpenMP
using Large Language Model1

Soratouch Pornmaneerattanatri

Abstract

To fully utilize multi-core processors, the development of parallel programs is needed.
However, developing parallel programs is a demanding task. Automatic parallelization
techniques have been studied to simplify this process by automatically transforming
sequential code into parallel code. Most existing automatic parallelization tools
employ static analysis, which can identify certain types of parallel structures but fail
to detect all, leading to suboptimal performance gains.

In contrast, the recent emergence of the Large Language Models (LLMs) in the
Natural Language Processing (NLP) field has led software engineering researchers
to adopt them, as LLMs have demonstrated state-of-the-art performance in various
tasks. Motivated by these advancements, this study proposes an automatic paral-
lelization tool based on LLMs. To replicate the functionality of existing automatic
parallelization tools, two models are developed. The first model classifies paralleliz-
able for-loops, while the second model generates OpenMP directives. Datasets are
gathered from two sources, Google BigQuery public datasets and GitHub public
repositories, and pre-processed to improve the quality of the OpenMP source code
and to facilitate downstream tasks by fine-tuning CodeT5/CodeT5+, one of the
Code LLM models.

The proposed models are evaluated using the NAS Parallel Benchmarks. The
classification model achieves an F1 score of 0.713. The generation model successfully
parallelizes the for-loops in 73% of cases and achieves speedup in five out of the eight
NAS Parallel Benchmarks.

Keywords:
High-performance computing, Parallel software, Automatic Parallelization tools,

1Doctoral Dissertation, Graduate School of Science and Technology, Nara Institute of Science
and Technology, September 12, 2024.

i

Large Language Model, Deep learning model

ii

Contents

1 Introduction 1
1.1 Problems in Parallel Programming 1
1.2 Motivation and Goal . 5
1.3 Outline of this Dissertation . 7

2 Background 8
2.1 Automatic Parallelization Tools 8

2.1.1 Automatic Parallelization Support by Compiler 9
2.1.2 Source-to-Source Compiler 9
2.1.3 Static Analysis Techniques 10

2.2 Large Language Models . 12
2.2.1 Self-attention Mechanism 12
2.2.2 Transformer Model . 13
2.2.3 Code LLM . 15

2.3 Related work . 16
2.3.1 Automatic Parallelization Using Static Analysis 16
2.3.2 LLM and Code LLM . 18
2.3.3 Automatic Parallelization Using LLM 19

3 Parallelizable For-loop Classification Model 21
3.1 Introduction . 21
3.2 Methodology . 22

3.2.1 Overview . 22
3.2.2 Data Collection . 22
3.2.3 Data Labeling . 24
3.2.4 Fine-tuning the CodeT5 Model 26

3.3 Evaluation Setup . 27
3.3.1 Hardware and Software . 27
3.3.2 Fine-Tuning . 27
3.3.3 Evaluation Targets . 28
3.3.4 Baseline . 29
3.3.5 Performance Metrics . 30

iii

3.4 Evaluation Results . 30
3.4.1 GitHub Projects . 31
3.4.2 NAS Parallel Benchmarks 31

3.5 Discussion . 32
3.5.1 Analysis of the Correctly Predicted Results 33
3.5.2 Analysis of the Incorrectly Predicted Results 34
3.5.3 Benefits of the Proposed Model as a Coding Companion . 36

3.6 Conclusion . 37

4 OMP-CodeT5+: An OpenMP Directive Generation Model 38
4.1 Introduction . 38
4.2 Methodology . 39

4.2.1 Overview . 39
4.2.2 Data Collection and Preprocessing Process 41
4.2.3 Model Training . 42

4.3 Hardware and Software Setup . 43
4.3.1 Model Training . 43
4.3.2 Parallelized Code Evaluation 43
4.3.3 Fine-tuning . 43
4.3.4 Evaluation Method for Automatic Parallelization Tools . . 44
4.3.5 Baseline Methods Compared with the Proposed Model . . 44

4.4 Evaluation Results . 45
4.4.1 Performance Evaluation Using Benchmarks 45
4.4.2 Evaluation of Syntax Correctness and Benchmark Verifica-

tion for Generated OpenMP Directives 47
4.4.3 The Evaluation Metrics Scores At Each Epoch 48

4.5 Discussion . 49
4.5.1 Analysis Through Speedup Categories 49
4.5.2 Analysis of the Impact of Training Dataset Characteristics 55
4.5.3 Analysis of the Generated Clauses 63
4.5.4 Failures of OMP-CodeT5+ in OpenMP Directive Generation 68
4.5.5 Nested For-loops and incorporating Contextual Information

in Training Data . 72

iv

4.5.6 Evaluation of the Practicality of OMP-CodeT5+ in Parallel
Programming . 72

4.6 Conclusion . 74

5 Automatic Parallelization Tool based on LLM 75
5.1 The Expected Results of Automatic Parallelization Tool based on

LLM . 75
5.2 Advantages of using the Proposed LLM-based Automatic Paral-

lelization Tool . 78
5.3 Target Users . 78

6 Conclusion and Future Work 79

Acknowledgements 81

Reference 83

List of Publications 89

v

List of Figures

1 Single-threaded Program Execution on a Multi-core Processor . . 2
2 Parallel Program Execution using OpenMP on a Multi-core Processor 3
3 The Overview of the Proposed Automatic Parallelization using LLM 5
4 Functions of Automatic Parallelization Tools 8
5 Scaled Dot-product Attention and Multi-head Attention Mechanism 13
6 Transformer Architecture . 14
7 German to English Language Translation Task Performed by T5

Model . 15
8 Python to C Programming Translation Task performed by CodeT5

Model . 16
9 The Overview of the Parallelizable For-loop Classification Model . 23
10 Locating For-loop and OpenMP Directive and Extracting Data . . 25
11 (a) Parallelizable code snippets are labeled as “1” (b) Non-paralleliz-

able code snippets are labeled as “0” 28
12 Overview of OMP-CodeT5+ model Processes 40
13 Overview of OMP-CodeT5+ model Processes 41
14 Testing OpenMP For-loop Found In Microsoft/clang Repository,

File: test/OpenMP/target_teams_distribute_parallel_for_simd-
_ast_print.cpp Line: 113-115 . 41

15 Speedup Over the Original Serial NPB Runtimes Using Various
Automatic Parallelization Tools and Manual Parallelization 46

16 The Exact Match and ROUGE Scores with Split Training Data At
Each Epoch . 48

17 Overall Pass Generated OpenMP Directives in Each Size of For-loop 57
18 Training Data Ratio divided by Tokens 60
19 Number of Clauses in Training Data 61
20 Number of Clauses in Generated Directives 62
21 Number of Passed and Failed Clauses in Generated Directives . . 63
22 Ratio of Schedule Kind in Training Data 64
23 Parallelization Success and Failure Rates in Parallel NPB For-loops

by Parallelizable For-loops Classification Model and OMP-CodeT5+
Model . 76

vi

List of Tables

1 GitHub Project Evaluation Results 31
2 NPB Benchmark Evaluation Results 31
3 Evaluation of Syntax Correctness and Benchmark Verification for

Generated OpenMP Directives . 47
4 Number of Passed and Failed Generated OpenMP Directives in

Each For-loop Size Category . 56
5 Detailed Results of Parallelization in Parallel NPB For-loops: Iden-

tification and Generation Success Rates 76

vii

1 Introduction

1.1 Problems in Parallel Programming

In the early stages of computer architecture, single-core processors were predomi-
nant. Single-threaded programs sufficed to leverage the computing performance of
these processors. However, the performance enhancement of single-core processors
is inherently constrained by physical limitations, primarily the heat dissipation
associated with the increase in clock frequency. To mitigate this, processor man-
ufacturers opted to increase the number of cores while employing lower clock
frequencies to maintain acceptable thermal conditions. This innovation led to the
emergence of multi-core architecture, which combines the computational power of
several cores operating at reduced clock frequencies.

The advent of multi-core architecture, which enables users to run more than
one single-threaded program simultaneously, has led to a decline in the computing
and energy efficiency of individual single-threaded programs. As shown in Fig. 1,
a single-threaded program executes on only one of the cores in a multi-core
processor. Furthermore, rapid advancements in computer hardware, characterized
by increasing core counts per processor, worsen the decline in single-threaded
program efficiency at an accelerated pace.

While the multi-core architecture supports the concurrent execution of multiple
single-threaded programs, this form of concurrency does not involve executing
single instructions across cores, thereby limiting the computational efficiency
of individual programs. In contrast, parallel programs that distribute a single
instruction across multiple cores can fully exploit multi-core architecture to enhance
program efficiency. As shown in Fig. 2, parallel programs operate by splitting
a task into sub-tasks that can be executed simultaneously by multiple cores in
a multi-core processor. Each core handles a portion of the task concurrently
with others, thus reducing the overall processing time. These sub-tasks are then
allocated to different cores for execution. Once all sub-tasks are completed,
their results are aggregated to produce the final output. This method leverages
the computational capabilities of multi-threaded programs to perform complex
calculations more efficiently than single-threaded programs.

However, developing a parallel program is a challenging task [1–4]. There are

1

Core_0 Core_1 Core_2 Core_3

T 1T 0 T 2 T 3

Core_0 Core_1 Core_2 Core_3

T 1

T 2

T 3

T 0

Figure 1: Single-threaded Program Execution on a Multi-core Processor

various implementations of parallel pattern, and each pattern is effective in specific
situations. If the developer does not correctly understand the implementation of
the parallel program and fails to incorporate parallel algorithms and hardware, the
performance of the parallel program will suffer. To develop a performant parallel
program, developers must understand both software and hardware. The process
of mastering parallel programming presents a steep learning curve. Developers
require significant time to become specialists in parallel programming. Even
experienced parallel developers need time to design and develop the program
according to the requirements and targets of the programs.

Multiple supports for parallel programming [5, 6] exist, either provided by the
compiler itself or through additional libraries. Open Multi-Processing (OpenMP)
[7] is offering by C/C++ and Fortran compilers. OpenMP is an Application
Programming Interface (API) for C/C++ and Fortran languages that utilizes
shared-memory programming patterns to transform single-threaded programs into
parallel programs. Developers can enable OpenMP during the compiling process
to parallelize the source code. The compiler then processes the source code and
parallelizes sections containing OpenMP directives specified by the developers.

Another form of parallel programming support is the Message Passing Interface

2

Core_0 Core_1 Core_2 Core_3

T 1T 0 T 2 T 3

Core_0 Core_1 Core_2 Core_3

T 1

T 2

T 3

T 0

Figure 2: Parallel Program Execution using OpenMP on a Multi-core Processor

(MPI) [8], a message-passing API with a communication protocol and semantic
specification for developing parallel programs that run across computer clusters or
distributed memory systems. Developers must implement parallel sections of the
source code using MPI semantics and compile them with the MPI compiler. As
is common with open-source software, there are multiple MPI implementations.
However, the MPI forum releases standards that all MPI implementations must
follow. This allows developers to compile and run distributed memory parallel
programs with any MPI implementation.

To tackle the complexity of parallel programming, many researchers and
developers created automatic parallelization tools that automatically convert single-
threaded programs into parallel programs. These tools shorten the development
time and help inexperienced developers in parallel programming. Automatic
parallelization tools function primarily by analyzing the input source code to
identify parallelizable sections. Once these sections are identified, the analyzer
generates and inserts the parallel code into the source code automatically. Both
the analyzer and generator of automatic parallelization tools employ static analysis
techniques.

3

Automatic parallelization tools based on static analysis techniques have shown
limitations in improving performance for various for-loop patterns [9]. While
some static analysis techniques can parallelize specific patterns effectively, others
can handle different patterns but not all. Developing static analysis techniques
that can parallelize every for-loop pattern requires updating the mechanisms to
recognize other for-loop patterns that are not yet recognized. Nevertheless, each
static analysis technique already contains complex logic for analyzing for-loop
patterns. Updating this logic is a complicated task, leading to tools that are
challenging to develop and maintain.

A recent breakthrough that has propelled the Natural Language Processing
(NLP) field forward is the introduction of the transformer model, which is based on
an attention mechanism. Transformer-based models have outperformed average
humans in NLP tasks for the first time. The transformer model utilizes the
two-stage training: pre-training for language understanding and fine-tuning for
downstream tasks. In the pre-training phase, the model is trained with unlabeled
data, utilizing the data itself as the label. This requires a large amount of data,
thus it is named a Large Language Model (LLM). The fine-tuning phase then
trains the model with traditional labeled data to address specific downstream
tasks.

Following the success of transformer-based models, researchers in various
fields have adopted the transformer model, utilizing domain-specific data to
create downstream tasks. The software engineering field also employs the trans-
former model, training it with computer source code in multiple languages. The
CodeT5/CodeT5+ models, based on the T5 model, have demonstrated superior
performance in tasks such as code summarization, code generation, and code
translation compared to previous studies.

The primary challenge in developing a deep learning model for new tasks
is the availability of training data. Currently, there is no existing distributed
dataset for developing a deep learning model that addresses parallel programming,
parallelizable for-loop classification, and OpenMP directive generation. Therefore,
in this study, the dataset was constructed from scratch, involving data gathering
and preprocessing for model development. Concurrently with the development of
the models, the dataset was continuously enhanced in both quantity and quality,

4

Unparallelizable

OpenMP
Directive

For-loop Parallel
For-loop

Classification
Model

OMP-CodeT5+

Parallelizable

No
output

Figure 3: The Overview of the Proposed Automatic Parallelization using LLM

becoming the training data.
In the data preprocessing step, the training and output data needed to be

designed for input into the model and to produce results. To create the training
and output data for tasks related to parallel programming, the sequence of code
fed into the model had to be defined to avoid training on unnecessary data. This
newly created training data will impact the performance of the models that classify
parallelizable for-loops and generate OpenMP directives.

Lastly, the evaluation of the Code LLM related to parallel programming
tasks lacks standardized and widely accepted metrics. In this study, the model
was assessed using the most relevant metrics corresponding to the generated
tasks. Furthermore, the evaluation of the OpenMP directive generation model
was performed by executing a traditional benchmark, thereby demonstrating the
effectiveness of the generated OpenMP directives.

The significant contribution of this study is the development of an automatic
parallelization tool utilizing LLM trained with the newly created OpenMP par-
allel source code dataset. This tool comprises two models: one that classifies
parallelizable for-loops and another that generates OpenMP directives.

1.2 Motivation and Goal

This research aims to develop a novel method that leverages the language un-
derstanding and generation capabilities of LLMs to identify sections of source

5

code that can be parallelized and to generate the corresponding parallelized
code. Specifically, this research focuses on generating OpenMP directives for
parallelizable sections. OpenMP provides a general and widely-accepted method
for expressing how parallelizable sections should be parallelized. Many existing
automatic parallelization tools, based on static analysis, also target the automatic
generation of OpenMP directives, and compiler-based automatic parallelization
often internally uses OpenMP. By focusing on OpenMP, this research aligns with
the established standards and practices in the field, ensuring compatibility and
leveraging the existing ecosystem of parallelization tools and methodologies.

Traditional automatic parallelization tools and compiler-based approaches,
which rely on static analysis, often fall short in capturing the diverse patterns
present in source code that can be parallelized. These tools have limitations in
their ability to generalize across various coding styles and complex code structures.
In contrast, the proposed approach using LLMs can automatically learn from a
vast dataset of source code, enabling the model to capture a broader range of
parallelization patterns that static analysis might miss. By leveraging the advanced
language capabilities of LLMs, this method aims to improve the accuracy and
effectiveness of automatic parallelization, addressing the limitations of traditional
tools.

The overview of the methodology for this study is illustrated in Fig. 3.
In this study, one of the encoder-decoder architecture-based Code LLMs, the
CodeT5/CodeT5+ model, is fine-tuned to identify parallelizable loops and gener-
ate corresponding OpenMP directives. To replicate and enhance the capabilities
of existing automatic parallelization tools, two models will be developed. First,
a classification model will be designed to identify parallelizable for-loops using
the encoder function of the CodeT5 model. This model will determine whether a
given code snippet containing a for-loop is suitable for parallelization. Second,
an OpenMP directive generation model, referred to as OMP-CodeT5+, will be
developed. This model will utilize both the encoder and decoder functions of the
CodeT5+ model. The encoder will analyze the structure of the given source code
snippet, while the decoder will generate the appropriate OpenMP directives based
on this analysis.

6

1.3 Outline of this Dissertation

The outline of this dissertation is as follows. Chapter 2 focuses on automatic paral-
lelization tools, exploring their functionalities, including automatic parallelization
by compilers and source-to-source compilers. This chapter also discusses static
analysis techniques as crucial methods for automatic parallelization. Additionally,
it covers Large Language Models, explaining the self-attention mechanism and
transformer models, with a particular emphasis on Code LLMs. The chapter wraps
up with an examination of related work in the field, automatic parallelization
utilizing static analysis techniques and LLM, LLMs and Code LLMs.

Chapter 3 introduces the Parallelizable For-loop Classification Model, starting
with an overview and detailed methodology. This includes data collection, labeling,
and fine-tuning of the CodeT5 model. The chapter then outlines the evaluation
setup, describing the hardware and software used, the fine-tuning process, evalu-
ation benchmarks, baseline methods, and performance metrics. The evaluation
results are presented next, analyzing the model’s performance on public GitHub
repositories and NAS parallel benchmarks. This is followed by a comprehensive
discussion, which includes an analysis of correct and mispredicted classifications.

Chapter 4 begins with an introduction to the model and its methodology,
covering data collection, preprocessing, and model training. The chapter details
the hardware and software Setup used for model training and evaluation, and
the benchmarks and baseline methods employed. Evaluation results are then
presented, showing the source code performance and the success rates of OpenMP
directives generated. The chapter’s Discussion analyzes the speedup achieved in
NAS parallel benchmarks.

Chapter 5 summarizes the research findings in this dissertation and proposes
directions for future research to enhance the automatic parallelization tools.

7

2 Background

2.1 Automatic Parallelization Tools

Automatic parallelization tools serve as aids in parallel programming, converting
single-threaded programs into parallel programs automatically. As shown in Fig. 4,
these tools function primarily by analyzing the input source code to identify
parallelizable sections. Once these sections are identified, the analyzer generates
and inserts the parallel code into the source code automatically, thereby reducing
the workload and complexity of parallel program development for developers.

