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Interpretable Neural Machine Translation from
Translation to Post-Editing!

Hiroyuki Deguchi

Abstract

Neural machine translation (NMT) has achieved sufficient translation quality in
the general domain, but not yet in the out-of-domain. Therefore, post-editing
(PE), which manually corrects mistranslations, is still crucial, especially in fields
where mistakes are not allowed, e.g., the medical domain. This dissertation tack-
les these problems from translation to post-editing using interpretable models.
We firstly prevent the degradation of the translation quality in the out-of-domain.
In previous work, kNN-MT adapted NMT models to various domains using the
example-based approach; however, the example search is time-consuming and the
decoding speed becomes two orders of magnitude slower than that of standard
NMT. To improve the decoding speed of kNN-MT, we propose subset kNN-MT,
which reduces the search space to the neighboring examples of the input sen-
tence and employs an efficient computation method using the distance lookup
table. Subset ENN-MT achieved a speed-up of up to 134.2 times and an improve-
ment in BLEU score of up to 1.6 compared with kANN-MT in the De-En domain
adaptation task. The other problem is to efficiently check and correct translation
errors that still occur despite improvements in translation quality by subset £NN-

MT. We then aim to improve the efficiency of human PE. Previous automatic

!Doctoral Dissertation, Graduate School of Science and Technology, Nara Institute of Science
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PE (APE) models attempt to correct the outputs of an MT model; however,
many APE models are based on sequence generation, and thus their decisions are
harder to interpret for human post-editors. We propose an edit-based PE model,
which breaks the editing process into two steps, “error detection” and “error cor-
rection”. The detector model tags each MT output token whether it should be
corrected and/or reordered while the corrector model generates corrected words
for the spans identified as errors. Experiments on the WMT’20 En-De and En—
Zh APE tasks showed that our detector—corrector improved translation edit rate
(TER) compared to not only an edit-based model but also a black-box sequence-
to-sequence model by 0.7 points in En-De and En-Zh. Moreover, our model is
more explainable than sequence-to-sequence models because it is based on edit

operations.

Keywords:
machine translation, k-nearest-neighbor search, post-editing, explainability, nat-

ural language processing
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Chapter 1

Introduction

1.1 Background

Machine translation (MT) is one of the most important techniques studied since
the dawn of computational linguistics, and is mainly used for two purposes: un-
derstanding information from texts written in a foreign language, called assimila-
tion, and spreading information by converting texts written in one language into
another language, called dissemination.

Until now, various types of machine translation have been studied. Early MT
was rule-based MT (RBMT), which used manually defined the dictionary and
grammar. Because RBMT requires checking that the dictionary and grammar are
consistent, it is costly to add new translation rules or extend to other languages.
Many modern MT systems employ corpus-based MT, which automatically ac-
quires translation rules from parallel data. Example-based MT (EBMT), which
refers to translation examples obtained from bilingual corpora at run time [84];
statistical machine translation (SMT), which uses statistical information learned
from corpora [8]; and neural machine translation (NMT), which uses a neu-
ral network trained to generate the target sentence from the given source sen-
tence [112, 3, 72, 121, 39, 113]. EBMT, SMT, and NMT are also called corpus-
based MT, which acquires translation rules from bilingual corpora. Among them,
NMT has achieved sufficient translation quality and is widely used. However, it
sometimes makes errors [90] in the out-of-domain; therefore, post-editing (PE),
which manually corrects mistranslations generated from MT systems, is still cru-

cial in the real world, especially in fields where mistakes are not allowed, e.g.,
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Figure 1.1: Overview of the translation process.

the medical domain. Figure 1.1 shows the translation process in the real world.
Typically, MT is trained from the parallel data, including the general domain
and various target domains, and then human translators check the output of the
MT system and refine the translation. Note that the MT system needs to be

additionally trained when new domain data is added.

1.2 Challenges in Neural Machine Translation

The challenges of translation performance of NMT include out-of-domain trans-
lation [17, 65], decoding methods to obtain the optimal translations [125, 32],
context-aware and document-level translation [54, 77], low-resource languages [70,
77]. Here we focus on the in-domain and out-of-domain translation. In-domain
translation has been improved by various methods: using syntactic informa-
tion [33, 14, 23, 9], reranking the translation candidates to find the most promising
candiate [67, 36], employing curriculum learning approaches [4, 82], etc. Even
though translation performance is improved in the in-domain, that of out-of-
domain is still low, and the improvement of translation quality for various do-

mains is an open issue of NMT. To address the issue, example-based methods



have been proposed, but k-nearest-neighbor machine translation, which achieved
state-of-the-art translation performance in out-of-domain, is significantly slower
than standard translation models, making it difficult to use in the real world.

In addition, industrial translation for information dissemination requires accu-
rate translations in a variety of specialized domains. Currently, typical indus-
trial translation uses MT systems to generate the translation draft and then do
post-editing to refine the translation. While the translation quality of NMT has
improved in recent years, the workload of post-editing is still heavy, and it is nec-
essary to tackle the assistance of post-editing to reduce the human workload. To
improve the productivity of post-editing, it is necessary to develop a model to as-
sist in the editing process. For example, if it can help in the time-consuming task,

e.g., finding mistranslations and omissions, it will reduce the human workload.

1.2.1 Domain Adaptation

Many NMT models are trained on large corpora of general domains such as web
articles and news articles, and adapted to target domains such as medical and IT
documents. Typically, NMT models are adapted by training on each target do-
main data, which requires additional training costs. The Workshop on Machine
Translation (WMT), an international competition for machine translation, held
the news translation task, but after 2022, it was replaced with the mixed-domain
translation task [64]. Domain adaptation for various domains has attracted at-
tention in the machine translation field.

The simplest way of domain adaptation is to prepare the domain data and fine-
tune an MT model [71, 105, 18]. However, it requires additional training costs
for each domain and the in-domain translation performance may be degraded by
fine-tuning [44].

Some previous work tackled the problems of additional training costs and
catastrophic forgetting in domain adaptation by using example-based approaches,
which retrieve translation examples from parallel data or translation memory dur-
ing decoding [130, 42, 61]. KNN-MT [61] can use any pre-trained NMT models
without additional training and modification, and it has achieved state-of-the-art
translation performance in domain adaptation. The reason why ENN-MT is so

powerful is that it searches translation examples based on rich neural representa-



tions with context information, and it also allows flexible search by the token-level
retrieval, whereas previous models [130, 42] retrieve similar sentences based on the
edit distance. It not only improved the translation quality in out-of-domain but
also improved interpretability through example-based generation. However, the
translation speed was two orders of magnitude slower than the standard NMT,

which is a major challenge.

1.2.2 Post-Editing

Post-editing (PE) is crucial in the real world, which corrects mistranslations,
improves fluency, complements omitted translations, etc. In industrial transla-
tion, human translators creates the post-edited text by comparing the source
text and the draft translation generated from MT systems. According to profes-
sional translators, despite recent advances in NMT that have greatly improved
the translation quality, PE has saved only about 20% to 30% of the working
time compared to translating from scratch. For example, Laubli et al. [66] in-
vestigated the productivity of post-editing, and they observed that post-editing
only improves the speed by 9.26% compared with translating from scratch in
German-to-Italian finance domain. This is because translators take time to read
the source and MT sentences and look for mistranslations and omissions.
Automatic post-editing (APE) attempts to correct the MT model outputs (MT
sentences) for the better translation quality. However, many APE models are
based on sequence generation [58, 20, 106, 11, 12, 5], and their decision for cor-
rection is harder to interpret due to the black-box nature of the generation models.
In summary, if an APE model provides not only the correction but also editing

processes, e.g., finding mistranslations, it would be helpful for human post-editors.

1.3 Research Objective

The objective of this dissertation is to improve the efficiency of the translation
model in domain adaptation and the productivity of post-editing by providing
the editing processes. In particular, we address the problem of the translation
speed of ENN-MT, which is effective for domain adaptation, and the lack of
interpretability of APE model due to black box predictions.



In the domain adaptation task, KNN-MT is focused in terms of the translation
quality and interoperability, but its translation speed is more than two orders of
magnitude slower than standard NMT models. We improve the translation speed
of ENN-MT by narrowing down the search space to neighboring examples of the
input sentence. In addition, we use the look-up table to calculate the distance
between the query and keys efficiently when retrieving. Our subset KNN-MT
achieved a speed-up of up to 134.2 times and an improvement in BLEU score of
up to 1.6 compared with ENN-MT in the WMT’19 German-to-English general
domain translation task, the domain adaptation tasks in German-to-English and
English-to-Japanese with open-domain settings, and the Flores101 multilingual
translation task.

Regarding post-editing, we improve the interpretability of APE models by us-
ing an edit-based model. Our “detector—corrector” breaks the editing process
into two steps, “error detection” and “error correction”. The detector model tags
each MT output token whether it should be corrected and/or reordered while
the corrector model generates corrected words for the spans identified as errors
by the detector. Experiments on the WMT20 English-to-German and English-
to-Chinese APE tasks showed that our detector-corrector provides the editing
process and outperforming black-box sequence-to-sequence APE model and pre-

vious edit-based model.

1.4 Structure of the Dissertation

The dissertation is organized as follows.

Chapter 2 shows the preliminary knowledge about machine translation and
k-nearest-neighbor search.

Chapter 3 addresses the out-of-domain problem. We propose subset retrieval to
speed up KNN-MT, which narrows down the search space of translation examples
by retrieving neighboring sentences of the input sentence.

Chapter 4 aims to reduce the workload of human post-editing by using a novel
explainable model that presents the editing process.

Chapter 5 summarizes the dissertation and discusses the future directions.



Chapter 2

Preliminaries

2.1 Machine Translation

The goal of machine translation is to convert the text written in the source
language X to the text written in the target language Y. This section describes

an overview of machine translation approaches.

2.1.1 Approaches
Example-based Machine Translation

Example-based machine translation [84] generates translations based on trans-
lation rules acquired from parallel data. Let @ = (21, 22,...,%)5) € Vx be the
source sentence and Yy = (y1,¥2,...,Yjy|) € Vy be the target sentence where | - |
is a length of a sentence, and V§ and V5 are Kleene closures of vocabularies of
the source language and target language, respectively. The most basic method,
which acquires translation rules based on analogy, extracts the difference between
two similar source sentences @ and «’, and their target sentences y and y’ in the
parallel data D = {(, y’)}llzll Table 2.1 shows an example of acquiring transla-
tion rules. When x is “FA 1X RS DX, 7, 2 is “BA X T =R DX, 7,
y is “I like grapes .”, and y’ is “I like tennis .” (Table 2.1(a)), then, from the
source side difference between & and «’, and the target side difference between y
and y’, we get three translation rules: “fA 1& — D3 & o 7 — “Ilike — .7, “&
957 — “grapes”, and “7 =27 — “tennis” (Table 2.1(b)). During inference,

the translation system refers to the acquired translation rules and generates the



Japanese English

i — D FE . Ilike —.
H2ED grapes

T =X tennis

Japanese English

ME RES D aFx 1 like grapes .
A 7= DB FE . 1 like tennis .

(a) Similar two translation examples in . .
. (b) Translation rules acquired from the
Japanese-to-English. o .
similar translation examples.
Table 2.1: An example of acquiring translation rules from Japanese-to-English

parallel sentences.

target sentence.

Statistical Machine Translation

Statistical machine translation [8] learns statistical information from parallel data.
The model generates y according to the conditional probability P(y|x), the
source-to-target translation model, but since it is difficult to estimate the prob-
ability directly, instead the target-to-source translation model P(x|y) and the
language model P(y) of P(y|x) « P(x|y)P(y), decomposed by Bayes theorem,

are used to compute the output probability, respectively:
y" = argmax P(y|x)
y

= argzrlnax P(x|y)P(y), (2.1)

where y* is the generated target sentence. The model parameters 6 and ¢ are

learned from parallel data:

D]
L£(0) =Y _logp(@'ly’;0), (2.2)
0" = argmax L£(6), (2.3)
0
D]
L(¢) = 3 _logp(y's ), (2.4)
o = argglax L(p), (2.5)



where 0* and ¢* are the trained parameters learned from D.

Neural Machine Translation

Neural machine translation (NMT) directly estimates P(y|x) using a neural net-
work. In NMT, encoder-decoder is the most common architecture and widely
used [112, 3, 72, 121, 39, 113]. The encoder projects a source sentence & to
the feature space, and the decoder generates target tokens y from the hidden
vectors. The objective of NMT is to generate a target sentence based on the
following probabilities:

y* = argmax P(y|x). (2.6)
y

To calculate P(y|x), it is decomposed into the product of probabilities based
on the chain rule. The ¢-th target token y; is generated according to its output
probability P(y;|x,y~;) over the target vocabulary, calculated from the source

sentence x and generated target tokens y.; as follows:

lyl

y' = argmaXHP(yt|a:, Yet)s (2.7)
Y15--45Y1y| t=1
where the output sequence y* is approximated by search strategies like beam
search.

The model parameters 6 are trained to maximize the log-likelihood as follows:

ID| |y’
L0)=>" logp(yilx',yL,;0). (2.8)
i=1 t=1
0" = argmax L(0), (2.9)
0

where D is a parallel data and (x’,y’) € D is an i-th translation pairs in the
parallel data, and 6* is the trained parameters. For neural networks of the encoder
and decoder, the long short-term memory (LSTM) based models [112, 3, 72, 121],
the convolution neural network (CNN) based model [39], and the Transformer
model [113] are used.



2.1.2 Ewvaluation

When developing the MT model, it is expensive for a human translator to eval-
uate the quality of the MT-generated translations directly each time the model
updates. For this purpose, automatic evaluation metrics are used to evaluate the

translation quality of MT systems using reference translations.

Bilingual Evaluation Understudy (BLEU)

One of the most common evaluation metrics is bilingual evaluation understudy
(BLEU) [92]. BLEU is computed by the modified n-gram precision and the
brevity penalty using hypothesis translation and its reference translations. The
modified n-gram precision first counts the maximum number of times a word oc-
curs in any reference translation. Then, it clips the total count of each hypothesis
word by its maximum reference count, adds these clipped counts up, and divides
it by the total number of hypothesis words. Typically, the modified 1-gram to

4-gram precisions are used by calculating their geometric mean.

Translation Edit Rate (TER)

Translation edit rate (TER) [107] is a metric to evaluate the translation quality
based on the edit distance between the translated text and the reference trans-
lation. In particular, TER is defined as the minimum number of edits from the

translation hypothesis to the reference, as follows:

Number of edits
Number of reference words"

(2.10)

The edit operations of TER contain deletion, insertion, substitution, and shifts of
word sequences, i.e., word reordering. TER iteratively reorders an input sequence
to minimize the edit distance from the target sequence, called shift operation, then
calculates the edit distance between the reordered input sequence and the target

sequence.



Cross-lingual Optimized Metric for Evaluation of Translation

(COMET)

BLEU and TER cannot evaluate the replacement of synonyms because they calcu-
late scores using the surface of words. Rei et al. [98] presented cross-lingual opti-
mized metric for evaluation of translation (COMET), which directly estimates the
human judgments using a cross-lingual neural language model. Because COMET
uses a neural network model, it is more computationally expensive than other
metrics, but it can evaluate semantic similarity between a hypothesis translation

and its reference translation and has a high correlation with human evaluation.

