
Doctoral Dissertation

Interpretable Neural Machine Translation from
Translation to Post-Editing

Hiroyuki Deguchi
Program of Information Science and Engineering

Graduate School of Science and Technology

Nara Institute of Science and Technology

Supervisor: Professor Taro Watanabe

Natural Language Processing Lab. (Division of Information Science)

Submitted on September 12, 2024

A Doctoral Dissertation

submitted to Graduate School of Science and Technology,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of Engineering

Hiroyuki Deguchi

Thesis Committee:

Supervisor Taro Watanabe

(Professor, Division of Information Science)

Co-supervisor Sakriani Sakti

(Professor, Division of Information Science)

Co-supervisor Hidetaka Kamigaito

(Associate Professor, Division of Information Science)

Co-supervisor Masao Utiyama

(National Institute of Information and Communications Technology)

Co-supervisor Satoshi Nakamura

(Professor, The Chinese University of Hong Kong, Shenzhen)

Interpretable Neural Machine Translation from
Translation to Post-Editing1

Hiroyuki Deguchi

Abstract

Neural machine translation (NMT) has achieved sufficient translation quality in

the general domain, but not yet in the out-of-domain. Therefore, post-editing

(PE), which manually corrects mistranslations, is still crucial, especially in fields

where mistakes are not allowed, e.g., the medical domain. This dissertation tack-

les these problems from translation to post-editing using interpretable models.

We firstly prevent the degradation of the translation quality in the out-of-domain.

In previous work, kNN-MT adapted NMT models to various domains using the

example-based approach; however, the example search is time-consuming and the

decoding speed becomes two orders of magnitude slower than that of standard

NMT. To improve the decoding speed of kNN-MT, we propose subset kNN-MT,

which reduces the search space to the neighboring examples of the input sen-

tence and employs an efficient computation method using the distance lookup

table. Subset kNN-MT achieved a speed-up of up to 134.2 times and an improve-

ment in BLEU score of up to 1.6 compared with kNN-MT in the De–En domain

adaptation task. The other problem is to efficiently check and correct translation

errors that still occur despite improvements in translation quality by subset kNN-

MT. We then aim to improve the efficiency of human PE. Previous automatic

1Doctoral Dissertation, Graduate School of Science and Technology, Nara Institute of Science

and Technology, September 12, 2024.

i

PE (APE) models attempt to correct the outputs of an MT model; however,

many APE models are based on sequence generation, and thus their decisions are

harder to interpret for human post-editors. We propose an edit-based PE model,

which breaks the editing process into two steps, “error detection” and “error cor-

rection”. The detector model tags each MT output token whether it should be

corrected and/or reordered while the corrector model generates corrected words

for the spans identified as errors. Experiments on the WMT’20 En–De and En–

Zh APE tasks showed that our detector–corrector improved translation edit rate

(TER) compared to not only an edit-based model but also a black-box sequence-

to-sequence model by 0.7 points in En–De and En–Zh. Moreover, our model is

more explainable than sequence-to-sequence models because it is based on edit

operations.

Keywords:

machine translation, k-nearest-neighbor search, post-editing, explainability, nat-

ural language processing

ii

Contents

1 Introduction 1

1.1 Background . 1

1.2 Challenges in Neural Machine Translation 2

1.2.1 Domain Adaptation . 3

1.2.2 Post-Editing . 4

1.3 Research Objective . 4

1.4 Structure of the Dissertation . 5

2 Preliminaries 6

2.1 Machine Translation . 6

2.1.1 Approaches . 6

2.1.2 Evaluation . 9

2.2 k-Nearest-Neighbor Search . 10

2.2.1 Nearest Neighbor Search 10

2.2.2 Product Quantization . 10

3 Subset Retrieval Nearest Neighbor Machine Translation 12

3.1 Introduction . 12

3.2 kNN-MT . 13

3.3 Proposed Model: Subset kNN-MT 15

3.3.1 Subset Retrieval . 16

3.3.2 Efficient Distance Computation Using Look-up Table . . . 18

3.3.3 Sentence Encoder . 21

3.4 Implementation Details . 22

3.5 Experiments . 23

3.5.1 Setup . 23

3.5.2 In-Domain Translation . 25

iii

3.5.3 Domain Adaptation . 28

3.5.4 Multilingual Translation 32

3.6 Discussion . 35

3.6.1 Case Study: Effects of Subset Search 35

3.6.2 Diversity of Subset Sentences 38

3.6.3 Analysis of Decoding Speed 41

3.6.4 Relationship Between Neural/Non-neural Encoders and Trans-

lation Quality . 42

3.7 Related Work . 43

3.8 Limitations . 46

3.9 Conclusion . 46

4 Detector–Corrector: Edit-Based Automatic Post Editing for

Human Post-Editing 48

4.1 Introduction . 48

4.2 Background and Related Work . 50

4.2.1 Edit-Based Model . 50

4.2.2 Word-Level Quality Estimation 51

4.2.3 Automatic Post Editing 51

4.3 Proposed Model: Detector–Corrector 52

4.3.1 Edit Operations . 52

4.3.2 Detector . 54

4.3.3 Corrector . 56

4.3.4 Data Augmentation . 59

4.3.5 Lightweight Iterative Refinement 60

4.4 Experiments . 61

4.4.1 Setup . 61

4.4.2 Results . 62

4.5 Discussion . 64

4.5.1 Accuracy of the Detector 64

4.5.2 Correction Performance of Oracle Tagged Sentences 65

4.5.3 Ablation Study of Reordering 66

4.5.4 Effectiveness of Iterative Refinement 68

4.5.5 Case Study: Editing Process 69

iv

4.6 Limitations . 71

4.7 Conclusion . 71

5 Conclusion 72

5.1 Summary . 72

5.2 Limitations and Future Work . 73

5.2.1 Detection and Correction Performance of Detector–Corrector 73

5.2.2 Bridging Subset kNN-MT and Detector–Corrector 73

5.2.3 Introduction Our Methods to Actual Translation Scene . . 74

5.2.4 Applying Our Methods to Large Language Models 74

5.2.5 Extension to Multimodal Models 75

5.2.6 Human-Computer Interaction 75

5.2.7 Interpretable Neural Machine Translation 75

Acknowledgements 77

Appendices 107

A Detector–Corrector: Edit-Based Automatic Post Editing for Hu-

man Post-Editing – Supplementary Material 107

A.1 Tools, Models, and Datasets 107

List of Publications 111

v

List of Figures

1.1 Overview of the translation process. 2

3.1 Overview of kNN-MT (left) and our subset kNN-MT (right). Sub-

set kNN-MT finds the k-nearest-neighbor tokens from the reduced

search space related to the input sentence. 15

3.2 Susbet kNN-MT reduces the search space of kNN-MT by retrieving

the neighboring sentences of the input sentence. The green boxes

in the sentence datastore mean the neighboring examples of the

input sentence. The search space is reduced from |D| sentences to
the n(≪ |D|) neighboring sentences. 16

3.3 Distance computation using asymmetric distance computation (ADC). 20

3.4 Overview of chunk-based kNN-MT and fast kNN-MT. 25

3.5 Translation speed for different batch sizes, and subset sizes and

translation quality for different subset sizes in WMT’19 De–En. . 42

3.6 Total difference in sentence BLEU for each length bucket. 43

3.7 Cumulative distribution of the lengths of source sentences. 44

4.1 Overview of the post-editing process of our detector–corrector model.

The detector tags as “Jeden Abend” is untranslated, “drink” and

“I” should be reordered, etc. The corrector generates the word

sequence for replacement and insertion. 49

4.2 Overview of our detector model. The model detects OK and BAD

tags as 0 and 1, respectively. 53

4.3 Token generation within each tagged span by our corrector model. 57

4.4 Comparison of various iterations in iterative refinement. The scores

were evaluated on the development set in the WMT’20 En–De APE

task. 67

vi

4.5 Number of tagged spans per sentence in the WMT’20 En–De APE

task. 68

4.6 Cumulative time taken for each inference step. “k-D” and “k-C”

denote the k-th inference step of the detector model and corrector

model, respectively. 69

vii

List of Tables

2.1 An example of acquiring translation rules from Japanese-to-English

parallel sentences. 7

3.1 Details of kNN indexes. “DS” indicates “Datastore”. 26

3.2 Results of translation quality and decoding speed in the WMT’19

De–En translation task. “h:” shows the type of sentence encoder

used. The best score is emphasized with bold font, and the second

best score is underlined. 27

3.3 Datastore statistics in the domain adaptation task. 29

3.4 Results of out-of-domain translation with open-domain settings.

“Avg.” denotes the average scores. “BL” and “CM” denote BLEU

and COMET scores, respectively. 30

3.5 Top-3 retrieved examples of LaBSE and TF-IDF in a case of the

medical domain. “LaBSE-n” and “TF-IDF-n” denote the top-n

neighboring sentences retrieved by LaBSE and TF-IDF, respectively. 31

3.6 Results of out-of-domain translation in English-to-Japanese. The

speed is measured with the B∞ setting. 32

3.7 Results of multilingual translation. The speed is evaluated with

B∞. 34

3.8 Translation examples in the medical domain. 35

3.9 Top-3 neighbor sentences of our subset kNN-MT in Table 3.8. “S-

” and “T-” denote the top-n neighbor source sentences and their

translations, respectively. 36

3.10 Negative log-likelihood (NLL) of the first three tokens and their

average in the case of Table 3.8. Note that a smaller NLL means

a larger probability. 36

viii

3.11 Japanese-to-English translation examples in the Flores-101 multi-

lingual translation task. 37

3.12 Top-3 neighbor sentences of our subset kNN-MT in Table 3.11. “S-

” and “T-” denote the top-n neighbor source sentences and their

translations, respectively. 38

3.13 Translation examples containing “termites” in the Japanese-to-

English datastore constructed from CCMatrix. 39

3.14 BLEU score and unique token ratio in the subset obtained by each

sentence encoder in the medical domain. 39

3.15 BLEU score and unique token ratio in the subset obtained by dif-

ferent n-selection methods in the medical domain. 40

3.16 Efficiency of ADC in WMT’19 De–En. The results show the num-

ber of tokens generated per second, i.e., ↑tok/s, with the B∞ setting. 41

4.1 Comparison of post-editing performance in the WMT’20 En–De

and En–Zh APE tasks. Do nothing (MT) does not edit MT sen-

tences and the scores are calculated between MT and PE sentences.

The best scores of each dataset are emphasized by the bold font.

The symbol † indicates that the score difference is statistically sig-

nificant (p < 0.05) between seq2seq and detector–corrector. . . . 62

4.2 Ablation study of our methods in the WMT’20 En–De and En–

Zh APE tasks. The symbol † indicates that the score difference

is statistically significant (p < 0.05) between “ours” and “- light-

iter”. 63

4.3 Translation quality of baseline models trained using our data aug-

mentation for the detector. 63

4.4 Word-level quality estimation performance of our detector model. 64

4.5 Correction performance in the WMT’20 En–De and En–Zh APE

tasks when the erroneous spans are given manually. 65

4.6 Translation quality of detector–corrector with and without reorder-

ing. Note that we evaluated translation quality on the results of

the first iteration in iterative refinement. 66

ix

4.7 The total number of spans tagged by the detector and TER scores

that measured the amount of editing from the MT sentence to the

post-edited sentence corrected by the corrector in the WMT’20

APE En–De and En–Zh tasks. 66

4.8 An example of the editing process. 70

A.1 Hyperparameters of the models. 109

A.2 Statistics of the training data. In the experiment, to make the

difference in data size fair, we trained with the same number of

parameter updates without using the number of epochs, i.e., the

number of training epochs decreases as the data size increases. . . 110

A.3 Statistics of the development and test sets. 110

x

Chapter 1

Introduction

1.1 Background

Machine translation (MT) is one of the most important techniques studied since

the dawn of computational linguistics, and is mainly used for two purposes: un-

derstanding information from texts written in a foreign language, called assimila-

tion, and spreading information by converting texts written in one language into

another language, called dissemination.