Usually, automatic parallelization tools employ static analysis techniques that
examine the source code. These techniques identify loops that can be parallelized.
By performing this analysis, the tool determines how to transform single-threaded
code into parallel code, optimizing it for multi-core processors. The static analysis
process includes verifying the code’s syntax, data flow, and control structures to
ensure that the parallelization will not introduce errors or unexpected behaviors.
Upon completing the analysis, the tool generates the necessary parallel code and
integrates it into the input source code. This aids developers in optimizing their
programs for parallel execution without manually inserting the parallel annotation.

There are two primary approaches to using automatic parallelization tools:
automatic parallelization support by the compiler and source-to-source compilers.
The automatic parallelization supported by the compiler parallelizes the source
code during compile time, generating the parallel program execution file from the
single-threaded source code. Source-to-source compilers offer various functions,
such as translating source code from one programming language to another, code

Static Analysis:
Generator

Static Analysis:
Analyzer

Parallelizable loops

Parallel Source
Code

Single-thread
Source Code

Automatic Parallelization Tool

Figure 4: Functions of Automatic Parallelization Tools

8

refactoring, and automatic parallelization. These tools read the input source code,
identify parallelizable sections, generate parallelized source code, and annotate
the parallelized code back into the input source code.

2.1.1 Automatic Parallelization Support by Compiler

Several compilers, including the Intel compiler or oneAPI, GNU C/C++ compiler,
and PGI compiler, support automatic parallelization through OpenMP. During
the compilation process, this feature meticulously analyzes the source code to
identify segments suitable for parallel execution. The compiler subsequently
generates parallel code, capable of executing on multiple processors or cores,
thereby augmenting the program’s performance.

A key technique in automatic parallelization is loop parallelization. The
compiler examines loops within the code to determine the feasibility of concurrent
iteration execution. For instance, the Intel compiler uses dataflow analysis [10,
11] to identify parallelizable code and employs a cost model to determine and
parallelize the source code based on potential performance gains. Upon identifying
a parallelizable loop, the compiler inserts suitable parallel constructs, such as
OpenMP directives, into the code, which subsequently guide the parallel execution
during runtime.

However, the efficacy of this support is dependent upon the proficiency of the
compiler in accurately analyzing and transforming the code. Leading-edge compil-
ers, such as the Intel compiler and GNU compiler, exhibit advanced capabilities in
automatic parallelization, employing techniques like dataflow analysis which are
static analysis techniques. Despite these advancements, inherent limitations per-
sist, as some code sections may not be helpful to parallelization, potentially leading
to negligible performance improvements or, in some instances, even performance
degradation.

2.1.2 Source-to-Source Compiler

Unlike traditional compilers like the Intel compiler or the GNU compiler that
convert source code directly into machine code, source-to-source compilers translate
source code from one high-level language to another while still maintaining the
high-level structure and semantics of the code. This characteristic makes them

9

particularly useful for tasks such as code optimization, language migration, and
adding new features to old codebases. For instance, a source-to-source compiler can
translate code from an older language like Fortran into a more modern language
like C++, making it easier to maintain and improve.

Automatic parallelization by a source-to-source compiler involves transforming
existing source code into an optimized version that can execute in parallel on
multiple processors or cores. During this process, the source-to-source compiler
first parses the input source code to construct an intermediate representation,
commonly in the form of an Abstract Syntax Tree (AST). The AST represents
the syntactic structure of the source code in a tree format, where each node
corresponds to a construct in the source code and provides information about
the syntax, variable types, and code location. Utilizing this information, the
compiler performs an in-depth analysis to identify potential parallelizable loops
that can be executed in parallel. Following the analysis, the source-to-source
compiler generates an optimized version of the source code, incorporating parallel
constructs, such as OpenMP directives, to the potential parallelizable code loops
indicated by the analyzer. The modified source code is then compiled using a
traditional compiler to create an executable program that benefits from parallel
processing.

Similar to automatic parallelization support provided by compilers, source-to-
source compilers utilize static analysis techniques to analyze and generate parallel
source code. Source-to-source compilers often employ more sophisticated analyses,
resulting in higher performance outputs of the parallelized source code. Many
of these compilers use multiple static analysis techniques, for instance, AutoPar-
Clava utilizes dependence analysis [12] to analyze and generate the parallel source
code, to effectively analyze and generate parallelized source code. Nonetheless, the
performance output of parallelized source code from source-to-source compilers
can sometimes experience performance degradation, though generally to a lesser
extent compared to automatic parallelization support by compilers.

2.1.3 Static Analysis Techniques

Both types of automatic parallelization tools employ static analysis techniques
to examine the source code without executing it to understand its behavior and

10

identify sections that can be parallelized. These techniques inspect the code to
identify potential parallelizable loops and ensure the correctness of parallelized
code. There are multiple techniques have been developed, for example, dataflow
analysis, dependence analysis, alias analysis, etc. Upon completing the analysis,
the tool generates the necessary parallel code for the potential parallelizable loops.

Dataflow analysis [13] is a technique that examines the flow of data within
a program, identifying how data is generated, modified, and utilized. Dataflow
analysis helps identify dependencies between different parts of the code, ensuring
that parallel tasks do not interfere with each other by accessing or modifying the
same data simultaneously. By understanding data dependencies, the compiler can
safely parallelize code segments that can execute in parallel.

The static analysis techniques that are commonly deployed with automatic par-
allelization by source-to-source compilers like dependence analysis, alias analysis,
and symbolic analysis will be explained as follows.

Dependence Analysis [14] is used to determine the dependencies within loops,
checking for data, control, and resource dependencies to identify whether a loop
can be safely parallelized. This analysis can distinguish between true dependencies,
one task depending on the result of another task, and false dependencies, it can be
executed in parallel but needs to avoid the executing dependent part in parallel.

Alias Analysis [15] evaluates how different pointers or references in the code
may point to the same memory location. In parallel programs, it is essential to
know whether different parallel tasks are going to modify the same variable or
memory location or not. Alias analysis helps identify such potential conflicts and
ensures that parallel tasks work on different memory locations.

Symbolic Analysis [16] involves evaluating symbolic expressions within the
code to understand the relationship between different variables. This analysis
helps determine loop bounds, array accesses, and conditions for safe parallel
execution. With this information, the source-to-source compiler can identify the
safe potential parallelizable loops.

The automatic parallelization tools using static analysis techniques can effec-
tively transform single-threaded programs into parallel programs. These tools
ensure that the parallel source code is efficient and correct, free from errors and
bugs resulting from the parallelization process. However, the assurance depends

11

on the logic incorporated in the analysis. When the analysis encounters code
that falls outside the scope of the implemented logic, the parallelizing output may
produce errors or lead to performance degradation.

2.2 Large Language Models

Natural Language Processing (NLP) is a field dedicated to processing human
languages using rule-based, statistical, and more recently, deep learning methods.
These NLP algorithms are employed in the language model that is designed to
comprehend, interpret, and generate human languages utilizing the datasets to
analyze and predict linguistic patterns. The notable examples of the NLP tasks
are language understanding, question and answering, and text classification.

The advancement of machine learning has enabled the development of deep
learning techniques. NLP researchers have employed these techniques to address
NLP tasks. The Recurrent Neural Network (RNN) [17] was once the preferred
choice for solving NLP tasks, due to its short training time. However, its limitation
lies in its bias towards data exposed to later during training. The introduction of
the LLM has not only outperformed the RNN but also, for the first time, exceeded
the average human score in various NLP tasks.

2.2.1 Self-attention Mechanism

Self-attention mechanism [18] allows for the assessment of the relative importance
of words within a sentence. This enables the model to capture long-range depen-
dencies and contextual information more effectively than traditional recurrent
neural networks. As shown in Fig. 5, it operates by generating three vectors for
each word in a sentence, query, key, and value. These three vectors are obtained
through linear transformations of the word’s embedding and used to calculate a
weighted. The query vector of a given word is compared with the key vectors of
all words in the sentence to calculate attention scores. These scores indicate the
relation score of the query word with every word in the sentence. Subsequently,
the attention scores are used to compute a weighted sum of the value vectors that
represent the information of each word from the entire sentence.

The self-attention mechanism effectively understands context in long sentences
and reduces the computational complexity of processing sequential data. The

12

Concat

Linear LinearLinear

Scaled Dot-product Attention

V K Q

Linear

Scaled Dot-product Attention

MatMul

SoftMax

Mask (opt.)

Scale

MatMul

Q K V
Multi-head Attention

Figure 5: Scaled Dot-product Attention and Multi-head Attention Mechanism

ability to focus on significant parts of the input sequence while ignoring the less
significant parts makes the self-attention mechanism powerful.

2.2.2 Transformer Model

A recent breakthrough that has propelled the NLP field forward is the introduction
of the transformer model [18], which is based on a self-attention mechanism.
The transformer model is an encoder-decoder architecture that utilizes a new
mechanism called multi-head that relies entirely on the attention mechanism
as shown in Fig. 6. The multi-head attention independently operates, focusing
on different positions of the input sequences, allowing the multi-head attention
mechanism to execute in parallel. The output from each calculation is concatenated
to produce the final output. The multi-head mechanism effectively comprehends
the complex patterns and relationships within the sentence.

The encoder and decoder architecture divide the responsibility between these
two, the encoder calculates the series of weights or representations between words,
and the decoder generates the output sequence from the encoder representations.

13

Inputs Outputs
(shifted right)

Softmax

Input
Embedding

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Positional
Encoding

Input
Embedding

Masked
Multi-Head
Attention

Add & Norm

Positional
Encoding

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Linear

Output
Probabilities

Nx

Nx

Figure 6: Transformer Architecture

14

 translate German to English:

 Das ist gut.

Input prompt

That is good

T5

Figure 7: German to English Language Translation Task Performed by T5 Model

The encoder utilizes the multi-head mechanism that allows the model to focus
on relevant parts of the input sequence, capturing dependencies between words
irrespective of their positions in the sequence. The decoder also utilizes the
multi-head mechanism like the encoder, producing the output sequence based on
the entire context of the input and previously generated words.

Further development of the transformer model, known as the Bidirectional En-
coder Representations from Transformers (BERT) [19] model, has utilize two-stage
training: pre-training for language understanding and fine-tuning for developing
downstream tasks. During the pre-training phase, the model is trained with
unlabeled data, treating the training data as labeled data. The volume of data
required for this phase is substantial, hence it is named the Large Language Model.
In the subsequent phase, the model’s final layer is fine-tuned using traditional
labeled data to generate answers for the intended downstream task. Numerous
studies have adopted this two-stage training approach, including the Text-To-Text
Transfer Transformer (T5) [20] model and the Generative Pre-trained Transformer
(GPT) [21] model. These models have consistently demonstrated state-of-the-art
performance across various downstream tasks, for example, Fig. 7 shows one of
the T5 downstream tasks, language translation from German to English.

2.2.3 Code LLM

The success of the transformer-based model has inspired researchers from various
fields to adapt transformer models and train them with domain-specific data, such
as image processing, audio processing, and software engineering. Instead of training
transformer models with human languages, software engineering researchers train
them with programming languages and replace vocabulary with syntax lists. The
performance of these models is comparable to their counterparts, LLMs, and they

15

 translate Python to C:

 if x==0: x += 1

Input prompt

if(x==0) {x += 1;}

CodeT5

Figure 8: Python to C Programming Translation Task performed by CodeT5
Model

surpass previous studies in software engineering tasks.
Researchers from Google Brain trained BERT with the Python language

without altering the BERT architecture, calling it Code Understanding BERT
(CuBERT) [22]. The five examples demonstrated by CuBERT outperform previous
studies. Another model developed by Salesforce is CodeT5 [23]. This model is
based on the T5 model, pre-trained with various programming languages and code
comments. Since the model is unaltered, it retains the ability to comprehend both
human and programming languages. The downstream tasks that the CodeT5
model can perform include Natural Language (NL) to Programming Language
(PL) tasks, PL to NL tasks, and PL to PL tasks, such as code generation from code
comments, generating code comments from code, and code translation as shown
in Fig. 8. These downstream tasks outperform previous studies, as indicated by
multiple benchmarks.

2.3 Related work

2.3.1 Automatic Parallelization Using Static Analysis

Each automatic parallelization tool has distinct capabilities and functionalities
that are explained in the following.

Automatic parallelization with Intel Compilers [10, 11] is a feature that
transform single-threaded source code into parallel source code. This is the most
simplest automatic parallelization tool, the parallel program will be create from
single-threaded source code without need to modify the original source code. The
developers need to enable the automatic parallelization function with the compiler
flags, “-parallel” in Linux, at the compile time. The compiler will read the input
single-threaded source code, perform the dataflow analysis to identify the safe

16

parallelizable loops and deploy the cost model to determine which loops will be
parallelize based on potential performance gains, partitions the data for threaded
code generation as needed in programming with OpenMP directives, and create
the parallel program binary that incorporate the input single-threaded source
code with generated OpenMP directives. Automatic parallelization with Intel
compiler can run on multiple operating system that Intel provide the compiler,
Linux, MacOS, and Windows.

Cetus [24, 25] is the source-to-source compiler infrastructure to transform the
C source code, one of the Cetus function is automatic parallelization. This tools
is written in Java, can run with any machine that have JVM supported. Cetus
deploy privatization, reduction, and alias analysis to identify and parallelize the
potential parallelizable loops.

Rose [26,27] is the source-to-source compiler to transform the C/C++ language.
The static analysis techniques deploy by ROSE is dependence analysis that utilizes
a Gaussian elimination algorithm to determine parallelized loops by solving a set
of linear integer equations of loop induction variables to access arrays in the loops.

DawnCC [28] is the source-to-source compiler only for automatic paralleliza-
tion that support C/C++ languages. The distinguish of DawnCC from other
automatic parallelization is it support various parallel programming support,
OpenMP, OpenCL, and CUDA. DawnCC deploy the symbolic range analysis to
determine parallelizable source code and transform it into parallelized source code.

Clava [9,29] is the recent source-to-source compiler that had multiple functions
written in Java, allow it to run in any machine that support by JVM. To run
any functions of Clava, user need to develop a configuration file contain query
statements for select part of the input source code and feed it to the Clava
function for analysis and transform. One of Clava function name AutoPar is the
automatic parallelization function to parallelize the source code deployed with
three algorithm consist of multiple static analysis techniques. The first and second
algorithm utilize scaler privatization analysis and array privatization analysis and
if the first two algorithm could not determine the query code. The third algorithm
will be apply with scalar and array reduction analysis. After the finish analyzing,
AutoPar-Clava generate the OpenMP directives utilize the dataflow analysis and
dependence analysis and insert the OpenMP directives at the locate parallelizable

17

loops.

2.3.2 LLM and Code LLM

BERT [19] or Bidirectional Encoder Representations from Transformer is one of
the further development of transformer model. This model introduce additional
tasks to pre-training phase, Masked Language Model (MLM) and Next Sentence
Prediction (NSP). MLM involves randomly masking a portion of input tokens and
training the model to predict these masked tokens using contextual clues. This
task facilitates the model’s to understand word relationships within a sentense.
In NSP, the model is given pairs of sentences and trained to predict whether
the second sentence follows the first. This task allows the model to understand
sentence-level relationships. In the fine-tuning phase, BERT can be fine-tuned for
specific tasks by adding a simple output layer on top of the pre-training model
because BERT is a encoder-only model, making it highly versatile for various NLP
applications such as question answering, sentiment analysis, and named entity
recognition.

T5 [20] or Text-To-Text Transfer Transformer is one of the further development
of transformer model. This model try to simplify tasks by framing all as text-to-
text problems with encoder-decoder architecture. This model try to increase the
downstream tasks, like summaization, question answering, and text classification
using a single, unified model and training procedure.

CuBERT [22] or Computer Understand BERT is the un-altering BERT
architecture trained with computer languages, specifically designed to understand
and process programming languages by treating code as a sequence of tokens
analogous to natural language. The principal aim of CuBERT is to enhance the
performance of various software engineering tasks by leveraging the strengths of the
BERT model, effectively capture the syntactic and semantic information intrinsic
to programming languages. Like BERT, CuBERT also has two-stages training,
pre-training, and fine-tuning. In the pre-train phase, CuBERT is pre-trained on
an extensive corpus of Python code, enables CuBERT to develop a comprehensive
understanding of Python’s structure and patterns. In the fine-tuning phase, the
pre-trained model is adapted to specific software engineering tasks using labeled
datasets, code completion, bug detection, code summarization, code classification,

18

and code translation. CuBERT’s efficacy has been validated through various
benchmarks and evaluations, demonstrating significant improvements over previous
models.

CodeT5 [23] is based on un-altering T5 architecture trained with various
computer languages. Like CuBERT, it treat code as a sequence of tokens compa-
rable to natural language. CodeT5 that inherit the fundamental from T5 model
approach code-related tasks as text-to-text problems, NL-to-PL, PL-to-NL, and
PL-to-PL. In the pre-traine phase, CodeT5 train on an extensive corpus of diverse
programming languages and their associated comments. In the fine-tune phase,
CodeT5 adapt the pre-trained model to specific tasks using labeled datasets, such
as, code summarization, code generation, and code translation. CodeT5’s perfor-
mance has been evaluated with various code-related tasks. This demonstrates its
effectiveness in understanding and generating code.

CodeT5+ [30] is an advancement of CodeT5 by integrating advanced metho-
dologies and employing a more extensive and varied corpus of programming
languages and code-related data. A distinguishing feature of CodeT5+ is its
have multiple modes, encoder-decoder, encoder-only, decoder-only. Each mode
capability is suit for different downstream tasks. Encoder-only suit for tasks
relate to retrival and detection. Decoder-only suit for tasks relate to code genera-
tion. Encoder-decoder is suit for tasks relate to code summarization. CodeT5+
performance demonstrates its effectiveness in each type of tasks that suit their
mode.

2.3.3 Automatic Parallelization Using LLM

The HPC community has started to explore the feasibility of utilizing Code LLMs
for automatic parallelization. OMPGPT [31] uses Code LLM for generating
OpenMP directives for a given code snippet. OMPGPT is based on the GPT-Neo
2.7B model downsized to 0.76B parameters and trained using the HPCorpus
dataset2. They proposed Chain-of-OMP, based on the Chain-of-thought [32],
a step-by-step approach to help generate OpenMP directives more accurately
by prompt the model to generate the OpenMP directives three times. First,
generating the directive prefix that is “#pragma omp”. Second, generating the

2https://github.com/Scientific-Computing-Lab-NRCN/HPCorpus

19

main directives and clauses. Last, generating the control structure of the OpenMP
directives. They evaluated the model by generating the OpenMP directives and
compared it with the split HPCorpus dataset by using the F1 score and accuracy.
The baseline model they compared with is GPT-3.5. The result of OMPGPT has
generated the OpenMP directives more accurately than the GPT-3.5.