2.2 k-Nearest-Neighbor Search

2.2.1 Nearest Neighbor Search

k-nearest-neighbor (kNN) search retrieves top-k vectors from the vector set K C
RP that are close to the given query vector ¢ € RP. In this section, we assume
k = 1 in squared Euclidean space. The most naive approach of kNN search is to

compute the distance to all vectors k € K from the query q.
k* = argmin|q — k|3, (2.11)
k

where k* is the nearest neighbor vector. Note that the time and space complexity
is O(ND) where N = |K].

2.2.2 Product Quantization

It is hard to load K into the main memory when N is large, e.g., one billion.
For example, let N be one billion and D be 1024, the vector set K consumes
3.7 TiB. To reduce the space complexity, product quantization (PQ) [53], which
approximates the vectors, is used.

PQ splits a D-dimensional vector into M sub-vectors and quantizes for each
%—dimensional sub-vector. Codebooks are learned by k-means clustering of key
vectors in each subspace. It is computed iteratively by: (1) assigning the code

of a key to its nearest neighbor centroid (2) and updating the centroid of keys
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assigned to the code. The m-th sub-space’s codebook C™ is formulated as follows:
C"={cl",...,c['}, " € R, (2.12)

where L is the number of codes for each subspace. Typically, L is set to 28 = 256,
and quantized codes are represented as unsigned 8-bit integer (uint8). A vector

g € R? is quantized and its code vector q is calculated as follows:

a=1Iq,....¢"" e{1,...,L3M, (2.13)

m

g™ = argmin ||g™ — |3, q™ € R (2.14)
!
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Chapter 3

Subset Retrieval Nearest

Neighbor Machine Translation

3.1 Introduction

Neural machine translation (NMT) [112, 3, 72, 121, 113] has achieved state-of-the-
art performance and become the focus of many studies. Recently, kANN-MT [61]
has been proposed, which addresses the problem of degradation of translation
quality in out-of-domain data by incorporating example-search into the decod-
ing algorithm. KNN-MT stores translation examples as a set of key—value pairs
called “datastore” and retrieves k-nearest-neighbor target tokens in decoding.
The method improves the translation quality of NMT models without additional
training. However, decoding is seriously time-consuming, i.e., roughly 100 to
1,000 times slower than standard NMT, because neighbor tokens are retrieved
from all target tokens of parallel data in each timestep. In particular, in a real-
istic open-domain setting, KANN-MT may be significantly slower because it needs
to retrieve neighbor tokens from a large datastore that covers various domains.
We propose “Subset KNN-MT” | which improves the decoding speed of KENN-MT
by two methods: (1) retrieving neighbor target tokens from a subset that is the set
of neighbor sentences of the input sentence, not from all sentences, and (2) efficient
distance computation technique that is suitable for subset neighbor search using
a look-up table. When retrieving neighbor sentences for a given input, we can
employ arbitrary sentence representations, e.g., pre-trained neural encoders or

TF-IDF vectors, to reduce the kNN search space. When retrieving target tokens
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in each decoding step, the search space in subset KANN-MT varies depending on
the input sentence; therefore, the clustering-based search methods used in the
original kNN-MT cannot be used. For this purpose, we use asymmetric distance
computation (ADC) [53] in subset neighbor search.

Our subset ENN-MT achieved a speed-up of up to 134.2 times and an im-
provement in BLEU score of up to 1.6 compared with ANN-MT in the WMT 19
German-to-English general domain translation task, the domain adaptation tasks
in German-to-English and English-to-Japanese with open-domain settings, and
the Flores101 multilingual translation task. Our implementation, including both
ENN-MT and subset kNN-MT, is available on GitHub®.

3.2 ENN-MT

ENN-MT [61] retrieves the k-nearest-neighbor target tokens in each timestep,
computes the kNN probability from the distances of retrieved tokens, and in-
terpolates the probability with the model prediction probability. The method
consists of two steps: (1) datastore creation, which creates key—value translation
memory, and (2) generation, which calculates an output probability according to

the nearest neighbors of the cached translation memory.

Datastore Construction ANN-MT stores pairs of D-dimensional vectors and
tokens in a datastore, represented as key-value memory M C R” x Vy. The key
(€ RP) is an intermediate representation of the final decoder layer obtained by
teacher forcing a parallel sentence pair (x,y) to the NMT model, and the value
is a ground-truth target token 1;. The datastore is formally defined as a set of

tuples as follows:

M={(f(x,y<),v) | (2, y) €D, 1 <1 <y}, (3.1)

where D = {(z',y")}7} is parallel data and f: Vi x Vi — R? is a function
that returns the D-dimensional intermediate representation of the final decoder

layer from the source sentence and generated target tokens. In our model, as in

Thttps://github.com /naist-nlp /knn-seq
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[61], the key is the intermediate representation before it is passed to the final

feed-forward network.

Decoding During decoding, KNN-MT generates output probabilities by com-
puting the linear interpolation between the kNN and MT probabilities, prnny and

pumr, as follows:

P(?Jt|33a '!J<t> = )‘pkNN(yt|ma y<t) + (1 - )‘)pMT<yt|wa y<t)> (3-2)

where \ is a hyperparameter for weighting the kNN probability. Let f(x,y<;)
be the query vector at timestep t. The k-nearest-neighbor tokens of the query
are searched from the datastore and the top-k key—value pairs are obtained. The
top i-th key and value in the k-nearest-neighbor are k; € RP and v; € Vy,

respectively. Then pgnn is defined as follows:

k

1 —|lk; — f(z, y<)ll3

PN (Y|, y<1) = 7 Z 1y,—v, €xp ( | T( <t)||2>, (3.3)
i=1

- Zp (—nkn - f<a:,y<t>u%>, (3.0

T

where 7 is the temperature for pynn, and we set 7 = 100.

Note that this kNN search is seriously time-consuming? [61]. This is because
the kNN tokens are searched for each timestep in generating a target sentence. For
example, let | M| be one billion and |y| be 30. If we naively search the kNN tokens,
we need to calculate the distance between the query and key | M| x|y| = 30 billion
times, i.e., the time complexity is O(]M||y|). In other words, the speed problem
of the kNN-MT is due to the large search space | M| 3.
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(a) Overview of ENN-MT. (b) Overview of subset KNN-MT.

Figure 3.1: Overview of kENN-MT (left) and our subset kNN-MT (right). Subset
ENN-MT finds the k-nearest-neighbor tokens from the reduced search

space related to the input sentence.

3.3 Proposed Model: Subset ANN-MT

Our Subset KNN-MT drastically accelerates vanilla kNN-MT by reducing the
ENN search space by using sentence information as shown in Figure 3.1. In par-
ticular, subset retrieval (Section 3.3.1) retrieves the neighboring sentences of the

given input sentence and reduces the search space from all sentences to only the

’In our experiments on the WMT’19 German-to-English, the datastore has 862M tokens,
the vocabulary size is 42k, and the batch size was set to 12,000 tokens. While a normal

Transformer translates 2,000 sentences in 7.5 seconds, kNN-MT takes 2446.0 seconds.
3The original KENN-MT actually uses an approximate nearest neighbor algorithm, but it is still
time-consuming.
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Figure 3.2: Susbet ENN-MT reduces the search space of kNN-MT by retrieving
the neighboring sentences of the input sentence. The green boxes in
the sentence datastore mean the neighboring examples of the input
sentence. The search space is reduced from |D| sentences to the n(<

|D|) neighboring sentences.

neighboring sentences, shown in Figure 3.2. Additionally, we employ the efficient
method to compute the distance between a query and keys using a look-up ta-
ble when retrieving the kNN tokens from the reduced datastore (Section 3.3.2).
While the original K NN-MT employs a data structure and an algorithm optimized
for the fixed search space, i.e., the full set of the datastore, our subset KNN-MT
employs an algorithm that efficiently searches the subset datastore that varies

dynamically depending on the input sentence.

3.3.1 Subset Retrieval

Sentence Datastore Construction We construct a sentence datastore that

stores pairs comprising a vector representation of a source sentence and key—value
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pairs of target tokens. Concretely, a sentence datastore S is defined as follows:

S = {(h(z*), M¥)) | (z*,y*) € D}, (3.5)
MO ={(f(x* y), ) | 1<t < |y} (3.6)

where h: Vi — RP represents a sentence encoder, which is a function that
returns a D’-dimensional vector representation of a source sentence, and s €
{1,...,|D|} denotes the identifier of s-th sentence pairs in the parallel data. Note
that M) C M is the datastore which is created from only the s-th sentence pairs.

Decoding At the beginning of decoding, the model retrieves the n-nearest-
neighbor sentences of the given input sentence by calculating the distances be-
tween the input sentence vector and the source sentence vectors of the sentence
datastore S. Let N C {1,...,|D|} be the set of sentence numbers of the n-
nearest-neighbor sentences. The nearest neighbor search space for target tokens

in KNN-MT is then drastically reduced by obtaining the datastore as follows:

M= MY ={(f@"y2).9) | s e N1 <t < |y}, (3.7)
sEN

where M C M is the reduced datastore for the translation examples coming
from the m-nearest-neighbor sentences. During decoding, the model uses the
same algorithm as KNN-MT except that M is used as the datastore instead of
M. The proposed method reduces the size of the nearest neighbor search space
for the target tokens from |D| to n (< |D|) sentences.

Note that our method needs to store sentence representations in addition to the
original datastore that stores the token representations. However, the number of
sentences is usually one order of magnitude smaller than the number of tokens,
ie., |D| < |M]|; thus, the memory and storage usages will not be increased
significantly. Additionally, subset KNN-MT requires the neighboring sentence
search, but it is not time-consuming because it only searches once before the
decoding iterations and the search space of the neighboring sentence search is

smaller than that of all target tokens, as mentioned above.
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3.3.2 Efficient Distance Computation Using Look-up
Table

Subset KNN-MT retrieves the k-nearest-neighbor target tokens by an efficient
distance computation method that uses a look-up table. In the original ANN-
MT, inverted file index (IVF) is used for retrieving kNN tokens. IVF divides the
search space into Ny clusters and retrieves tokens from the neighbor clusters. In
contrast, in subset KNN-MT, the search space varies dynamically depending on
the input sentence. Therefore, clustering-based search methods cannot be used;
instead, it is necessary to calculate the distance for each key in the subset. For
this purpose, we use asymmetric distance computation (ADC) [53] instead of the
usual distance computation between floating-point vectors. In ADC, the number
of table look-up is linearly proportional to the number of keys N in the subset.
Therefore, it is not suitable for searching in large datastore M, but in a small

subset M, the search is faster than the direct calculation of the L2 distance.

Product Quantization (PQ) The ENN-MT datastore M may become too
large because it stores high-dimensional intermediate representations of all target
tokens of parallel data. For instance, the WMT’19 German-to-English parallel
data, which is used in our experiments, contains 862M tokens on the target side.
Therefore, if vectors were stored directly, the datastore would occupy 3.2 TiB
when a 1024-dimensional vector as a key?, and this would be hard to load into
RAM. To solve this memory problem, product quantization (PQ) [53] is used in
both ANN-MT and our subset KANN-MT', which includes both source sentence and
target token search.

PQ splits a D-dimensional vector into M sub-vectors and quantizes for each
%-dimensional sub-vector. Codebooks are learned by k-means clustering of key
vectors in each subspace. It is computed iteratively by: (1) assigning the code
of a key to its nearest neighbor centroid (2) and updating the centroid of keys

assigned to the code. The m-th sub-space’s codebook C™ is formulated as follows:

C"={cl,...,cl'}, " € R (3.8)

43.2 TiB ~ 862.6M tokens x 1024 dimension x 32 bits (float size)/8 bits (byte size)/1024*.
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In this work, each codebook size is set to L = 256°. A vector g € R” is quantized

and its code vector q is calculated as follows:

T

q= [qlT,---,qMT , " € R, (3.9)
q" = argfnin lg™ — ¢, (3.10)
a=I[q",....7"" {1,...,L}M. (3.11)

Note that naive PQ may result in poor approximation accuracy because it
ignores dimension correlations. To address this problem, vector transformation
methods such as optimized PQ (OPQ) [38] and principal component analysis
(PCA) are used. Details of the settings we employed are listed in Table 3.1 in

the Experiments section.

Asymmetric Distance Computation (ADC) Our method efficiently com-
putes the squared Euclidean distance between a query vector and quantized
key vectors using ADC [53] (Figure 3.3 and Algorithm 1). ADC computes the
squared Euclidean distance between a query vector ¢ € R” and N key codes
K={k}Y, C{1,...,L}M. First, the distance look-up table A™ € R is com-
puted by calculating the distance between a query ¢ and the codes ¢;* € C™ in
each sub-space m (“distance table” in Figure 3.3 and line 4 in Algorithm 1), as
follows:

Al = g™ =" (3.12)

Second, the distance between a query and each key d(q, k;) is obtained by look-
ing up the distance table (“looked up disntances” in Figure 3.3 and line 8 in

Algorithm 1), as follows:

M M
d(g, ki) =Y dn(g" k") = > A, (3.13)
m=1 m=1

®Codes are represented as unsigned 8bit integers, i.e., an array of uint8. We chose the
L =256 and M = 64 (described in Table 3.1 in the Experiments section) according to the
prior work [53]. They reported that M = 8 is a reasonable choice when D = 128; therefore,
the codebook represents % = 16 dimensional subspace, which is the same as our settings:

M =64 and D = 1024.
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query; q € R?
0.34
0.22

D 0.68
1.02
0.03
0.71

ky ky

ID: 256 ID: 2

M ID: 67 ID: 234

1D: 92 ID: 5

keys; K € {1,2,...,256}M

Figure 3.3: Distance computation using asymmetric distance computation

(ADC).

A look-up table in each subspace, A™ € R, consists of the distance between
a query and codes. The number of codes in each subspace is L and a distance
is a scalar; therefore, A™ has L distances. And the table look-up key is the
code of a key itself, i.e., if the m-th subspace’s code of a key is 5, ADC looks-
up A?'. By using ADC, the distance is computed only once® (Equation 3.12)
and does not decode PQ codes into D-dimensional key vectors; therefore, it can

compute the distance while keeping the key in the quantization code, and the

ID: 1
[013
0.98

|1

codebook

ID: 2
0.32
0.27

ID: 256

[

distance table; d,,(q,¢;)

ID:1 :ID:2 ID: 256
0.622 :0.003 : 0.496
d(q, k) d(q, ky)
0.496 0.003
» 0.384 0213 2081 | ... | 0383
» 1.201 0.167 m
dp (g™ k™
looked up distances ;1 m(a™ ")

k-nearest-neighbor tokens are efficiently retrieved from M.