Until now, various types of machine translation have been studied. Early MT

was rule-based MT (RBMT), which used manually defined the dictionary and

grammar. Because RBMT requires checking that the dictionary and grammar are

consistent, it is costly to add new translation rules or extend to other languages.

Many modern MT systems employ corpus-based MT, which automatically ac-

quires translation rules from parallel data. Example-based MT (EBMT), which

refers to translation examples obtained from bilingual corpora at run time [84];

statistical machine translation (SMT), which uses statistical information learned

from corpora [8]; and neural machine translation (NMT), which uses a neu-

ral network trained to generate the target sentence from the given source sen-

tence [112, 3, 72, 121, 39, 113]. EBMT, SMT, and NMT are also called corpus-

based MT, which acquires translation rules from bilingual corpora. Among them,

NMT has achieved sufficient translation quality and is widely used. However, it

sometimes makes errors [90] in the out-of-domain; therefore, post-editing (PE),

which manually corrects mistranslations generated from MT systems, is still cru-

cial in the real world, especially in fields where mistakes are not allowed, e.g.,

1

Figure 1.1: Overview of the translation process.

the medical domain. Figure 1.1 shows the translation process in the real world.

Typically, MT is trained from the parallel data, including the general domain

and various target domains, and then human translators check the output of the

MT system and refine the translation. Note that the MT system needs to be

additionally trained when new domain data is added.

1.2 Challenges in Neural Machine Translation

The challenges of translation performance of NMT include out-of-domain trans-

lation [17, 65], decoding methods to obtain the optimal translations [125, 32],

context-aware and document-level translation [54, 77], low-resource languages [70,

77]. Here we focus on the in-domain and out-of-domain translation. In-domain

translation has been improved by various methods: using syntactic informa-

tion [33, 14, 23, 9], reranking the translation candidates to find the most promising

candiate [67, 36], employing curriculum learning approaches [4, 82], etc. Even

though translation performance is improved in the in-domain, that of out-of-

domain is still low, and the improvement of translation quality for various do-

mains is an open issue of NMT. To address the issue, example-based methods

2

have been proposed, but k-nearest-neighbor machine translation, which achieved

state-of-the-art translation performance in out-of-domain, is significantly slower

than standard translation models, making it difficult to use in the real world.

In addition, industrial translation for information dissemination requires accu-

rate translations in a variety of specialized domains. Currently, typical indus-

trial translation uses MT systems to generate the translation draft and then do

post-editing to refine the translation. While the translation quality of NMT has

improved in recent years, the workload of post-editing is still heavy, and it is nec-

essary to tackle the assistance of post-editing to reduce the human workload. To

improve the productivity of post-editing, it is necessary to develop a model to as-

sist in the editing process. For example, if it can help in the time-consuming task,

e.g., finding mistranslations and omissions, it will reduce the human workload.

1.2.1 Domain Adaptation

Many NMT models are trained on large corpora of general domains such as web

articles and news articles, and adapted to target domains such as medical and IT

documents. Typically, NMT models are adapted by training on each target do-

main data, which requires additional training costs. The Workshop on Machine

Translation (WMT), an international competition for machine translation, held

the news translation task, but after 2022, it was replaced with the mixed-domain

translation task [64]. Domain adaptation for various domains has attracted at-

tention in the machine translation field.

The simplest way of domain adaptation is to prepare the domain data and fine-

tune an MT model [71, 105, 18]. However, it requires additional training costs

for each domain and the in-domain translation performance may be degraded by

fine-tuning [44].

Some previous work tackled the problems of additional training costs and

catastrophic forgetting in domain adaptation by using example-based approaches,

which retrieve translation examples from parallel data or translation memory dur-

ing decoding [130, 42, 61]. kNN-MT [61] can use any pre-trained NMT models

without additional training and modification, and it has achieved state-of-the-art

translation performance in domain adaptation. The reason why kNN-MT is so

powerful is that it searches translation examples based on rich neural representa-

3

tions with context information, and it also allows flexible search by the token-level

retrieval, whereas previous models [130, 42] retrieve similar sentences based on the

edit distance. It not only improved the translation quality in out-of-domain but

also improved interpretability through example-based generation. However, the

translation speed was two orders of magnitude slower than the standard NMT,

which is a major challenge.

1.2.2 Post-Editing

Post-editing (PE) is crucial in the real world, which corrects mistranslations,

improves fluency, complements omitted translations, etc. In industrial transla-

tion, human translators creates the post-edited text by comparing the source

text and the draft translation generated from MT systems. According to profes-

sional translators, despite recent advances in NMT that have greatly improved

the translation quality, PE has saved only about 20% to 30% of the working

time compared to translating from scratch. For example, Läubli et al. [66] in-

vestigated the productivity of post-editing, and they observed that post-editing

only improves the speed by 9.26% compared with translating from scratch in

German-to-Italian finance domain. This is because translators take time to read

the source and MT sentences and look for mistranslations and omissions.

Automatic post-editing (APE) attempts to correct the MT model outputs (MT

sentences) for the better translation quality. However, many APE models are

based on sequence generation [58, 20, 106, 11, 12, 5], and their decision for cor-

rection is harder to interpret due to the black-box nature of the generation models.

In summary, if an APE model provides not only the correction but also editing

processes, e.g., finding mistranslations, it would be helpful for human post-editors.

1.3 Research Objective

The objective of this dissertation is to improve the efficiency of the translation

model in domain adaptation and the productivity of post-editing by providing

the editing processes. In particular, we address the problem of the translation

speed of kNN-MT, which is effective for domain adaptation, and the lack of

interpretability of APE model due to black box predictions.

4

In the domain adaptation task, kNN-MT is focused in terms of the translation

quality and interoperability, but its translation speed is more than two orders of

magnitude slower than standard NMT models. We improve the translation speed

of kNN-MT by narrowing down the search space to neighboring examples of the

input sentence. In addition, we use the look-up table to calculate the distance

between the query and keys efficiently when retrieving. Our subset kNN-MT

achieved a speed-up of up to 134.2 times and an improvement in BLEU score of

up to 1.6 compared with kNN-MT in the WMT’19 German-to-English general

domain translation task, the domain adaptation tasks in German-to-English and

English-to-Japanese with open-domain settings, and the Flores101 multilingual

translation task.

Regarding post-editing, we improve the interpretability of APE models by us-

ing an edit-based model. Our “detector–corrector” breaks the editing process

into two steps, “error detection” and “error correction”. The detector model tags

each MT output token whether it should be corrected and/or reordered while

the corrector model generates corrected words for the spans identified as errors

by the detector. Experiments on the WMT’20 English-to-German and English-

to-Chinese APE tasks showed that our detector-corrector provides the editing

process and outperforming black-box sequence-to-sequence APE model and pre-

vious edit-based model.

1.4 Structure of the Dissertation

The dissertation is organized as follows.

Chapter 2 shows the preliminary knowledge about machine translation and

k-nearest-neighbor search.

Chapter 3 addresses the out-of-domain problem. We propose subset retrieval to

speed up kNN-MT, which narrows down the search space of translation examples

by retrieving neighboring sentences of the input sentence.

Chapter 4 aims to reduce the workload of human post-editing by using a novel

explainable model that presents the editing process.

Chapter 5 summarizes the dissertation and discusses the future directions.

5

Chapter 2

Preliminaries

2.1 Machine Translation

The goal of machine translation is to convert the text written in the source

language X to the text written in the target language Y . This section describes

an overview of machine translation approaches.

2.1.1 Approaches

Example-based Machine Translation

Example-based machine translation [84] generates translations based on trans-

lation rules acquired from parallel data. Let x = (x1, x2, . . . , x|x|) ∈ V∗
X be the

source sentence and y = (y1, y2, . . . , y|y|) ∈ V∗
Y be the target sentence where | · |

is a length of a sentence, and V∗
X and V∗

Y are Kleene closures of vocabularies of

the source language and target language, respectively. The most basic method,

which acquires translation rules based on analogy, extracts the difference between

two similar source sentences x and x′, and their target sentences y and y′ in the

parallel data D = {(xi,yi)}|D|
i=1. Table 2.1 shows an example of acquiring transla-

tion rules. When x is “私はぶどうが好き。”, x′ is “私はテニスが好き。”,

y is “I like grapes .”, and y′ is “I like tennis .” (Table 2.1(a)), then, from the

source side difference between x and x′, and the target side difference between y

and y′, we get three translation rules: “私 は — が 好き 。” → “I like — .”, “ぶ
どう” → “grapes”, and “テニス” → “tennis” (Table 2.1(b)). During inference,

the translation system refers to the acquired translation rules and generates the

6

Japanese English

私 は ぶどう が 好き 。 I like grapes .

私 は テニス が 好き 。 I like tennis .

(a) Similar two translation examples in

Japanese-to-English.

Japanese English

私 は — が 好き 。 I like — .

ぶどう grapes

テニス tennis

(b) Translation rules acquired from the

similar translation examples.

Table 2.1: An example of acquiring translation rules from Japanese-to-English

parallel sentences.

target sentence.

Statistical Machine Translation

Statistical machine translation [8] learns statistical information from parallel data.

The model generates y according to the conditional probability P (y|x), the

source-to-target translation model, but since it is difficult to estimate the prob-

ability directly, instead the target-to-source translation model P (x|y) and the

language model P (y) of P (y|x) ∝ P (x|y)P (y), decomposed by Bayes theorem,

are used to compute the output probability, respectively:

y∗ = argmax
y

P (y|x)

= argmax
y

P (x|y)P (y), (2.1)

where y∗ is the generated target sentence. The model parameters θ and ϕ are

learned from parallel data:

L(θ) =
|D|∑
i=1

log p(xi|yi; θ), (2.2)

θ∗ = argmax
θ
L(θ), (2.3)

L(ϕ) =
|D|∑
i=1

log p(yi;ϕ), (2.4)

ϕ∗ = argmax
ϕ
L(ϕ), (2.5)

7

where θ∗ and ϕ∗ are the trained parameters learned from D.

Neural Machine Translation

Neural machine translation (NMT) directly estimates P (y|x) using a neural net-

work. In NMT, encoder-decoder is the most common architecture and widely

used [112, 3, 72, 121, 39, 113]. The encoder projects a source sentence x to

the feature space, and the decoder generates target tokens y from the hidden

vectors. The objective of NMT is to generate a target sentence based on the

following probabilities:

y∗ = argmax
y

P (y|x). (2.6)

To calculate P (y|x), it is decomposed into the product of probabilities based

on the chain rule. The t-th target token yt is generated according to its output

probability P (yt|x,y<t) over the target vocabulary, calculated from the source

sentence x and generated target tokens y<t as follows:

y∗ = argmax
y1,...,y|y|

|y|∏
t=1

P (yt|x,y<t), (2.7)

where the output sequence y∗ is approximated by search strategies like beam

search.