HPC-Coder [33] is another approach to generate source codes parallelized with
OpenMP. The authors gathered source codes from public GitHub repositories and
fine-tuned three models, which are GPT-2 1.5B, GPT-Neo 2.7B, and PolyCoder
2.7B, and compared them with the PolyCoder model without further fine-tuning
with the gathered dataset. The model is supplied with the name, arguments, and
comment of a function and generates the function body parallelized with OpenMP.
The results showed that the fine-tuned PolyCoder achieves the highest accuracy.

While the above approaches leverage GPT-based models, which are decoder-
only architectures, the proposed method is built upon the T5 model, an encoder-
decoder architecture. The encoder-decoder framework of T5 allows for a more
comprehensive understanding of the input code such as the context and semantics
of the code, enhancing the model’s ability to generate accurate and effective
OpenMP directives. Consequently, the proposed approach is expected to yield
more reliable and contextually appropriate OpenMP directives.

20

3 Parallelizable For-loop Classification Model

3.1 Introduction

One of the critical steps in the parallelization process is conducting a loop depen-
dence analysis. This analysis is essential because loops with dependencies cannot
be parallelized without specific considerations or modifications. Loop dependencies
occur when tasks within a loop rely on the results of other tasks, necessitating that
these tasks wait for one another, thereby obstructing the possibility of concurrent
execution.

The degree to which a program can achieve speedup through parallelization
heavily depends on the number of parallelizable loops identified in the source
code. If all potential loops are parallelized, the program can significantly benefit
from increased execution speed. Conversely, if parallelizable loops are overlooked,
the program may not achieve the desired speedup, undermining the benefits of
parallelization efforts. Hence, the identification of potential parallelizable loops is
a crucial determinant in realizing the full advantage of parallel programming.

In practice, the expertise required to identify parallelizable loops is not always
present within development teams. This gap can be addressed by automatic
parallelization tools designed to assist in the identification and transformation
of serial loops into parallel constructs. However, the effectiveness of these tools
is often limited by the capabilities of the underlying static analysis techniques.
These techniques may not always produce optimal results, and in some cases,
parallelized code may perform worse than its single-threaded version due to various
inefficiencies.

To address these challenges, this study introduces an automatic parallelization
tool enhanced by a code LLM specifically fine-tuned with an OpenMP source code
dataset. This tool aims to classify whether a given for-loop can be parallelized or
not. The base model employed in this study is CodeT5, a transformer-based LLM
pre-trained with various programming languages code including C language. By
leveraging the classification capabilities of this model, developers can more accu-
rately and efficiently transform single-threaded programs into parallel programs,
thereby optimizing performance and reducing development time.

This chapter details the development and implementation of this approach,

21

providing a comprehensive analysis of its effectiveness in identifying parallelizable
loops. The rest of the chapter is organized as follows. Section 3.2 explains the data
collection and labeling, and fine-tuning workflow of the CodeT5 model. Section
3.3 provides the evaluation setup and dataset. Section 3.4 presents the evaluation
results. Section 3.5 discusses the advantages and disadvantages of using our
approach, and Section 3.6 concludes this chapter and discusses future work.

3.2 Methodology

3.2.1 Overview

This section describes the processes involved in developing the parallelizable
for-loop classification model. Fig. 9 illustrates the steps of this study. Initially,
C/C++ source files containing OpenMP directives are gathered from public
GitHub repositories. For-loops are then extracted from these collected source files
and labeled based on the presence or absence of OpenMP directives. Finally, the
labeled for-loops are used to fine-tune a pre-trained CodeT5 model to classify
whether a given for-loop can be parallelized or not.

3.2.2 Data Collection

To the best of current knowledge, there is no open dataset specifically dedicated
to building models capable of predicting parallelizable for-loops (i.e., a collection
of labeled for-loops). An extensive data collection process was implemented using
the GitHub code search API, focusing on files that utilize OpenMP directives.
This section details the data collection methodology.

The GitHub API code search function, while offering a wealth of data, does not
support searching for codes with certain keywords in combination with complex
search queries, such as creation date, size, or number of stars. Furthermore, the
output limit is restricted to 1,000 results, making direct extraction of source
files containing OpenMP directives challenging. Therefore, data collection was
conducted in the following steps: 1) collect C/C++ repositories, 2) identify
repositories containing OpenMP directives, and 3) extract files containing OpenMP
directives.

The first step was to identify suitable C/C++ repositories. Using the GitHub

22

Search repositories
(OpenMP usage)

using Code Search

Create AST

Traverse AST, locate and
labeling data

Fine-Tuning
CodeT5

Preprocessing
Data

Download repositories

Crawl C/C++
repositories name

Data
Collection

Figure 9: The Overview of the Parallelizable For-loop Classification Model

23

API, all C/C++ repositories on GitHub were searched, avoiding the output limit
constraint. To ensure a certain level of code quality [34], repositories with 10
or fewer stars were excluded. After securing this subset of repositories, another
search was performed to identify repositories showing traces of OpenMP usage
by searching for the keyword “#pragma omp” with the GitHub API code search.
This process resulted in identifying 2,249 C and 6,836 C++ repositories that
use OpenMP. All of these repositories were subsequently downloaded for further
analysis.

Within the downloaded repositories, the next step was to extract the files
relevant to the research. Files containing the string “#pragma omp” were searched,
as they indicate OpenMP utilization. The reason for focusing only on these files
is twofold: 1) They represent code written by developers familiar with OpenMP,
hence ensuring a level of quality in parallelization. 2) While non-parallelizable
for-loops could technically be gathered from files without the “#pragma omp”
keyword, these files might have been written by developers not well-acquainted
with OpenMP and may have quality issues. For example, they might contain
many loops that should have been parallelized but were not. For these reasons, the
focus was only on files where OpenMP was used. After filtering, approximately
140,000 files were collected.

3.2.3 Data Labeling

The process of extracting for-loops from the collected files and categorizing them
into two classes: parallel or serial for-loops, involves several steps. These steps
are outlined depicted in Fig. 10. First, the Abstract Syntax Tree (AST) of the
source code is generated using Clang, a compiler front end for the C, C++,
and Objective-C programming languages. Clang provides tools for source code
analysis, making it suitable for generating ASTs. This AST provides a detailed
syntactic structure and location information for each code element for identifying
and analyzing the for-loops and their associated OpenMP directives within the
source code.

Traversing the AST, nodes representing for-loops and OpenMP directives are
located. Specifically, for-loops are identified by ForStmt nodes, while OpenMP
directives are identified by nodes with names beginning with OMP and ending with

24

Generate AST

...

{

"kind": "OMPParallelForDirective",

...

"range": {

"begin": {"line": 2},

"end": {...}

 }

"inner": {

...

{

"kind": "ForStmt",

...

"range": {

"begin": {"line": 3},

"end": {"line": 5}

 }

"inner": {...}

},

...

}

...

Indicate OpenMP
section location

Indicate For-loop
keyword

Indicate For-loop
section location

Indicate OpenMP
directive keyword

Generated AST

Extracting

"OpenMP directive":

 "#pragma omp parallel for private(i) shared(A,B,C)",

"For-loop":

 "for(int i = 0; i < N; i++){

 C[i] = A[i] + B[i];

 }"

Raw Source Code

Extract Data

Figure 10: Locating For-loop and OpenMP Directive and Extracting Data

25

Directive (e.g., OMPParallelForDirective, OMPParallelForSimdDirective,
OMPGenericLoopDirective). For each identified for-loop and directive, key in-
formation such as the start line, end line, and the content (i.e., source code) is
recorded. During this traversal, each node is also annotated with the level of
nested loop. While this nesting level data is not utilized during the fine-tuning
of the parallelizable for-loop classification model, it will be used in determining
which levels of nested loops should be parallelized.

The extracted for-loops are then labeled as either parallel or serial based on
the parent node within the AST. If the parent node corresponds to an OpenMP
directive, the for-loop is labeled as parallel. Otherwise, it is labeled as serial.

To ensure the integrity of the dataset, any for-loops or content that do not
adhere to language syntax or contain invalid OpenMP directives are excluded. This
exclusion prevents the model from learning invalid syntax, thereby maintaining
the quality and reliability of the classification model.

3.2.4 Fine-tuning the CodeT5 Model

To predict the parallelizability of for-loops, a pre-trained transfer model is fine-
tuned using the custom-built dataset. The CodeT5 model, developed by Salesforce,
is employed for this task due to its state-of-the-art performance on various code-
related tasks across multiple programming languages [23]. Specifically, the smallest
version of this model, CodeT5-small, is utilized to reduce the computational cost
associated with fine-tuning. Although using a smaller model may compromise
performance compared to larger versions, it provides a baseline performance
consistent with previous studies utilizing CodeT5 [35].

The training data structure comprises two components: the for-loop code
snippets and their corresponding labels. Each for-loop code snippet includes
only the for-loop section, formatted as a string. These snippets are labeled as
either “0” or “1”, where “0” denotes a non-parallelizable for-loop and “1” denotes a
parallelizable one, as illustrated in Fig. 11. Prior to fine-tuning the model, each
code snippet is tokenized, converting the code into a sequence of tokens. This
tokenization is essential for processing the snippets in the model.

Despite the model being pre-trained on 1,000,000 C source files, it lacks training
on C++ source files [23]. Given that C++ is a superset of C with similar syntax,

26

additional pre-training on C++ source files was deemed unnecessary in this study.
To manage memory constraints during training, the gradient accumulation

technique is employed. This technique involves dividing a large batch into several
smaller mini-batches. Instead of updating the model weights after each mini-batch,
the gradients are accumulated over several mini-batches. After accumulating the
gradients over a pre-defined number of mini-batches, the model weights are then
updated. This approach effectively simulates a larger batch size without requiring
excessive memory, thus enabling the training process to handle larger datasets
more efficiently.

Additionally, early stopping is implemented to prevent overfitting. Early
stopping involves monitoring the model’s performance on a validation dataset
during training. If the model’s performance on the validation dataset does not
improve for a specified number of iterations, the training process is halted. This
technique ensures that the model does not continue to learn from the training data
to the point where it starts to perform poorly on unseen data, thus improving its
generalization capability.

3.3 Evaluation Setup

3.3.1 Hardware and Software

The fine-tuning process was conducted on a high-performance server specifically
configured to handle intensive computational tasks. This server was equipped
with dual Intel Xeon Gold 6230R CPUs, 256 GB of RAM, and two NVIDIA A100
40 GB PCIe GPUs.

Clang version 16 was utilized for parsing the source codes and extracting the
ASTs. The CodeT5 model fine-tuning was performed using the Transformers
library version 4.26, PyTorch version 1.13, and CUDA version 11.6.

3.3.2 Fine-Tuning

The dataset curated for fine-tuning consists of 2,017,111 parallel for-loops and
1,117,493 serial for-loops. However, training a model on this imbalanced dataset
could lead to biased performance. To address this issue, an under-sampling
approach was implemented to balance the dataset. Specifically, 500,000 parallel

27

 for(int i = 0 ; i < N ; i++)

 C[i] = A[i] + B[i];

Parallelizable for-loop code snippet

Parallelizable

(a)

 for(int i = 1 ; i < N ; i++)

 C[i] = C[i-1] * 2;

Non-parallelizable for-loop code snippet

Unparallelizable

(b)

Figure 11: (a) Parallelizable code snippets are labeled as “1” (b) Non-paralleliz-
able code snippets are labeled as “0”

for-loops and 500,000 serial for-loops were selected, not only balancing the dataset
but also reducing the overall training time.

The balanced dataset was then partitioned into training and testing subsets in
an 80:20 ratio. The partitioning process ensured that the proportionality between
parallel and serial for-loops was maintained within both subsets, providing a
consistent representation of both classes during training and evaluation.

The fine-tuning of the CodeT5 model involved experimenting with various
batch sizes: 128, 256, 512, and 1,024. The learning rate was fixed at 2.0× 10−4

for all configurations. Through these experiments, the optimal number of epochs
was determined for each batch size: 12 epochs for batch sizes of 128 and 256, 25
epochs for a batch size of 512, and 10 epochs for a batch size of 1,024, respectively.

3.3.3 Evaluation Targets

This study evaluates the proposed parallelizable for-loop classification model using
the following two distinct targets to ensure robustness and reliability in various
scenarios.

GitHub Projects Dataset: This was specifically constructed as the testing
dataset for this research and consists of a balanced set of parallelizable and serial

28

for-loops. To mitigate bias, any duplicate for-loops were removed, resulting in a
final refined testing set of 50,000 parallelizable for-loops and 50,000 serial for-loops.
This dataset was employed to assess the model’s capability in predicting whether
developers had parallelized a given for-loop with OpenMP directives.

NAS Parallel Benchmarks: The second target is the NAS Parallel Bench-
marks (NPB) [36,37], a renowned and widely accepted suite for parallel perfor-
mance evaluation. Although the official NPB is developed in Fortran, this study
utilizes its C++ port [36] for the evaluation. The benchmarks include single-
threaded source code as well as parallelized versions based on different parallel
programming models, including an OpenMP version. It facilitates a thorough
assessment of the model’s performance.

The NPB suite is composed of eight distinct benchmarks, categorized into
kernels and pseudo-applications. Each category is designed to test different aspects
of parallel computing performance and capability. The kernels consist of five
benchmarks: Embarrassingly Parallel (EP), Multi-Grid (MG), Conjugate Gradient
(CG), discrete 3D fast Fourier Transform (FT), and Integer Sort (IS). The pseudo-
applications consist of three benchmarks: Block Tri-diagonal solver (BT), Scalar
Penta-diagonal solver (SP), and Lower-Upper gauss-seidel solver (LU).

3.3.4 Baseline

In this study, Clava [9] was utilized as the baseline for comparison. Clava is a
source-to-source compiler that includes an integrated library named AutoPar,
which is specifically designed to facilitate automatic parallelization through static
analysis. Clava is recognized for achieving state-of-the-art performance in this
domain.

To accurately replicate the results obtained by Clava, a custom script was
developed to extract for-loops from NPB Benchmarks. The script extracts all
the loops, identifies parallelizable for-loops, formulates a corresponding OpenMP
directive for each parallelizable for-loop, and when encountering a nested loop
structure, retains the outermost parallelized loop while commenting out the inner
one.

29

3.3.5 Performance Metrics

The performance of binary classification in determining whether a loop is par-
allelizable or serial was evaluated using four key metrics: accuracy, F1 score,
precision, and recall.

Accuracy measures the overall correctness of the classification model in
distinguishing between parallel and serial loops. It is calculated using the following
formula:

Accuracy =
Number of correct predictions

Total number of predictions
. (1)

F1 score is the harmonic mean of precision and recall, offering a balance
between the two. Precision indicates the accuracy of the predicted parallel loops,
while recall assesses the completeness of identifying all parallel loops. Given the
trade-off between precision and recall, the F1 score provides a single metric that
balances both. The formulas for these metrics are as follows:

F1 =
2 · Precision · Recall
Precision + Recall

, (2)

Precision =
Number of correctly predicted parallel for loops

Total number of predicted parallel for loops
, (3)

Recall =
Number of correctly predicted parallel for loops

Total number of actual parallel for loops
. (4)

Note that Clava analyzes the source code and suggests suitable OpenMP di-
rectives for parallelization (e.g., “#pragma omp parallel for”, “#pragma omp

for” and “#pragma omp for private(i)”). However, the primary focus of
this evaluation is on determining the parallelizability of loops rather than the
correctness of the specific OpenMP directives suggested. Therefore, even if Clava
proposes an incorrect OpenMP directive, the classification is considered correct
as long as the loop is identified as parallelizable.

3.4 Evaluation Results

The results on two evaluation targets, GitHub Projects and NAS Parallel Bench-
marks are detailed below.

30

Table 1: GitHub Project Evaluation Results
Model Batch size Accuracy F1 Precision Recall

128 0.841 0.859 0.771 0.970
256 0.842 0.858 0.779 0.954
512 0.843 0.859 0.779 0.950

1024 0.841 0.860 0.770 0.973

Table 2: NPB Benchmark Evaluation Results
Model Batch size Accuracy F1 Precision Recall

128 0.912 0.549 0.893 0.396
256 0.943 0.764 0.858 0.688
512 0.936 0.744 0.811 0.688

1024 0.943 0.737 0.793 0.688

Clava 0.905 0.669 0.628 0.716

3.4.1 GitHub Projects

Table 1 provides an evaluation of the proposed models’ performance on the dataset
of GitHub projects, specifically analyzing the impact of different batch sizes during
training. Note that the baseline model requires compilable source code; however,
a significant portion of the dataset comprises non-compilable files. Consequently,
the baseline performance results are not included in this comparison.

The performance metrics indicate that all models achieve high accuracy, approx-
imately 0.84. Notably, the model trained with a batch size of 1,024 outperforms
others, recording the highest F1 score of 0.860 and a recall of 0.973. Although the
variation between the highest and lowest performance scores is minimal, less than
2%, models trained with larger batch sizes (i.e., 512 and 1,024) exhibit marginally
superior results in terms of both accuracy and F1 score.

3.4.2 NAS Parallel Benchmarks

Table 2 presents a detailed performance evaluation of the proposed models on the
NPB benchmarks, compared against the baseline approach, AutoPar-Clava. The
models demonstrated high accuracy scores, approximately 0.9, across all batch

31

sizes, consistent with the findings from the evaluation on the dataset of GitHub
projects. However, for metrics such as F1 score, precision, and recall, the variance
was more pronounced in the evaluation with NPB compared to that with the
GitHub dataset.

Specifically, the model trained with a batch size of 128 exhibited a 21.5%
difference in F1 score compared to the best-performing model, while other models
showed a gap of around 3% in their F1 scores. Additionally, the recall of AutoPar-
Clava was superior by 2.8% compared to the best-performing proposed model.
These variations highlight the sensitivity of certain performance metrics to batch
size adjustments in the training process.

In addition, the model with a batch size of 256 achieved the highest accuracy
and F1 score, highlighting its overall effectiveness. Interestingly, the model with a
batch size of 128 stood out in terms of precision but had significantly lower recall
scores, adversely affecting its F1 values. This trade-off between precision and
recall suggests the need for careful batch size selection depending on the specific
performance metric prioritization.