6The direct distance computation requires N times calculations according to ||q — k||, i.e., the
time complexity is O(ND). ADC computes the distance only L < N times, i.e., the time
complexity for creating the distance table is O(L x & x M) = O(LD), and just looks-up
the table M N times in the constant time O(1). Therefore, the complexity is reduced from

O(ND) to O(LD).
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Algorithm 1 ADC look-up
Require:

query; g € RP

quantized keys; K = {k;}¥, C {1,...,L}M

codebook; C = {C*,...,CM} where C™ = {c"}F, C R
Ensure:

distances; d € RY

1: function COMPUTE_DISTANCES(q, K, C)
2 form=1,....,M do

3 for(=1,...,L do

4 Al |lg™ = e'|l3

5: end for

6 end for

7 fort=1,...,N do

8 di = 3y A

9 end for Z

10: return d

11: end function

3.3.3 Sentence Encoder

In our subset KNN-MT, a variety of sentence encoder models can be employed.
The more similar sentences extracted from M, the more likely the subset M
comprises the target tokens that are useful for translation. Hence, we need sen-
tence encoders that compute vector representations whose distances are close for
similar sentences.

In this work, we employ two types of representations: neural and non-neural.
We can employ pre-trained neural sentence encoders. While they require to sup-
port the source language, we expect that the retrieved sentences are more similar
than other encoders because we can use models that have been trained to mini-
mize the vector distance between similar sentences [101]. An NMT encoder can
also be used as a sentence encoder by applying average pooling to its intermediate
representations. This does not require any external resources, but it is not trained

from the supervision of sentence representations. Alternatively, we can also use
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non-neural models like TF-IDF. However, it is not clear whether TF-IDF based
similarity is suitable for our method. This is because even if sentences with close
surface expressions are retrieved, they do not necessarily have similar meanings

and may not yield the candidate tokens needed for translation.

3.4 Implementation Details

We use FAIRSEQ [91] to implement ANN-MT and subset ANN-MT model, and
FAISS [55] to retrieve the ANN tokens in KNN-MT and for neighbor sentence
search in subset KNN-MT. Existing kNN libraries including FAISS and algorithms
like IVF that are used in the original KENN-MT are designed for full search but
not for subset search [78]; therefore, we implement the subset search and ADC

look-up by using PYTORCH.

Subset Caching Quantized key codes and value tokens of the subset are read
at the beginning of decoding and cached during decoding. Therefore, a billion-
scale large array is accessed only once during decoding. Note that the subset
depends only on the input sentence, and the cache size does not change with

beam sizes.

Distance Look-up in Beam Search Decoding During decoding by beam
search, the queries in the beams have different representations because a query
vector is computed depending on the generated target tokens. Let B be a beam
size and Q € RB*P be the queries. Note that we regard Q; as the column vector
by transposing the i-th row of the matrix Q, i.e., Q; € R”, and Q" as the
m-th subspace of M subspaces in Q;, i.e., Q" € R#7. The distance table of a
subspace in PQ is computed from a query (€ R%) and codebook C™; thus, the
table A™ € R¥*B is computed for each beam.

T

In contrast, the keys in the subset {ki,...ky} C {1,...,L} are the same
across beams because they are not changed by generated target tokens. Then,

the distances between a key and the queries for each beam d(Q, k) € R? are
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obtained as follows:

d(Q, k) = [d(Q1,k),...d(Qs, k)] ", (3.15)
d(Qi k) =D dn(QIF™) =D AT, (3.16)

From Equation 3.15 and 3.16, the distance table is looked up M x B times at each
timestep during decoding. We parallelize this look-up using torch.gather() in
PyTorch. However, to perform parallel look-up, the keys must be replicated to
each beam leading to multiple copies proportional to the beam size. To avoid
increasing the memory usage of key vectors, we designed not to allocate new
memory by copying multiple instances for each beam, but only create a new view
of the tensor by using torch.expand(). The number of keys takes the number of
target tokens in the neighboring sentences, e.g. 10,000. Therefore, this technique

is helpful in that it saves memory usage even if the beam size is increased.

3.5 Experiments

3.5.1 Setup

We compared the translation quality and speed of our subset ANN-MT with those
of the conventional KNN-MT in open-domain settings that assume a domain of
an input sentence is unknown. The translation quality was measured by sacre-
BLEU7 [94] and COMET [98]. The decoding speed was evaluated by the number
of tokens generated per second (tok/s) on a single NVIDIA V100 GPU. The time
measurement includes all processes since the source tokens are given until the
output sequence is obtained by beam search; that is, in KANN-MT, it includes the
time to search the k-nearest-neighbor tokens for each timestep in addition to the
forward computation of the NMT model, and in subset KANN-MT, it includes the
time to compute sentence vectors, search the neighboring sentences, look-up the
distance table, etc. The speed, tok/s, is calculated by dividing the number of all
generated tokens by the time it took to translate the entire test set. We varied
the batch size settings: either 12,000 tokens (B.), to simulate the document

"Signature: |nrefs:1|case:mixed|eff:noltok:13alsmooth:exp|version:2.3.1
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translation scenario, or a single sentence (Bj), to simulate the online translation
scenario. The beam size was set to 5, and the length penalty was set to 1.0. In
the result tables, the best score is emphasized with bold font, and the second best

score is underlined.

k-Nearest-Neighbor Search In ANN-MT, we set the number of nearest neigh-
bor tokens to k = 16. We use approximate distance computed from quantized
keys instead of full-precision keys in Equation 3.3 and 3.4 following the orig-
inal kNN-MT [61] implementation. The ANN-MT datastore and our sentence
datastore used IVF and optimized PQ (OPQ) [38]. OPQ rotates vectors to mini-
mize the quantization error of PQ. The subset KNN-MT datastore is not applied
clustering since we need to extract subset tokens. In this datastore, the 1024-
dimensional vector representation, i.e., D = 1024, was reduced in dimensionality
to 256-dimensions by principal component analysis (PCA), and these vectors
were then quantized by PQ. At search time, a query vector is pre-transformed to
256-dimensions by multiplying the PCA matrix, and then the kNN target tokens
are searched by ADC. The subset of a datastore can be loaded into GPU mem-
ory since it is significantly smaller than the original kNN-MT datastore, so we

retrieved k-nearest-neighbor tokens from a subset on a GPU.

Sentence Encoder We compared 4 different sentence encoders: LaBSE, Av-
gEnc, TF-IDF, and BM25. LaBSE [35] is a pre-trained sentence encoder, fine-
tuned from multilingual BERT. Avgknc is an average pooled encoder hidden
vector of the Transformer NMT model, which is also used for translation. TF-
IDF [56] and BM25 [57] compute vectors weighted the important words in a
sentence. We used the raw count of tokens as the term frequency and applied
add-one smoothing to calculate the inverse document frequency, where a sentence
was regarded as a document. We counted the number of words segmented by the
scikit-learn tokenizer [93]. We set k; = 2.0,b = 0.75 in BM25 [57]. Both
TF-IDF and BM25 vectors were normalized by their L2-norm and their dimen-
sionality was reduced to 256-dimensions by singular value decomposition (SVD).
In particular, we used truncated SVD also known as latent semantic analysis for

the dimension reduction.
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3.5.2 In-Domain Translation

We evaluated the translation quality and speed of subset ANN-MT in the WMT 19
De-En translation task (newstest2019; 2,000 sentences) and compared them with
the original KNN-MT [61] and other prior work [81, 76]. Chunk-based ENN-
MT [76] (Figure 3.4(a)) reduces the number of retrieval times by caching the
n-grams of neighboring tokens. Fast kNN-MT [81] (Figure 3.4(b)) retrieves the
source-side neighbor tokens by querying each input token and reduces the search
space by using the retrieved source-side tokens and their source-to-target word

alignment. We used a trained Transformer big implemented in FAIRSEQ [91] as
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ENN-MT  Subset kANN-MT
DS; M Sentence DS; & DS; M

Search method IVF IVF ADC
Vector transform OPQ [38] OPQ [38] PCA:
1024 — 256 dim
# of PQ sub-vectors; M 64 64 64
# of centroids; N 131,072 32,768 —
# of probed clusters by IVF 64 clusters 64 clusters —
Size of search target > yep Yl D Y osen Y7

Table 3.1: Details of kNN indexes. “DS” indicates “Datastore”.

the base MT model. We constructed the datastore from the parallel data of the
WMT’19 De-En news translation task. We removed all empty lines and sentences
of the parallel data longer than 250 tokens. We also removed all sentences in
which the sentence length in one language was more than 1.5 times longer than
that in the other language, i.e., the ratio of tokens between the source and target
was > 1.5. The datastore contained 862.6M target tokens obtained from 29.5M
sentence pairs. The subset size was set to n = 512. For fast KNN-MT, we
constructed additional source side datastores for each source token, and used
fast_align [31] to obtain the source-to-target word alignment, following Meng
et al. [81]. Then, we retrieved the 512 nearest neighbor source tokens from the
source side datastores for each input token in the decoding time of fast KNN-MT.
Note that the total size of the source side datastores is close to the ANN-MT
datastore; thus, it consumes twice as much storage and memory compared to the
original kANN-MT. In chunk-based KNN-MT, the chunk size was set to 16, the
hyperparameters that determine the interval of retrieval 7,,., and 7.,;, were set
to 2 and 16, respectively, following Martins et al. [76]. The details of the kNN
indexes are shown in Table 3.1.

Table 3.2 shows our experimental results. The table shows that, although £NN-
MT improves 0.9 BLEU point from the base MT without additional training, the
decoding speed is 326.1 times and 51.7 times slower with the B, and B; settings,
respectively. In contrast, our subset KENN-MT (h: LaBSE) is 111.8 times (with
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Ttok/s

Model 1BLEU 1TCOMET B By
Base MT 39.2 84.56 6375.2 129.14
ENN-MT 40.1 84.73 19.6 2.5
Chunk-based kNN-MT 39.5 84.33 74.6 22.3
Fast kENN-MT 40.3 84.70  286.9 27.1
Ours: Subset KNN-MT
h: LaBSE 40.1 84.66 2191.4 1184
h: AvgEnc 39.9 84.68 1816.8 97.3
h: TF-IDF 40.0 84.63 2199.1 113.0
h: BM25 40.0 84.60 1903.9 108.4

Table 3.2: Results of translation quality and decoding speed in the WMT"19 De-
En translation task. “h:” shows the type of sentence encoder used.
The best score is emphasized with bold font, and the second best score

is underlined.

Bw) and 47.4 times (with B;) faster than KANN-MT with no degradation in the
BLEU score. Subset kNN-MT (h: AvgEnc) achieved speed-ups of 92.7 times
(with Boo) and 38.9 times (with By ) with a slight quality degradation (—0.2 BLEU
and —0.05 COMET), despite using no external models. We also evaluated our
subset KNN-MT when using non-neural sentence encoders (h: TF-IDF, BM25).
The results show that both TF-IDF and BM25 can generate translations with
almost the same BLEU score and speed as neural sentence encoders.

In the table, neural encoders, i.e., LaBSE and AvgEnc, and non-neural en-
coders, i.e., TF-IDF and BM25, have similar calculations, respectively, but their
speeds are different. One of the reasons is a difference in the number of retrieved
tokens. In total, LaBSE and AvgEnc retrieved 27,910,815 and 34,234,900 tokens,
respectively; thus, the ratio of the number of tokens is 1.227 and is close to the
speed ratio, 2191.4/1816.8 = 1.206. Similarly, the number of retrieved tokens in
TF-IDF and BM25 is 20,423,819 and 22,576,161, respectively, and its ratio 1.105
is close t0 2199.1/1903.9 = 1.155. Note that the difference in speeds between neu-

ral encoders and non-neural encoders is caused by operations, computing devices,
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and implementations.

Compared with other models, chunk-based kNN-MT and fast kNN-MT gener-
ated translations 4 and 15 times faster than the original KNN-MT, respectively.
Chunk-based kNN-MT [76] caches the n-grams of neighboring tokens and reduces
the time complexity from O(D|M||y|) to D|M|R where R(< |y|) is the number
of retrieval in the generation. However, the computational bottleneck is usually
the size of datastore | M|, not the output length |y|, it only improved the speed
by 4 times. Fast KENN-MT [81] pre-constructed |Vx| datastores for each source to-
ken type. During decoding, it first retrieves n-nearest-neighbor source tokens for
each input token and maps them into the target-side tokens by using word align-
ment, then it finds the k-nearest-neighbor target tokens from the reduced search
space. It addresses the issue of datastore size and achieves faster decoding speed
than chunk-based KNN-MT. However, the source-side token-level retrieval is com-
putationally expensive compared with the sentence retrieval used in our model.
Additionally, the search space is n’ key vectors, where n’ is the size of the kNN
search space, but the distances between a query and n’ key vectors are calculated
directly, whereas subset KNN-MT employed ADC; thus, our subset KNN-MT is
much faster than fast KANN-MT. Note that chunk-based KNN-MT does not use
any additional resources and fast KNN-MT needs to create additional source side
datastores that consume large memory and storage, and requires a source-to-
target word alignment tool. Our subset KNN-MT uses a sentence encoder and
creates the sentence datastore which has |D| < | M| sentence representations in
addition to the kKNN-MT datastore.

In summary, this experiment showed that our subset KNN-MT is two orders of

magnitude faster than KNN-MT and has the same translation quality.

3.5.3 Domain Adaptation

German-to-English We evaluated subset kNN-MT on out-of-domain transla-
tion in the IT, Koran, Law, Medical, and Subtitles domains [65, 1] with open-
domain settings. The datastore was constructed from parallel data by merging all
target domains and the general domain (WMT’19 De-En) assuming that the do-
main of the input sentences is unknown. The datastore contained 895.9M tokens
obtained from 30.8M sentence pairs shown in Table 3.3(a). The NMT model is
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Domain  #sentences #tokens

General 29,540,337 862,648,422 Domain #sentences #tokens
IT 184,872 3,154,174
General 21,911,738 685,820,792
Koran 15,300 455,398
ASPEC 2,000,000 68,305,379
Law 450,870 18,430,516
] KFTT 440,288 15,185,034
Medical 209,828 5,741,839
Subtitles 442653 5,461,071 Total 24,352,026 769,311,205
Total 30,843,860  895,891,42 (b) En-Ja
(a) De-En

Table 3.3: Datastore statistics in the domain adaptation task.

the same as that used in Section 3.5.2 trained from WMT’19 De-En. The subset
size was set to n = 256, and the batch size was set to 12,000 tokens, i.e., By.

Table 3.4 shows the results. Compared with base MT, kNN-MT improves the
translation quality in all domains but the decoding speed is much slower. In con-
trast, our subset KNN-MT generates translations faster than KNN-MT. However,
in the domain adaptation task, there are differences in translation quality be-
tween those using neural sentence encoders and those using non-neural sentence
encoders. The table shows that the use of non-neural sentence encoders (TF-IDF
and BM25) causes drop in translation quality, whereas the use of neural sentence
encoders (LaBSE and AvgEnc) do not. In addition, compared with kNN-MT,
our subset KNN-MT with neural encoders achieves an improvement of up to 1.6
BLEU points on some datasets.