The model parameters θ are trained to maximize the log-likelihood as follows:

L(θ) =
|D|∑
i=1

|yi|∑
t=1

log p(yit|xi,yi
<t; θ), (2.8)

θ∗ = argmax
θ
L(θ), (2.9)

where D is a parallel data and (xi,yi) ∈ D is an i-th translation pairs in the

parallel data, and θ∗ is the trained parameters. For neural networks of the encoder

and decoder, the long short-term memory (LSTM) based models [112, 3, 72, 121],

the convolution neural network (CNN) based model [39], and the Transformer

model [113] are used.

8

2.1.2 Evaluation

When developing the MT model, it is expensive for a human translator to eval-

uate the quality of the MT-generated translations directly each time the model

updates. For this purpose, automatic evaluation metrics are used to evaluate the

translation quality of MT systems using reference translations.

Bilingual Evaluation Understudy (BLEU)

One of the most common evaluation metrics is bilingual evaluation understudy

(BLEU) [92]. BLEU is computed by the modified n-gram precision and the

brevity penalty using hypothesis translation and its reference translations. The

modified n-gram precision first counts the maximum number of times a word oc-

curs in any reference translation. Then, it clips the total count of each hypothesis

word by its maximum reference count, adds these clipped counts up, and divides

it by the total number of hypothesis words. Typically, the modified 1-gram to

4-gram precisions are used by calculating their geometric mean.

Translation Edit Rate (TER)

Translation edit rate (TER) [107] is a metric to evaluate the translation quality

based on the edit distance between the translated text and the reference trans-

lation. In particular, TER is defined as the minimum number of edits from the

translation hypothesis to the reference, as follows:

Number of edits

Number of reference words
. (2.10)

The edit operations of TER contain deletion, insertion, substitution, and shifts of

word sequences, i.e., word reordering. TER iteratively reorders an input sequence

to minimize the edit distance from the target sequence, called shift operation, then

calculates the edit distance between the reordered input sequence and the target

sequence.

9

Cross-lingual Optimized Metric for Evaluation of Translation

(COMET)

BLEU and TER cannot evaluate the replacement of synonyms because they calcu-

late scores using the surface of words. Rei et al. [98] presented cross-lingual opti-

mized metric for evaluation of translation (COMET), which directly estimates the

human judgments using a cross-lingual neural language model. Because COMET

uses a neural network model, it is more computationally expensive than other

metrics, but it can evaluate semantic similarity between a hypothesis translation

and its reference translation and has a high correlation with human evaluation.

2.2 k-Nearest-Neighbor Search

2.2.1 Nearest Neighbor Search

k-nearest-neighbor (kNN) search retrieves top-k vectors from the vector set K ⊆
RD that are close to the given query vector q ∈ RD. In this section, we assume

k = 1 in squared Euclidean space. The most naive approach of kNN search is to

compute the distance to all vectors k ∈ K from the query q.

k∗ = argmin
k
∥q − k∥22, (2.11)

where k∗ is the nearest neighbor vector. Note that the time and space complexity

is O(ND) where N = |K|.

2.2.2 Product Quantization

It is hard to load K into the main memory when N is large, e.g., one billion.

For example, let N be one billion and D be 1024, the vector set K consumes

3.7 TiB. To reduce the space complexity, product quantization (PQ) [53], which

approximates the vectors, is used.

PQ splits a D-dimensional vector into M sub-vectors and quantizes for each
D
M
-dimensional sub-vector. Codebooks are learned by k-means clustering of key

vectors in each subspace. It is computed iteratively by: (1) assigning the code

of a key to its nearest neighbor centroid (2) and updating the centroid of keys

10

assigned to the code. The m-th sub-space’s codebook Cm is formulated as follows:

Cm = {cm1 , . . . , cmL }, cml ∈ R
D
M , (2.12)

where L is the number of codes for each subspace. Typically, L is set to 28 = 256,

and quantized codes are represented as unsigned 8-bit integer (uint8). A vector

q ∈ RD is quantized and its code vector q̄ is calculated as follows:

q̄ = [q̄1, . . . , q̄M]⊤ ∈ {1, . . . , L}M , (2.13)

q̄m = argmin
l
∥qm − cml ∥22, qm ∈ R

D
M . (2.14)

11

Chapter 3

Subset Retrieval Nearest

Neighbor Machine Translation

3.1 Introduction

Neural machine translation (NMT) [112, 3, 72, 121, 113] has achieved state-of-the-

art performance and become the focus of many studies. Recently, kNN-MT [61]

has been proposed, which addresses the problem of degradation of translation

quality in out-of-domain data by incorporating example-search into the decod-

ing algorithm. kNN-MT stores translation examples as a set of key–value pairs

called “datastore” and retrieves k-nearest-neighbor target tokens in decoding.

The method improves the translation quality of NMT models without additional

training. However, decoding is seriously time-consuming, i.e., roughly 100 to

1,000 times slower than standard NMT, because neighbor tokens are retrieved

from all target tokens of parallel data in each timestep. In particular, in a real-

istic open-domain setting, kNN-MT may be significantly slower because it needs

to retrieve neighbor tokens from a large datastore that covers various domains.

We propose “Subset kNN-MT”, which improves the decoding speed of kNN-MT

by two methods: (1) retrieving neighbor target tokens from a subset that is the set

of neighbor sentences of the input sentence, not from all sentences, and (2) efficient

distance computation technique that is suitable for subset neighbor search using

a look-up table. When retrieving neighbor sentences for a given input, we can

employ arbitrary sentence representations, e.g., pre-trained neural encoders or

TF-IDF vectors, to reduce the kNN search space. When retrieving target tokens

12

in each decoding step, the search space in subset kNN-MT varies depending on

the input sentence; therefore, the clustering-based search methods used in the

original kNN-MT cannot be used. For this purpose, we use asymmetric distance

computation (ADC) [53] in subset neighbor search.

Our subset kNN-MT achieved a speed-up of up to 134.2 times and an im-

provement in BLEU score of up to 1.6 compared with kNN-MT in the WMT’19

German-to-English general domain translation task, the domain adaptation tasks

in German-to-English and English-to-Japanese with open-domain settings, and

the Flores101 multilingual translation task. Our implementation, including both

kNN-MT and subset kNN-MT, is available on GitHub1.

3.2 kNN-MT

kNN-MT [61] retrieves the k-nearest-neighbor target tokens in each timestep,

computes the kNN probability from the distances of retrieved tokens, and in-

terpolates the probability with the model prediction probability. The method

consists of two steps: (1) datastore creation, which creates key–value translation

memory, and (2) generation, which calculates an output probability according to

the nearest neighbors of the cached translation memory.

Datastore Construction kNN-MT stores pairs of D-dimensional vectors and

tokens in a datastore, represented as key–value memoryM⊆ RD×VY . The key
(∈ RD) is an intermediate representation of the final decoder layer obtained by

teacher forcing a parallel sentence pair (x,y) to the NMT model, and the value

is a ground-truth target token yt. The datastore is formally defined as a set of

tuples as follows:

M = {(f(x,y<t), yt) | (x,y) ∈ D, 1 ≤ t ≤ |y|}, (3.1)

where D = {(xi,yi)}|D|
i=1 is parallel data and f : V∗

X × V∗
Y → RD is a function

that returns the D-dimensional intermediate representation of the final decoder

layer from the source sentence and generated target tokens. In our model, as in

1https://github.com/naist-nlp/knn-seq

13

https://github.com/naist-nlp/knn-seq

[61], the key is the intermediate representation before it is passed to the final

feed-forward network.

Decoding During decoding, kNN-MT generates output probabilities by com-

puting the linear interpolation between the kNN and MT probabilities, pkNN and

pMT, as follows:

P (yt|x,y<t) = λpkNN(yt|x,y<t) + (1− λ)pMT(yt|x,y<t), (3.2)

where λ is a hyperparameter for weighting the kNN probability. Let f(x,y<t)

be the query vector at timestep t. The k-nearest-neighbor tokens of the query

are searched from the datastore and the top-k key–value pairs are obtained. The

top i-th key and value in the k-nearest-neighbor are ki ∈ RD and vi ∈ VY ,
respectively. Then pkNN is defined as follows:

pkNN(yt|x,y<t) =
1

Z

k∑
i=1

1yt=vi exp

(
−∥ki − f(x,y<t)∥22

τ

)
, (3.3)

Z =
k∑

i=1

exp

(
−∥ki − f(x,y<t)∥22

τ

)
, (3.4)

where τ is the temperature for pkNN, and we set τ = 100.

Note that this kNN search is seriously time-consuming2 [61]. This is because

the kNN tokens are searched for each timestep in generating a target sentence. For

example, let |M| be one billion and |y| be 30. If we naively search the kNN tokens,

we need to calculate the distance between the query and key |M|×|y| = 30 billion

times, i.e., the time complexity is O(|M||y|). In other words, the speed problem

of the kNN-MT is due to the large search space |M| 3.

14

(a) Overview of kNN-MT. (b) Overview of subset kNN-MT.

Figure 3.1: Overview of kNN-MT (left) and our subset kNN-MT (right). Subset

kNN-MT finds the k-nearest-neighbor tokens from the reduced search

space related to the input sentence.

3.3 Proposed Model: Subset kNN-MT

Our Subset kNN-MT drastically accelerates vanilla kNN-MT by reducing the

kNN search space by using sentence information as shown in Figure 3.1. In par-

ticular, subset retrieval (Section 3.3.1) retrieves the neighboring sentences of the

given input sentence and reduces the search space from all sentences to only the

2In our experiments on the WMT’19 German-to-English, the datastore has 862M tokens,

the vocabulary size is 42k, and the batch size was set to 12,000 tokens. While a normal

Transformer translates 2,000 sentences in 7.5 seconds, kNN-MT takes 2446.0 seconds.
3The original kNN-MT actually uses an approximate nearest neighbor algorithm, but it is still

time-consuming.

15

Figure 3.2: Susbet kNN-MT reduces the search space of kNN-MT by retrieving

the neighboring sentences of the input sentence. The green boxes in

the sentence datastore mean the neighboring examples of the input

sentence. The search space is reduced from |D| sentences to the n(≪
|D|) neighboring sentences.

neighboring sentences, shown in Figure 3.2. Additionally, we employ the efficient

method to compute the distance between a query and keys using a look-up ta-

ble when retrieving the kNN tokens from the reduced datastore (Section 3.3.2).

While the original kNN-MT employs a data structure and an algorithm optimized

for the fixed search space, i.e., the full set of the datastore, our subset kNN-MT

employs an algorithm that efficiently searches the subset datastore that varies

dynamically depending on the input sentence.

3.3.1 Subset Retrieval

Sentence Datastore Construction We construct a sentence datastore that

stores pairs comprising a vector representation of a source sentence and key–value

16

pairs of target tokens. Concretely, a sentence datastore S is defined as follows:

S = {(h(xs),M(s)) | (xs,ys) ∈ D}, (3.5)

M(s) = {(f(xs,ys
<t), y

s
t) | 1 ≤ t ≤ |ys|} (3.6)

where h : V∗
X → RD′

represents a sentence encoder, which is a function that

returns a D′-dimensional vector representation of a source sentence, and s ∈
{1, . . . , |D|} denotes the identifier of s-th sentence pairs in the parallel data. Note

thatM(s) ⊂M is the datastore which is created from only the s-th sentence pairs.