Compared to the baseline model, AutoPar-Clava, the proposed models generally
outperformed it across all metrics, except for recall. Even the lowest-performing
proposed model, except for the one with a batch size of 128, demonstrated superior
performance relative to the baseline. Specifically, the proposed models showed
improvements of 2.9% and 6.8% in accuracy and F1 score, respectively, compared
to the baseline.

3.5 Discussion

In this discussion section, the evaluation of the proposed model is explored. The
analysis is structured into three key sub-sections. Firstly, the correctly predicted
results are examined, highlighting the factors contributing to the model’s accuracy
and identifying patterns that signify parallelizability. Secondly, the incorrectly
predicted results are explored to uncover potential limitations and areas for
improvement in the model. Lastly, the benefits of the proposed model as a coding
companion are discussed, emphasizing its practical applications and potential to
assist developers in optimizing their code for parallel execution.

32

Listing 1: An example of parallelizable code that the proposed method correctly
predicted, but Clava did not due to dependency analysis failure (line 616 in rank
function from IS benchmark OpenMP version).
#pragma omp for schedule(static)
for(i=0 ; i < NUM_KEYS ; i ++)
{

k = key_array[i];
key_buff2[bucket_ptrs[k >> shift]++] = k;

}

Listing 2: An example of parallelizable code that the proposed method correctly
predicted, but Clava did not due to out-of-memory (line 2323 in x_solve function
from BT benchmark).
#pragma omp for
for(k=1 ; k <= grid_points[2]-2 ; k++)
{

for(j=1 ; j <= grid_points[1]-2 ; j++)
{

for(i=0 ; I <= isize ; i++)
{

tmp1 = rho_i[k][j][i];
tmp2 = tmp1 * tmp1;
... 287 more lines

3.5.1 Analysis of the Correctly Predicted Results

In the evaluation of the NPB benchmarks, multiple for-loops were identified
as parallelizable by the proposed method, whereas Clava did not recognize them
as such. This discrepancy can be attributed to two possible reasons.

Limitations of Static Analysis Static analyzers often struggle to identify
parallelizable loops when runtime information or application-specific knowledge
is required. An example is shown in Listing 1, where the data dependency
analysis by Clava incorrectly deems a loop as non-parallelizable. In this case,
the “key_buff2” array is indexed using the value from the “bucket_ptrs” array,
which is determined by the value of “k” shifted right by “shift” bits. Despite
Clava’s assessment, the loop is indeed parallelizable, as evidenced by the presence
of the “schedule(static)” directive in the corresponding OpenMP annotation.

33

This example highlights the limitations of static analysis, which can fail when
dynamic or context-specific information is not available.

Computational Complexity of Static Analysis Another significant chal-
lenge for static analyzers like Clava is the computational complexity involved in
analyzing deeply nested loops. Listing 2 illustrates a case where Clava encounters
an out-of-memory exception while processing a code snippet with multi-level
nested loops, with the loop body spanning approximately 300 lines. Clava’s
approach involves exhaustively analyzing all dependencies within the loops to
determine their parallelizability, leading to excessive memory consumption and
eventual failure. In contrast, the proposed model maintains consistent memory
consumption, regardless of the input size or complexity, due to its data-driven
nature.

Superior Performance of the Proposed Model The superior performance
of the proposed model compared to Clava can be attributed to the extensive and
diverse source code repositories used to fine-tune the CodeT5 model. While Clava
relies on a rigid, rule-based approach, the proposed model leverages the embedded
knowledge on parallelization extracted from a vast array of source codes. This
flexibility allows the model to dynamically adapt and provide accurate predictions
without being constrained by predefined rules.

The effectiveness of the proposed model is intrinsically linked to the quality
and quantity of the training data, which encompass a wide variety of paralleliza-
tion patterns. Unlike predefined rule-based approaches that can only address a
limited set of patterns, the data-driven approach of the proposed model enables
it to recognize and adapt to a broader range of parallelization scenarios. This
adaptability is illustrated in Listing 1, where the model successfully identifies
parallelizable loops that do not conform to Clava’s rigid rule set.

3.5.2 Analysis of the Incorrectly Predicted Results

The evaluation results, as presented in Table 2, indicate that the recall scores
of the proposed model are notably low. Specifically, the model with a batch size
of 128 achieves a recall score of only 0.396. In comparison, Clava outperforms

34

Listing 3: Example of a parallel nested for-loop
#pragma omp parallel for
for(i=1 ; i<n ; i++)
{

for(j=1 ; j<m ; j++)
{

for(k=1 ; k<o ; k++)
{

// Do something
}

}
}

other models with a margin of 2.8
The current training dataset comprises only code snippets of for-loops, lacking

the broader context or inherent characteristics of the surrounding code. For
example, the preprocessing approach currently in use decomposes nested for-loop
code snippets, as illustrated in Listing 3, into separate data entities. In the
original source code, only the outermost loop has the OpenMP directive and is
labeled as “parallelizable” in the dataset. The inner loops, however, are labeled
as “unparallelizable.” This labeling approach fails to consider that if these inner
loops appeared independently in the source code, they might be deemed suitable
for parallelization and deserve their own OpenMP directives.

This discrepancy highlights a crucial issue: the decision to parallelize a for-
loop is often context-dependent, influenced by its relationship with other loops.
Ignoring this broader context introduces significant challenges in model training,
leading to inaccurate predictions.

One possible remedy is to exclude inner loops from the training data when
they are part of parallelized outer loops. While this approach might prevent the
inclusion of misleading data, it would also eliminate valuable information about
contextual decisions, thereby reducing the training dataset’s comprehensiveness.

To address this issue fundamentally, a reconfiguration of the training dataset is
essential. The model should be trained not only on isolated code snippets but also
within the context of their encompassing code structure. Incorporating information
about nesting levels and the parallelizability of outer loops could significantly
enhance the model’s understanding of the broader context. This would enable

35

more accurate predictions regarding whether a loop should be parallelized with
OpenMP directives.

Incorporating these contextual details into the training process could involve
several strategies. One approach could be to label nested loops based on their
potential for parallelization in isolation and within their broader context. Another
strategy might include training the model on entire code segments, highlighting
the relationships between nested loops and their parallelization directives. By
adopting these methods, the model can better grasp the complexities of loop
parallelization decisions, improving its ability to predict accurately.

3.5.3 Benefits of the Proposed Model as a Coding Companion

The proposed model for classifying parallelizable for-loops offers significant ben-
efits to developers by assisting in the identification of potential parallelization
opportunities within source code. The high F1 scores achieved in both GitHub
projects and NPB evaluations highlight the model’s effectiveness and reliability.

One of the primary advantages of this model is its utility as a learning
tool for novice developers. By integrating this model into a pair programming
setup, beginners can expedite the process of developing parallel programs. The
model serves as an intelligent coding companion, highlighting loops that can be
parallelized and providing insights into parallelization strategies. This hands-on
guidance helps beginners understand the characteristics of parallelizable code,
thereby enhancing their coding skills and knowledge.

Additionally, the model aids in the educational process by offering practical
examples for users to study and learn from. By practicing with real-world code,
developers can gain experience in identifying potential parallelizable for-loops,
gradually building their proficiency in parallel programming. This iterative
learning process not only accelerates skill acquisition but also instills confidence
in applying parallelization techniques independently.

Furthermore, the model’s ability to provide consistent and accurate suggestions
reduces the likelihood of overlooking parallelization opportunities. In complex
codebases where manual identification can be challenging and error-prone, the
model ensures thorough analysis and identification of parallelizable loops. This
leads to more efficient and optimized code, ultimately enhancing the performance

36

of software applications.

3.6 Conclusion

This research introduced a deep learning-based NLP model designed for the
automatic parallelization of source code. By fine-tuning CodeT5, a state-of-the-
art transformer model, using source code from GitHub repositories containing
OpenMP directives, the model has been trained to effectively identify loops
suitable for parallelization.

The evaluation of the proposed model was conducted using source files from
GitHub projects and the NPB. The results demonstrate that the proposed model
outperforms the baseline method, AutoPar-Clava. Specifically, the model achieved
an F1 score of 0.860 in the GitHub projects evaluation and an F1 score of 0.764
in the NPB evaluation. In comparison, Clava attained an F1 score of 0.669 in the
NPB evaluation.

These findings highlight the effectiveness of the deep learning-based approach
in identifying parallelizable loops within source code. The model’s superior
performance can be attributed to the comprehensive training dataset, which
included diverse parallelization patterns from real-world codebases, enabling the
model to generalize well across different contexts. The significant improvement in
F1 scores indicates the model’s potential to enhance the parallelization process,
making it a valuable tool for developers aiming to optimize their code for parallel
execution. This research highlights the importance of leveraging advanced NLP
techniques and extensive training data to address complex problems in software
optimization.

37

4 OMP-CodeT5+: An OpenMP Directive Gener-
ation Model

4.1 Introduction

In the previous chapter, a parallelizable for-loop classification model was devel-
oped as the first function of the proposed automatic parallelization tool. The
subsequent function of this tool involves transforming the identified parallelizable
code segments to achieve parallel execution, specifically through the insertion of
OpenMP directives.

Enhancing program performance through parallelization necessitates metic-
ulous modification of the identified code segments. The effectiveness of the
performance gain depends on the precision of the parallel annotations introduced
by the tool. For OpenMP, this process involves the strategic selection of directives
and clauses, which are fundamental for the tool to determine the appropriate
method for parallelizing the source code.

Incorrect or incompatible directives and clauses can significantly impact the
performance of the parallelized code. Potential issues include lack of speedup,
compilation failures due to syntax errors, incorrect outputs, and in the worst-case
scenario, unexpected behaviors leading to inaccurate results. Thus, the accuracy
of these directives and clauses is critical for achieving proper parallelization.

The selection of suitable OpenMP directives and clauses is not a trivial
task. It requires a deep understanding of both the application’s computa-
tional patterns and the underlying hardware architecture. For instance, the
“#pragma omp parallel for” directive is commonly used for distributing loop
iterations across multiple threads. However, the choice of additional clauses
such as “private”, “firstprivate”, and “reduction” must align with the data
dependencies and the specific requirements of the code segment. Misalignment
can lead to race conditions, inefficient memory usage, or incorrect results.

Furthermore, the hardware’s characteristics, such as the number of available
cores and the memory hierarchy, must be taken into account when selecting
directives and clauses. For example, the “schedule” clause can be used to control
the distribution of loop iterations to threads, which can have a significant impact
on load balancing and cache utilization. Incorrect scheduling strategies can result

38

in suboptimal performance or even degraded performance compared to serial
execution.

The second function of automatic parallelization tool involves generating
parallel modifications for the input source code segment. Different tools employ
various approaches to achieve this goal, with static analysis techniques being
particularly effective. For instance, AutoPar-Clava utilizes a parallelization engine
that incorporates dataflow analysis and dependency analysis, both of which are
categorized as static analysis techniques. However, these analyzers are limited by
the predefined rules encoded by the developers, similar to the limitations discussed
in the previous chapter.

This chapter focuses on the second model, OpenMP directive generation, re-
ferred to as OMP-CodeT5+. This model leverages a fine-tuned CodeT5+ [30]
model to generate appropriate OpenMP directives for given for-loop code snip-
pets, as illustrated in Fig 3. CodeT5+ is a pre-trained Code LLM on multiple
programming languages, including C and C++, making it well-suited for this
task.

The OMP-CodeT5+ model works in tandem with the parallelizable for-loop
classification model to achieve the objectives of the automatic parallelization tool,
as depicted in Fig 13. This LLM-based tool aims to generate more efficient parallel
programs using OpenMP, enhancing the overall performance and efficiency of the
code.

The rest of the chapter is structured as follows: Section 4.2 explains the data
collection, labeling, and fine-tuning workflow of the CodeT5+ model. Section 4.3
provides the evaluation setup and evaluation material. Section 4.4 presents the
evaluation results. Section 4.5 discusses the performances gained from parallelizing
the source code by using the proposed approach in each category of speedup.
Section 4.6 concludes this chapter and discusses future work.

4.2 Methodology

4.2.1 Overview

The development process of the proposed OMP-CodeT5+ model is outlined in
this section, as depicted in Fig. 12. This figure illustrates the detailed stages
involved in the development of OMP-CodeT5+ model, which encompass data

39

Drop duplication
for-loop

Drop for-loop that has
less than 20 tokens

Label data with for-loop as
input prompt and OpenMP
directives as output target

Search repositories
(OpenMP usage)

using Code Search

Create AST using Clang

Traverse AST, locate and
extract for-loop and
OpenMP directives

Fine-Tuning
CodeT5+

Preprocessing
Data

Download repositories

Crawl C/C++
repositories name

Data
Collection

Figure 12: Overview of OMP-CodeT5+ model Processes

40

 for(int i = 0 ; i < N ; i++)

 C[i] = A[i] + B[i];

Parallelizable for-loop code snippet

#pragma omp parallel for

Figure 13: Overview of OMP-CodeT5+ model Processes

#pragma omp target teams distribute parallel for simd
for (int i=0; i < 2; ++i)

a = 2;

Figure 14: Testing OpenMP For-loop Found In Microsoft/clang Repository, File:
test/OpenMP/target_teams_distribute_parallel_for_simd_ast_print.cpp Line:
113-115

collection, preprocessing, and model fine-tuning. The OMP-CodeT5+ model
leverages the same dataset containing OpenMP directives, as detailed in Chapter
3. By fine-tuning the pre-trained CodeT5+ model with this dataset, the model
is developed to understand parallelizable source code and generate appropriate
OpenMP directives. The detailed process is explained in the following sections.

4.2.2 Data Collection and Preprocessing Process

The dataset utilized in this chapter follows the same collection methodology
as outlined in Chapter 3. However, the labeling technique differs from the one
employed for the model in Chapter 3. The model in Chapter 3 was designed
for binary classification to determine whether a given loop could be parallelized.
Consequently, the labels were binary, indicating either parallelizable or non-
parallelizable loops.

In contrast, the model addressed in this chapter focuses on generating OpenMP
directives. This requires a different labeling approach, where the training data
for each loop includes the specific OpenMP directive associated with that loop.
The shift from binary labels to detailed OpenMP directive labels demands a
comprehensive preprocessing phase to ensure the dataset’s integrity and relevance.
During preprocessing, each loop is carefully examined to extract its corresponding
OpenMP directive, which serves as the target output for the model during training.

41

The dataset undergoes thorough cleaning and formatting to ensure that the input
loops and their associated directives are accurately aligned.

To further enhance the dataset’s quality, several measures are implemented to
remove duplicates and low-quality code snippets. Duplicates are identified and
removed to prevent redundancy. It is common to encounter identical for-loops
across different projects, and retaining such redundant data can degrade the
dataset’s overall quality. Additionally, low-quality code snippets, such as test cases
or machine-generated source code, are filtered out. A specific criterion is employed
to identify low-quality snippets: the number of tokens within each for-loop snippet
is counted, and those with fewer than 20 tokens are discarded. This threshold
is based on the minimum number of tokens required for a meaningful for-loop
code snippet containing a single operation. Fig. 14 illustrates an example of such
a low-quality snippet. By filtering out these snippets, the dataset’s quality is
improved, ensuring that only relevant and high-quality data is used for model
training.

4.2.3 Model Training

To develop the OMP-CodeT5+ model, the pre-trained CodeT5+ was fine-tuned
using the dataset developed in this study. There are multiple variations of
the CodeT5+ model with different sizes, including CodeT5+ embedding model,
CodeT5+ bimodal model, CodeT5+ fine-tuned for Python, and instruct CodeT5+.
The bimodal version was selected for this study due to its efficacy in code generation
tasks.

The fine-tuning of the CodeT5+ bimodal model, which comprises 220 million
parameters (220M) [30], introduces considerable challenges, especially when com-
pared to the previously utilized CodeT5 small model, which has only 60 million
parameters (60M) [23]. Initial attempts to fine-tune the bimodal model on the
existing same hardware were met with out-of-memory errors, highlighting the
need for advanced memory management strategies.

To address these challenges, memory optimization techniques were employed,
particularly ZeRO-Infinity [38–40]. ZeRO-Infinity, implemented through the
DeepSpeed library [41], enables efficient memory usage by transferring only the
essential parts of model computation to the GPU from the CPU main memory.

42

This approach significantly reduces the GPU memory footprint, facilitating the
training of larger models on consumer-grade GPUs that would typically require
industrial-grade hardware.

4.3 Hardware and Software Setup

4.3.1 Model Training

The OMP-CodeT5+ model was fine-tuned using a high-performance workstation
featuring an Intel Core i9 10900K processor, 64 GB of RAM, and a GeForce RTX
4090 GPU with 24 GB of memory. Clang 16 was utilized for parsing the source
codes and generating ASTs. The fine-tuning process was conducted using the
Transformers library version 4.34.1, integrated with PyTorch 2.1.1, CUDA 12.2,
and DeepSpeed 0.12.3.

4.3.2 Parallelized Code Evaluation

Performance evaluation of both the parallelized and baseline source codes was
conducted on a server equipped with two Intel Xeon Gold 6230R CPUs and 384 GB
of memory. Intel oneAPI 2022 was utilized to compile and execute the parallelized
source code. This setup enabled a comprehensive comparison of the parallelized
implementation against existing methods and the baseline implementation.

4.3.3 Fine-tuning

The dataset used for fine-tuning comprised 37,946 for-loops as prompts, paired with
their corresponding OpenMP directives as labels. This dataset was divided into a
training set and a testing set, containing 33,883 and 4,063 samples, respectively.

The fine-tuning process was configured with a batch size of 32, which repre-
sented the maximum feasible size for executing CodeT5+ training in the given
environment. An initial learning rate of 5 × 10−5 was set to facilitate steady
convergence. Gradient accumulation was set to 4 to effectively manage memory
usage during training. Additionally, ZeRO Optimization Stage 2 was employed,
utilizing the CPU offload configuration to enhance memory efficiency. The AdamW
optimizer was used, known for its effectiveness in handling large-scale deep learning
tasks.

43

4.3.4 Evaluation Method for Automatic Parallelization Tools

To assess the performance improvements achieved by various automatic paralleliza-
tion tools, including the proposed method, the NAS Parallel Benchmarks (NPB)
were employed. These benchmarks, previously utilized in the model described
in Chapter 3, are essential for evaluating the enhancements in performance that
arise from applying parallelization techniques, such as OpenMP, to the code.