Then, we compared what examples are retrieved by LaBSE and TF-IDF, re-
spectively. As mentioned in Section 3.3.3, TF-IDF may not retrieve semantically
similar sentences by being susceptible to surface expressions. Table 3.5 shows that
the top-3 neighboring sentences retrieved by LaBSE and TF-IDF, respectively.
In the case of the table, TF-IDF retrieved sentences that are not related to the
input sentence. For example, in TF-IDF-2, “dieser”, “ist”, “die”, and “ca (CA)”
match the input sentence; however, the meaning of the sentence is quite differ-
ent. On the other hand, LaBSE-3 contains “Plasmaproteine” which semantically

matches “Protein” and “Plasma’” in the input sentence. From the table, we ob-
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IT Koran Law

Model BL CM tok/s BL CM tok/s BL CM tok/s
Base MT 38.7 831 44332 17.1 725 5295.0 46.1 85.8 4294.0
ENN-MT 41.0 839 223 195 733 19.3 52.6 86.8 18.6

Subset kNN-MT
h: LaBSE 41.9 84.2 2362.2 20.1 73.4 2551.3 53.6 86.8 2258.0
h: AvgEnc 41.9 84.2 21978 19.9 73.4 23184 532 86.8 1878.8
h: TF-IDF 40.0 81.7 2289.0 19.3 72.7 2489.5 51.4 86.0 2264.3
h: BM25 40.0 81.2 15824 19.1 72.6 2089.5 50.8 85.8 1946.3

Medical Subtitles Avg.
Model BL CM tok/s BL CM tok/s BL CM tok/s
Base MT 421  83.3 43921 294 79.9 6310.5 34.7 80.9 4945.0
ENN-MT 48.2 84.6 19.8 29.6 80.0 30.3 382 81.7 22.1

Subset kKNN-MT
h: LaBSE 49.8 84.6 2328.3 29.9 79.8 30584 39.1 81.8 2511.6
h: AvgEnc 49.2 84.8 2059.9 30.0 79.8 3113.0 38.8 81.8 2313.6
h: TF-IDF 47.5 83.4 2326.6 29.3 79.5 25744 375 80.7 2388.8
h: BM25 474 832 1835.6 294 794 1567.7 37.3 73.3 1804.3

Table 3.4: Results of out-of-domain translation with open-domain settings.
“Avg.” denotes the average scores. “BL” and “CM” denote BLEU
and COMET scores, respectively.

served differences in retrieved subsets between non-neural and neural encoders.
Note that this result could be caused by the sentence-level translation models
because a single sentence makes it harder for non-neural encoders to obtain the
sufficient statistics, e.g., term frequency and inversed document frequency.

In summary, these results show that neural sentence encoders are effective in

retrieving domain-specific nearest neighbor sentences from a large datastore.

English-to-Japanese We also evaluated our model on English-to-Japanese

translation. We used a pre-trained Transformer big model trained from JParaCrawl
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Input Dieser Anteil ist ca. um das 3fache hoher als die nicht an Protein gebun-

dene (freie) Efavirenz-Fraktion in Plasma.

LaBSE-1  Der Trypsininhibitorgehalt lag in der Ration der Versuchsgruppe mit 4,38
TIU / mg fast um das 5-fache hoher als fiir die Kontrollgruppe.

LaBSE-2  Die Dosierung der Hyaluronsédure im vorliegenden Préparat betragt das
2,5-fache des nichtliposomalen Hyaluronsaure-Konzentrats.

LaBSE-3  Verteilung Die Bindung von Telbivudin an menschliche Plasmaproteine ist

in vitro gering (3,3%).

TF-IDF-1 Die Frolikha ist an dieser Stelle ca. 65 m breit und mehrere Meter tief.

TF-IDF-2 Anbieter dieser Dienste ist die Google Inc., 1600 Amphitheatre Parkway,
Mountain View, CA 94043, USA.

TF-IDF-3  Sirbegovic Enden Montage Stahlbetonkonstruktion, die Business-Lager
Plamingo in Gracanica Fliche von ca. 6000 m2. Nutzlast Dielenbdden
ist 3000 kg / m2, die das Gebdude extrem anspruchsvollen macht. ”In

dieser Anlage...

Table 3.5: Top-3 retrieved examples of LaBSE and TF-IDF in a case of the med-
ical domain. “LaBSE-n” and “TF-IDF-n" denote the top-n neighbor-
ing sentences retrieved by LaBSE and TF-IDF, respectively.

v3 [83] and evaluated its translation quality on Asian Scientific Paper Excerpt
Corpus (ASPEC) [85] and Kyoto Free Translation Task (KFTT; created from
Wikipedia’s Kyoto articles) [87]. The datastore was constructed from parallel
data by merging ASPEC, KFTT, and the general domain (JParaCrawl v3), shown
in Table 3.3(b). Note that ASPEC contains 3M sentence pairs, but we used only
the first 2M pairs for the datastore to remove noisy data, following Neubig [88].
The datastore contained 735.9M tokens obtained from 24.4M sentence pairs. The
subset size was set to n = 512, and the batch size was set to 12,000 tokens.
Table 3.6 shows the results. These show that KNN-MT improves out-of-domain
translation quality compared with base MT on other language pairs other than
German-to-English. On English-to-Japanese, subset KANN-MT improves the de-
coding speed, but subset ANN-MT with TF-IDF and BM25 degrades the trans-
lation quality compared with kKNN-MT. However, subset KNN-MT still achieves
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ASPEC KFTT

Model BLEU COMET tok/s BLEU COMET tok/s
Base MT 26.7 88.55 5541.6 20.3 83.52 37144
ENN-MT 32.8 89.13 23.5 27.8 85.32 28.0

Subset ENN-MT
h: LaBSE 32.5 88.77 2031.8 25.8 84.11 1436.6
h: AvgEnc 32.4 88.75 1775.6 26.4 84.45 1471.3
h: TF-IDF 29.5 88.24 1763.9 22.3 82.37 1559.3
h: BM25 294 88.04 1810.7 21.8 82.21 1533.8

Table 3.6: Results of out-of-domain translation in English-to-Japanese. The

speed is measured with the B, setting.

higher BLEU scores than base MT without any additional training steps, and it
is two orders of magnitude faster than ANN-MT.

In summary, subset KNN-MT can achieve better translation quality than base
MT in exchange for a slowdown to roughly 40% of the base MT in open-domain
settings, while the original kNN-MT slows down the decoding speed to less than
1% of the base MT.

3.5.4 Multilingual Translation

We also evaluated multilingual translation quality across 11 translation directions
using the Flores-101 dataset [40], which is created from English Wikipedia. We
used the Flores101-M2M100® model with 615M parameters, which is extended
from M2M [34] to support languages that are included in Flores-101 by training
from OPUS data. The datastore of each language pair was constructed from
CCMatrix [103] extracted from Common Crawl. Note that each datastore is
created from parallel data of the language pair to be translated. We employed
LaBSE and AvgEnc for the sentence encoder in this experiment. We tuned the
subset size n to maximize BLEU among {256, 512,1024, 2048} in the validation

sets of En—Ja and Ja—En translations, and set to n = 2048. The batch size was

8https://dl.fbaipublicfiles.com /flores101/pretrained _models/flores101_-mm100_615M.tar.gz
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set to 12,000 tokens, i.e., Bo,. We used the flores101 tokenizer implemented in
sacreBLEU? to calculate the BLEU score.

9Signature: nrefs:1|case:mixed|eff:noltok:flores101|smooth:exp|version:2.3.1
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Zh-En (1.5B)  Ja-En (610.4M)  Fi-En (640.7M)
Model BL CM tok/s BL CM tok/s BL CM tok/s
Base MT 209 81.7 2030.0 19.5 82.1 21274 27.1 84.8 1976.3
EKNN-MT 25.9 84.3 11.9 24.6 84.3 33.3 31.3 87.0 32.0
Subset KNN-MT
h: LaBSE 25.0 83.5 869.1 224 834 916.2 29.5 86.1 880.8
h: AvgEnc 24.3 83.4 629.0 22.5 83.6 713.1 29.6 86.2 672.9
Lt-En (4404M)  EnZh (15B)  En-Ja (714.3M)
Model BL CM tok/s BL CM tok/s BL CM tok/s
Base MT 27.0 81.8 21452 194 784 1892.1 22.8 83.8 2177.2
ENN-MT 31.0 83.7 44.2 25.1 82.3 14.1 27.6 86.2 31.0
Subset KNN-MT
h: LaBSE 29.1 83.0 904.3 229 81.1 8373 26.1 85.5 9124
h: AvgEnc 29.5 83.0 676.1 22.7 80.9 597.8 258 854 627.0
En-Fi (724.7M)  En-Lt (534.5M)  De-Ja (204.1M)
Model BL CM tok/s BL CM tok/s BL CM tok/s
Base MT 24.2 845 21674 27.6 82.8 2032.0 21.1 82.9 2093.2
EKNN-MT 29.0 87.2 35.9 32.1 85.4 444 24.0 84.2 67.8
Subset KNN-MT
h: LaBSE 27.0 86.4 899.4 30.7 84.7 840.8 23.2 83.4 866.2
h: AvgEnc 26.8 859 639.9 30.6 84.5 603.4 226 83.6 702.1
Ru-Ja (149.5M) Uk—Ja (28.3M) Avg.
Model BL CM tok/s BL CM tok/s BL CM tok/s
Base MT 20.3 824 2166.4 20.2 81.0 1825.9 22.7 82.4 2057.6
ENN-MT 23.3 83.5 91.6 22.1 81.7 108.9 26.9 84.5 46.8
Subset KNN-MT
h: LaBSE  22.0 83.1 825.2 20.9 80.7 909.3 25.3 83.7 8783
h: AvgEnc 21.9 82.7 638.3 20.9 80.8 6152 252 83.6 646.8
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Table 3.7: Results of multilingual translation. The speed is evaluated with B.



Input Eine gemeinsame Anwendung von Nifedipin und Rifampicin ist da-

her kontraindiziert.

Reference Co-administration of nifedipine with rifampicin is therefore contra-
indicated.

Base MT A joint use of nifedipine and rifampicin is therefore contraindicated.

ENN-MT A joint use of nifedipine and rifampicin is therefore contraindicated.

Subset KNN-MT  Co-administration of nifedipine and rifampicin is therefore con-

traindicated.

Table 3.8: Translation examples in the medical domain.

Table 3.7 shows the results of the multilingual translation. In the table, “BL”
and “CM” denote BLEU and COMET scores, respectively, and “Avg.” denotes
the average of the scores. The number next to a language name pair indicates the
size of the datastore, i.e., the number of target tokens in the parallel data. The
results show that both KANN-MT and subset KkNN-MT improve translation quality
in multilingual translation. In Avg., subset KNN-MT degrades the translation
quality compared with ANN-MT, but 19 times faster measured by tokens per
second. Comparing the decoding speed for each language pair with ANN-MT,
subset KNN-MT is 16.8 times faster in Uk—Ja with the smallest datastore and
134.2 times faster in the En—Zh with the largest datastore. In summary, this
experiment shows that subset KNN-MT is more effective when the datastore is
larger because the larger datastore will be reduced more examples from the search

space by our subset retrieval.

3.6 Discussion

3.6.1 Case Study: Effects of Subset Search

Effective Cases of Subset KNN-MT Translation examples in the medical
domain are shown in Table 3.8 and the search results of the top-3 nearest neighbor
sentences are shown in Table 3.9. In the table, the subset KNN-MT results
are obtained using a LaBSE encoder. Table 3.8 shows that subset ANN-MT

correctly generates the medical term “Co-administration”. The results of the
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S-1  Die gemeinsame Anwendung von Ciprofloxacin und Tizanidin ist kontraindiziert.
S-2  Rifampicin und Nilotinib sollten nicht gleichzeitig angewendet werden.

S-3  Die gleichzeitige Anwendung von Ribavirin und Didanosin wird nicht empfohlen.

T-1 Co-administration of ciprofloxacin and tizanidine is contra-indicated.
T-2 Rifampicin and nilotinib should not be used concomitantly.

T-3  Co-administration of ribavirin and didanosine is not recommended.

Table 3.9: Top-3 neighbor sentences of our subset ANN-MT in Table 3.8. “S-” and
“T-" denote the top-n neighbor source sentences and their translations,

respectively.

timestep t  Base MT  ENN-MT Subset ANN-MT

1 A: 0.80 A:1.26 Co: 1.49
2 joint: 1.18 joint: 1.12 - (hyphen): 0.05
3 use: 0.83 use: 0.42 administration: 0.59

Avg 0.94 0.93 0.71

Table 3.10: Negative log-likelihood (NLL) of the first three tokens and their aver-
age in the case of Table 3.8. Note that a smaller NLL means a larger
probability.

nearest neighbor sentence search (Table 3.9) show that “Co-administration” is
included in the subset. In detail, there are 30 cases of “Co-administration” and
no case of “A joint use” in the whole subset consisting of n = 256 neighbor
sentences. Base MT and kNN-MT have the subwords of “Co-administration”
in the candidates; however, the subwords of “A joint use” have higher scores.
Table 3.10 shows the negative log-likelihood (NLL) of the first three tokens and
their average for each model. The second token of subset kNN-MT, “-” (hyphen),
has a significantly lower NLL than the other tokens. The number of “joint”
and “-” in the subset were 0 and 101, respectively, and the k-nearest-neighbor
tokens were all “-” in subset KNN-MT. Therefore, the NLL was low because
prenn(“-7) = 1.0, so the joint probability of a beam that generates the sequence
“Co-administration” is higher than “A joint use”.
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Input —7. BRI (7 V. uer ), W) EEELReTVI 2
I WET B SR TEORHABRE VA7 EJRTT,

Reference In contrast, animal foods (ants, termites, eggs) not only are
easily digestible, but they provide high-quantity proteins that
contain all the essential amino acids.

Base MT On the other hand, animal food (algae, syrup, eggs) is a good
source of protein, which contains all essential amino acids, to
be easily digested.

ENN-MT On the other hand, animal foods (ants, termites, eggs) are a
good source of protein that contains all the essential amino
acids.

Subset KNN-MT  On the other hand, animal food (soyks, cereals, eggs) is a good
source of protein that contains all of the essential amino acids

to be easily digested.

Table 3.11: Japanese-to-English translation examples in the Flores-101 multilin-

gual translation task.

In summary, the proposed method can retrieve more appropriate words by
searching a subset that consists only of neighboring cases when the translation

examples of the target domain are contained in the datastore.

Ineffective Cases of Subset KINN-MT Japanese-to-English translation ex-
amples in the Flores-101 multilingual translation task are shown in Table 3.11
and the search results of the top-3 nearest neighbor sentences are shown in Ta-
ble 3.12. In the table, the subset KNN-MT results are obtained using a LaBSE
encoder. Table 3.11 shows that subset KNN-MT incorrectly generates the animal
names, “7 U7 — “ants” and “> R 7 U” — “termites”. The results of the nearest
neighbor sentence search (Table 3.12) show that both words were not included
in the subset. In detail, there are no cases of “ants” and “termites” in the whole
subset consisting of n = 2048 neighbor sentences. Table 3.13 shows translation
examples containing “termites” in the datastore. Compared to the input sen-

tences in Table 3.11, the topics of the sentences containing “termites” were not
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S-1 REPIMER o7 E (35%): TNTORET 2 JBIEEFNTVWEAY T I
2%, AL FEL. IR 0Bt X R BIRCIZIER CEIED R V8
HPAEINTE 2 VWb TVE T,

S2 oL, KeflaEbES . ZHIMRCHERTRTOT I VBErET
SRRV NRIBTT,

S-3 L2l. DREVPRBELTZ2IAVRZHEILDDEILICEVWAERER. 20
RERDFELRRIROBYIFT D 2 MECHBEY R 0a vRIIEALE
T 5,

T-1 High percentage of vegetable proteins (35%): It contains all of the essential
amino acids and in similar percentages to that of animal proteins sources
like meat, milk, or eggs.