Decoding At the beginning of decoding, the model retrieves the n-nearest-

neighbor sentences of the given input sentence by calculating the distances be-

tween the input sentence vector and the source sentence vectors of the sentence

datastore S. Let N ⊂ {1, . . . , |D|} be the set of sentence numbers of the n-

nearest-neighbor sentences. The nearest neighbor search space for target tokens

in kNN-MT is then drastically reduced by obtaining the datastore as follows:

M̂ =
∪
s∈N

M(s) = {(f(xs,ys
<t), y

s
t) | s ∈ N , 1 ≤ t ≤ |ys|}, (3.7)

where M̂ ⊂ M is the reduced datastore for the translation examples coming

from the n-nearest-neighbor sentences. During decoding, the model uses the

same algorithm as kNN-MT except that M̂ is used as the datastore instead of

M. The proposed method reduces the size of the nearest neighbor search space

for the target tokens from |D| to n (≪ |D|) sentences.
Note that our method needs to store sentence representations in addition to the

original datastore that stores the token representations. However, the number of

sentences is usually one order of magnitude smaller than the number of tokens,

i.e., |D| ≪ |M|; thus, the memory and storage usages will not be increased

significantly. Additionally, subset kNN-MT requires the neighboring sentence

search, but it is not time-consuming because it only searches once before the

decoding iterations and the search space of the neighboring sentence search is

smaller than that of all target tokens, as mentioned above.

17

3.3.2 Efficient Distance Computation Using Look-up

Table

Subset kNN-MT retrieves the k-nearest-neighbor target tokens by an efficient

distance computation method that uses a look-up table. In the original kNN-

MT, inverted file index (IVF) is used for retrieving kNN tokens. IVF divides the

search space into Nlist clusters and retrieves tokens from the neighbor clusters. In

contrast, in subset kNN-MT, the search space varies dynamically depending on

the input sentence. Therefore, clustering-based search methods cannot be used;

instead, it is necessary to calculate the distance for each key in the subset. For

this purpose, we use asymmetric distance computation (ADC) [53] instead of the

usual distance computation between floating-point vectors. In ADC, the number

of table look-up is linearly proportional to the number of keys N in the subset.

Therefore, it is not suitable for searching in large datastore M, but in a small

subset M̂, the search is faster than the direct calculation of the L2 distance.

Product Quantization (PQ) The kNN-MT datastore M may become too

large because it stores high-dimensional intermediate representations of all target

tokens of parallel data. For instance, the WMT’19 German-to-English parallel

data, which is used in our experiments, contains 862M tokens on the target side.

Therefore, if vectors were stored directly, the datastore would occupy 3.2 TiB

when a 1024-dimensional vector as a key4, and this would be hard to load into

RAM. To solve this memory problem, product quantization (PQ) [53] is used in

both kNN-MT and our subset kNN-MT, which includes both source sentence and

target token search.

PQ splits a D-dimensional vector into M sub-vectors and quantizes for each
D
M
-dimensional sub-vector. Codebooks are learned by k-means clustering of key

vectors in each subspace. It is computed iteratively by: (1) assigning the code

of a key to its nearest neighbor centroid (2) and updating the centroid of keys

assigned to the code. The m-th sub-space’s codebook Cm is formulated as follows:

Cm = {cm1 , . . . , cmL }, cml ∈ R
D
M . (3.8)

43.2 TiB ≃ 862.6M tokens× 1024 dimension× 32 bits (float size)/8 bits (byte size)/10244.

18

In this work, each codebook size is set to L = 2565. A vector q ∈ RD is quantized

and its code vector q̄ is calculated as follows:

q =
[
q1⊤, . . . , qM⊤

]⊤
, qm ∈ R

D
M , (3.9)

q̄m = argmin
l
∥qm − cml ∥22, (3.10)

q̄ = [q̄1, . . . , q̄M]⊤ ∈ {1, . . . , L}M . (3.11)

Note that naive PQ may result in poor approximation accuracy because it

ignores dimension correlations. To address this problem, vector transformation

methods such as optimized PQ (OPQ) [38] and principal component analysis

(PCA) are used. Details of the settings we employed are listed in Table 3.1 in

the Experiments section.

Asymmetric Distance Computation (ADC) Our method efficiently com-

putes the squared Euclidean distance between a query vector and quantized

key vectors using ADC [53] (Figure 3.3 and Algorithm 1). ADC computes the

squared Euclidean distance between a query vector q ∈ RD and N key codes

K̄ = {k̄i}Ni=1 ⊆ {1, . . . , L}M . First, the distance look-up table Am ∈ RL is com-

puted by calculating the distance between a query qm and the codes cml ∈ Cm in

each sub-space m (“distance table” in Figure 3.3 and line 4 in Algorithm 1), as

follows:

Am
l = ∥qm − cml ∥22. (3.12)

Second, the distance between a query and each key d(q, k̄i) is obtained by look-

ing up the distance table (“looked up disntances” in Figure 3.3 and line 8 in

Algorithm 1), as follows:

d(q, k̄i) =
M∑

m=1

dm(q
m, k̄m

i) =
M∑

m=1

Am
k̄mi

. (3.13)

5Codes are represented as unsigned 8bit integers, i.e., an array of uint8. We chose the

L = 256 and M = 64 (described in Table 3.1 in the Experiments section) according to the

prior work [53]. They reported that M = 8 is a reasonable choice when D = 128; therefore,

the codebook represents D
M = 16 dimensional subspace, which is the same as our settings:

M = 64 and D = 1024.

19

Figure 3.3: Distance computation using asymmetric distance computation

(ADC).

A look-up table in each subspace, Am ∈ RL, consists of the distance between

a query and codes. The number of codes in each subspace is L and a distance

is a scalar; therefore, Am has L distances. And the table look-up key is the

code of a key itself, i.e., if the m-th subspace’s code of a key is 5, ADC looks-

up Am
5 . By using ADC, the distance is computed only once6 (Equation 3.12)

and does not decode PQ codes into D-dimensional key vectors; therefore, it can

compute the distance while keeping the key in the quantization code, and the

k-nearest-neighbor tokens are efficiently retrieved from M̂.

6The direct distance computation requires N times calculations according to ∥q−k∥2, i.e., the
time complexity is O(ND). ADC computes the distance only L ≪ N times, i.e., the time

complexity for creating the distance table is O(L × D
M ×M) = O(LD), and just looks-up

the table MN times in the constant time O(1). Therefore, the complexity is reduced from

O(ND) to O(LD).

20

Algorithm 1 ADC look-up

Require:

query; q ∈ RD

quantized keys; K̄ = {k̄i}Ni=1 ⊆ {1, . . . , L}M

codebook; C = {C1, . . . , CM}, where Cm = {cml }Ll=1 ⊆ R D
M

Ensure:

distances; d ∈ RN

1: function compute distances(q, K̄, C)
2: for m = 1, . . . ,M do

3: for l = 1, . . . , L do

4: Am
l ← ∥qm − cml ∥22

5: end for

6: end for

7: for i = 1, . . . , N do

8: di ←
∑M

m=1 A
m
k̄mi

9: end for

10: return d

11: end function

3.3.3 Sentence Encoder

In our subset kNN-MT, a variety of sentence encoder models can be employed.

The more similar sentences extracted from M, the more likely the subset M̂
comprises the target tokens that are useful for translation. Hence, we need sen-

tence encoders that compute vector representations whose distances are close for

similar sentences.

In this work, we employ two types of representations: neural and non-neural.

We can employ pre-trained neural sentence encoders. While they require to sup-

port the source language, we expect that the retrieved sentences are more similar

than other encoders because we can use models that have been trained to mini-

mize the vector distance between similar sentences [101]. An NMT encoder can

also be used as a sentence encoder by applying average pooling to its intermediate

representations. This does not require any external resources, but it is not trained

from the supervision of sentence representations. Alternatively, we can also use

21

non-neural models like TF-IDF. However, it is not clear whether TF-IDF based

similarity is suitable for our method. This is because even if sentences with close

surface expressions are retrieved, they do not necessarily have similar meanings

and may not yield the candidate tokens needed for translation.

3.4 Implementation Details

We use fairseq [91] to implement kNN-MT and subset kNN-MT model, and

faiss [55] to retrieve the kNN tokens in kNN-MT and for neighbor sentence

search in subset kNN-MT. Existing kNN libraries including faiss and algorithms

like IVF that are used in the original kNN-MT are designed for full search but

not for subset search [78]; therefore, we implement the subset search and ADC

look-up by using PyTorch.

Subset Caching Quantized key codes and value tokens of the subset are read

at the beginning of decoding and cached during decoding. Therefore, a billion-

scale large array is accessed only once during decoding. Note that the subset

depends only on the input sentence, and the cache size does not change with

beam sizes.

Distance Look-up in Beam Search Decoding During decoding by beam

search, the queries in the beams have different representations because a query

vector is computed depending on the generated target tokens. Let B be a beam

size and Q ∈ RB×D be the queries. Note that we regard Qi as the column vector

by transposing the i-th row of the matrix Q, i.e., Qi ∈ RD, and Qm
i as the

m-th subspace of M subspaces in Qi, i.e., Q
m
i ∈ R D

M . The distance table of a

subspace in PQ is computed from a query (∈ R D
M) and codebook Cm; thus, the

table Am ∈ RL×B is computed for each beam.

Am
l =

[
∥Qm

1 − cml ∥22, ∥Qm
2 − cml ∥22, . . . , ∥Qm

B − cml ∥22
]⊤

. (3.14)

In contrast, the keys in the subset {k̄1, . . . k̄N} ⊆ {1, . . . , L}M are the same

across beams because they are not changed by generated target tokens. Then,

the distances between a key and the queries for each beam d(Q, k̄) ∈ RB are

22

obtained as follows:

d(Q, k̄) =
[
d(Q1, k̄), . . . d(QB, k̄)

]⊤
, (3.15)

d(Qi, k̄) =
M∑

m=1

dm(Q
m
i , k̄

m) =
M∑

m=1

Am
k̄m . (3.16)

From Equation 3.15 and 3.16, the distance table is looked up M×B times at each

timestep during decoding. We parallelize this look-up using torch.gather() in

PyTorch. However, to perform parallel look-up, the keys must be replicated to

each beam leading to multiple copies proportional to the beam size. To avoid

increasing the memory usage of key vectors, we designed not to allocate new

memory by copying multiple instances for each beam, but only create a new view

of the tensor by using torch.expand(). The number of keys takes the number of

target tokens in the neighboring sentences, e.g. 10,000. Therefore, this technique

is helpful in that it saves memory usage even if the beam size is increased.