The evaluation process involved several key steps. First, the serial versions
of the NPB benchmarks were parallelized using each automatic parallelization
tool. Subsequently, the runtimes of the parallelized benchmarks were measured.
This comparative analysis of runtimes enabled a thorough assessment of the
effectiveness of the code or executables generated by each tool. This evaluation
methodology is consistent with the approach described in the existing literature
on Clava.

It is important to highlight a common challenge encountered during the
evaluation: the directives generated by both the proposed model and other tools
can occasionally contain syntax errors or fail verification. In such cases, the
problematic directives were commented out to ensure that the parallelized code
was compilable and could successfully pass benchmark verification.

By following this rigorous methodology, the performance improvements offered
by different automatic parallelization tools were systematically evaluated, providing
valuable insights into their effectiveness and reliability in enhancing computational
performance through parallelization.

4.3.5 Baseline Methods Compared with the Proposed Model

To assess the performance of the proposed model, it was compared against two
baseline automatic parallelization tools: the Intel compiler-supported automatic
parallelization and Clava, a state-of-the-art source-to-source compiler. The In-
tel compiler’s automatic parallelization feature has been evaluated in existing
literature on Clava [29], making it a suitable baseline for comparison.

Intel Compiler-supported Automatic Parallelization The Intel compiler
provides an automatic parallelization feature that uses static analysis techniques to
identify parallelizable sections of code. For this evaluation, the NPB was utilized

44

with two different par-threshold configurations: 0 and 100. The default par-
threshold setting of 100 directs the compiler to parallelize loops only when there is
a high likelihood of significant performance gains. Conversely, a par-threshold of 0
instructs the compiler to parallelize all loops deemed safe to parallelize, regardless
of the anticipated performance benefits. This configuration aligns with the settings
used in the existing evaluation of Clava.

AutoPar-Clava Clava is an advanced source-to-source compiler that also lever-
ages static analysis for automatic parallelization. Specifically, the AutoPar library
within Clava was used, which is designed to automatically parallelize source code
using OpenMP directives. For this evaluation, a script was developed to extract
for-loops parallelized in the original OpenMP NPB benchmarks. AutoPar then as-
sesses the parallelizability of each extracted for-loop and generates the appropriate
OpenMP directives.

4.4 Evaluation Results

4.4.1 Performance Evaluation Using Benchmarks

The speedup achieved by each automatic parallelization tool across different
benchmarks is illustrated in Fig. 15. The speedup results are categorized into three
levels: high, medium, and no speedup. This classification helps in understanding
the effectiveness of each tool across different benchmarks.

The benchmarks MG and CG demonstrate notable speedups, with the OMP-
CodeT5+ model achieving over 10× improvements compared to their single-
threaded versions. These benchmarks fall into the high speedup category. Specif-
ically, the CG benchmark shows a speedup of 24.23× with the OMP-CodeT5+
model. However, this is lower than the speedups achieved by tthe original OpenMP
CG implementation, AutoPar-Clava, and Intel compiler with 0 par-threshold,
which are 55.96×, 55.53×, and 47.42×, respectively. In contrast, the Intel compiler
with a par-threshold of 100 shows no speedup for the CG benchmark.

In the SP benchmark, the OMP-CodeT5+ model, AutoPar-Clava, and Intel
compiler (with both 100 and 0 par-thresholds) achieve moderate speedups of
1.67×, 1.69×, 2.00×, and 1.86×, respectively. For the FT and LU benchmarks,
the OMP-CodeT5+ model achieves speedups of 1.2× and 1.3×, respectively, which

45

 0.1

 1

 10

 100

MG CG FT IS BT SP LU

OMP-CodeT5+
Original OpenMP NPB

Intel Threshold100

Intel Threshold0
Autopar-Clava

P
a
ra
lle
l
S
p
e
e
d
u
p

benchmark

Figure 15: Speedup Over the Original Serial NPB Runtimes Using Various
Automatic Parallelization Tools and Manual Parallelization

are categorized as medium speedup. Notably, other automatic parallelization
tools result in lower performance than their single-threaded versions for the FT
benchmark.

The IS and BT benchmarks do not exhibit significant speedups compared
to manually parallelized implementations. Particularly for the BT benchmark,
the Intel compiler with a par-threshold of 0 results in a considerable slowdown,
achieving only 0.09× the performance of the single-threaded version.

46

Table 3: Evaluation of Syntax Correctness and Benchmark Verification for Gener-
ated OpenMP Directives

Name # of Parallel OMP-CodeT5+ AutoPar-Clava

For-loops Passed Failed Passed Failed

EP 1 0 1 0 1
MG 11 10 1 - -
CG 9 9 0 9 0
FT 7 3 4 1 6
IS 3 1 2 0 3
BT 15 12 3 12 3
SP 19 16 3 16 3
LU 13 6 7 7 6

Total 78 57 21 45 22

4.4.2 Evaluation of Syntax Correctness and Benchmark Verification
for Generated OpenMP Directives

Table 3 presents an evaluation results in terms of syntax correctness and benchmark
verification for NPB. The table categorizes the results into successful (Passed)
and unsuccessful (Failed) attempts, with failures arising from either syntax errors
or verification errors. The first column lists the specific NPB benchmarks, and
the second column indicates the number of for-loops targeted for parallelization
within each benchmark. The subsequent columns detail the number of passed and
failed attempts for the OMP-CodeT5+ and AutoPar-Clava tools.

The evaluation reveals that both OMP-CodeT5+ and AutoPar-Clava encounter
difficulties in parallelizing certain for-loops that were effectively parallelized in the
original OpenMP implementations. Notably, AutoPar-Clava failed to analyze and
generate directives for the MG benchmark, highlighting a significant limitation in
its capability.

Conversely, the OMP-CodeT5+ model demonstrates a higher success rate in
producing correct OpenMP directives. Specifically, the OMP-CodeT5+ model
successfully parallelized 57 out of 78 targeted loops in the original NPB benchmarks,
resulting in a success rate of 73%. In comparison, AutoPar-Clava successfully
parallelized only 45 loops, achieving a success rate of 58%.

47

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

4 8 12 16 20 24 28 32 36 40 44 48 52

Exact Match
ROUGE-1

ROUGE-2
ROUGE-LSUM

ROUGE-L

S
c
o
re
(s
)

Epoch(s)

Figure 16: The Exact Match and ROUGE Scores with Split Training Data At
Each Epoch

The comparative analysis indicates that while both tools have their strengths
and limitations, OMP-CodeT5+ generally outperforms AutoPar-Clava in terms of
the number of successful parallelizations. The higher success rate of OMP-CodeT5+
suggests a more robust capability in generating correct OpenMP directives across
diverse benchmarks.

4.4.3 The Evaluation Metrics Scores At Each Epoch

Figure 16 presents the evaluation scores, including Exact Match and Recall-
Oriented Understudy for Gisting Evaluation (ROUGE) [42], across different
epochs during the fine-tuning of the OMP-CodeT5+ model. The Exact Match
metric assigns a score of 1 if the generated text matches the labeled string exactly
and 0 otherwise.

Another metric, ROUGE is a set of metrics used to evaluate the quality of
automatic summarization and machine translation software in natural language
processing. It includes four key metrics: ROUGE-1 is unigram (1-gram) based

48

Listing 4: Generated OpenMP Directive For For-loop in conj_grad() Function in
CG Benchmark By The Trained Model
#pragma omp parallel for
for(j = 0; j < lastrow - firstrow + 1; j++) {
sum = 0.0;
for(k = rowstr[j]; k < rowstr[j+1]; k++){
sum = sum + a[k]*p[colidx[k]];

}
q[j] = sum;
}

scoring, ROUGE-2 is bigram (2-gram) based scoring, ROUGE-L is longest common
subsequence-based scoring, and ROUGE-LSUM is longest sentences common
subsequences-based scoring, splits text using “\n”.

The results indicate that the OMP-CodeT5+ model achieves its best per-
formance at epoch 28, as reflected by both Exact Match and ROUGE scores.
After this point, further fine-tuning does not significantly improve the evaluation
metrics, suggesting that the model has reached a point of stability.

The total training duration from the first epoch to the 52nd epoch is approxi-
mately six hours and 45 minutes. Each fine-tuning epoch takes around 7 minutes
and 50 seconds. The evaluation dataset comprises 4,063 for-loops, which were
split from the overall dataset for the purpose of these evaluations.

4.5 Discussion

4.5.1 Analysis Through Speedup Categories

This section analyzes the evaluation results based on the previously observed
speedup categories: High, Medium, and No Speedup. To provide a detailed
analysis, the Intel VTune profiler is employed to examine specific benchmarks
within each category.

High Speedup (MG and CG) The OMP-CodeT5+ model demonstrates
significant speedups for two benchmarks, MG and CG. Specifically, in the case of
MG, the directives generated by OMP-CodeT5+ are highly similar to those in the
original OpenMP MG implementation. This alignment enables the parallelized

49

Listing 5: Original OpenMP CG Source Code in conj_grad() Function
#pragma omp parallel private(it,i,j,k)
{
...
conj_grad(...)
...

}

static void conj_grad(...){
...
#pragma omp for nowait
for(j = 0; j < lastrow - firstrow + 1; j++) {
suml = 0.0;
for(k = rowstr[j]; k < rowstr[j+1]; k++){
suml += a[k]*p[colidx[k]];

}
q[j] = suml;

}
...
}

implementation by the OMP-CodeT5+ model to gain speedups comparable to
those obtained from manually parallelized code.

Similarly, the speedup of CG parallelized by the OMP-CodeT5+ model is
also high. However, it remains lower than that achieved by the original OpenMP
implementation, despite the generated directives being largely similar to the
original. Profiling revealed a function with significant CPU usage. In the original
OpenMP version, as shown in Listing 5, a parallel region is created around
the conj_grad() function. Conversely, the OMP-CodeT5+ model generates a
parallel region for each individual for-loop. This approach introduces additional
overhead, thereby degrading the performance of the parallelized code compared
to the original OpenMP version.

The primary factor contributing to the high speedup results of the parallelized
MG source code is the number of successfully parallelized for-loops. For-loops
from the MG source code are mostly short and medium in length, which the
OMP-CodeT5+ can parallelize effectively. For the long sequence for-loops, the
average token count is 592, and the maximum token count is 641. These long
sequence for-loops fall within the range that OMP-CodeT5+ can interpret and

50

Listing 6: Generated Directive in x_solve Function of SP Benchmark by OMP-
CodeT5+ Model
void x_solve(){
int i, j, k i1, i2, m;
double ru1, fac1, fac2;
#pragma omp parallel for
for(k=1; k<nz2, k++){
...

}

generate OpenMP directives successfully.
In the case of the CG benchmark, the primary factor contributing to the high

speedup results of the parallelized CG source code is the number of successfully
parallelized for-loops. The for-loops in the CG source code consist solely of short
sequences, which allows OMP-CodeT5+ to effectively parallelize all for-loops from
the CG benchmark.

Medium Speedup (SP, LU and FT) The proposed model demonstrates
less than 2× speedup in three benchmarks: SP, LU, and FT. To analyze the
underlying causes of this limited performance enhancement, a detailed analysis
was conducted using the SP benchmark as a representative case.

From the profiling of the original OpenMP SP source code, the bottleneck func-
tions are z_solve followed by y_solve and x_solve. The generated directives
for z_solve, y_solve and x_solve cause the benchmark to fail the verification.
This is due to a race condition because the loop index k is not privatized as shown
in Listing 6. On the other hand, in the original source code shown in Listing 7,
the loop indices are declared in a parallel region and thus automatically privatized.
The directives generated by AutoPar-Clava also caused the benchmark to fail
verification. These directives, which caused the benchmark to fail verification,
had to be removed for performance evaluation, resulting in limited speedup.

The primary factor contributing to the medium speedup result of the paral-
lelized FT source code is the limited number of successfully parallelized for-loops,
which accounts for less than half. The OMP-CodeT5+ struggled to parallelize
the main computational segments of this benchmark, specifically the medium
sequence for-loops that were not successfully parallelized. This limitation impeded

51

Listing 7: Original x_solve Function of SP Benchmark
#pragma omp parallel
{
adi();

}
...
void adi(){
compute_rhs();
txinvr();
x_solve();
y_solve();
z_solve();
add();

}
...
void x_solve(){
int i, j, k i1, i2, m;
double ru1, fac1, fac2;
#pragma omp for
for(k=1; k<nz2, k++){
...

}

the parallelized source code by OMP-CodeT5+ from achieving a higher speedup.
In the case of the LU benchmark, the primary reason for the medium speedup

result of the parallelized LU source code is the lower success rate of parallelized
for-loops, which is less than half. Most of the for-loops in the LU benchmark are
long sequence for-loops, with an average token count of 2,760. The OMP-CodeT5+
is less effective in generating successful OpenMP directives for higher token counts,
and half of the failed parallelized for-loops are long sequence for-loops. This factor
hinders the speedup of the LU benchmark.

In the case of the SP benchmark, the primary factor contributing to the medium
speedup result of the parallelized SP source code, despite the higher success rate
of parallelized for-loops, is that the three failed parallelized for-loops are the main
computational segments of the benchmark. These three main computational for-
loops are long sequences for-loops with 4,081 tokens, 4,151 tokens, and 4,052 tokens.
The OMP-CodeT5+ does not effectively generate successful parallelized OpenMP
directives for these long sequence for-loops. The speedup of the parallelized SP
source code by OMP-CodeT5+ is higher than other medium speedup results due

52

Listing 8: Parallelized For-loops by The OMP-CodeT5+ Model in the rank
Function of IS Benchmark
#pragma omp parallel for schedule(static) // failed
for(i=0; i<NUM_KEYS; i++)
work_buff[key_array[i] >> shift]++;

...
#pragma omp parallel for schedule(static) // failed
for(i=0; i<NUMKEYS; i++){
k = key_array[i];
key_buff2[bucket_ptrs[k >> shift]++] = k;

}
...
#pragma omp parallel for schedule(dynamic) // passed
for(i=0; i< NUM_BUCKETS; i++) {
k1 = i * num_bucket_keys;
k2 = k1 + num_bucket_keys;
for (k = k1; k < k2; k++)
key_buff_ptr[k] = 0;

m = (i > 0)? bucket_ptrs[i-1] : 0;
for (k = m; k < bucket_ptrs[i]; k++)
key_buff_ptr[key_buff_ptr2[k]]++;

key_buff_ptr[k1] += m;
for (k = k1+1; k < k2; k++)
key_buff_ptr[k] += key_buff_ptr[k-1];

}

to the higher number of successfully parallelized for-loops.

No Speedup (IS and BT) The proposed model was not able to offer any
performance improvements for the IS and BT benchmarks. To identify the causes
of the lack of speedup, a detailed analysis of the IS benchmark was conducted.

The IS benchmark uses a bucket sort algorithm to sort integers. This is
implemented in the rank function that contains three loops. The first loop counts
the number of keys in each bucket. The second loop stores each key in the
appropriate bucket. The last loop sorts the keys within each bucket.

The profiling results from the original OpenMP IS source code showed that the
second loop is most time-consuming in the rank function, followed by the third
and the first loop. The proposed model was able to generate a correct directive for
the third loop only. The two generated directives cause race conditions because
the loop indices i and k are not privatized as shown in Listing 8. The original

53

Listing 9: Parallel For-loops in rank Function from Original OpenMP IS Bench-
mark
#pragma omp parallel private(i,k)
{
...
#pragma omp for schedule(static)
for(i=0; i<NUM_KEYS; i++)
work_buff[key_array[i] >> shift]++;

...
#pragma omp for schedule(static)
for(i=0; i<NUMKEYS; i++){
k = key_array[i];
key_buff2[bucket_ptrs[k >> shift]++] = k;

}
...
#pragma omp for schedule(dynamic)
for(i=0; i< NUM_BUCKETS; i++) {
k1 = i * num_bucket_keys;
k2 = k1 + num_bucket_keys;
for (k = k1; k < k2; k++)
key_buff_ptr[k] = 0;

m = (i > 0)? bucket_ptrs[i-1] : 0;
for (k = m; k < bucket_ptrs[i]; k++)
key_buff_ptr[key_buff_ptr2[k]]++;

key_buff_ptr[k1] += m;
for (k = k1+1; k < k2; k++)
key_buff_ptr[k] += key_buff_ptr[k-1];

}
...
}

54

OpenMP IS source code shown in Listing 9 privatizes i and k in the outer parallel
directive that covers all three loops and thus does not cause race conditions.

AutoPar-Clava also fails to parallelize loops in the rank function and offers no
speedup. Specifically, Clava refuses to parallelize the first loop with the message,
“Array access work_buff[key_array[i] >> shift] which is used for writing
has a subscript of arrayType key_array[i] >> shift.” This is because the
content of key_array cannot be statically determined at compile time and thus
Clava cannot verify if the writes to work_buff can be performed in parallel.
Similarly, the second and third loops employ indirect indexing, which also prevents
their parallelization.

These issues highlight a limitation of the proposed approach when applied to
codes where loop indices and other variables requiring privatization need to be
declared in a parallel region directive separate from the loops themselves. Con-
sequently, the generated directives fail to appropriately privatize these variables,
resulting in race conditions and verification errors.

The primary factor limiting the speedup of the parallelized BT source code, de-
spite achieving 80% successfully parallelized for-loops, is that the failed parallelized
for-loops reside in separate functions that constitute the main computational seg-
ments of the benchmark. These functions execute calculations along each axis in
3D dimensions: the x-axis, y-axis, and z-axis. Each function contains a long se-
quence for-loops with 4,868 tokens, 4,844 tokens, and 4,855 tokens. The OpenMP
directives generated by the OMP-CodeT5+ do not effectively identify the necessary
variables and clauses for these long sequence for-loops.