T-2 However, combined with rice, this is a complete protein with all the amino
acids necessary to the body.

T-3 DBut an even better way to get the iodine you need is from iodine-rich
foods like sea veggies and seafood, the major natural dietary sources of this

nutrient.

Table 3.12: Top-3 neighbor sentences of our subset ANN-MT in Table 3.11. “S-

and “T-” denote the top-n neighbor source sentences and their

translations, respectively.

matched. In contrast, since KNN-MT searches on a token-by-token basis, it is also
possible to retrieve target tokens from translation examples that have different
topics. In summary, subset kNN-MT degrades the translation quality compared

to KNN-MT when the neighboring sentences contain no correct word.

3.6.2 Diversity of Subset Sentences

We hypothesize that the noise introduced by sentence encoders causes the differ-
ence in accuracy. For example, if the sentence search is not accurate enough, it
cannot retrieve translation examples related to the input sentence. In addition,
we can expect consistency of translations by retrieving based on not only seman-

tic similarity of sentences but also style and other aspects. From the results of
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Japanese

English

ERRIZ, a7 OFEE. [IEZENIC
ML TINSDERREF> TS,

L2l BO7 Ve 7Y otEticH
2T DD —DORENRAT v Th
HHDTT,

X2:>a 70 %EDXDICEHRT 2D
toERE: D,

Indeed, the presence of termites buffers
these

change.

ecosystems against climate
But looking at the evolution of ants and
termites again, there is another crucial
step.

Fig. 2: How to get rid of termites: Top

photo: Before.

Table 3.13: Translation examples containing “termites” in the Japanese-to-

English datastore constructed from CCMatrix.

unique ratio %

Model h BLEU source  target
LaBSE 49.8 19.6 18.5
AvgEnc 49.2 20.4 19.2
TF-IDF 47.5 33.3 32.3
BM25 47.4 34.2 32.9

Table 3.14: BLEU score and unique token ratio in the subset obtained by each

sentence encoder in the medical domain.

Section 3.6.1 and Table 3.10, one characteristic subword that frequently occurs in
the kNN changed the order of the beams, which contributed to the improvement
of the translation quality of the subset ANN-MT. Thus, if the subset includes
only the vocabulary that is more relevant to the translation, translation accuracy
may be improved.

This section investigates whether a better sentence encoder would reduce the
noise injected into the subset. We investigated the relationship between vocab-
ulary diversity in the subset and translation quality in the medical domain. Be-

cause an output sentence is affected by the subset, we measured the unique token
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unique ratio %

n-selection BLEU source  target

Top 49.8 19.6 18.5
Random of 2n 47.7 21.7 20.3
Bottom of 2n 44.9 22.7 21.1

Table 3.15: BLEU score and unique token ratio in the subset obtained by different

n-selection methods in the medical domain.

ratio of both source and target languages in the subset as the diversity as follows:

number of unique tokens

) 3.17
number of subset tokens ( )

Table 3.14 shows the BLEU score and unique token ratio for the various sen-
tence encoders, in which “source” and “target” indicate the diversity of the neigh-
bor sentences on the source-side and target-side, respectively. The results show
that the more diverse the source-side is, the more diverse the target-side is. It
also shows that the less diversity in the vocabulary of both the source and target
languages in the subset, the higher BLEU score.

We also investigated the relationship between sentence encoder representation
and BLEU scores. In particular, we evaluated translation quality when noise
was injected into the subset by retrieving n sentences from outside the nearest
neighbor. To clarify our hypothesis, we experimented with two artificially created
subsets. One is “Bottom of 2n”, the n furthest sentences of the 2n neighbor
sentences, which simulates the n nearest neighbor sentences cannot be retrieved.
The other is “Random of 2n” | n sentences randomly selected from the 2n neighbor
sentences, i.e., it can be regarded as a subset which mixed roughly half of “Top”
subset and noise examples from half of “Bottom of 2n”. Thus, “Random of 2n”
uses more similar examples than “Bottom of 2n”.

Table 3.15 shows the results of various n-selection methods when LaBSE was
used as the sentence encoder. In the table, “Top” indicates the n-nearest-neighbor
sentences. The “Bottom of 2n” and “Random of 2n” have higher diversity than
the “Top” on both the source and target sides, and the BLEU scores are corre-

spondingly lower. In addition, “Random of 2n” achieved higher BLEU score than
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ADC
Model b w/ w/o

LaBSE  2191.4 446.4 (x0.20
AvgEnc 1816.8 365.1 (x0.20
TF-IDF  2199.1 531.0 (x0.24
(

)
)
)
BM25 19039 471.6 (x0.25)

Table 3.16: Efficiency of ADC in WMT’19 De-En. The results show the number
of tokens generated per second, i.e., Ttok/s, with the B, setting.

“Bottom of 2n” with lower unique ratio. resulting in lower translation quality
than “Top”. These experiments showed that a sentence encoder that calculates
similarity appropriately can reduce noise and prevent the degradation of transla-

tion quality because the subset consists only of similar sentences.

3.6.3 Analysis of Decoding Speed

Efficiency of ADC Subset kKNN-MT computes the distance between a query
vector and key vectors using ADC as described in Section 3.3.2. The efficiency of
ADC in WMT’19 De-En is demonstrated in Table 3.16. The results show that
“w/ ADC” is roughly 4 to 5 times faster than “w/o ADC”.

Effect of Parallelization The method and implementation of our subset ANN-
MT are designed for parallel computing. We measured the translation speed for
different batch sizes in WMT’19 De-En. Figure 3.5(a) shows that subset KNN-
MT (h: LaBSE) is two orders of magnitude faster than ANN-MT even when the
batch size is increased.

Subset Size We measured the translation speed for different subset sizes, i.e.,
the number of n-nearest-neighbor sentences in WMT’19 De-En. Figure 3.5(b)
shows the translation speed of subset kANN-MT (h: LaBSE). Subset kNN-MT
is two orders of magnitude faster than KNN-MT even when the subset size is

increased. The results also show that the speed becomes slower from n = 256
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Figure 3.5: Translation speed for different batch sizes, and subset sizes and trans-
lation quality for different subset sizes in WMT’19 De-En.

compared with base MT. We also found that 71.7% of the time was spent search-
ing for the kNN tokens from the subset when n = 2048. Although ADC look-up
search is slow for a large datastore, it is fast for kNN search when the subset size
n is not large [78], e.g., n = 512.

Figure 3.5(c) shows the results for translation quality on the development set
(newstest2018). The results show that a larger n improves BLEU up to n = 512,
but decreases for greater values of n. In terms of both the translation quality and
translation speed, we set n = 512 for WMT’19 De-En.

3.6.4 Relationship Between Neural/Non-neural Encoders

and Translation Quality

From Section 3.5.2 and 3.5.3, the translation quality of the non-neural sen-
tence encoder was almost the same as that of the neural sentence encoder in
the WMT’19 translation task, while the non-neural sentence encoder degraded
the translation quality compared with the neural sentence encoder in the domain
adaptation task. We hypothesize that one of the causes of this phenomenon is
that calculating TF-IDF and BM25 on a sentence, rather than on a document,
would not extract sufficient statistics, especially in short sentences.

To verify this, we measured the total difference in sentence BLEU when using
LaBSE and TF-IDF for each length bucket of the source sentences. Note that the
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Figure 3.6: Total difference in sentence BLEU for each length bucket.

length bucket means the range from ¢ (inclusive) to i 4+ 10 (exclusive). Figure 3.6
shows the results in the WMT"19 translation task and the medical domain adap-
tation task. It can be seen that TF-IDF often degraded the translation quality
in short sentences, and the degradation is suppressed as the sentence length in-
creases in both datasets. From Figure 3.7, the medical domain task has more
short source sentences than the WMT’19 translation task. Therefore, the score
difference between TF-IDF and LaBSE in the medical domain could have been
larger than that in the WM'T"19 translation task due to sentence lengths.

To summarize, we found that the non-neural encoder, TF-IDF, degraded the
translation quality, especially for short sentences, while the neural encoder, LaBSE,
retrieved similar sentences robustly and prevented the degradation even for short

sentences.

3.7 Related Work

The first type of example-based machine translation method was analogy-based
machine translation [84]. Zhang et al. [130], Gu et al. [42] incorporated example-
based methods into NMT models, which retrieve examples according to edit dis-

tance. Bulte and Tezcan [10] and Xu et al. [122] concatenated an input sentence
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and translations of sentences similar to it. Both ANN-MT and subset kNN-MT
retrieve kNN tokens according to the distance of intermediate representations and
interpolate the output probability.

To improve the decoding speed of kKNN-MT, fast KENN-MT [81] constructs ad-
ditional datastores for each source token, and reduces the kNN search space using
their datastores and word alignment. Subset KNN-MT requires a sentence data-
store that is smaller than source token datastores and does not require word
alignment. Martins et al. [76] cached n-gram tokens adjacent to the retrieved
tokens and reduced the number of querys for the entire datastore; their model
led to a speed-up of up to 4 times, compared with KNN-MT. In contrast, subset
ENN-MT does not search for the entire datastore during decoding. Dai et al.
[22] reduced the kNN search space by retrieving the neighbor sentences of the
input sentence. They searched for neighboring sentences by BM25 scores with
ElasticSearch!®, so our subset KNN-MT with BM25 can be regarded as an ap-
proximation of their method. They also proposed “adaptive lambda”, which dy-
namically computes the weights of the lambda of linear interpolation in Equation
3.2 from the distance between the query and the nearest neighbor key vectors.

However, adaptive lambda requires an exact distance and cannot employ data-

Ohttps://github.com/elastic/elasticsearch
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store quantization and the ADC look-up. To improve the translation quality of
ENN-MT, Zheng et al. [131] computed the weighted average of kNN probabilities
penn over multiple values of k. Each weight is predicted by “meta-k network”,
trained to minimize cross-entropy in the training data. Their adaptive KNN-MT
only improved the translation quality and its decoding speed is almost the same
as that of ENN-MT[131]. In contrast, we focused on the improvement of the de-
coding speed. Additionally, our subset kKNN-MT outperformed kNN-MT in some
domain adaptation tasks as a positive side effect of subset retrieval. For the other
tasks, KNN-LM [60], Efficient ANN-LM [46], and RETRO [7] used kNN search
for language modeling (LM). Our subset search method may be applied to LM
regarding the prompt text as the query, but the way to construct the sentence
datastore from monolingual data is non-trivial, and we leave this issue for future
work.

Some work used sentence similarity to improve the translation quality of NMT
models. Wieting et al. [120] showed that minimum risk training using the co-
sine similarity between the generated hypothesis and the reference translation
improved the translation quality of NMT models. Another approach uses the
sentence similarity between the output sentence and the reference as the reward
of reinforcement learning [128] to prevent excessive penalty due to cross-entropy
that does not take into account the semantics of the sentence. Both of their meth-
ods used sentence similarity to put the semantics of the output sentence close to
the reference translation, whereas our method uses sentence similarity to search
for translation examples. They used the sentence similarity in the target side,
while we use the similarity between the input sentence and the source sentences
in the parallel data.

Quality estimation models and metric models, which use similarity between
the source sentence and the hypothesis, or the hypothesis and the reference, have
been proposed to evaluate the translation quality [99, 100, 104]. They use the
similarity on the target side, whereas our model uses it on the source side. Sellam
et al. [104] augmented the training data of the metric model by mask-filling with
BERT [26], back-translation, and dropping words to allow the model to capture
the various errors. In our model, we may improve the accuracy of the similar

sentence search by fine-tuning the sentence encoder to retrieve better subsets
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that improve the translation quality.

In the field of ANN search, Matsui et al. [78] allowed search in dynamically
created subsets, whereas conventional search methods assume only full search.
Subset ENN-MT retrieves kNN tokens from a subset depending on a given input.
In our subset KkNN-MT, the decoding speed is slow when the subset size n is large.
The bottleneck is the look-up in the distance table, and this can be improved by
efficient look-up methods that use SIMD [2, 79].

3.8 Limitations

This study focuses only on improving the speed of ENN-MT during decoding;
other problems with ANN-MT remain. For example, it still demands large amounts
of memory and disk space for the target token datastore. In addition, our sub-
set kNN-MT requires to construct a sentence datastore; therefore, the memory
and disk requirements are increased. For example, the quantized target token
datastore has 52GB (|M| = 862,648,422) and our sentence datastore has 2GB
(IS| = 29,540,337) in the experiment of WMT’19 De-En (Section 3.5.2). Al-
though subset KANN-MT is faster than the original KANN-MT in inference, data-
store construction is still time-consuming. The decoding latency of our subset
ENN-MT is still several times slower than base MT for large batch sizes. The
experiments reported in this study evaluated the inference speed of the proposed
method on a single computer and single run only; the amount of speed improve-

ment may differ when different computer architectures are used.

3.9 Conclusion

We proposed “Subset KNN-MT”, which improves the decoding speed of KENN-MT
by two methods: (1) retrieving neighbor tokens from only the neighbor sentences
of the input sentence, not from all sentences, and (2) efficient distance computa-
tion technique that is suitable for subset neighbor search using a look-up table.
Our subset kNN-MT achieved a speed-up of up to 134.2 times and an improve-
ment in BLEU of up to 1.6 compared with ENN-MT in the WMT’19 De-En

translation task, the domain adaptation tasks in De-En and En-Ja, and the Flo-

46



res101 multilingual translation task. From the experiments, we found that the
translation quality varied depending on sentence encoders. For future work, we
would like to compare them with other pre-trained models and also fine-tune sen-
tence encoders maximizing the metrics. In addition, we would like to apply our
method to other text generation tasks, such as not only single-modal tasks like

text simplification but also multi-modal tasks like speech-to-text translation.
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Chapter 4

Detector—Corrector: Edit-Based
Automatic Post Editing for
Human Post-Editing

4.1 Introduction

Neural machine translation (NMT) [112, 3, 72, 121, 113] sometimes make er-
rors [90], and post-editing is crucial in the real world to correct the mis-translations.
Automatic post-editing (APE) attempts to correct and refine the translations
generated by MT models (MT sentences) for better translation quality. However,
many APE models are based on sequence generation [58, 20, 106, 11, 12, 5], and
their decision for correction is harder to interpret due to the black-box nature of
the generation models.