3.5 Experiments

3.5.1 Setup

We compared the translation quality and speed of our subset kNN-MT with those

of the conventional kNN-MT in open-domain settings that assume a domain of

an input sentence is unknown. The translation quality was measured by sacre-

BLEU7 [94] and COMET [98]. The decoding speed was evaluated by the number

of tokens generated per second (tok/s) on a single NVIDIA V100 GPU. The time

measurement includes all processes since the source tokens are given until the

output sequence is obtained by beam search; that is, in kNN-MT, it includes the

time to search the k-nearest-neighbor tokens for each timestep in addition to the

forward computation of the NMT model, and in subset kNN-MT, it includes the

time to compute sentence vectors, search the neighboring sentences, look-up the

distance table, etc. The speed, tok/s, is calculated by dividing the number of all

generated tokens by the time it took to translate the entire test set. We varied

the batch size settings: either 12,000 tokens (B∞), to simulate the document

7Signature: |nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.1

23

translation scenario, or a single sentence (B1), to simulate the online translation

scenario. The beam size was set to 5, and the length penalty was set to 1.0. In

the result tables, the best score is emphasized with bold font, and the second best

score is underlined.

k-Nearest-Neighbor Search In kNN-MT, we set the number of nearest neigh-

bor tokens to k = 16. We use approximate distance computed from quantized

keys instead of full-precision keys in Equation 3.3 and 3.4 following the orig-

inal kNN-MT [61] implementation. The kNN-MT datastore and our sentence

datastore used IVF and optimized PQ (OPQ) [38]. OPQ rotates vectors to mini-

mize the quantization error of PQ. The subset kNN-MT datastore is not applied

clustering since we need to extract subset tokens. In this datastore, the 1024-

dimensional vector representation, i.e., D = 1024, was reduced in dimensionality

to 256-dimensions by principal component analysis (PCA), and these vectors

were then quantized by PQ. At search time, a query vector is pre-transformed to

256-dimensions by multiplying the PCA matrix, and then the kNN target tokens

are searched by ADC. The subset of a datastore can be loaded into GPU mem-

ory since it is significantly smaller than the original kNN-MT datastore, so we

retrieved k-nearest-neighbor tokens from a subset on a GPU.

Sentence Encoder We compared 4 different sentence encoders: LaBSE, Av-

gEnc, TF-IDF, and BM25. LaBSE [35] is a pre-trained sentence encoder, fine-

tuned from multilingual BERT. AvgEnc is an average pooled encoder hidden

vector of the Transformer NMT model, which is also used for translation. TF-

IDF [56] and BM25 [57] compute vectors weighted the important words in a

sentence. We used the raw count of tokens as the term frequency and applied

add-one smoothing to calculate the inverse document frequency, where a sentence

was regarded as a document. We counted the number of words segmented by the

scikit-learn tokenizer [93]. We set k1 = 2.0, b = 0.75 in BM25 [57]. Both

TF-IDF and BM25 vectors were normalized by their L2-norm and their dimen-

sionality was reduced to 256-dimensions by singular value decomposition (SVD).

In particular, we used truncated SVD also known as latent semantic analysis for

the dimension reduction.

24

(a) Overview of chunk-based kNN-

MT [76].

(b) Overview of fast kNN-MT [81].

Figure 3.4: Overview of chunk-based kNN-MT and fast kNN-MT.

3.5.2 In-Domain Translation

We evaluated the translation quality and speed of subset kNN-MT in theWMT’19

De–En translation task (newstest2019; 2,000 sentences) and compared them with

the original kNN-MT [61] and other prior work [81, 76]. Chunk-based kNN-

MT [76] (Figure 3.4(a)) reduces the number of retrieval times by caching the

n-grams of neighboring tokens. Fast kNN-MT [81] (Figure 3.4(b)) retrieves the

source-side neighbor tokens by querying each input token and reduces the search

space by using the retrieved source-side tokens and their source-to-target word

alignment. We used a trained Transformer big implemented in fairseq [91] as

25

kNN-MT Subset kNN-MT

DS;M Sentence DS; S DS; M̂

Search method IVF IVF ADC

Vector transform OPQ [38] OPQ [38] PCA:

1024→ 256 dim

of PQ sub-vectors; M 64 64 64

of centroids; Nlist 131,072 32,768 —

of probed clusters by IVF 64 clusters 64 clusters —

Size of search target
∑

y∈D |y| |D|
∑

s∈N |ys|

Table 3.1: Details of kNN indexes. “DS” indicates “Datastore”.

the base MT model. We constructed the datastore from the parallel data of the

WMT’19 De–En news translation task. We removed all empty lines and sentences

of the parallel data longer than 250 tokens. We also removed all sentences in

which the sentence length in one language was more than 1.5 times longer than

that in the other language, i.e., the ratio of tokens between the source and target

was > 1.5. The datastore contained 862.6M target tokens obtained from 29.5M

sentence pairs. The subset size was set to n = 512. For fast kNN-MT, we

constructed additional source side datastores for each source token, and used

fast align [31] to obtain the source-to-target word alignment, following Meng

et al. [81]. Then, we retrieved the 512 nearest neighbor source tokens from the

source side datastores for each input token in the decoding time of fast kNN-MT.

Note that the total size of the source side datastores is close to the kNN-MT

datastore; thus, it consumes twice as much storage and memory compared to the

original kNN-MT. In chunk-based kNN-MT, the chunk size was set to 16, the

hyperparameters that determine the interval of retrieval imax and imin were set

to 2 and 16, respectively, following Martins et al. [76]. The details of the kNN

indexes are shown in Table 3.1.

Table 3.2 shows our experimental results. The table shows that, although kNN-

MT improves 0.9 BLEU point from the base MT without additional training, the

decoding speed is 326.1 times and 51.7 times slower with the B∞ and B1 settings,

respectively. In contrast, our subset kNN-MT (h: LaBSE) is 111.8 times (with

26

↑tok/s

Model ↑BLEU ↑COMET B∞ B1

Base MT 39.2 84.56 6375.2 129.14

kNN-MT 40.1 84.73 19.6 2.5

Chunk-based kNN-MT 39.5 84.33 74.6 22.3

Fast kNN-MT 40.3 84.70 286.9 27.1

Ours: Subset kNN-MT

h: LaBSE 40.1 84.66 2191.4 118.4

h: AvgEnc 39.9 84.68 1816.8 97.3

h: TF-IDF 40.0 84.63 2199.1 113.0

h: BM25 40.0 84.60 1903.9 108.4

Table 3.2: Results of translation quality and decoding speed in the WMT’19 De–

En translation task. “h:” shows the type of sentence encoder used.

The best score is emphasized with bold font, and the second best score

is underlined.

B∞) and 47.4 times (with B1) faster than kNN-MT with no degradation in the

BLEU score. Subset kNN-MT (h: AvgEnc) achieved speed-ups of 92.7 times

(with B∞) and 38.9 times (with B1) with a slight quality degradation (−0.2 BLEU
and −0.05 COMET), despite using no external models. We also evaluated our

subset kNN-MT when using non-neural sentence encoders (h: TF-IDF, BM25).

The results show that both TF-IDF and BM25 can generate translations with

almost the same BLEU score and speed as neural sentence encoders.

In the table, neural encoders, i.e., LaBSE and AvgEnc, and non-neural en-

coders, i.e., TF-IDF and BM25, have similar calculations, respectively, but their

speeds are different. One of the reasons is a difference in the number of retrieved

tokens. In total, LaBSE and AvgEnc retrieved 27,910,815 and 34,234,900 tokens,

respectively; thus, the ratio of the number of tokens is 1.227 and is close to the

speed ratio, 2191.4/1816.8 = 1.206. Similarly, the number of retrieved tokens in

TF-IDF and BM25 is 20,423,819 and 22,576,161, respectively, and its ratio 1.105

is close to 2199.1/1903.9 = 1.155. Note that the difference in speeds between neu-

ral encoders and non-neural encoders is caused by operations, computing devices,

27

and implementations.

Compared with other models, chunk-based kNN-MT and fast kNN-MT gener-

ated translations 4 and 15 times faster than the original kNN-MT, respectively.

Chunk-based kNN-MT [76] caches the n-grams of neighboring tokens and reduces

the time complexity from O(D|M||y|) to D|M|R where R(< |y|) is the number

of retrieval in the generation. However, the computational bottleneck is usually

the size of datastore |M|, not the output length |y|, it only improved the speed

by 4 times. Fast kNN-MT [81] pre-constructed |VX | datastores for each source to-

ken type. During decoding, it first retrieves n-nearest-neighbor source tokens for

each input token and maps them into the target-side tokens by using word align-

ment, then it finds the k-nearest-neighbor target tokens from the reduced search

space. It addresses the issue of datastore size and achieves faster decoding speed

than chunk-based kNN-MT. However, the source-side token-level retrieval is com-

putationally expensive compared with the sentence retrieval used in our model.

Additionally, the search space is n′ key vectors, where n′ is the size of the kNN

search space, but the distances between a query and n′ key vectors are calculated

directly, whereas subset kNN-MT employed ADC; thus, our subset kNN-MT is

much faster than fast kNN-MT. Note that chunk-based kNN-MT does not use

any additional resources and fast kNN-MT needs to create additional source side

datastores that consume large memory and storage, and requires a source-to-

target word alignment tool. Our subset kNN-MT uses a sentence encoder and

creates the sentence datastore which has |D| ≪ |M| sentence representations in

addition to the kNN-MT datastore.

In summary, this experiment showed that our subset kNN-MT is two orders of

magnitude faster than kNN-MT and has the same translation quality.

3.5.3 Domain Adaptation

German-to-English We evaluated subset kNN-MT on out-of-domain transla-

tion in the IT, Koran, Law, Medical, and Subtitles domains [65, 1] with open-

domain settings. The datastore was constructed from parallel data by merging all

target domains and the general domain (WMT’19 De–En) assuming that the do-

main of the input sentences is unknown. The datastore contained 895.9M tokens

obtained from 30.8M sentence pairs shown in Table 3.3(a). The NMT model is

28

Domain #sentences #tokens

General 29,540,337 862,648,422

IT 184,872 3,154,174

Koran 15,300 455,398

Law 450,870 18,430,516

Medical 209,828 5,741,839

Subtitles 442,653 5,461,071

Total 30,843,860 895,891,42

(a) De–En

Domain #sentences #tokens

General 21,911,738 685,820,792

ASPEC 2,000,000 68,305,379

KFTT 440,288 15,185,034

Total 24,352,026 769,311,205

(b) En–Ja

Table 3.3: Datastore statistics in the domain adaptation task.

the same as that used in Section 3.5.2 trained from WMT’19 De–En. The subset

size was set to n = 256, and the batch size was set to 12,000 tokens, i.e., B∞.

Table 3.4 shows the results. Compared with base MT, kNN-MT improves the

translation quality in all domains but the decoding speed is much slower. In con-

trast, our subset kNN-MT generates translations faster than kNN-MT. However,

in the domain adaptation task, there are differences in translation quality be-

tween those using neural sentence encoders and those using non-neural sentence

encoders. The table shows that the use of non-neural sentence encoders (TF-IDF

and BM25) causes drop in translation quality, whereas the use of neural sentence

encoders (LaBSE and AvgEnc) do not. In addition, compared with kNN-MT,

our subset kNN-MT with neural encoders achieves an improvement of up to 1.6

BLEU points on some datasets.

Then, we compared what examples are retrieved by LaBSE and TF-IDF, re-

spectively. As mentioned in Section 3.3.3, TF-IDF may not retrieve semantically

similar sentences by being susceptible to surface expressions. Table 3.5 shows that

the top-3 neighboring sentences retrieved by LaBSE and TF-IDF, respectively.