4.5.2 Analysis of the Impact of Training Dataset Characteristics

Analysis Across Different For-Loop Complexities This section explains the
generation capability of OMP-CodeT5+ from the input in different complexities
in detail. From the NPB source code, this study divides the for-loops sequence
into three categories, starting with zero to 100 tokens categories as short sequence,
101 to 500 tokens categories as medium sequence, and more than 500 tokens
categories as long sequence as shown in Table 4. Table 4 shows the results of
passed and failed generated OpenMP directives from the OMP-CodeT5+ for each
benchmark divided into for-loops sequence categories. Fig. 17 shows the overall

55

Table 4: Number of Passed and Failed Generated OpenMP Directives in Each
For-loop Size Category

Name # of Parallel Short Medium Large

For-loops Passed Failed Passed Failed Passed Failed

MG 11 4 0 3 1 4 0
CG 9 9 0 - - - -

FT 7 1 1 2 3 - -
SP 19 1 0 9 0 6 3
LU 13 1 0 3 1 2 6

IS 3 0 2 1 0 - -
BT 15 - - 9 0 3 3

EP 1 - - - - 0 1

Total 78 16 3 26 5 15 13

passed generated OpenMP directives in the percentage of the for-loops sequence.
The speedup results for the MG and CG benchmarks, as illustrated in Fig. 15,

correspond to the number of parallelized for-loops listed in Table 4. A detailed
examination of the for-loop types in the MG and CG source code reveals that
OMP-CodeT5+ effectively parallelizes short and medium-sized loops, which are
predominant in these benchmarks. The average token of the long for-loop sequence
from the MG benchmark is 555.5 tokens and the longest token is 641 tokens. This
is the shortest average token from the long for-loop sequence type.

In the case of medium speedup results, the generated OpenMP directives for
the SP, LU, and FT benchmarks fail to fully exploit the potential for increased
speedup. Table 4 shows two scenarios contributing to the moderate speedup
in these benchmarks. The first scenario involves the FT benchmark, where
OMP-CodeT5+ failed to parallelize the medium for-loop sequences, despite the
generated OpenMP directives being similar to the original FT benchmark source
code. The unsuccessful parallelization occurs in three core functions of the FT
computation: “cffts1”, “cffts2”, and “cffts3”. Listing 11 shows parallel for-
loop in cffts1 function from the original OpenMP FT benchmark. This function,
called from the parallel directive, allows the variables declaration inside this

56

 0

 0.2

 0.4

 0.6

 0.8

 1

Short Medium Long

P
a
s
s

D
ir
e
c
ti
v
e
s

(%
)

For-loops Size

Figure 17: Overall Pass Generated OpenMP Directives in Each Size of For-loop

function to be automatically privatized. However, OMP-CodeT5+’s limitations
in code modification resulted in its failure to identify the variables that need to
be privatized and shared across threads to ensure the FT benchmark operates
correctly. The parallel code in the other two functions, “cffts2”, and “cffts3”,
are very similar and have the same problems as the “cffts1” function.

In the second case involving the SP and LU benchmark, the OMP-CodeT5+
failed to parallelize the long sequence for-loops within these two benchmarks.
The average number of tokens in the long for-loop sequences is 1,976 for the SP
benchmark and 2,759 for the LU benchmark, with the longest for-loops consisting
of 4,151 tokens in SP and 5,282 tokens in LU. For the SP benchmark, the failed
parallelizations occurred in the functions, “x_solve”, “y_solve”, and “z_solve”.
Similarly, for the LU benchmark, the functions, “blts”, “buts”, “l2norm”, and
“rhs”, experienced failed parallelizations. The OMP-CodeT5+ model cannot
recognize the necessity to privatize and share variables within these long for-loop
sequences.

The no-speedup result of the BT benchmark shares the same problem with the

57

Listing 10: Parallel For-loops by The OMP-CodeT5+ Model in the cffts1 Function
FT Benchmark
#pragma omp parallel for
for(k=0; k<d3; k++){

for(jj=0; jj<=d2-FFTBLOCK; jj+=FFTBLOCK){
for(j=0; j<FFTBLOCK; j++){

for(i=0; i<d1; i++){
y1[i][j] = x[k][j+jj][i];

}
}
cfftz(is, logd1, d1, y1, y2);
for(j=0; j<FFTBLOCK; j++){

for(i=0; i<d1; i++){
xout[k][j+jj][i] = y1[i][j];

}
}

}
}

Listing 11: Parallel For-loops in the cffts1 Function from Original OpenMP FT
Benchmark
static void cffts1(...)
{

int logd1;
int i, j, k, jj;
...
#pragma omp for
for(k=0; k<d3; k++){

for(jj=0; jj<=d2-FFTBLOCK; jj+=FFTBLOCK){
for(j=0; j<FFTBLOCK; j++){

for(i=0; i<d1; i++){
y1[i][j] = x[k][j+jj][i];

}
}
cfftz(is, logd1, d1, y1, y2);
for(j=0; j<FFTBLOCK; j++){

for(i=0; i<d1; i++){
xout[k][j+jj][i] = y1[i][j];

}
}

}
}

}

58

SP benchmark. OMP-CodeT5+ failed to parallelize the long for-loops sequence
in the three functions, “x_solve”, “y_solve”, and “z_solve”. They shared the
same function name but the algorithm inside is different.

The reason for the poor performance in generating the OpenMP directive
for the long for-loops sequence is the original configuration used in creating
the tokenized data for the training process, “max_length” configuration. This
configuration will dictate the maximum size of the generated tokenized training
data and the tokenized labeled data. The default setting is 512 tokens long.
It impacts the performance of OMP-CodeT5+ from the loss of information in
training data that has longer tokens and generating accuracy from the long input
prompt. However, the benefit of this configuration is to control memory usage
during the fine-tuning phase. Increasing the sequence size of the training data
can lead to a longer training time.

Impact of Data Imbalance on Model Accuracy The training dataset, the
ratio of the three for-loop sequences shown in Fig. 18. The ratio of the training
data is not balanced toward the longer for-loop sequence data, nearly half of the
dataset consists of short size for-loops. This indicates that in parallel programs
in the real-world scenario, simpler short size for-loops is frequently utilized in
the codebase. The medium size for-loops also constitute a significant portion,
suggesting that they are also quite common in typical codebases. The reason for
a small number of large size for-loops might be their relatively less practical in
general scenarios because of the large size for-loops complexity and low reusable
in other codebases due to the specific requirement of their functions.

The result shows in Fig. 17, the accuracy of the generated OpenMP directive
for large size for-loops is lower than the OpenMP directives generated for the other
two sizes. There are three reasons for the lower accuracy. First, large size for-loops
constitute only 9.98% of the training dataset. This limited exposure may not be
sufficient for the model to learn the complex patterns and intricacies associated
with larger loops. Second, given the dominance of short and medium size loops
in the training data, the model might be overfitting to these sizes, optimizing
its parameters in a way that is less effective for large loops. Last, the tokenized
parameter “max_length” that limited the large size for-loops to be fully trained,

59

Short

49.02%

Medium

41.00%

Long
9.98%

Figure 18: Training Data Ratio divided by Tokens

the default parameter is set at 512 tokens. Most of the failed generated OpenMP
directives for large size for-loops have more than 1,500 tokens.

Considering there is a practical use of the large size for-loops, the accuracy for
OpenMP directives generated by the OMP-CodeT5+ needs to be increased. There
are a few approaches that can be applied to address this problem. Increasing the
training data is the easiest approach. However, the current dataset is gathered
from public GitHub repositories that have more than 10 stars. The decision
to filter only the repositories that have more than 10 stars is the quality and
reliability of the code, but this decision led to abandoning the newer code from the
newly created repositories. To build the next dataset, the gathering method needs
a new approach, to increase more quality and reliability of data from multiple
sources.

The second approaches, tuning the parameter “max_length” increase the the

60

 0

 5

 10

 15

 20

 25

s
c
h
e
d
u
le

p
ri
v
a
te

n
u
m
_
th
re
a
d
s

s
h
a
re
d

re
d
u
c
ti
o
n

d
e
fa
u
lt

c
o
lla
p
s
e

fi
rs
tp
ri
v
a
te

la
s
tp
ri
v
a
te

%

in

T
ra
in
in
g

D
a
ta

Clauses

Figure 19: Number of Clauses in Training Data

input tokens for training the OMP-CodeT5+ using the specialized training sessions.
Increasing the tokens of training input will impact memory usage during the
training and the training time. By conducting targeted training sessions specifically
on large for-loops with the increased input token parameter, “max_length”. This
can involve fine-tuning the model using a dataset predominantly composed of
large loop examples.

Number of Generated Clauses Fig. 19 shows the number of OpenMP clauses
in the training data. The most clauses in the dataset are “schedule”. This
indicates a strong focus on controlling the iteration scheduling of loops in parallel
regions. The second and third most used clauses in the, for ”private” is necessary
for parallelizing the source code, it will prevent the data race problem among the
thread. For the “num_threads”, significant presence in the dataset reflects the
importance of managing variable scopes and thread counts in parallel programming.
The presence of the “shared” clause lower than the “private” clause, indicates
the need to share the data across threads is lower than privatizing the data. The
low presence of the “reduction” and “default” leads to the OMP-CodeT5+

61

 0

 5

 10

 15

 20

 25

private schedule default reduction shared

#

in

G
e
n
e
ra
te
d

C
la
u
s
e
s

Clauses

Figure 20: Number of Clauses in Generated Directives

harder to capture the code pattern to identify the need to use this clause. In
the rest of the clauses, “collapse”, “firstprivate”, and “lastprivate”, the
impact of the very low presence of these three clauses, especially “lastprivate”
at 1.1% in the training data, cause the OMP-CodeT5+ to cannot capture the
code pattern of these three clauses and it get bias from the other clauses like
“private” and “schedule”.

Fig. 20 shows the number of generated OpenMP clauses. The high appearance
of the “private” clause ensures that variables are treated as private to each thread,
which is crucial for avoiding data races and ensuring correct parallel execution.
This aligns with the number of “private” in the training data that reflect the
common need in parallel programming to control the scope of variables and prevent
unintended sharing among threads. The high number of the generated “schedule”
indicates a strong emphasis on controlling how loop iterations are divided among
threads and align with the number of clauses in training data. The “default”
clause that appears in the generated results suggests the model recognizes the
need to define default data-sharing attributes for variables within parallel regions,

62

 0

 10

 20

 30

 40

none private schedule default reduction shared

Passed
Failed

#

in

G
e
n
e
ra
te

C
la
u
s
e
s

Clauses

Figure 21: Number of Passed and Failed Clauses in Generated Directives

which can simplify code and reduce the need for explicit declarations. The number
of the “reduction” clause indicates the model includes functionality to handle
reduction operations. For the “shared” clause, there are two generated clauses.
The main reason is the “shared” keyword is the same as the setting used with
the “default” clause. The model may not acknowledge the difference with the
small training data, “shared” at 10.6% and “default” at 5.7%.

Fig. 21 shows the number of the parallel for-loops that decorate with the
OpenMP directives generated by the OMP-CodeT5+ model. The results show
that most of the generated clauses, “private”, “scheule”, “default”, and
“reduction”, can parallelize the for-loops without problems. For the “shared”,
this result cannot determine the effectiveness of the generated “shared” clause
by OMP-CodeT5+ with two cases and 50% accuracy.

4.5.3 Analysis of the Generated Clauses

Generated Scheduling Types For Schedule Clause Fig. 22 shows the
ratio of the scheduling type used with the “schedule” clause. There are five

63

static

48.36%

dynamic

40.32% guided

7.70%
runtime2.47% auto1.14%

Figure 22: Ratio of Schedule Kind in Training Data

scheduling types for the “schedule”, “static”,“dynamic”, “guided”, “runtime”,
and “auto”. The number of static and dynamic scheduling keywords data present
in the training data is balanced. The other scheduling keywords have low utilization
in real-world scenarios. The imbalance of the scheduling keywords in the dataset
will cause the model to generate bias toward static and dynamic scheduling. The
reason static and dynamic have more usage due that these two scheduling are
well-suited for each scenario. The static scheduling is good where a workload
of iterations is uniform, meaning each iteration takes approximately the same
amount of time to execute. On the other hand, dynamic keyword scheduling is
ideal for scenarios with non-uniform workloads where some iterations might take
significantly longer to execute than others.

Fig. 20 shows 19 “schedule” clause had been generated. In the 19 of the
generated “schedule” clause, there are two scheduling types that have been gen-

64

Listing 12: Parallel For-loops Utilize private Clause by The OMP-CodeT5+ Model
in the compute_rhs Function BT Benchmark
#pragma omp parallel for private(i,j,k,m)
for(k=1; k<=grid_points[2]-2; k++){

for(j=1; j<=grid_points[1]-2; j++){
for(i=1; i<=grid_points[0]-2; i++){

for(m=0; m<5; m++){
rhs[k][j][i][m]=rhs[k][j][i][m]*dt;

}
}

}
}

Listing 13: Parallel For-loops Utilize private Clause by The OMP-CodeT5+ Model
in the zero3 Function MG Benchmark
#pragma omp parallel for private(i2,i1)
for(i3 = 0;i3 < n3; i3++){

for(i2 = 0; i2 < n2; i2++){
for(i1 = 0; i1 < n1; i1++){

z[i3][i2][i1] = 0.0;
}

}
}

erated by the OMP-CodeT5+ model, with 18 “static”, and with one “dynamic”.
However, there are three failed generated OpenMP directives that utilize the
“schedule” clause. All failed “schedule” clauses utilize the static scheduling is
appear only 16.67% from the NPB source code. In conclusion, the OMP-CodeT5+
captures the code pattern for utilizing static and dynamic scheduling and can
generate the correct scheduling types for the “scheule” clause. However, the
capability of the OMP-CodeT5+ to generate the less of the scheduling types,
guided, runtime, and auto, cannot be determined at this moment because of the
generated OpenMP directives from the NPB benchmark do not include those
keywords.

Generated Variables For private Clause Listing. 12 shows the parallelized
for-loop by the OMP-CodeT5+ that recognizes the variables to privatize. In
this listing, OMP-CodeT5+ recognized the variables “i”, “j”, “k”, and “m” in the

65

Listing 14: Passed Parallel For-loops Utilize shared Clause by The OMP-CodeT5+
Model in the ssor Function LU Benchmark
#pragma omp parallel for private(k,j,i,m) shared(u,rsd)
for(k=1; k<nz-1; k++){

for(j=jst; j<jend; j++){
for(i=ist; i<iend; i++){

for(m=0; m<5; m++){
u[k][j][i][m]=u[k][j][i][m]+tmp*rsd[k][j][i][m];

}
}

}
}

nested for-loops to prevent other threads access these variables and create the
race condition between threads. For-loop that shows in Listing 12 is one of the
parallel for-loops that utilizes the “private” clause perfectly with the four nested
for-loops. Compared to the Listing 13, the for-loop that shows in this listing has
three nested for-loops but the OMP-CodeT5+ model miss recognizes the variable
from one nested for-loops, “i3”. This parallel for-loops by the OMP-CodeT5+
didn’t show the error sign during the evaluation run. However, an error is still
present in the code. Listing 4 shows the normal for-loop, not nested, without
OpenMP “private” clause. The code in this Listing also needs to privatize
the variable “j” to prevent the race condition among the multi threads. Also,
OMP-CodeT5+ didn’t recognize variable “j” that needs to be privatized.

In conclusion for the generated “private” clause, the OpenMP directives with
the “private” clause that was correctly generated by the OMP-CodeT5+ model
must have more than or equal to four nested for-loops. The input nested for-loop
that has less than four nested for-loops, OMP-CodeT5+ can generate some of the
variables for the “private” clause.

Generated Variables For shared Clause Listing 14 shows the passed paral-
lelized for-loop by the OMP-CodeT5+ model that recognizes the variable correctly
and utilizes the “shared” clause. The purpose of this nested for-loop is to update
the item in the array “u” by summing the previous value of items in array “u”
with the multiplication of variable “tmp” and item in array “rsd”. Compared to
the Listing 15, the parallelized for-loop by the OMP-CodeT5+ failed to run this

66

Listing 15: Failed Parallel For-loops Utilize shared Clause by The OMP-CodeT5+
Model in the l2norm Function LU Benchmark
#pragma omp parallel for private(k,j,i,m) shared(v,sum)
for(k=1; k<nz0-1; k++){

for(j=jst; j<jend; j++){
for(i=ist; i<iend; i++){

for(m=0; m<5; m++){
sum[m]=sum[m]+v[k][j][i][m]*v[k][j][i][m];

}
}

}
}

for-loop correctly. The purpose of this nested for-loop is to update the item in
the array “sum” by summing the previous value of items in array “sum” with the
power of two of values from items in array “v”. The generated clauses still do not
iron out the possibility of the race condition when the variables “k”, “j”, and “i” are
different but variable “m” is the same in the parallel region across the threads, the
retrieved the same value from array “sum” across threads and update the incorrect
value.

In conclusion for the generated “shared” clause, the OpenMP directives with
the “shared” can generate the correct variables for the “shared” clause in some
cases that the OMP-CodeT5+ models have learned previously with the training
data. Another reason for the incorrectly generated variables for “shared” is
the variable’s names. The self-attention mechanism function that calculates the
relationship weight among the sentence, the same variable name that is used with
one clause in one source code can appear with other clauses in other source codes.
The intention of the variables can be different in each scenario but it can share
the same variable names. The training data may need to normalize the variable
names to indicate the usage purpose in the pre-processes data phase, for instance,
the variable to use with “private” should change to “p1”, “p2”, “p3” and so on,
to isolate the variable use with different clauses when training the model.

Generated Variables For Reduction Clause Listing 16 shows the passed
parallelized for-loop by the OMP-CodeT5+ model that recognizes the variable
correctly and utilizes the “reduction” clause. The purpose of this for-loop is to

67

Listing 16: Passed Parallel For-loops Utilize reduction Clause by The OMP-
CodeT5+ Model in the conj_grad Function CG Benchmark
#pragma omp parallel for reduction(+:rho)
for(j = 0; j < lastcol - firstcol + 1; j++){

rho = rho + r[j]*r[j];
}

calculate the summation from all the power of two values of each item in array
“r”. The OMP-CodeT5+ model can generate the “reduction” clause and identify
the variable “rho” as a reduction-identifier and the reduction-modifier, “+”, from
the input source code. Compared to the Listing 4, the OMP-CodeT5+ cannot
generated the “reduction” clause with variables, even though, the input source
code has a similar pattern. In conclusion for the generated “reduction” clause,
the training data for the “reduction” clause is not enough for the training data
to recognize the pattern for utilizing this clause as shown in Fig. 19.