Some prior work [75, 43, 89, 109, 73, 74] showed that edit-based models im-
prove interpretability in monolingual text editing, e.g., grammatical error correc-
tion (GEC), compared with sequence-to-sequence models. The APE task can be
regarded as a text edit task in terms of rewriting MT sentences, but differs from
general monolingual text editing tasks in that it uses cross-lingual information
from source sentences, such as inserting untranslated words and reordering trans-
lation words. For example, if an edit-based model cannot perform reordering,
it is represented as deletion and insertion, which increases the number of edit
operations and makes it harder for humans to interpret the edit.

In this paper, we propose “detector—corrector”, an edit-based post-editing
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[ Corrector: replacing and inserting ]
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[ Detector: reordering and tagging ]
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Jeden Abend trinke ich Bier drink | bier

Figure 4.1: Overview of the post-editing process of our detector—corrector model.
The detector tags as “Jeden Abend” is untranslated, “drink” and “I”
should be reordered, etc. The corrector generates the word sequence

for replacement and insertion.

model, in which the post-editing process is broken into two steps for assisting
human post-editing: error detection and error correction. We designed our model
after interviewing with professional translators regarding the post-editing process;
specifically, they first spot errors and then make corrections, and omission errors
are crucial for the editing process. The overview of our detector—corrector model
is shown in Figure 4.1. The detector model, which extends a word-level qual-
ity estimation (QE) model, tags each MT output token as whether it should be
corrected and/or reordered and identifies which source tokens are not translated
in the MT sentence. Then, the corrector model receives the annotated source
and MT sentences and corrects words for each span identified as incorrect in the
detector model. Our corrector model can insert any number of spans of variable
length. In addition, we propose data augmentation methods especially designed
for the detector and corrector models to enhance each model, and lightweight
iterative refinement to improve the inference speed.

Experiments on the WMT’20 English-German (En-De) and English-Chinese
(En—Zh) APE tasks showed that our detector—corrector improved translation edit
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rate (TER) [107] compared to not only an edit-based model [43] but also a black-
box sequence-to-sequence model by 0.7 points in En-De and En-Zh. Moreover,
our model is more explainable than sequence-to-sequence models because it is

based on edit operations and it can be integrated into computer-aided translation
tools [47].

4.2 Background and Related Work

4.2.1 Edit-Based Model

Chen et al. [16] have built an edit-based GEC system that detects erroneous spans
and then corrects the words within the detected erroneous spans. GECToR [89]
is also an edit-based GEC mode, in which the model predicts the error type tag
for each word, and then words identified as errors are corrected according to the
rules for each tag type.

Levenshtein Transformer [43], a non-autoregressive Transformer encoder-decoder
model, predicts deletion, placeholder insertion, and word filling. It can be used
for the APE task by rewriting an MT sentence, but it cannot represent reordering
and detecting untranslated words. Seq2Edits [109] edits an input text by span
tagging and replacement prediction to improve interpretability for text-editing
tasks. However, it is not suitable for the APE task because it only monotonically
edits an MT output from left to right according to the tags and cannot perform
reordering of spans or inserting missing words which often occur in erroneous
translations. FELIX [73] breaks down text editing into three components: tag-
ging, reordering, and word in-filling. It performs tagging using a pre-trained en-
coder model like BERT, reordering using a pointer network, and predicting words
of replacement and insertion using a masked language model. However, it does
not explicitly use source information. In addition, word insertion is predicted
non-autoregressively; thus, the number of words to be inserted must be given
in advance for the insertion operation, which is not trivial. EdiT5 [74] uses the
T5 [95] encoder-decoder and decomposes the editing process into (1) tagging that
decides which tokens are kept, (2) reordering the input tokens, and (3) insertion
that infills the missing tokens. Unlike FELIX, Edit5 uses the autoregressive T5h
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decoder for word prediction, allowing for variable length insertion. However, the
positions that can be inserted depend on the special tokens used in pre-training
of T5 for filling masked spans, e.g., <extra_id 6> as <pos6>; thus, the number

of positions that can be inserted is limited to those observed in pre-training.

4.2.2 Word-Level Quality Estimation

The word-level quality estimation task estimates the word-level quality of MT
sentences, which is closely related to the post-editing task. It is divided into three
binary classifications [108]: MT-tag, MT-gap, and SRC-tag. MT-tag detects
erroneous words in MT sentences. MT-gap predicts where to insert untranslated
words in MT sentences, and SRC-tag detects untranslated source words.
Predictor-estimator model [62, 63] is a well-known architecture for the word-
level quality estimation task, in which the predictor is used for feature extrac-
tion from translation results while the estimator estimates the translation quality
based on the features from the predictor. Ding et al. [28] used Levenshtein Trans-
former [43] for the word-level quality estimation task. Their method uses the edit
probabilities of deletion and insertion of Levenshtein Transformer as tag predic-
tion probabilities instead of explicitly predicting OK/BAD tags. DirectQE [21]
is a pre-training method designed for the QE task, which consists of two com-
ponents: generator and detector. In pre-training, The generator rewrites words
by a cross-lingual masked language model, then the detector detects the replaced
words. After pre-training, the detector model is fine-tuned with real QE data.
SiameseTransQuest [96] employed the word-level QE architecture using XLM-R
for the sentence-level quality estimation task, and they showed that using XLM-R
is effective in the QE task. Ranasinghe et al. [97] demonstrated that the fine-
tuned XLM-R predicts word-level QE on other language pairs than a language

pair that is trained explicitly, i.e., the model can perform zero-shot QE.

4.2.3 Automatic Post Editing

The automatic post-editing (APE) task aims to improve the translation quality
by editing translations generated from black-box MT models [12]. The APE

system receives the source and MT sentences and generates the post-edited (PE)
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sentence. This task mainly evaluates correction performance using translation
edit rate (TER) [107] based on the edit distance between the human-revised
translation and the corrected sentence.

Correia and Martins [20] built a sequence-to-sequence APE system by only
fine-tuning pre-trained BERT models, in which weight initialization is carefully
designed to employ pre-trained weights for both encoder and decoder. In the
APE shared task, the high-ranked systems often employ Transformer encoder-
decoder architectures with pre-trained models [12, 5, 124, 118, 68, 24, 51]. The
sequence-to-sequence model, which learns post-editing in an end-to-end manner,
can achieve high translation quality; however, it cannot explicitly expose the
editing process, making it hard to utilize the model in scenarios that require
manual checking. The copy mechanism [41] can be used for APE tasks by copying
words in MT sentences that do not need to be modified [50]. This model can show
us edited and non-edited words using the copy probability. Neural Programmer-
Interpreter (NPI) [117] generates PE sentences by predicting the edit actions and
the target tokens comprising three editing operations: keep, delete, and insert.
Although NPI is more interpretable than the sequence-to-sequence models, it
cannot represent reordering nor differentiate replacement and insertion. Deoghare
et al. [25] incorporated the word-level quality estimation into an APE model.
Their model predicts which word should be edited through multi-task learning;
however, it cannot use human-annotated QE tags because the information of QE

tags, which is passed to the decoder, is represented as hidden vectors.

4.3 Proposed Model: Detector—Corrector

4.3.1 Edit Operations

We first discuss edit operations that our model treats. In previous work, the
most widely used operations are deletion, replacement, and insertion [117, 43,
16, 73, 74]. Note that some models support only a few operations. For example,
Levenshtein Transformer does not perform the replacement operation explicitly.

In the GEC task, GECToR [89] and Seq2Edits [109] predict error type tags

for each input token or span. Their models provide more human-interpretable
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Figure 4.2: Overview of our detector model. The model detects OK and BAD

tags as 0 and 1, respectively.

outputs by predefining many types of edit operations based on the human ten-
dency to make grammatical errors. This study attempts to correct translations
generated from any MT systems and we do not care about a particular model;
thus, it is difficult to predefine specific error types.

Since the above-mentioned general operations, i.e., deletion, insertion, and re-
placement, are designed for monolingual text editing tasks, these operations may
lack the edits required for the translation post-editing. For instance, word re-
ordering might be helpful for translations of language pairs that have different
word orders [129, 15]. If a translation model generates n-gram repetition, n-gram
deduplication will be needed [45]. In industrial translation, lexical substitution
by matching to the bilingual dictionary is necessary to deal with terminology
translation [6].

In this study, we focus on the operations of deletion, insertion, replacement,
and word reordering, which are employed in the several evaluation metrics of
the translation quality, e.g., TER [107], CDER [69], and extended edit distance
(EED) [110].
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4.3.2 Detector

Our detector model (Figure 4.2) predicts shift and edit operations based on trans-
lation edit rate (TER) [107]. TER iteratively reorders an input sequence to
minimize the edit distance from the target sequence, called “shift” operation,
then calculates edit distance between the reordered input sequence and the tar-
get sequence, called “edit” operations. To represent this TER behavior, our
detector model performs tagging to predict whether edits are need needed (“Tag-
ging” in Figure 4.2), and reordering of the given MT sentence with a pointer
network [114] (“Reordering” in Figure 4.2). Let © = (x1,...,2y) € V* and
Y = (y1,-..,Yy)) € V* denote the given source sentence and its translation gen-
erated by machine translation (MT sentence), respectively, where V* is the Kleene
closure of the vocabulary! V. Note that both x and y always have the end-of-
sentence symbol “</s>” as the last tokens, i.e., z|4 = yjy| = “</s>”. Let xoy be
the concatenated sequence, where o represents the join operation with a separator
token between the sequences?. XLM-RoBERTa (XLM-R) encoder [19] encodes
the concatenated sequence @ o y into D-dimensional hidden vectors through L
layers HO = (b{") ... hfjgm)T € RlzewlxD,
Tagging To perform tagging, we train a word-level quality estimation model.
In particular, the detector model performs three binary classifications as defined
by Specia et al. [108]: MT-tag, MT-gap, and SRC-tag.

Let o € {0,1}¥! denote the MT-tag which represents whether an MT token

would be edited, i.e., of = 1 if y; is deletion or replacement in a TER edit

sequence, e.g., “bier” in Figure 4.2. The MT-tag classification identifies whether

an MT token should be edited based on the bad probabilities:
pi = plo] = 1|z, y) = o(whi"), (4.1)

where wr € R? is a learned parameter for MT-tag prediction, 1 < Iy < L denotes

the layer used for MT-tag prediction, and o : R — [0,1] is a sigmoid function.

"'We employ XLM-R, a multilingual encoder; thus, the vocabulary is shared between the source

and target languages.
2In XLM-R, the class token is represented by “<s>”, and two sentences are joined by “</s>”

symbols, like “<s> a b ¢ </s> </s> A B </s>”. We regard the first symbol as the end-of-

sentence symbol of the first sentence, i.e., ||, and the second one as the separator token.
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Note that h?(ji) is a row of H® which is the hidden vector corresponding to the
token g; in the [-th layer.

Similarly, MT-gap classification predicts whether some words need to be in-
serted at a token boundary in the MT sentence based on the insertion probabili-
ties:

PE = p(of = 1z, y) = o(wl[AUS); A1), (4.2)

vio 1
where 0% € {0, 1}¥! represents insertion in a TER edit sequence, e.g., the token
boundary between “bier” and “</s>” in Figure 4.2. wqg € R?P is a learned
parameter for M'T-gap prediction, 1 <[5 < L denotes the layer used for MT-gap
prediction, and [-; -] denotes the concatenation of two vectors. Note that g, is the
separator token between the source and MT sentences.

Likewise, the SRC-tag 0o° € {0,1}#! is constructed from a source-target word
alignment as x; = 1 if x; is not aligned to any target token like “Jeden” and
“Abend” in Figure 4.2. In this paper, we used AWESOME-ALIGN [30] to obtain
the gold alignment. The SRC-tag classification predicts whether a source token

is untranslated or not using the probabilities:
p? =plo) = 1|z, y) = a(wghgf)), (4.3)

where wg € RP is a learned parameter for SRC-tag prediction and 1 < lg < L
denotes the layer used for SRC-tag prediction.
During inference, each tag o, 0%, and o° are respectively predicted to be

“BAD” when each probability p; is greater than 0.5, and “OK” otherwise.

Reordering Our detector also predicts reordering by generating the reordered
sequence ¥y = (%1,...,9)y) using the pointer network [114] at the top of the
decoder. It autoregressively selects the next token for each timestep from the

MT sentence according to the probability pft, as follows:

|yl
g* = argmax HpR(gz|ma Y, g<i)a (44)
(F15Y1g1) 121
P (5 = yil®, ¥, Y<i) < exp(k, qy,), (4.5)
k,, = Wih,,, (4.6)
qy, = W Decoder(y.;, HW®D), (4.7)
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where Decoder: V* x R®¥*D 5 RP is a Transformer decoder that computes
a hidden vector of the i-th step gy from the given encoder hidden vectors and
the prefix of reordered sequence. W, € RP*P and W, € RP*P are the learned
parameters, and y* is the reordered sequence predicted by the model. Note that
the hidden vectors H") are computed using the same encoder as used in tagging.

During inference, the tokens of the MT sentence and their corresponding MT-
tag and MT-gap are reordered according to the order of y*. Note that the MT-
gap tags are reordered in accordance with the order of their right-side tokens of
boundaries. For example, in Figure 4.2, the MT-gap model predicts that some
words need to be inserted at the token boundary between “bier” and “</s>”, and

the boundary position is attached to the left of “</s>” after reordering.

Objective function We trained the MT-tag, MT-gap, and SRC-tag classifica-
tions by minimizing their objective functions, L1, Lg, and Lg, computed by the

binary cross-entropy, as follows:
- Z (0ilogp; + (1 — 0;) log(1 — ps)) , (4.8)

where o; € {0,1} is the ground truth label of the probability p;. The model
is also trained to generate reordered MT sentences by minimizing the following

cross-entropy:
ly|

Lr=— Z log p™ (il . y, y<i), (4.9)

i=1
where the gold reordered sequence is created from the TER shift alignment.
Finally, our detector model is trained by minimizing the following objective L

through multi-task learning:
L=Lr+Lsg+ Ls+ Lpg. (4.10)

Note that all loss functions in £ are computed during a single forward pass since

the encoder parameters are shared between all tagging and reordering predictions.

4.3.3 Corrector

The corrector model (Figure 4.3) corrects the reordered MT sentence by gen-

erating tokens corresponding to the erroneous spans identified by MT-tag and
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Figure 4.3: Token generation within each tagged span by our corrector model.
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MT-gap predictions. The corrector represents edit operations by predicting zero
words in a bad span for deletion, one or more words in a bad span for replace-
ment, and one or more words in an insertion span for insertion, as shown on the
output of the decoder in Figure 4.3.

First, the tags predicted by the detector model are used to annotate the source
sentence and its corresponding reordered MT output as span tags. In the source
sentence, <bad> and </bad> tags are inserted to the beginning and end of un-
translated spans, respectively, using the SRC-tag 0°, as shown on the left side of
the input of the XLM-R encoder in Figure 4.3. Similarly, <bad> and </bad> tags
are inserted into reordered MT output where identified by the MT-tag tagging
o’ in addition to the <ins> and </ins> tags to the positions that need to be
inserted words, as shown on the right side of the input of the XLM-R encoder in
Figure 4.3.