In the case of the table, TF-IDF retrieved sentences that are not related to the

input sentence. For example, in TF-IDF-2, “dieser”, “ist”, “die”, and “ca (CA)”

match the input sentence; however, the meaning of the sentence is quite differ-

ent. On the other hand, LaBSE-3 contains “Plasmaproteine” which semantically

matches “Protein” and “Plasma” in the input sentence. From the table, we ob-

29

IT Koran Law

Model BL CM tok/s BL CM tok/s BL CM tok/s

Base MT 38.7 83.1 4433.2 17.1 72.5 5295.0 46.1 85.8 4294.0

kNN-MT 41.0 83.9 22.3 19.5 73.3 19.3 52.6 86.8 18.6

Subset kNN-MT

h: LaBSE 41.9 84.2 2362.2 20.1 73.4 2551.3 53.6 86.8 2258.0

h: AvgEnc 41.9 84.2 2197.8 19.9 73.4 2318.4 53.2 86.8 1878.8

h: TF-IDF 40.0 81.7 2289.0 19.3 72.7 2489.5 51.4 86.0 2264.3

h: BM25 40.0 81.2 1582.4 19.1 72.6 2089.5 50.8 85.8 1946.3

Medical Subtitles Avg.

Model BL CM tok/s BL CM tok/s BL CM tok/s

Base MT 42.1 83.3 4392.1 29.4 79.9 6310.5 34.7 80.9 4945.0

kNN-MT 48.2 84.6 19.8 29.6 80.0 30.3 38.2 81.7 22.1

Subset kNN-MT

h: LaBSE 49.8 84.6 2328.3 29.9 79.8 3058.4 39.1 81.8 2511.6

h: AvgEnc 49.2 84.8 2059.9 30.0 79.8 3113.0 38.8 81.8 2313.6

h: TF-IDF 47.5 83.4 2326.6 29.3 79.5 2574.4 37.5 80.7 2388.8

h: BM25 47.4 83.2 1835.6 29.4 79.4 1567.7 37.3 73.3 1804.3

Table 3.4: Results of out-of-domain translation with open-domain settings.

“Avg.” denotes the average scores. “BL” and “CM” denote BLEU

and COMET scores, respectively.

served differences in retrieved subsets between non-neural and neural encoders.

Note that this result could be caused by the sentence-level translation models

because a single sentence makes it harder for non-neural encoders to obtain the

sufficient statistics, e.g., term frequency and inversed document frequency.

In summary, these results show that neural sentence encoders are effective in

retrieving domain-specific nearest neighbor sentences from a large datastore.

English-to-Japanese We also evaluated our model on English-to-Japanese

translation. We used a pre-trained Transformer big model trained from JParaCrawl

30

Input Dieser Anteil ist ca. um das 3fache höher als die nicht an Protein gebun-

dene (freie) Efavirenz-Fraktion in Plasma.

LaBSE-1 Der Trypsininhibitorgehalt lag in der Ration der Versuchsgruppe mit 4,38

TIU / mg fast um das 5-fache höher als für die Kontrollgruppe.

LaBSE-2 Die Dosierung der Hyaluronsäure im vorliegenden Präparat beträgt das

2,5-fache des nichtliposomalen Hyaluronsäure-Konzentrats.

LaBSE-3 Verteilung Die Bindung von Telbivudin an menschliche Plasmaproteine ist

in vitro gering (3,3%).

TF-IDF-1 Die Frolikha ist an dieser Stelle ca. 65 m breit und mehrere Meter tief.

TF-IDF-2 Anbieter dieser Dienste ist die Google Inc., 1600 Amphitheatre Parkway,

Mountain View, CA 94043, USA.

TF-IDF-3 Širbegovic Enden Montage Stahlbetonkonstruktion, die Business-Lager

Plamingo in Gracanica Fläche von ca. 6000 m2. Nutzlast Dielenböden

ist 3000 kg / m2, die das Gebäude extrem anspruchsvollen macht. ”In

dieser Anlage...

Table 3.5: Top-3 retrieved examples of LaBSE and TF-IDF in a case of the med-

ical domain. “LaBSE-n” and “TF-IDF-n” denote the top-n neighbor-

ing sentences retrieved by LaBSE and TF-IDF, respectively.

v3 [83] and evaluated its translation quality on Asian Scientific Paper Excerpt

Corpus (ASPEC) [85] and Kyoto Free Translation Task (KFTT; created from

Wikipedia’s Kyoto articles) [87]. The datastore was constructed from parallel

data by merging ASPEC, KFTT, and the general domain (JParaCrawl v3), shown

in Table 3.3(b). Note that ASPEC contains 3M sentence pairs, but we used only

the first 2M pairs for the datastore to remove noisy data, following Neubig [88].

The datastore contained 735.9M tokens obtained from 24.4M sentence pairs. The

subset size was set to n = 512, and the batch size was set to 12,000 tokens.

Table 3.6 shows the results. These show that kNN-MT improves out-of-domain

translation quality compared with base MT on other language pairs other than

German-to-English. On English-to-Japanese, subset kNN-MT improves the de-

coding speed, but subset kNN-MT with TF-IDF and BM25 degrades the trans-

lation quality compared with kNN-MT. However, subset kNN-MT still achieves

31

ASPEC KFTT

Model BLEU COMET tok/s BLEU COMET tok/s

Base MT 26.7 88.55 5541.6 20.3 83.52 3714.4

kNN-MT 32.8 89.13 23.5 27.8 85.32 28.0

Subset kNN-MT

h: LaBSE 32.5 88.77 2031.8 25.8 84.11 1436.6

h: AvgEnc 32.4 88.75 1775.6 26.4 84.45 1471.3

h: TF-IDF 29.5 88.24 1763.9 22.3 82.37 1559.3

h: BM25 29.4 88.04 1810.7 21.8 82.21 1533.8

Table 3.6: Results of out-of-domain translation in English-to-Japanese. The

speed is measured with the B∞ setting.

higher BLEU scores than base MT without any additional training steps, and it

is two orders of magnitude faster than kNN-MT.

In summary, subset kNN-MT can achieve better translation quality than base

MT in exchange for a slowdown to roughly 40% of the base MT in open-domain

settings, while the original kNN-MT slows down the decoding speed to less than

1% of the base MT.

3.5.4 Multilingual Translation

We also evaluated multilingual translation quality across 11 translation directions

using the Flores-101 dataset [40], which is created from English Wikipedia. We

used the Flores101-M2M1008 model with 615M parameters, which is extended

from M2M [34] to support languages that are included in Flores-101 by training

from OPUS data. The datastore of each language pair was constructed from

CCMatrix [103] extracted from Common Crawl. Note that each datastore is

created from parallel data of the language pair to be translated. We employed

LaBSE and AvgEnc for the sentence encoder in this experiment. We tuned the

subset size n to maximize BLEU among {256, 512, 1024, 2048} in the validation

sets of En–Ja and Ja–En translations, and set to n = 2048. The batch size was

8https://dl.fbaipublicfiles.com/flores101/pretrained models/flores101 mm100 615M.tar.gz

32

https://dl.fbaipublicfiles.com/flores101/pretrained_models/flores101_mm100_615M.tar.gz

set to 12,000 tokens, i.e., B∞. We used the flores101 tokenizer implemented in

sacreBLEU9 to calculate the BLEU score.

9Signature: nrefs:1|case:mixed|eff:no|tok:flores101|smooth:exp|version:2.3.1

33

Zh–En (1.5B) Ja–En (610.4M) Fi–En (640.7M)

Model BL CM tok/s BL CM tok/s BL CM tok/s

Base MT 20.9 81.7 2030.0 19.5 82.1 2127.4 27.1 84.8 1976.3

kNN-MT 25.9 84.3 11.9 24.6 84.3 33.3 31.3 87.0 32.0

Subset kNN-MT

h: LaBSE 25.0 83.5 869.1 22.4 83.4 916.2 29.5 86.1 880.8

h: AvgEnc 24.3 83.4 629.0 22.5 83.6 713.1 29.6 86.2 672.9

Lt–En (440.4M) En–Zh (1.5B) En–Ja (714.3M)

Model BL CM tok/s BL CM tok/s BL CM tok/s

Base MT 27.0 81.8 2145.2 19.4 78.4 1892.1 22.8 83.8 2177.2

kNN-MT 31.0 83.7 44.2 25.1 82.3 14.1 27.6 86.2 31.0

Subset kNN-MT

h: LaBSE 29.1 83.0 904.3 22.9 81.1 837.3 26.1 85.5 912.4

h: AvgEnc 29.5 83.0 676.1 22.7 80.9 597.8 25.8 85.4 627.0

En–Fi (724.7M) En–Lt (534.5M) De–Ja (204.1M)

Model BL CM tok/s BL CM tok/s BL CM tok/s

Base MT 24.2 84.5 2167.4 27.6 82.8 2032.0 21.1 82.9 2093.2

kNN-MT 29.0 87.2 35.9 32.1 85.4 44.4 24.0 84.2 67.8

Subset kNN-MT

h: LaBSE 27.0 86.4 899.4 30.7 84.7 840.8 23.2 83.4 866.2

h: AvgEnc 26.8 85.9 639.9 30.6 84.5 603.4 22.6 83.6 702.1

Ru–Ja (149.5M) Uk–Ja (28.3M) Avg.

Model BL CM tok/s BL CM tok/s BL CM tok/s

Base MT 20.3 82.4 2166.4 20.2 81.0 1825.9 22.7 82.4 2057.6

kNN-MT 23.3 83.5 91.6 22.1 81.7 108.9 26.9 84.5 46.8

Subset kNN-MT

h: LaBSE 22.0 83.1 825.2 20.9 80.7 909.3 25.3 83.7 878.3

h: AvgEnc 21.9 82.7 638.3 20.9 80.8 615.2 25.2 83.6 646.8

Table 3.7: Results of multilingual translation. The speed is evaluated with B∞.

34

Input Eine gemeinsame Anwendung von Nifedipin und Rifampicin ist da-

her kontraindiziert.

Reference Co-administration of nifedipine with rifampicin is therefore contra-

indicated.

Base MT A joint use of nifedipine and rifampicin is therefore contraindicated.

kNN-MT A joint use of nifedipine and rifampicin is therefore contraindicated.

Subset kNN-MT Co-administration of nifedipine and rifampicin is therefore con-

traindicated.

Table 3.8: Translation examples in the medical domain.

Table 3.7 shows the results of the multilingual translation. In the table, “BL”

and “CM” denote BLEU and COMET scores, respectively, and “Avg.” denotes

the average of the scores. The number next to a language name pair indicates the

size of the datastore, i.e., the number of target tokens in the parallel data. The

results show that both kNN-MT and subset kNN-MT improve translation quality

in multilingual translation. In Avg., subset kNN-MT degrades the translation

quality compared with kNN-MT, but 19 times faster measured by tokens per

second. Comparing the decoding speed for each language pair with kNN-MT,

subset kNN-MT is 16.8 times faster in Uk–Ja with the smallest datastore and

134.2 times faster in the En–Zh with the largest datastore. In summary, this

experiment shows that subset kNN-MT is more effective when the datastore is

larger because the larger datastore will be reduced more examples from the search

space by our subset retrieval.