4.5.4 Failures of OMP-CodeT5+ in OpenMP Directive Generation

Failure in Parallelizing EP Benchmark The OMP-CodeT5+ failed to
parallelize the EP benchmark completely and could not produce any speedup
result because the EP benchmark has only one parallel for-loop as shown in
Table 3. The reason generated OpenMP directives and clauses failed to parallelize
EP benchmark source code even if it has similar directives and clauses is the
OMP-CodeT5+ cannot identify which variables need to be privatized and which
variables need to be shared. In the original EP benchmark source code shown in
Listing 18 privatize the variable by declaring the variable after the thread has
been forked, by declaring after forking the thread the variable will be isolated
from other threads and can be used in this thread only, preventing it from getting
read and write from other threads. However, the OMP-CodeT5+ scope does
not include modifying the code to suit the parallel environment and only focuses
on generating OpenMP directives and clauses from raw for-loops source code as
shown in Listing 17. Many variables are not privatized and allow other threads
to read and write the variable address, resulting in EP benchmark source code
parallelized by OMP-CodeT5+ failing the benchmark verification steps.

However, privatizing the variables using the original OpenMP EP source code

68

Listing 17: Parallelized For-loops by The OMP-CodeT5+ Model from EP Bench-
mark
#pragma omp parallel for reduction(+:sx,sy)
for(k=1; k<=np; k++){

kk = k_offset + k;
t1 = S;
t2 = an;
for(i=1; i<=100; i++){

ik = kk / 2;
if((2*ik)!=kk){t3=randlc(&t1,t2);}
if(ik==0){break;}
t3=randlc(&t2,t2);

kk=ik;
}
vranlc(2*NK, &t1, A, x);
for(i=0; i<NK; i++){

x1 = 2.0 * x[2*i] - 1.0;
x2 = 2.0 * x[2*i+1] - 1.0;
t1 = pow2(x1) + pow2(x2);
if(t1 <= 1.0){

t2 = sqrt(-2.0 * log(t1) / t1);
t3 = (x1 * t2);
t4 = (x2 * t2);
l = max(fabs(t3), fabs(t4));
q[l] += 1.0;
sx = sx + t3;
sy = sy + t4;

}
}

}

69

Listing 18: Parallel For-loops from Original OpenMP EP Benchmark
#pragma omp parallel
{

double t1, t2, t3, t4, x1, x2;
int kk, i, ik, l;
double qq[NQ];
double x[NK_PLUS];

#pragma omp for reduction(+:sx,sy)
for(k=1; k<=np; k++){

...
#pragma omp critical
{

for(i = 0; i <= NQ - 1; i++) q[i] += qq[i];
}

}
}

approach is more convenient and it ensures that the variables are isolated from
other threads. If the OMP-CodeT5+ user modifies the generated OpenMP direc-
tives and clauses by adding the private and shared clauses, the EP benchmark can
run in multi-thread and pass the verification step. The modify OpenMP directive is
“#pragma omp parallel for reduction(+:sx,sy,q) private(ik,kk,i,l

,t1,t2,t3,t4,x1,x2,x,timers_enabled) shared(an, np, k_offset)”

Failure to Recognize Pointers in OpenMP Directive Generation List-
ing 19 shows the syntax error of the generated directive by the trained model.
The cause of the error is the reduction clause cannot be used with the pointer.
In this case, the trained model failed to recognize the “rnmu” as a pointer and
used this pointer with the reduction clause. Due to the small training data that
led to the trained model not recognizing yet that the reduction clause cannot be
used with the pointer. Efforts were made to increase the training data, but the
availability of high-quality OpenMP source code is very limited. Consequently, it
was not possible to create a comprehensive training dataset that would enable
CodeT5+ to fully learn the correct and incorrect OpenMP syntax.

High Failed Rated of OpenMP Directives Without Additional Clauses
Fig. 21 shows the high percentage of the failed parallelized for-loop with the direc-

70

Listing 19: The Generated Directive Has Syntax Error, For-loop in norm2u3
function From MG Benchmark
...

*rnmu = 0.0;
#pragma omp parallel for default(shared) private(i1,i2,i3,a) reduction(+:s)

reduction(max:rnmu)
for(i3 = 1; i3 < n3-1; i3++){

for(i2 = 1; i2 < n2-1; i2++){
for(i1 = 1; i1 < n1-1; i1++){

s = s + r[i3][i2][i1] * r[i3][i2][i1];
a = fabs(r[i3][i2][i1]);
if(a > *rnmu){*rnmu = a;}

}
}

}
...

tives that do not have additional any OpenMP clauses, “#pragma omp parallel

for”. The reason for this high percentage is the training data don’t have the
full context of the for-loops. There are two identified root causes. First, the
label data in the dataset didn’t include the clauses that were declared outside
the “#pragma omp parallel for” and “#pragma omp for” scope, for instance,
Listing 5 shows the CG benchmark source code, the “private(it,i,j,k)” clause
that declared with “#pragma omp parallel” directives will not include with
the label data. The second cause, the variables that are declared inside the
parallel region are automatically privatizing, for instance, Listing 7 shows the
“x_solve” function call within the parallel region and the variables that declared
in the “x_solve” function will be automatically privatized for each thread, the
pre-processing process does not include these data that declared with this style
into the label data. The OMP-CodeT5+ is training with some data that don’t
have full context because of these two root causes.

To increase the percentage of the passed parallelized for-loop by the OMP-
CodeT5+ model, the pre-preprocessing processes need to be modified. The
pre-processing phases need to include the whole context of the for-loops, the trace
of the variables used in the for-loop scope. First, the labeling of the data process
needs to include the clauses that are declared outside the current for-loop scopes.
Second, the training data needs to utilize the dataflow of each variable to identify

71

Listing 20: Parallel For-loops by The OMP-CodeT5+ Model in the main Function
from CG Benchmark
#pragma omp parallel for default(shared) private(j) reduction(+:norm_temp1,

norm_temp2)
for(j = 0; j < lastcol - firstcol + 1; j++){

norm_temp1 = norm_temp1 + x[j] * z[j];
norm_temp2 = norm_temp2 + z[j] * z[j];

}

the procedure to manage the variable and include it in the training data.

4.5.5 Nested For-loops and incorporating Contextual Information in
Training Data

The current capability of the OMP-CodeT5+ is focused on handling individual
for-loop or whole nested for-loops. In future work on the parallelizable for-loop
classification model, the training dataset will include the nesting level of loops as
one of the contextual features to assist in determining whether the nested for-loops
are parallelizable or not. The output of the model will be streamlined at the end
to select only the outermost for-loop in the nested loops for parallelization.

Furthermore, incorporating the additional contextual information about the
variable and source code can increase the accuracy of the model in identifying
variables and matching them with suitable OpenMP clauses. The contextual
information of the variables can be helpful in revealing the data type of each
variable, which plays an important role in this process. As shown in Fig. 19, if
the training dataset includes information identifying the data types of variables,
such as “rnmu” as a pointer, the model can learn that pointer variables cannot be
used with the reduction clauses.

4.5.6 Evaluation of the Practicality of OMP-CodeT5+ in Parallel
Programming

Listing 21 and Listing 20 show the parallelized for-loop by the OMP-CodeT5+
from FT and CG benchmark that have private clause and reduction clause. The
OMP-CodeT5+ model will be a good companion to the new parallel developers
by following the OMP-CodeT5+ generated OpenMP directives as a guide. As

72

Listing 21: Parallel For-loops by The OMP-CodeT5+ Model in the com-
pute_indexmap Function from FT Benchmark
#pragma omp parallel for default(shared) private(i,j,k,kk,kk2,jj,kj2,ii)
for(k=0; k<d3; k++){

kk = ((k+NZ/2) % NZ) - NZ/2;
kk2 = kk*kk;
for(j=0; j<d2; j++){

jj = ((j+NY/2) % NY) - NY/2;
kj2 = jj*jj+kk2;
for(i=0; i<d1; i++){

ii = ((i+NX/2) % NX) - NX/2;
twiddle[k][j][i] = exp(ap*(double)(ii*ii+kj2));

}
}

}

shown in Fig. 17, the high accuracy of the passed parallelized source code by OMP-
CodeT5+ for the small and medium complexity source code will help developers
reduce the manual effort required to write boilerplate parallel constructs, allowing
programmers to focus on higher-level logic. The OMP-CodeT5+ can consistently
apply parallelization patterns and best practices, ensuring uniformity across the
codebase.

The advantage of fine-tuning the CodeT5+ model based on the transformer
models, these models excel at recognizing patterns in the datasets. By training
on diverse for-loop patterns of well-parallelized code, the OMP-CodeT5+ can
learn and replicate effective parallelization strategies, potentially surpassing less
experienced programmers in some aspects. The model can capture and utilize
the context of the code. This contextual understanding enables the generation of
code that is not only syntactically correct but also semantically meaningful.

At the current state of the OMP-CodeT5+ to parallelized source code, the
developers can reduce the developing time by parallelizing the common source
code and focusing on the specific function of the programs. The OMP-CodeT5+
shows the capability to recognize the common parallel source code patterns that
had been trained with the training data and generate the correct parallelized
source code that can increase the performance of the program as shown in Fig. 15.

73

4.6 Conclusion

In conclusion, the OMP-CodeT5+ model shows a promising capability to paral-
lelize C/C++ source codes and can be positioned as a viable alternative to existing
automatic parallelization tools based on static analysis. The model effectively
generates OpenMP directives for source codes with low to intermediate complexity.
However, for highly complex source codes, some generated directives contain
syntax errors and do not enhance performance. OMP-CodeT5+ successfully
generates compilable OpenMP directives for 73% of the parallel for-loops in the
NPB benchmarks, surpassing AutoPar-Clava’s success rate of 58%. The higher
success rate of OMP-CodeT5+ indicates its ability to parallelize a broader range of
loop patterns. In certain cases, it achieves speedups comparable to those obtained
by human developers, showing its effectiveness in parallel code generation.

Future work will focus on integrating additional features of source codes, includ-
ing dataflow graphs, to enhance the model’s ability to accurately parallelize source
code and manage a wider range of parallel patterns and algorithms. Dataflow
analysis is considered useful for identifying variables declared outside the loops
that require privatization. Additionally, the current dataset is constrained by
its size and the limited variety of parallel patterns it covers. To address this
limitation, the training dataset will be expanded by collecting OpenMP source
codes from a wider range of public repositories beyond GitHub.

74

5 Automatic Parallelization Tool based on LLM

This chapter will show the expected outcomes of the automatic parallelization
with OpenMP using LLM as shown in Fig. 3. The overall workflow incorporates
two models: the parallelizable for-loop classification model detailed in Chapter
3, and the OpenMP directive generation model, OMP-CodeT5+, described in
Chapter 4. Additionally, the advantages of employing this LLM-based automatic
parallelization tool for parallel program development will be examined, along with
an overview of the target users of this study.

5.1 The Expected Results of Automatic Parallelization Tool
based on LLM

Table 5 shows the number of successfully parallelized for-loops by the proposed
LLM-based automatic parallelization tool on NPB. The benchmarks are cate-
gorized based on their speedup results from Chapter 4 into three groups: high
speedup, medium speedup, and no speedup. The table is divided into three main
sections. The first section lists the number of parallel for-loops in the original NPB.
The second section details the classification results from the parallelizable for-loop
classification model, indicating the number of for-loops identified as parallelizable
versus those deemed not parallelizable. The third section reports the outcomes
from the OMP-CodeT5+ model, showing the number of successful (passed) and
unsuccessful (failed) OpenMP directive generations for the loops identified as
parallelizable in the second section.

The proposed LLM-based automatic parallelization tool achieved parallelization
for 53% of the for-loops that are parallelized in the original NPB. Upon closer
examination, the parallelizable for-loop classification model identified 75% of the
for-loops that were parallelized in the original NPB as parallelizable. Subsequently,
the OMP-CodeT5+ model successfully generated correct OpenMP directives for
71% of these identified parallelizable for-loops. Consequently, the overall success
rate of the proposed parallelization method stands at 53%.

Figure 23 provides a visual representation of the results summarized in Table
5. The figure distinguishes between the for-loops in the original NPB that
were identified as parallelizable and successfully generated with correct OpenMP

75

Table 5: Detailed Results of Parallelization in Parallel NPB For-loops: Identifica-
tion and Generation Success Rates

Name # of Parallel Parallelizable Generation

For-loops Yes No Passed Failed

MG 11 10 1 10 0
CG 9 9 0 9 0

FT 7 7 0 3 4
SP 19 11 8 9 2
LU 13 8 5 3 5

IS 3 2 1 0 2
BT 15 11 4 8 3
EP 1 1 0 0 1

Total 78 59 19 42 17

 0

 10

 20

MG CG FT IS BT SP LU

Parallelizable and Passed Not Parallelizable or Failed

#

in

P
a
ra
lle
l
F
o
r-
lo
o
p
s

Benchmarks

Figure 23: Parallelization Success and Failure Rates in Parallel NPB For-loops by
Parallelizable For-loops Classification Model and OMP-CodeT5+ Model

directives by the OMP-CodeT5+ model (indicated in purple), and those that
were either not identified as parallelizable or for which the OMP-CodeT5+ model
failed to generate correct OpenMP directives (indicated in green).

76

High Speedup The results of the proposed automatic parallelization tool ap-
plied to the MG and CG source codes illustrate its effectiveness in identifying
and parallelizing for-loops. Specifically, the tool identified a significant number of
parallelizable for-loops and successfully generated the appropriate OpenMP direc-
tives for both MG and CG benchmarks. This capability is further substantiated
by the observed speedup, which exceeds twice the performance of the original
single-threaded implementations for these benchmarks.

Medium Speedup The speedup results for the parallelized FT source code using
the proposed automatic parallelization tool remain unchanged after incorporating
the classification results from the parallelizable for-loop classification model. This
is because the classification model successfully identifies all parallel for-loops in
the FT source code. Consequently, the parallelized FT source code exhibits the
same performance improvements as depicted in Figure 15.

In contrast, when the parallelizable for-loop classification model and the OMP-
CodeT5+ model are applied to the SP source code, the number of successfully
parallelized for-loops is reduced by seven. This reduction in parallelized loops is
estimated to decrease the speedup by approximately 43%.

Similarly, for the LU source code, after integrating the parallelizable for-
loop classification model and the OMP-CodeT5+ model, only three for-loops
are successfully parallelized. This significant reduction in parallelized loops is
projected to decrease the speedup to less than 1.2×, potentially resulting in no
significant performance improvement.

No Speedup The proposed automatic parallelization tool was unsuccessful in
parallelizing the IS source code. Despite the parallelizable for-loop classification
model identifying two out of three for-loops as parallelizable, the OMP-CodeT5+
model failed to generate valid OpenMP directives for these loops. As a result, the
parallelized IS source code did not achieve any speedup.

Similarly, the BT source code did not exhibit significant speedup when par-
allelized using the proposed tool. As illustrated in Figure 15 and Table 3, the
parallelization effort did not yield notable performance improvements. Even after
incorporating the parallelizable for-loop classification model, which further reduced
the number of parallelized for-loops, the speedup results remained unchanged.

77

5.2 Advantages of using the Proposed LLM-based Auto-
matic Parallelization Tool

The proposed automatic parallelization tool offers advantages by allowing develop-
ers to concentrate on high-complexity for-loops while delegating the parallelization
of lower-complexity for-loops to the tool. This approach leverages the tool’s
capabilities to efficiently manage small to medium complexity loops, achieving
performance improvements comparable to manually parallelized code. This effec-
tiveness is evidenced in Fig. 15 and Fig. 23, where the tool’s performance closely
matches that of human-optimized parallelized code, such as the parallelized MG
source code.

The distribution of for-loop sizes, depicted in Fig. 18, highlights that small
and medium complexity for-loops constitute 90% of all for-loops in public GitHub
repositories. Consequently, the automatic parallelization tool can substantially
reduce the time developers spend on parallelization tasks. Furthermore, the tool
demonstrates a high accuracy rate, correctly parallelizing over 80% of small and
medium complexity for-loops, as shown in Fig. 17.

5.3 Target Users

The proposed LLM-based automatic parallelization tool is designed to cater to
both intermediate or expert parallel programmers and beginners. For intermediate
and expert users, the tool offers the advantage of automating the parallelization
of small and medium complexity for-loops, thereby allowing these programmers
to focus on more complex aspects of their code. This automation streamlines the
development process, as these users can rely on the tool to handle less complex
parallelization tasks efficiently.

For beginner parallel programmers, the tool serves an educational function by
guiding them in identifying parallelizable for-loops and generating the appropriate
OpenMP directives. By learning from the tool’s parallelization of small and
medium complexity for-loops, beginners can gain a deeper understanding of the
principles of parallel programming. The tool incorporates both the paralleliz-
able for-loop classification model and the OMP-CodeT5+ model, providing a
comprehensive framework for learning and applying parallelization techniques.

78

6 Conclusion and Future Work

This dissertation leveraged Code LLMs to replicate and enhance the capabilities
of conventional static analysis-based automatic parallelization tools. I analyze
that an automatic parallelization tool fundamentally consists of the following
two tasks: (1) identifying independent loops in the input source code and (2)
generating functionally identical parallel versions of independent loops. In this
dissertation, I proposed and evaluated an LLM-based model to perform each task.

For the first task, a parallelizable for-loop classification model based on the
CodeT5 model is proposed. This model takes advantage of the code understanding
capabilities of Code LLMs and classifies whether a given code snippet containing
a for-loop is parallelizable or not. For the second task, a generative model named
OMP-CodeT5+ based on the CodeT5+ model is proposed. This model generates
an appropriate OpenMP directive including clauses such as privatization clauses
for a given parallelizable for-loop.

Both models were fine-tuned with CodeT5/CodeT5+ models based on the
transformer model using C/C++ OpenMP source code from public GitHub
repositories. To ensure the training data quality, the gathered C/C++ OpenMP
source code was pre-processed, including filtering repositories with stars, dropping
duplicated data, and filtering out low-quality for-loops.

Both models were evaluated with the NAS parallel benchmark suite, which
contains eight benchmarks. The baseline model compared with the parallelizable
for-loops classification model was a state-of-the-art automatic parallelization
using static analysis techniques named AutoPar-Clava. For OMP-CodeT5+, the
baselines were handed parallelized OpenMP source code and AutoPar-Clava.

The parallelizable for-loops classification model was evaluated by the F1 score
of correctly identified parallel for-loops. The parallelizable for-loops classification
model achieved an F1 score of 0.764 in the NPB source code, whereas AutoPar-
Clava achieved an F1 score of 0.669. The parallelized source code generated by
OMP-CodeT5+ was classified into three categories by their speedup: high speedup,
medium speedup, and no speedup, and the number of parallel loops each approach
can be parallelized. The results speedup of parallelized NPB source code using
OMP-CodeT5+ were as follows. Three of the eight benchmarks achieved high
speedup, two achieved medium speedup, and three benchmarks did not gain any

79

speedup. OMP-CodeT5+ successfully generated compilable OpenMP directives
for 73% of the parallel for-loops in the NPB benchmarks, whereas the success rate
was only 58% for AutoPar-Clava.