Next, the annotated source and reordered MT sentences are concatenated with
the separator token and fed into the encoder. We initialize the corrector encoder
with XLM-R as well as the detector model in order to preserve consistency with
the subword unit tags used in the detector. Then, the decoder generates tokens
for all tagged spans in the left-to-right manner until the number of corrected spans
satisfies the number of bad and insertion spans in the annotated reordered MT
sentence. Finally, our detector—corrector outputs a corrected target sentence by
replacing each tagged span of the MT sentence with a token sequence predicted
by the corrector decoder.

Our corrector can be regarded as a translation suggestion (TS) model [126, 127],
in which better alternative translations are suggested phrase-by-phrase by re-
placing incorrect translation spans. Our model differs from TS models in that
untranslated spans in source sentences are explicitly identified and incorrect trans-
lations and/or insertions are clearly differentiated by the bad and insertion tags,
respectively. Furthermore, MT sentences are reordered and multiple spans are

corrected in our model, which are out of the scope of the TS task?.

3The TS task assumes only a single incorrect span for each sentence and does not treat

reordering.
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4.3.4 Data Augmentation
Data Augmentation for Detector

Since the detector—corrector is trained to correct only erroneous spans identified
by the detector, improving the tagging accuracy will directly lead to improved
translation quality. For this purpose, we create the synthetic data from the
reference translations of the training data and let the detector learn the editing
operations of deletion, replacement, and insertion. We randomly delete tokens
with a probability of 5%, insert tokens with a probability of 10%, and replace
tokens with a probability of 30%. We employ XLM-R to fill the masked tokens

for the replacement and insertion decision.

Data Augmentation for Corrector

The training data for the corrector model is created from the tokens for each
span identified as an error using the oracle annotated source and MT sentences.
However, the detector might make wrong decision during inference, which might
cause a large discrepancy between the training and inference for the corrector.
In addition, the performance of the corrector might suffer from the limited cov-
erage of the vocabulary in the training data when compared with a conventional
sequence-to-sequence MT model. For these reasons, we employ two simple data
augmentation methods for the corrector model without additional computational
cost: MT training and PE training. These two augmentation methods are or-

thogonal with each other; thus, they can be combined.

MT Training In MT training, the corrector model is trained to predict the PE
sentence from only the source sentence without the corresponding MT sentence.
To preserve the model consistency, an MT output is treated as an empty text by
augmenting with “<ins> </ins>” so that the model learns to insert the whole
PE sentence from the empty MT sentence. The encoder input sequence of MT

training is formulated as follows:
<bad> x </bad> o <ins> </ins>, (4.11)

and the corrector is trained to generate the post-edited sentence with the inser-

tion, i.e., <ins> y"® </ins>, where y** € V* is the post-edited sentence.
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PE Training PE training differs from MT training in that the MT sentences
are given. The corrector model is trained to generate the whole PE sentence
from the given source and MT sentences. This is the same setting as the stan-
dard sequence-to-sequence APE model training, except that the MT sentence is
explicitly annotated as “<bad>". To maintain model consistency, the whole M'T

sentence is treated as a bad span to be corrected:
x o <bad> y </bad>, (4.12)

and the model learns to replace the MT sentence with the PE sentence, i.e., the

model is trained to generate <bad> y'¥ </bad>.

4.3.5 Lightweight Iterative Refinement

The detector model detects each erroneous span in a non-autoregressive manner;
thus, a single inference may not generate sufficiently correct PE sentences that
are consistent across the entire sentence. To address such issues, some prior
non-autoregressive models [43, 59, 89] decode sequences by iteratively feeding
the output into the model. We follow the practice by iteratively refining an MT
sentence by treating the post-edited sentence corrected by our model as an MT
output, i.e., the corrected sentence in the k — 1-th iteration is used as the input
of the detector model in the k-th iteration. However, the iterative refinement
approach demands huge computation in particular for our approach, in which an
end-to-end inference predicts three edit operations in the following order: tagging,
reordering, and correcting.

Tagging can be predicted with only a single forward pass of the detector en-
coder, and correcting can be finished very quickly since it generates only a few
words for each erroneous span. In contrast, reordering is relatively slower than
the other operations because the decoder runs for the length of the MT sentence
in an auto-regressive manner.

In order to overcome such bottleneck, we propose lightweight refinement, in
which inference is carried out only by predicting tags and generating correct

tokens without reordering after the second time in the iterative refinement.
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4.4 Experiments

4.4.1 Setup

We compared the translation quality of our detector—corrector with that of the
sequence-to-sequence (seq2seq) APE model and Levenshtein Transformer (LevT) [43].
We evaluated TER (| T), BLEU (1B), and COMET (1C) using SACREBLEU [94]
and COMET* [98, 99] in the WMT’20 English-German (En-De) and English—
Chinese (En-Zh) automatic post-editing tasks.

Datasets Training data came from WMT’20 APE tasks, which were created
from wikipedia articles that contain 7,000 sentences, and we applied upsampling
by 20 times to them. In addition to the provided data, we created additional
training data that consists of (source sentence, MT sentence, PE sentence) triplets
using a parallel corpus following the idea from Negri et al. [86]. In particular, we
randomly sampled 2 million sentences from the training data of the WMT’19 En—
De and En—Zh translation tasks and translated them with M'T models, which were
used to generate the data for the APE tasks [37]. As described in Section 4.3.4,
the training data for the detector and corrector were further augmented. The

data statistics are shown in the appendix (Table A.2).

Models The seq2seq APE model, LevT, and our detector—corrector comprise
the XLM-R large encoder and Transformer decoder. The seq2seq, LevT, and
corrector models were trained in 60,000 steps, and the detector model was trained
in 40,000 steps. All models were optimized by Adam optimizer (8; = 0.9, 8 =
0.98,¢ = 107®). The learning rate was linearly increased up to 4,000 steps and
then decayed proportional to the inverse square root of the training steps. The
beam size was set to 5, and the length penalty was set to a = 1.0. We saved
checkpoints of all models for every 1,000 steps and took an average of the last
5 checkpoints. The LevT edited the MT sentences 5 times iteratively, and the
detector—corrector edited 4 times, i.e., k = 4, by tuning on the development

set. For tagging, we used the intermediate representations of the 20th layer, i.e.,

4https://huggingface.co/Unbabel /wmt22-comet-da
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Dataset Model T 1B 1C

En-De do nothing (MT) 31.3 50.2 77.1
seq2seq 28.4 53.3 77.7
LevT [43] 319 494 756
detector—corrector 27.77 53.6 79.6f

En-Zh  do nothing (MT) 583 243 86.3
seq2seq 56.7  26.0 89.4f
LevT [43] 59.3 23.6 86.0
detector—corrector 56.0 26.1 89.2

Table 4.1: Comparison of post-editing performance in the WMT’20 En-De and
En-Zh APE tasks. Do nothing (MT) does not edit MT sentences and
the scores are calculated between MT and PE sentences. The best
scores of each dataset are emphasized by the bold font. The symbol
indicates that the score difference is statistically significant (p < 0.05)

between seq2seq and detector—corrector.

lr =lg = lsg = 20 in En—De, and the 24th layer, i.e., Iy = lg = lg = 24 in En—Zh.
The details of each model are shown in the appendix (Table A.1).

4.4.2 Results

Our main results are shown in Table 4.1. Our detector—corrector model im-
proved TER and BLEU from both LevT and seq2seq models. Especially in TER,
detector—corrector outperforms the black-box seq2seq model by 0.7 % in En-De
and En—Zh while providing the editing process.

Table 4.2 shows the ablation study of our proposed methods. In the table,
“light-iter” denotes the lightweight iterative refinement, and “DAug” denotes
data augmentation. The results show that both lightweight iterative refinement
and data augmentation for the detector and corrector are effective, which improve
the TER scores by 3.5 % in En-De and 5.2 % in En-Zh compared to the vanilla
detector—corrector.

Our data augmentation for the detector can be used for other baseline models,
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En-—De En-7Zh

Model T B 1C T 1B 1C

ours 27.7t 53.6" 79.67 56.07 26.1T 89.2f
- light-iter 28.9 52.1 77.7 56.6 25.5 88.0
-- MT training 29.3 515 77.7 56.6 254 88.3
-- PE training 29.2 51.8 77.7 56.6 25.2 88.3

-- DAug for corrector 30.2 50.1 77.6 57.0 24.9 88.6
-— DAug for detector 31.2 49.0 77.1 61.2 22.7 86.7

Table 4.2: Ablation study of our methods in the WMT’20 En—De and En—7Zh APE
tasks. The symbol { indicates that the score difference is statistically
significant (p < 0.05) between “ours” and “- light-iter”.

1T +B 1C

Dataset Model w/o w w/o w w/o w

En-De seq2seq 28.4 28.4 53.3 52.9 77.7 78.0
LevT  31.9 32.1 494 49.0 75.6 75.8

En-7Zh seq2seq 56.7 57.0 26.0 26.0 89.4 89.5
LevT  59.3 59.9 23.6 23.4 86.0 86.1

Table 4.3: Translation quality of baseline models trained using our data augmen-

tation for the detector.

seq2seq and LevT®. To confirm that the data augmentation is effective for our
model, we also trained the baseline models using the augmented data. Table 4.3
shows that the translation quality of baseline models trained on the augmented
data. Unlike the “DAug for detector” row in Table 4.2, there is no improvement
in all metrics of more than 1 % even if the augmented data is used. This is
because the data augmentation for the detector is designed to enhance word-level
quality estimation.

To summarize, we confirmed that our model outperformed LevT and a black-

>The data augmentation for corrector cannot be applied to other models because they have

been already trained to generate the whole target sentence.
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Tagging Dataset DAug MCC F1-OK F1-BAD

Target En-De w/o 0468  0.935 0.523
w/ 0.475 0.937 0.526

En-Zh w/o 0.505 0.893 0.602
w/ 0.537 0.902 0.619

Source  En-De w/o 0.782  0.985 0.794
w/ 0.791 0.985 0.805

En-Zh  w/o 0.641 0.943 0.695
w/ 0.676 0.948 0.724

Table 4.4: Word-level quality estimation performance of our detector model.

box seq2seq model, and our approaches mitigate the translation quality degra-
dation issue caused by predicting tags in a non-autoregressive manner and being

trained from only a vocabulary limited to correction words.

4.5 Discussion

4.5.1 Accuracy of the Detector

We evaluated the tagging performance of our detector model and investigated
the effectiveness of data augmentation for the detector. Since tags are predicted
on subword units, we assigned a BAD tag to a word if one of the subwords in
the word was assigned a BAD tag. The gold tags are calculated from the TER
edit sequence after applying the shift operations in the same way as described in
Section 4.3.2.

Table 4.4 shows the results of the word-level quality estimation. In the table,
“MCC” denotes Matthews correlation coefficient [80]. “Target” and “Source” are
the target-side tagging, i.e., MT-tag and MT-gap without distinction, and the
source-side tagging, i.e., SRC-tag, respectively. We only compared our models
with and without data augmentation. This is because in the WM'T"20 word-level
QE task, the target-side tags are produced from TER edit operations without shift
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Dataset Model T B 1TC

En-De do nothing (MT) 31.3 50.2  77.1
detector—corrector 27.7 53.6  79.6

w/ oracle tags 13.8 746 829

(-13.9) (4+21.0) (+3.3)

En-Zh do nothing (MT) 58.3 24.3  86.3
detector—corrector 56.0 26.1 89.2

w/ oracle tags 33.2 46.6  90.1

(-22.8) (+20.5) (40.9)

Table 4.5: Correction performance in the WMT’20 En-De and En—Zh APE tasks

when the erroneous spans are given manually.

operations, and the source-side tags are produced by FAST_ALIGN® [31], while in
our model the target-side tags include the shift operation and the source-side tags
are produced by AWESOME-ALIGN. The results show that the data augmentation
for the detector improved the all MCC scores, which has the direct impact to the
improvements measured by BLEU and TER for our detector—corrector as shown
in Table 4.2.

We also observed that the F1-BAD scores of the target-side tagging are not high
in both language pairs. In particular, the accuracy of erroneous span detection
is 0.526 and 0.619 in En-De and En-Zh, respectively. This low accuracy could
be the reason why the correction performance is only improved by 0.7% TER
compared with the seq2seq model. Because the corrector model only corrects
the detected spans, the F1-BAD scores are closely linked to the correction perfor-
mance of our detector—corrector. The problem of the error detection performance

is one of the remaining challenges in this study.

4.5.2 Correction Performance of Oracle Tagged Sentences

We evaluated the performance of the corrector model for oracle tags, assuming a

setting in which error spans are given manually. Oracle tags were given from the

6SIMALIGN [52] is employed since the WMT 21 word-level QE task.
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En-De En-7Zh

Reordering [T 1B 1tC [T 1B 1C

w/ 289 521 Tr.7 56.6 255 88.0
w/o 289 524 782 574 249 88.1

Table 4.6: Translation quality of detector—corrector with and without reordering.
Note that we evaluated translation quality on the results of the first

iteration in iterative refinement.

En-De En-Zh

Reordering # of edits TERyT # of edits TERyT

w/ 2,506 17.6 5,603 31.6
w/o 2,614 18.5 7,410 38.0

Table 4.7: The total number of spans tagged by the detector and TER scores
that measured the amount of editing from the MT sentence to the
post-edited sentence corrected by the corrector in the WMT’20 APE
En-De and En-Zh tasks.

TER alignment between the MT sentence and the reference translation as well
as the supervision in the training data.

In Table 4.5, “w/ oracle tags” shows the result of oracle correction in the
WMT’20 En—De and En—Zh APE tasks. The results showed that when given the
ideal tags, the correction performance significantly improved by -13.9 and -22.8 %
TER, 4+21.0 and +20.5 % BLEU, and +3.3 and +0.9 % COMET in En-De and
En—Zh, respectively. This means that the corrector model has been successfully
trained, and a further improvement in post-editing performance can be achieved

by improving the accuracy of the detector model.

4.5.3 Ablation Study of Reordering

We also investigated the effectiveness of using the reordering operation. The

training data for the model without reordering was created from the edit align-
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Figure 4.4: Comparison of various iterations in iterative refinement. The scores
were evaluated on the development set in the WMT’20 En-De APE
task.

ments based on the edit distance. We compared the translation quality in the
first iteration. Table 4.6 shows the experimental results of detector—corrector
with and without reordering. In TER, which indicates the number of edits to the
reference translation, detector—corrector without reordering resulted in the same
score as detector—corrector with reordering in En-De and degraded in En—Zh.

To investigate this gap in TER scores, we counted the total number of spans
tagged by the detector and evaluated the TER score that measured the num-
ber of edits from the MT sentence to the post-edited sentence corrected by our
detector—corrector (TERyr). Table 4.7 shows that the number of edited spans
was decreased by reordering, especially in En-Zh. In addition, the reordering op-
eration reduces the TERyr by 0.9% and 6.4% in En-De and En—Zh, respectively.
This means that the number of edits from the MT sentence and the number of
edits to the reference translation decreases by using the reordering operation;
hence, the editing process becomes easier for humans to interpret.

In summary, we confirmed that reordering is effective in reducing the number
of edits, as shown by the TER scores in Table 4.6 and Table 4.7.
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task.