3.6 Discussion

3.6.1 Case Study: Effects of Subset Search

Effective Cases of Subset kNN-MT Translation examples in the medical

domain are shown in Table 3.8 and the search results of the top-3 nearest neighbor

sentences are shown in Table 3.9. In the table, the subset kNN-MT results

are obtained using a LaBSE encoder. Table 3.8 shows that subset kNN-MT

correctly generates the medical term “Co-administration”. The results of the

35

S-1 Die gemeinsame Anwendung von Ciprofloxacin und Tizanidin ist kontraindiziert.

S-2 Rifampicin und Nilotinib sollten nicht gleichzeitig angewendet werden.

S-3 Die gleichzeitige Anwendung von Ribavirin und Didanosin wird nicht empfohlen.

T-1 Co-administration of ciprofloxacin and tizanidine is contra-indicated.

T-2 Rifampicin and nilotinib should not be used concomitantly.

T-3 Co-administration of ribavirin and didanosine is not recommended.

Table 3.9: Top-3 neighbor sentences of our subset kNN-MT in Table 3.8. “S-” and

“T-” denote the top-n neighbor source sentences and their translations,

respectively.

timestep t Base MT kNN-MT Subset kNN-MT

1 A: 0.80 A: 1.26 Co: 1.49

2 joint: 1.18 joint: 1.12 - (hyphen): 0.05

3 use: 0.83 use: 0.42 administration: 0.59

Avg 0.94 0.93 0.71

Table 3.10: Negative log-likelihood (NLL) of the first three tokens and their aver-

age in the case of Table 3.8. Note that a smaller NLL means a larger

probability.

nearest neighbor sentence search (Table 3.9) show that “Co-administration” is

included in the subset. In detail, there are 30 cases of “Co-administration” and

no case of “A joint use” in the whole subset consisting of n = 256 neighbor

sentences. Base MT and kNN-MT have the subwords of “Co-administration”

in the candidates; however, the subwords of “A joint use” have higher scores.

Table 3.10 shows the negative log-likelihood (NLL) of the first three tokens and

their average for each model. The second token of subset kNN-MT, “-” (hyphen),

has a significantly lower NLL than the other tokens. The number of “joint”

and “-” in the subset were 0 and 101, respectively, and the k-nearest-neighbor

tokens were all “-” in subset kNN-MT. Therefore, the NLL was low because

pkNN(“-”) = 1.0, so the joint probability of a beam that generates the sequence

“Co-administration” is higher than “A joint use”.

36

Input 一方、動物性食物 (アリ、シロアリ、卵)は消化しやすいうえ
に、必須アミノ酸をすべて含む良質なタンパク質源です。

Reference In contrast, animal foods (ants, termites, eggs) not only are

easily digestible, but they provide high-quantity proteins that

contain all the essential amino acids.

Base MT On the other hand, animal food (algae, syrup, eggs) is a good

source of protein, which contains all essential amino acids, to

be easily digested.

kNN-MT On the other hand, animal foods (ants, termites, eggs) are a

good source of protein that contains all the essential amino

acids.

Subset kNN-MT On the other hand, animal food (soyks, cereals, eggs) is a good

source of protein that contains all of the essential amino acids

to be easily digested.

Table 3.11: Japanese-to-English translation examples in the Flores-101 multilin-

gual translation task.

In summary, the proposed method can retrieve more appropriate words by

searching a subset that consists only of neighboring cases when the translation

examples of the target domain are contained in the datastore.

Ineffective Cases of Subset kNN-MT Japanese-to-English translation ex-

amples in the Flores-101 multilingual translation task are shown in Table 3.11

and the search results of the top-3 nearest neighbor sentences are shown in Ta-

ble 3.12. In the table, the subset kNN-MT results are obtained using a LaBSE

encoder. Table 3.11 shows that subset kNN-MT incorrectly generates the animal

names, “アリ”→ “ants” and “シロアリ”→ “termites”. The results of the nearest

neighbor sentence search (Table 3.12) show that both words were not included

in the subset. In detail, there are no cases of “ants” and “termites” in the whole

subset consisting of n = 2048 neighbor sentences. Table 3.13 shows translation

examples containing “termites” in the datastore. Compared to the input sen-

tences in Table 3.11, the topics of the sentences containing “termites” were not

37

S-1 植物性タンパク質 (35%):すべての必須アミノ酸が含まれているヘンプミル
クは、肉、牛乳、卵などの動物性タンパク質源とほぼ同じ割合のタンパク
質が摂取できるといわれています。

S-2 しかし、米と組み合わせると、これは体に必要なすべてのアミノ酸を含む
完全なタンパク質です。

S-3 しかし、あなたが必要とするヨウ素を得るためのさらに良い方法は、この
栄養素の主要な天然の食物源である海藻や海産物などのヨウ素に富んだ食
品です。

T-1 High percentage of vegetable proteins (35%): It contains all of the essential

amino acids and in similar percentages to that of animal proteins sources

like meat, milk, or eggs.

T-2 However, combined with rice, this is a complete protein with all the amino

acids necessary to the body.

T-3 But an even better way to get the iodine you need is from iodine-rich

foods like sea veggies and seafood, the major natural dietary sources of this

nutrient.

Table 3.12: Top-3 neighbor sentences of our subset kNN-MT in Table 3.11. “S-

” and “T-” denote the top-n neighbor source sentences and their

translations, respectively.

matched. In contrast, since kNN-MT searches on a token-by-token basis, it is also

possible to retrieve target tokens from translation examples that have different

topics. In summary, subset kNN-MT degrades the translation quality compared

to kNN-MT when the neighboring sentences contain no correct word.

3.6.2 Diversity of Subset Sentences

We hypothesize that the noise introduced by sentence encoders causes the differ-

ence in accuracy. For example, if the sentence search is not accurate enough, it

cannot retrieve translation examples related to the input sentence. In addition,

we can expect consistency of translations by retrieving based on not only seman-

tic similarity of sentences but also style and other aspects. From the results of

38

Japanese English

実際に、シロアリの存在は、気候変動に
対してこれらの生態系を守っている。

Indeed, the presence of termites buffers

these ecosystems against climate

change.

しかし、再びアリやシロアリの進化に目
を移すと、もう一つ決定的なステップが
あるのです。

But looking at the evolution of ants and

termites again, there is another crucial

step.

図 2:シロアリをどのように駆除するか:

上の写真:以前。
Fig. 2: How to get rid of termites: Top

photo: Before.

Table 3.13: Translation examples containing “termites” in the Japanese-to-

English datastore constructed from CCMatrix.

unique ratio %

Model h BLEU source target

LaBSE 49.8 19.6 18.5

AvgEnc 49.2 20.4 19.2

TF-IDF 47.5 33.3 32.3

BM25 47.4 34.2 32.9

Table 3.14: BLEU score and unique token ratio in the subset obtained by each

sentence encoder in the medical domain.

Section 3.6.1 and Table 3.10, one characteristic subword that frequently occurs in

the kNN changed the order of the beams, which contributed to the improvement

of the translation quality of the subset kNN-MT. Thus, if the subset includes

only the vocabulary that is more relevant to the translation, translation accuracy

may be improved.

This section investigates whether a better sentence encoder would reduce the

noise injected into the subset. We investigated the relationship between vocab-

ulary diversity in the subset and translation quality in the medical domain. Be-

cause an output sentence is affected by the subset, we measured the unique token

39

unique ratio %

n-selection BLEU source target

Top 49.8 19.6 18.5

Random of 2n 47.7 21.7 20.3

Bottom of 2n 44.9 22.7 21.1

Table 3.15: BLEU score and unique token ratio in the subset obtained by different

n-selection methods in the medical domain.

ratio of both source and target languages in the subset as the diversity as follows:

number of unique tokens

number of subset tokens
. (3.17)

Table 3.14 shows the BLEU score and unique token ratio for the various sen-

tence encoders, in which “source” and “target” indicate the diversity of the neigh-

bor sentences on the source-side and target-side, respectively. The results show

that the more diverse the source-side is, the more diverse the target-side is. It

also shows that the less diversity in the vocabulary of both the source and target

languages in the subset, the higher BLEU score.

We also investigated the relationship between sentence encoder representation

and BLEU scores. In particular, we evaluated translation quality when noise

was injected into the subset by retrieving n sentences from outside the nearest

neighbor. To clarify our hypothesis, we experimented with two artificially created

subsets. One is “Bottom of 2n”, the n furthest sentences of the 2n neighbor

sentences, which simulates the n nearest neighbor sentences cannot be retrieved.

The other is “Random of 2n”, n sentences randomly selected from the 2n neighbor

sentences, i.e., it can be regarded as a subset which mixed roughly half of “Top”

subset and noise examples from half of “Bottom of 2n”. Thus, “Random of 2n”

uses more similar examples than “Bottom of 2n”.

Table 3.15 shows the results of various n-selection methods when LaBSE was

used as the sentence encoder. In the table, “Top” indicates the n-nearest-neighbor

sentences. The “Bottom of 2n” and “Random of 2n” have higher diversity than

the “Top” on both the source and target sides, and the BLEU scores are corre-

spondingly lower. In addition, “Random of 2n” achieved higher BLEU score than

40

ADC

Model h w/ w/o

LaBSE 2191.4 446.4 (×0.20)
AvgEnc 1816.8 365.1 (×0.20)
TF-IDF 2199.1 531.0 (×0.24)
BM25 1903.9 471.6 (×0.25)

Table 3.16: Efficiency of ADC in WMT’19 De–En. The results show the number

of tokens generated per second, i.e., ↑tok/s, with the B∞ setting.

“Bottom of 2n” with lower unique ratio. resulting in lower translation quality

than “Top”. These experiments showed that a sentence encoder that calculates

similarity appropriately can reduce noise and prevent the degradation of transla-

tion quality because the subset consists only of similar sentences.

3.6.3 Analysis of Decoding Speed

Efficiency of ADC Subset kNN-MT computes the distance between a query

vector and key vectors using ADC as described in Section 3.3.2. The efficiency of

ADC in WMT’19 De–En is demonstrated in Table 3.16. The results show that

“w/ ADC” is roughly 4 to 5 times faster than “w/o ADC”.

Effect of Parallelization The method and implementation of our subset kNN-

MT are designed for parallel computing. We measured the translation speed for

different batch sizes in WMT’19 De–En. Figure 3.5(a) shows that subset kNN-

MT (h: LaBSE) is two orders of magnitude faster than kNN-MT even when the

batch size is increased.

Subset Size We measured the translation speed for different subset sizes, i.e.,

the number of n-nearest-neighbor sentences in WMT’19 De–En. Figure 3.5(b)

shows the translation speed of subset kNN-MT (h: LaBSE). Subset kNN-MT

is two orders of magnitude faster than kNN-MT even when the subset size is

increased. The results also show that the speed becomes slower from n = 256

41

100

101

102

103

104

 1 2 4 8 16 32 64

#
 o

f t
ok

en
s

/ s
ec

on
d

batch size

Base MT
kNN-MT

Subset kNN-MT

(a) Translation speed for

different batch sizes.

100

101

102

103

104

105

20 21 22 23 24 25 26 27 28 29 210 211

#
 o

f t
ok

en
s

/ s
ec

on
d

of neighbor sentences

Base MT
kNN-MT

Subset kNN-MT

(b) Translation speed for

different subset sizes.