The parallelizable for-loops classification model could identify parallel for-loops
up to a certain level of complexity. The main reason was the amount of training
data for classifying each parallel pattern present in the dataset. At the current
state, this model can only identify parallel patterns of low to medium complexity
because there are many low to medium-complexity source codes scattered across
public GitHub repositories. However, the amount of highly complex parallel
source code is rare and thus limits the model performance in identifying the
highly complex parallel source code. Another reason that the model mispredicts
is because of the scope of the pre-processing step. The scope of each variable
is important in determining the potential of the parallel for-loops but the code
snippets in the training data often do not include the variable definitions that
appear outside the for-loops. This is another point where the parallelizable
for-loops classification model performance could be increased.

In conclusion, both the parallelizable for-loop classification model and OMP-
CodeT5+ demonstrate their potentials to replace the existing approach of auto-
matic parallelization tools utilizing static analysis techniques. The results from
both models show signs that the Code LLMs could replace static analysis tech-
niques and have a large room for improvement to increase the model performance
in identifying the parallelizable for-loops and generating the OpenMP directives.
At the moment, the main problem is the lack of the highly complex parallel code
to increase the dataset. Because of this reason, the performance of automatic
parallelization tools based on LLMs is still limited in identifying and generating
highly complex source codes.

In the future, the pre-processed training data needs to incorporate more
contextual information of the input source code to increase the model capability
for identifying and generating the parallel source code. Additionally, the training
dataset needs to be significantly enlarged to handle highly complex source codes.

80

Acknowledgments

I wish to thank the following people for their guidance, support, and assistance.
Without these people, this work would not have been possible.

Firstly, I would like to express my appreciation to my research supervisor,
Professor Hajimu Iida. He accepted me at his Software Design and Analysis
Laboratory (SDLab) during one of the hardest crises in the world for humanity,
the COVID-19 pandemic. Without his support and advice, this work would not
have been possible.

Secondly, I would like to thank Professor Kazutoshi Fujikawa for taking the
time to review, discuss, and provide feedback on my work. His feedback helped
steer this work in the right direction.

I wish to thank my advisors, Associate Professor Kohei Ichikawa, Assistant
Professor Keichi Takahashi, and Assistant Professor Yutaro Kachiwa for their con-
tinued support and guidance in my research work as well as my life in Japan, Their
valuable suggestions and comments brought this research to fruition. Without
them, I would not have successfully accomplished the doctoral course.

I want to express my gratitude to late Assistant Professor Putchong Uthayopas
at the High Performance Computing and Networking Center for his guidance from
my bachelor year until the last day of his life. He was my bachelor’s senior project
and master’s thesis advisor. His knowledge and advice both in the classroom
and outside the classroom encouraged me to become a wise and good person. He
introduced me to the world of high-performance computing, offered me many
opportunities to learn various technologies, and nurtured me for multiple years.
Lastly, once he told me one of his personal goals was that “Right now, I hold the
torch I received from my supervisor and will pass this torch to the next generation”.
I also will pass on his knowledge and advice to the next generations.

I want to express my thanks to my master thesis co-advisor Professor Chantana
Chantrapornchai who gave me many advices, opportunities to express my creation
in the High Performance Computing and Networking Center, and sharpened my
skill. She helped me secure some financial support during my master’s course and
during the Covid-19 pandemic before I started my PhD course.

I want to express my thanks to the SDLab secretary Akiko Ogawa who helped
me process my scholarship documents and gave me advice on how to handle the

81

Japanese documents.
I also want to thank the Nara Institute of Science and Technology (NAIST)

for giving me the opportunity to explore my ability in the PhD course with the
scholarship for all three years of my study. This includes all personnel from the
International Student Affairs, Personal Section, and Career Service Office who
helped me start living in Japan and solve many problems to live comfortably
in Japan during my three years of study. I wish to express my appreciation to
my Japanese teachers Yukino Iwade and Masako Hashimoto who taught me the
Japanese language and allowed me to communicate with Japanese people in the
Japan society. Also, I would like to thank all of the cafeteria staff who gave me
the energy to finish my work.

To Friendship, I also express my thanks to all members during my time in the
SDLab, especially my tutor, Daisuke Fukumoto, who actively provided assistance
in many situations during his time as my tutor, as well as Akihito Ihara, Kyoya
Murakami, Shuhei Kayawari, Xingyuan Kang, Junya Hishikawa, Takaha Mino,
Shan Gao, Zheyuan Wei, Yasuhito Morikawa, Miki Yonekura, Wataru Mabuchi,
Papon Choonhaklai, and M1 students in 2024.

Last but not least, I wish to express my highest gratitude to my parents raising
and educating me with great care, and instilling the values of education and ethics
since my youth. No amount of words would sufficiently express my gratitude. I
thank both my parents for everything.

82

Reference

References

[1] L. Adhianto, S. Banerjee, M. W. Fagan, M. Krentel, G. Marin, J. M. Mellor-
Crummey, and N. R. Tallent, “HPCTOOLKIT: tools for performance analysis
of optimized parallel programs,” Concurr. Comput. Pract. Exp., vol. 22, no. 6,
pp. 685–701, 2010.

[2] A. Danner, T. Newhall, and K. C. Webb, “Paravis: A library for visualiz-
ing and debugging parallel applications,” in Proceedings of the 2019 IEEE
International Parallel and Distributed Processing Symposium Workshops,
pp. 326–333, 2019.

[3] X. Xie, H. Jiang, H. Jin, W. Cao, P. Yuan, and L. T. Yang, “Metis: a profiling
toolkit based on the virtualization of hardware performance counters,” Hum.
centric Comput. Inf. Sci., vol. 2, p. 8, 2012.

[4] M. I. Malkawi, “The art of software systems development: Reliability, avail-
ability, maintainability, performance (RAMP),” Hum. centric Comput. Inf.
Sci., vol. 3, p. 22, 2013.

[5] J. Szuppe, “Boost.compute: A parallel computing library for C++ based
on opencl,” in Proceedings of the 4th International Workshop on OpenCL,
pp. 15:1–15:39, 2016.

[6] L. Tierney, A. J. Rossini, and N. Li, “Snow : A parallel computing framework
for the R system,” Int. J. Parallel Program., vol. 37, no. 1, pp. 78–90, 2009.

[7] L. Dagum and R. Menon, “Openmp: An industry-standard api for shared-
memory programming,” IEEE Comput. Sci. Eng., vol. 5, p. 46–55, jan 1998.

[8] Message Passing Interface Forum, MPI: A Message-Passing Interface Stan-
dard Version 4.1, Nov. 2023.

[9] H. Arabnejad, J. Bispo, J. G. Barbosa, and J. M. P. Cardoso, “Autopar-clava:
An automatic parallelization source-to-source tool for C code applications,”

83

in Proceedings of the 9th Workshop on Parallel Programming and RunTime
Management Techniques for Manycore Architectures and 7th Workshop on
Design Tools and Architectures for Multicore Embedded Computing Platforms,
pp. 13–19, 2018.

[10] “Automatic Parallelization — intel.com.” https://www.

intel.com/content/www/us/en/docs/fortran-compiler/

developer-guide-reference/2023-1/automatic-parallelization.

html. [Accessed 07-Jun-2023].

[11] X. Tian, A. Bik, M. Girkar, P. Grey, H. Saito, and E. Su, “Intel® openmp
c++/fortran compiler for hyper-threading technology: Implementation and
performance.,” Intel Technology Journal, vol. 6, no. 1, 2002.

[12] Q. Zhang, “The accuracy of the non-continuous I test for one- dimensional
arrays with references created by induction variables,” J. Inf. Process. Syst.,
vol. 10, no. 4, pp. 523–542, 2014.

[13] J. Brandt and K. Schneider, “Static data-flow analysis of synchronous pro-
grams,” in 7th ACM/IEEE International Conference on Formal Methods and
Models for Codesign (MEMOCODE 2009), July 13-15, 2009, Cambridge,
Massachusetts, USA, pp. 161–170, IEEE, 2009.

[14] P. Petersen and D. A. Padua, “Static and dynamic evaluation of data depen-
dence analysis techniques,” IEEE Trans. Parallel Distributed Syst., vol. 7,
no. 11, pp. 1121–1132, 1996.

[15] A. Diwan, K. S. McKinley, and J. E. B. Moss, “Type-based alias analysis,” in
Proceedings of the ACM SIGPLAN ’98 Conference on Programming Language
Design and Implementation (PLDI), Montreal, Canada, June 17-19, 1998
(J. W. Davidson, K. D. Cooper, and A. M. Berman, eds.), pp. 106–117, ACM,
1998.

[16] B. Burgstaller, B. Scholz, and J. Blieberger, “A symbolic analysis framework
for static analysis of imperative programming languages,” J. Syst. Softw.,
vol. 85, no. 6, pp. 1418–1439, 2012.

84

[17] A. Sherstinsky, “Fundamentals of recurrent neural network (RNN) and long
short-term memory (LSTM) network,” CoRR, vol. abs/1808.03314, 2018.

[18] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in
Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, pp. 5998–6008, 2017.

[19] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of
deep bidirectional transformers for language understanding,” in Proceedings
of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pp. 4171–4186,
2019.

[20] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou,
W. Li, and P. J. Liu, “Exploring the limits of transfer learning with a unified
text-to-text transformer,” J. Mach. Learn. Res., vol. 21, pp. 140:1–140:67,
2020.

[21] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu,
C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess,
J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei,
“Language models are few-shot learners,” in Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual (H. Larochelle,
M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, eds.), 2020.

[22] A. Kanade, P. Maniatis, G. Balakrishnan, and K. Shi, “Learning and eval-
uating contextual embedding of source code,” in Proceedings of the 37th
International Conference on Machine Learning, vol. 119 of Proceedings of
Machine Learning Research, pp. 5110–5121, 2020.

[23] Y. Wang, W. Wang, S. R. Joty, and S. C. H. Hoi, “Codet5: Identifier-
aware unified pre-trained encoder-decoder models for code understanding and

85

generation,” in Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pp. 8696–8708, 2021.

[24] H. Bae, D. Mustafa, J. Lee, Aurangzeb, H. Lin, C. Dave, R. Eigenmann, and
S. P. Midkiff, “The cetus source-to-source compiler infrastructure: Overview
and evaluation,” Int. J. Parallel Program., vol. 41, no. 6, pp. 753–767, 2013.

[25] C. Dave, H. Bae, S. Min, S. Lee, R. Eigenmann, and S. P. Midkiff, “Cetus: A
source-to-source compiler infrastructure for multicores,” Computer, vol. 42,
no. 11, pp. 36–42, 2009.

[26] D. Quinlan and C. Liao, “The ROSE source-to-source compiler infrastructure,”
in Cetus users and compiler infrastructure workshop, in conjunction with
PACT, vol. 2011, p. 1, 2011.

[27] C. Liao, D. J. Quinlan, J. Willcock, and T. Panas, “Extending automatic par-
allelization to optimize high-level abstractions for multicore,” in Proceedings
of the 5th International Workshop on OpenMP: Evolving OpenMP in an Age
of Extreme Parallelism, vol. 5568, pp. 28–41, 2009.

[28] G. S. D. Mendonca, B. C. F. Guimarães, P. Alves, M. M. Pereira, G. Araujo,
and F. M. Q. Pereira, “Dawncc: Automatic annotation for data parallelism
and offloading,” ACM Trans. Archit. Code Optim., vol. 14, no. 2, pp. 13:1–
13:25, 2017.

[29] J. Bispo and J. M. P. Cardoso, “Clava: C/C++ source-to-source compilation
using LARA,” SoftwareX, vol. 12, p. 100565, 2020.

[30] Y. Wang, H. Le, A. Gotmare, N. D. Q. Bui, J. Li, and S. C. H. Hoi, “Codet5+:
Open code large language models for code understanding and generation,” in
Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2023, Singapore, December 6-10, 2023 (H. Bouamor,
J. Pino, and K. Bali, eds.), pp. 1069–1088, Association for Computational
Linguistics, 2023.

[31] L. Chen, A. Bhattacharjee, N. K. Ahmed, N. Hasabnis, G. Oren, V. A. Vo,
and A. Jannesari, “OMPGPT: A generative pre-trained transformer model
for openmp,” CoRR, vol. abs/2401.16445, 2024.

86

[32] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. H. Chi,
Q. V. Le, and D. Zhou, “Chain-of-thought prompting elicits reasoning in large
language models,” in Advances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Processing Systems 2022, NeurIPS
2022, New Orleans, LA, USA, November 28 - December 9, 2022 (S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, eds.), 2022.

[33] D. Nichols, A. Marathe, H. Menon, T. Gamblin, and A. Bhatele, “Hpc-coder:
Modeling parallel programs using large language models,” in ISC High Per-
formance 2024 Research Paper Proceedings (39th International Conference),
pp. 1–12, 2024.

[34] M. L. Siddiq, S. H. Majumder, M. R. Mim, S. Jajodia, and J. C. S. Santos,
“An empirical study of code smells in transformer-based code generation
techniques,” in 22nd IEEE International Working Conference on Source Code
Analysis and Manipulation, SCAM 2021, Limassol, Cyprus, October 3, 2022,
pp. 71–82, IEEE, 2022.

[35] A. Mastropaolo, S. Scalabrino, N. Cooper, D. Nader-Palacio, D. Poshyvanyk,
R. Oliveto, and G. Bavota, “Studying the usage of text-to-text transfer trans-
former to support code-related tasks,” in Proceedings of the 43rd IEEE/ACM
International Conference on Software Engineering, pp. 336–347, 2021.

[36] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum,
R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. Schreiber, H. D. Simon,
V. Venkatakrishnan, and S. Weeratunga, “The nas parallel benchmarks,” Int.
J. High Perform. Comput. Appl., vol. 5, no. 3, pp. 63–73, 1991.

[37] J. Löff, D. Griebler, G. Mencagli, G. A. de Araujo, M. Torquati, M. Danelutto,
and L. G. Fernandes, “The NAS parallel benchmarks for evaluating C++
parallel programming frameworks on shared-memory architectures,” Future
Gener. Comput. Syst., vol. 125, pp. 743–757, 2021.

[38] S. Rajbhandari, O. Ruwase, J. Rasley, S. Smith, and Y. He, “Zero-infinity:
breaking the GPU memory wall for extreme scale deep learning,” in Inter-
national Conference for High Performance Computing, Networking, Storage

87

and Analysis, SC 2021, St. Louis, Missouri, USA, November 14-19, 2021
(B. R. de Supinski, M. W. Hall, and T. Gamblin, eds.), p. 59, ACM, 2021.

[39] J. Ren, S. Rajbhandari, R. Y. Aminabadi, O. Ruwase, S. Yang, M. Zhang,
D. Li, and Y. He, “Zero-offload: Democratizing billion-scale model training,”
in 2021 USENIX Annual Technical Conference, USENIX ATC 2021, July 14-
16, 2021 (I. Calciu and G. Kuenning, eds.), pp. 551–564, USENIX Association,
2021.

[40] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He, “Zero: memory opti-
mizations toward training trillion parameter models,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, SC 2020, Virtual Event / Atlanta, Georgia, USA,
November 9-19, 2020 (C. Cuicchi, I. Qualters, and W. T. Kramer, eds.), p. 20,
IEEE/ACM, 2020.

[41] J. Rasley, S. Rajbhandari, O. Ruwase, and Y. He, “Deepspeed: System
optimizations enable training deep learning models with over 100 billion
parameters,” in KDD ’20: The 26th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, Virtual Event, CA, USA, August 23-27, 2020
(R. Gupta, Y. Liu, J. Tang, and B. A. Prakash, eds.), pp. 3505–3506, ACM,
2020.

[42] C.-Y. Lin, “ROUGE: A package for automatic evaluation of summaries,” in
Text Summarization Branches Out, (Barcelona, Spain), pp. 74–81, Association
for Computational Linguistics, July 2004.

88

List of publications

Journal Article

1. Soratouch Pornmaneerattanatri, Keichi Takahashi, Yutaro Kashiwa, Kohei
Ichikawa, Hajimu Iida, Toward Automatic Parallelization: Detecting Par-
allelizable Loop using Large Language Modeling, Journal of Information
Processing Systems, Status: Accepted and in print.

Conference Paper

1. Soratouch Pornmaneerattanatri, Keichi Takahashi, Yutaro Kashiwa, Kohei
Ichikawa, Hajimu Iida, Automatic Parallelization with CodeT5+: A Model
for Generating OpenMP Directives, 2024 International Workshop on Large
Language Models (LLMs) and HPC, status: Accecpted and in print.

2. Soratouch Pornmaneerattanatri, Keichi Takahashi, Yutaro Kashiwa, Kohei
Ichikawa, Hajimu Iida, Parallelizable Loop Detection using Pre-trained
Transformer Models for Code Understanding, International Conference on
Parallel and Distributed Computing: Applications and Technologies, pages
32-42, August 16-18, 2023.

3. Nabhan Suwanachote, Soratouch Pornmaneerattanatri, Yutaro Kashiwa,
Kohei Ichikawa, Pattara Leelaprute, Arnon Rungsawang, Bundit Man-
askasemsak, Hajimu Iida, A Pilot Study of Testing Infrastructure as Code
for Cloud Systems, 2023 30th Asia-Pacific Software Engineering Conference
(APSEC), pages 584-588, December 4-7, 2023.

4. Junya Hishikawa, Daisuke Fukumoto, Soratouch Pornmaneerattanatri, Yu-
taro Kashiwa, Toshiki Hirao, Kenji Fujiwara, Hajimu Iida, Toward Analyzing
OSS Developers Contributing to the Removal of Technical Debt in Multiple
Projects, Technical Committee on Knowledge-Based Software Engineering
(KBSE), pages 52-57, January 19-20, 2023.

89

Poster Presentation

1. Soratouch Pornmaneerattanatri, Keichi Takahashi, Yutaro Kashiwa, Ko-
hei Ichikawa, Hajimu Iida, A Proposal of Automatic Parallelization using
Transformer-based Large Language Models, The International Conference
on High Performance Computing in Asia-Pacific Region (HPC Asia 2024),
poster presentation, January 25-27, 2024.

90