4.5.4 Effectiveness of Iterative Refinement

To verify the effectiveness of iterative refinement, we evaluated BLEU and TER
scores in the WMT’20 En—De APE task at various numbers of inference itera-
tions k € {1,2,3,4,5} on the development set. We also compared the difference
between including (“full-iter”) and not including (“light-iter”) reordering when
k > 2. Figure 4.4(a) and 4.4(b) shows that the first iterative refinement (k = 2)
significantly improved the TER and BLEU scores from the first inference (k = 1).
From k = 2 to 4, we see a slight improvement in both TER and BLEU. Compar-
ing the iterative refinement methods, light-iter was slightly more accurate than
full-iter, but the difference is lower than 0.1 % in both metrics.

Figure 4.5 shows the average number of bad- and insertion-tagged spans of
MT sentences, which was corrected by the corrector. The figure shows that
the number of corrected spans decreases in each iteration, especially when it
significantly decreases in the second refinement, i.e., k = 2, which corresponds to
the decrease of TER and BLEU in Figure 4.5.

We also measured the cumulative time for each inference step. Figure 4.6 shows
the total inference time in seconds for full-iter and light-iter when processing 1,000
sentences. In the figure, “k-D” and “k-C” denote the k-th inference step of the

detector model and corrector model, respectively. It can be seen that light-iter
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Figure 4.6: Cumulative time taken for each inference step. “k-D” and “k-C”
denote the k-th inference step of the detector model and corrector

model, respectively.

infers faster than full-iter because light-iter does not predict reordering, which is
time-consuming, in the detector inference at each iteration in k£ > 2.

From the results, our detector—corrector is further improved by using iterative
refinement at least twice, and the inference speed is reduced by two-thirds using

our lightweight iterative refinement without losing qualities.

4.5.5 Case Study: Editing Process

We analyzed examples of the editing processes of detector—corrector. Table 4.8
shows an example of the editing process of an MT sentence. In the table, the
“Annotated source” line is the source sentences annotated with SRC-tag by the
detector, and the “Annotated MT” line is the reordered MT sentences annotated
with MT-tag and MT-gap by the detector. The “Correction” and “Output” lines
are the correction sequence generated by the corrector and the outputs of the
detector—corrector, respectively. The table shows that our model detects and
corrects the erroneous spans iteratively, and outputs the sentence with 17.7 TER
in the second iteration. Note that the detector did not detect any erroneous
spans in this example when k& > 3. The table also shows that our model swaps
two spans, “89 %7 and “UEIRILM Z=”, which makes the word order align with

69



Source

Reference

MT (TER=64.7)

Georgia Lee , 89 , Australian jazz and blues singer .
FHRIL - 2= ( Georgia Lee ) , 89 %/ | {RFIL B+ #1151
WF -

Reordered MT

89 & By IR 2= | KL Btk 0 A S HT T
Wy PEiRIEN 25 89 &7 BAHIIL BRARk A A& AT

k=1

Annotated source

Annotated MT

Correction

Output (TER=35.3)

Georgia Lee <bad>, </bad> 89 , Australian jazz and blues
singer .

<bad>H</bad> IR <bad>M</bad> Z* <ins></ins> 89
% AR Btk F <bad> fi&Hi</bad> T
<bad>.</bad>

<bad></bad> <bad> ‘- </bad> <ins>,</ins>

<bad>i51f</bad> <bad>. </bad>
PRI - 2289 % | KA EFL4& A1 AR TF .

k=2
Annotated source
Annotated MT

Correction

Output (TER=17.7)

Georgia Lee , 89 , Australian jazz and blues singer .

VB - & <ins></ins> , 89 % , MAFI &+ K &
G R

<ins> ( George Lee ) </ins>

FEIRIL - 2% ( George Lee ) , 89 % | KA B4R A1
T

Table 4.8: An example of the editing process.

the source sentence and reference translation.

In this case, the person name

“Georgia” is mistranslated to “George”, but the output of & = 2 has a lower
TER score (TER=17.7) than the MT output (TER=64.7); thus, the editing cost

was reduced. In the future, we need to improve the detection performance to

detect “George” detect as a mistranslation.
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4.6 Limitations

Our study focuses on correcting translation errors, and thus our model cannot
detect and correct non-factual information when including them in a source sen-
tence. In addition, our model only corrects the erroneous spans detected by the
detector; thus, spans that the detector fails to detect may remain uncorrected.

In addition, in our method, multiple editing processes can be considered for
the same translation, but we trained models from a single editing process. It may
improve the correction performance by training models from multiple editing
processes.

This study only focuses on edit operations based on TER calculation: dele-
tion, insertion, replacement, and word reordering. However, as mentioned in
Section 4.3.1, there are other edit operations, e.g., lexical substitution by match-
ing to the dictionary and n-gram deduplication. In addition, if the model-specific
errors are classified, it would be possible to train a detector with their error type

tags.

4.7 Conclusion

We proposed “detector—corrector”, the edit-based automatic post-editing (APE)
model, which explains which words are wrong in M'T sentences and how to correct
them for human post-editors. Experiments on the WMT’ 20 English-German and
English-Chinese APE tasks showed that our detector—corrector model provides
the editing process and outperformed the previous edit-based model, Levenshtein
Transformer, and a black-box sequence-to-sequence APE model in TER.

In the future, we will further investigate what is needed to reduce the workload
of human post-editors. In addition, the corrector model can generate multiple
correction candidates. Specifically, the use of diverse beam search and sampling-
based decoding methods could be helpful to provide diverse translation sugges-
tions. We would like to confirm that whether the corrector model can be utilized

for the translation suggestion task in future work.
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Chapter 5

Conclusion

5.1 Summary

This dissertation improved the efficiency of the translation process from both
translation and post-editing aspects.

For domain adaptation, our subset ANN-MT improves the decoding speed of
ENN-MT by two methods: (1) retrieving neighbor tokens from only the neighbor
sentences of the input sentence, not from all sentences, and (2) efficient distance
computation technique that is suitable for subset neighbor search using a look-up
table. Our subset KNN-MT achieved a speed-up of up to 134.2 times and an
improvement in BLEU of up to 1.6 compared with kNN-MT in the WMT’19
De-En translation task, the domain adaptation tasks in De-En and En—Ja, and
the Flores101 multilingual translation task.

In addition, we proposed “detector—corrector”, the edit-based automatic post-
editing (APE) model, which explains which words are wrong in MT sentences
and how to correct them for human post-editors. Experiments on the WMT’ 20
English-to-German and English-to-Chinese APE tasks showed that our detector—
corrector model provides the editing process and outperforming a black-box sequence-
to-sequence APE model and an edit-based model, Levenshtein Transformer.

To summarize, we tackled problems from translation to post-editing that are
assumed in the real world translation processes, and confirmed that our sub-
set kNN-MT is effective for domain adaptation and our detector—corrector can
present an editing process without degrading the translation quality for post-

editing.
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5.2 Limitations and Future Work

In this section, we discuss the limitations and future work of this dissertation.

We hope to address these issues in the future.

5.2.1 Detection and Correction Performance of

Detector—Corrector

The performance of error detection and error correction of detector—corrector is
still not enough. Especially, the MCC and F1-BAD scores in the target side
tagging are about 50% shown in Table 4.4; the improvements of these scores are
one of the challenges in future work. Table 4.4 also shows that data augmentation
improves tagging accuracy, so we would like to investigate more effective methods
of pseudo-data creation.

In addition, the error correction might be improved by other approaches. As
above-mentioned, the performance of erroneous span detection is not enough;
thus, the corrector is susceptible to the detection errors because detector—corrector
is a cascade model and the detection errors directly propagate to the corrector.
To address the issue and make the model more robust, we will attempt to use
an end-to-end detector—corrector model, where the detector and corrector are
connected as a single model in future work. In that model, the erroneous span
detection is predicted as a sub-task, and the predicted tags are regarded as latent
variables. This approach might not only mitigate the error propagation from the
detector to the corrector but also it allows to marginalize multiple edit paths from

the MT output sentences to the post-edited sentences.

5.2.2 Bridging Subset ANN-MT and Detector—Corrector

Integrating the two proposed models, subset KNN-MT and detector—corrector,
is one of the future directions. Dinh et al. [29] proposed ANN-QE, which uses
ENN-MT to estimate the translation quality. In particular, the approaches that
use kNN retrieval may potentially improve the performance of error detection,
especially in the out-of-domain without additional training. In addition, ANN-

based error detection can work with only parallel corpora; in other words, triplet
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data, i.e., source, M'T output, and PE sentences, is not necessary. Thus, it can
use existing resources effectively.

Another aspect of the kNN-based error detection is an improvement of inter-
pretability. Users can see translation examples to understand the reason why
the spans are detected as errors. For instance, kNN-based error detection and
correction using translation memory will be an improvement of this dissertation.
As with the ENN-MT, the issue of computational complexity will be a challenge
in the kNN-based error detection and correction; thus, we hope that our subset

retrieval reduces the computational cost and makes it more efficient.

5.2.3 Introduction Our Methods to Actual Translation

Scene

One of the future work is to incorporate both subset ANN-MT and detector—
corrector into the actual translation process and evaluate how much the workload

of human translators is reduced.

5.2.4 Applying Our Methods to Large Language Models

Both the subset KNN-MT and the detector—corrector are designed for the encoder-
decoder model. Recently, decoder-only models like large language model (LLM)
have been successful in various NLP tasks; thus, we would like to apply our
methods to such models. In subset KNN-MT, it is necessary to create a sentence
datastore from monolingual data. Since the input and output sentences are not
explicitly separated in the language model, what we should use for the key vector
of the sentence datastore is not trivial. For example, the user prompt could be
the query and key vector. However, in a QA task, even if neighboring questions
of the given input question can be retrieved, the answer or its related facts are
not retrieved.

In detector—corrector, it is necessary to represent tagging and reordering using
generation models. Tagging needs constraints to generate the tag sequence which
has the same length as the input sentence, and reordering needs constraints to
generate the reordered sentence which contains only the input words. These

constraints could be realized by using constrained decoding [49, 13].
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5.2.5 Extension to Multimodal Models

The proposed method could be extended to use modalities other than text. Sub-
set kNN-MT can be applied to the speech-to-text translation, in which input
sentences are given by speech, by building a sentence datastore with the speech
vector [102] as the key.

5.2.6 Human-Computer Interaction

Detector—corrector can be combined with interfaces other than keyboard input to
reduce the human workload further. For example, a touchscreen can be used for
reordering and deletion [47]. By presenting edit candidates with an interface that

is suitable for each edit operation, post-editing can be performed more intuitively.

5.2.7 Interpretable Neural Machine Translation

While there are other aspects of the interpretability of NMT, this dissertation
focused only on generation based on translation examples and providing the post-
editing processes. As long as users of machine translation and reader of translated
documents are human, we still need to improve the interpretability of machine
translation. There are other problems in the field; for example, the influence of
training data and input tokens on the generation [111, 116], understanding of the
role of each parameter and layer [27, 115], combination of previous interpretable
approaches with neural models [60, 61], employing more interpretable model
architectures [48].

In the studies of this dissertation, subset KNN-MT can provide which tokens in
the datastore are useful for generating each target token by using interpretable
ENN method; however, it is hard to understand what the key and query vectors
represent in the feature space. To disentagle the high-dimensional contextualized
embeddings, independent component analysis (ICA) might be helpful [123]. ICA
has a PCA transformation internally; hence, we can aim for both dimensional-
ity reduction to reduce the computational complexity and improvement of the
interpretability of the vector representations.

In the study of detector—corrector, the detector model learned the error de-

tection capabilities by being trained to predict the tags using the middle layer
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of the XLM-R encoder. We empirically observed that it is not always better to
predict in the last layer, but better to tune which layer should be used. This
phenomenon has been also observed in the other tasks like cross-lingual word
alignment [52, 30, 119]. If we can understand what information each layer of
the pretrained model captures, it would be possible to design high performance

models.
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Appendices

A Detector—Corrector: Edit-Based Automatic
Post Editing for Human Post-Editing —
Supplementary Material

A.1 Tools, Models, and Datasets

Tools We implemented all models in FAIRSEQ which is published under the
MIT-license.

Models We used the following pre-trained NMT models implemented in FATIRSEQ

to create the training data.

e En-De: https://www.quest.des.shef.ac.uk/wmt20_files_qe/models_en-de.tar.
gz

e En-Zh:https://www.quest.dcs.shef.ac.uk/wmt20_files_qe/models_en-zh.tar.gz

Our models were trained by using NVIDIA A6000 GPU. The training costs,
“GPU hours”, multiplied by the number of GPUs and computation time, are
shown in Table A.1. Note that the translation performance for each model was

evaluated with only a single training.

Datasets We evaluated all models using WMT’20 APE datasets published un-
der the Creative Commons Zero v1.0 Universal license. Parallel data of the
WMT'19 En-De and En-Zh translation tasks, used in our training data, can
be used for research purposes as described in https://www.statmt.org/wmt19/
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translation-task.html. In the En-Zh task, we tokenized the test set of the En-Zh
APE task using JIEBA® to calculate the TER and BLEU scores.
The statistics of the training data are shown in Table A.2.

Thttps://github.com/fxsjy /jieba
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Seq2Seq Detector

Encoder XLM-R large Encoder XLM-R large
#layers 24 F#layers 24

Decoder Transformer decoder Decoder Transformer decoder
#layers 6 #layers 4
Hidden size 1024 Hidden size 1024
FFN hidden size 4096 FFN hidden size 4096

Learning rate le-4 Learning rate 3e-5

Batch size 24,000 tokens Batch size 6,000 tokens

Training steps 60,000 Training steps 40,000

Training cost

24.6 GPU hours

Training cost

8.0 GPU hours

LevT Corrector

Encoder XLM-R large Encoder XLM-R large
#layers 24 #layers 24

Decoder Transformer decoder Decoder Transformer decoder
#layers 6 #layers 6
Hidden size 1024 Hidden size 1024
FFN hidden size 4096 FFN hidden size 4096

Learning rate le-4 Learning rate le-4

Batch size 12,000 tokens Batch size 24,000 tokens

Training steps 60,000 Training steps 60,000

Training cost

12.4 GPU hours

Training cost

29.0 GPU hours

Table A.1: Hyperparameters of the models.
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DAug for detector

w/o w/

(1) APE task data 7,000 7,000
(2) Translation task data 2,000,000 2,000,000

Training data of detector
Base data: (1)x20 + (2) 2,140,000 4,280,000

Training data of corrector

Base data: (1)x20 + (2) 2,140,000 4,280,000
+ MT training 4,280,000 8,560,000
+ PE training 4,280,000 8,560,000
+ MT & PE training 6,420,000 12,840,000

Table A.2: Statistics of the training data. In the experiment, to make the differ-
ence in data size fair, we trained with the same number of parameter
updates without using the number of epochs; i.e., the number of train-

ing epochs decreases as the data size increases.

Dataset Development  Test
WMT’20 En-De APE 1,000 1,000
WMT’20 En-Zh APE 1,000 1,000

Table A.3: Statistics of the development and test sets.
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