 48

 49

20 21 22 23 24 25 26 27 28 29 210 211

BL
EU

 %

of neighbor sentences

Base MT
kNN-MT

Subset kNN-MT

(c) Translation quality for

different subset sizes in

the development set.

Figure 3.5: Translation speed for different batch sizes, and subset sizes and trans-

lation quality for different subset sizes in WMT’19 De–En.

compared with base MT. We also found that 71.7% of the time was spent search-

ing for the kNN tokens from the subset when n = 2048. Although ADC look-up

search is slow for a large datastore, it is fast for kNN search when the subset size

n is not large [78], e.g., n = 512.

Figure 3.5(c) shows the results for translation quality on the development set

(newstest2018). The results show that a larger n improves BLEU up to n = 512,

but decreases for greater values of n. In terms of both the translation quality and

translation speed, we set n = 512 for WMT’19 De–En.

3.6.4 Relationship Between Neural/Non-neural Encoders

and Translation Quality

From Section 3.5.2 and 3.5.3, the translation quality of the non-neural sen-

tence encoder was almost the same as that of the neural sentence encoder in

the WMT’19 translation task, while the non-neural sentence encoder degraded

the translation quality compared with the neural sentence encoder in the domain

adaptation task. We hypothesize that one of the causes of this phenomenon is

that calculating TF-IDF and BM25 on a sentence, rather than on a document,

would not extract sufficient statistics, especially in short sentences.

To verify this, we measured the total difference in sentence BLEU when using

LaBSE and TF-IDF for each length bucket of the source sentences. Note that the

42

0 30 60 90 120 150 180 210 240 270
Length bucket: [i, i+10)

103

102

101

100
0

100

101

102

TF
-ID

F
- L

aB
SE

Total difference in sentence BLEU for each length bucket

data
wmt19
medical

Figure 3.6: Total difference in sentence BLEU for each length bucket.

length bucket means the range from i (inclusive) to i+10 (exclusive). Figure 3.6

shows the results in the WMT’19 translation task and the medical domain adap-

tation task. It can be seen that TF-IDF often degraded the translation quality

in short sentences, and the degradation is suppressed as the sentence length in-

creases in both datasets. From Figure 3.7, the medical domain task has more

short source sentences than the WMT’19 translation task. Therefore, the score

difference between TF-IDF and LaBSE in the medical domain could have been

larger than that in the WMT’19 translation task due to sentence lengths.

To summarize, we found that the non-neural encoder, TF-IDF, degraded the

translation quality, especially for short sentences, while the neural encoder, LaBSE,

retrieved similar sentences robustly and prevented the degradation even for short

sentences.

3.7 Related Work

The first type of example-based machine translation method was analogy-based

machine translation [84]. Zhang et al. [130], Gu et al. [42] incorporated example-

based methods into NMT models, which retrieve examples according to edit dis-

tance. Bulte and Tezcan [10] and Xu et al. [122] concatenated an input sentence

43

100 101 102

Length

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

wmt19
medical

Figure 3.7: Cumulative distribution of the lengths of source sentences.

and translations of sentences similar to it. Both kNN-MT and subset kNN-MT

retrieve kNN tokens according to the distance of intermediate representations and

interpolate the output probability.

To improve the decoding speed of kNN-MT, fast kNN-MT [81] constructs ad-

ditional datastores for each source token, and reduces the kNN search space using

their datastores and word alignment. Subset kNN-MT requires a sentence data-

store that is smaller than source token datastores and does not require word

alignment. Martins et al. [76] cached n-gram tokens adjacent to the retrieved

tokens and reduced the number of querys for the entire datastore; their model

led to a speed-up of up to 4 times, compared with kNN-MT. In contrast, subset

kNN-MT does not search for the entire datastore during decoding. Dai et al.

[22] reduced the kNN search space by retrieving the neighbor sentences of the

input sentence. They searched for neighboring sentences by BM25 scores with

ElasticSearch10, so our subset kNN-MT with BM25 can be regarded as an ap-

proximation of their method. They also proposed “adaptive lambda”, which dy-

namically computes the weights of the lambda of linear interpolation in Equation

3.2 from the distance between the query and the nearest neighbor key vectors.

However, adaptive lambda requires an exact distance and cannot employ data-

10https://github.com/elastic/elasticsearch

44

https://github.com/elastic/elasticsearch

store quantization and the ADC look-up. To improve the translation quality of

kNN-MT, Zheng et al. [131] computed the weighted average of kNN probabilities

pkNN over multiple values of k. Each weight is predicted by “meta-k network”,

trained to minimize cross-entropy in the training data. Their adaptive kNN-MT

only improved the translation quality and its decoding speed is almost the same

as that of kNN-MT[131]. In contrast, we focused on the improvement of the de-

coding speed. Additionally, our subset kNN-MT outperformed kNN-MT in some

domain adaptation tasks as a positive side effect of subset retrieval. For the other

tasks, kNN-LM [60], Efficient kNN-LM [46], and RETRO [7] used kNN search

for language modeling (LM). Our subset search method may be applied to LM

regarding the prompt text as the query, but the way to construct the sentence

datastore from monolingual data is non-trivial, and we leave this issue for future

work.

Some work used sentence similarity to improve the translation quality of NMT

models. Wieting et al. [120] showed that minimum risk training using the co-

sine similarity between the generated hypothesis and the reference translation

improved the translation quality of NMT models. Another approach uses the

sentence similarity between the output sentence and the reference as the reward

of reinforcement learning [128] to prevent excessive penalty due to cross-entropy

that does not take into account the semantics of the sentence. Both of their meth-

ods used sentence similarity to put the semantics of the output sentence close to

the reference translation, whereas our method uses sentence similarity to search

for translation examples. They used the sentence similarity in the target side,

while we use the similarity between the input sentence and the source sentences

in the parallel data.

Quality estimation models and metric models, which use similarity between

the source sentence and the hypothesis, or the hypothesis and the reference, have

been proposed to evaluate the translation quality [99, 100, 104]. They use the

similarity on the target side, whereas our model uses it on the source side. Sellam

et al. [104] augmented the training data of the metric model by mask-filling with

BERT [26], back-translation, and dropping words to allow the model to capture

the various errors. In our model, we may improve the accuracy of the similar

sentence search by fine-tuning the sentence encoder to retrieve better subsets

45

that improve the translation quality.

In the field of kNN search, Matsui et al. [78] allowed search in dynamically

created subsets, whereas conventional search methods assume only full search.

Subset kNN-MT retrieves kNN tokens from a subset depending on a given input.

In our subset kNN-MT, the decoding speed is slow when the subset size n is large.

The bottleneck is the look-up in the distance table, and this can be improved by

efficient look-up methods that use SIMD [2, 79].

3.8 Limitations

This study focuses only on improving the speed of kNN-MT during decoding;

other problems with kNN-MT remain. For example, it still demands large amounts

of memory and disk space for the target token datastore. In addition, our sub-

set kNN-MT requires to construct a sentence datastore; therefore, the memory

and disk requirements are increased. For example, the quantized target token

datastore has 52GB (|M| = 862,648,422) and our sentence datastore has 2GB

(|S| = 29,540,337) in the experiment of WMT’19 De–En (Section 3.5.2). Al-

though subset kNN-MT is faster than the original kNN-MT in inference, data-

store construction is still time-consuming. The decoding latency of our subset

kNN-MT is still several times slower than base MT for large batch sizes. The

experiments reported in this study evaluated the inference speed of the proposed

method on a single computer and single run only; the amount of speed improve-

ment may differ when different computer architectures are used.

3.9 Conclusion

We proposed “Subset kNN-MT”, which improves the decoding speed of kNN-MT

by two methods: (1) retrieving neighbor tokens from only the neighbor sentences

of the input sentence, not from all sentences, and (2) efficient distance computa-

tion technique that is suitable for subset neighbor search using a look-up table.

Our subset kNN-MT achieved a speed-up of up to 134.2 times and an improve-

ment in BLEU of up to 1.6 compared with kNN-MT in the WMT’19 De–En

translation task, the domain adaptation tasks in De–En and En–Ja, and the Flo-

46

res101 multilingual translation task. From the experiments, we found that the

translation quality varied depending on sentence encoders. For future work, we

would like to compare them with other pre-trained models and also fine-tune sen-

tence encoders maximizing the metrics. In addition, we would like to apply our

method to other text generation tasks, such as not only single-modal tasks like

text simplification but also multi-modal tasks like speech-to-text translation.

47

Chapter 4

Detector–Corrector: Edit-Based

Automatic Post Editing for

Human Post-Editing

4.1 Introduction

Neural machine translation (NMT) [112, 3, 72, 121, 113] sometimes make er-

rors [90], and post-editing is crucial in the real world to correct the mis-translations.

Automatic post-editing (APE) attempts to correct and refine the translations

generated by MT models (MT sentences) for better translation quality. However,

many APE models are based on sequence generation [58, 20, 106, 11, 12, 5], and

their decision for correction is harder to interpret due to the black-box nature of

the generation models.

Some prior work [75, 43, 89, 109, 73, 74] showed that edit-based models im-

prove interpretability in monolingual text editing, e.g., grammatical error correc-

tion (GEC), compared with sequence-to-sequence models. The APE task can be

regarded as a text edit task in terms of rewriting MT sentences, but differs from

general monolingual text editing tasks in that it uses cross-lingual information

from source sentences, such as inserting untranslated words and reordering trans-

lation words. For example, if an edit-based model cannot perform reordering,

it is represented as deletion and insertion, which increases the number of edit

operations and makes it harder for humans to interpret the edit.

In this paper, we propose “detector–corrector”, an edit-based post-editing

48

Figure 4.1: Overview of the post-editing process of our detector–corrector model.

The detector tags as “Jeden Abend” is untranslated, “drink” and “I”

should be reordered, etc. The corrector generates the word sequence

for replacement and insertion.

model, in which the post-editing process is broken into two steps for assisting

human post-editing: error detection and error correction. We designed our model

after interviewing with professional translators regarding the post-editing process;

specifically, they first spot errors and then make corrections, and omission errors

are crucial for the editing process. The overview of our detector–corrector model

is shown in Figure 4.1. The detector model, which extends a word-level qual-

ity estimation (QE) model, tags each MT output token as whether it should be

corrected and/or reordered and identifies which source tokens are not translated

in the MT sentence. Then, the corrector model receives the annotated source

and MT sentences and corrects words for each span identified as incorrect in the

detector model. Our corrector model can insert any number of spans of variable

length. In addition, we propose data augmentation methods especially designed

for the detector and corrector models to enhance each model, and lightweight

iterative refinement to improve the inference speed.

Experiments on the WMT’20 English–German (En–De) and English–Chinese

(En–Zh) APE tasks showed that our detector–corrector improved translation edit

49

rate (TER) [107] compared to not only an edit-based model [43] but also a black-

box sequence-to-sequence model by 0.7 points in En–De and En–Zh. Moreover,

our model is more explainable than sequence-to-sequence models because it is

based on edit operations and it can be integrated into computer-aided translation

tools [47].

4.2 Background and Related Work

4.2.1 Edit-Based Model

Chen et al. [16] have built an edit-based GEC system that detects erroneous spans

and then corrects the words within the detected erroneous spans. GECToR [89]

is also an edit-based GEC mode, in which the model predicts the error type tag

for each word, and then words identified as errors are corrected according to the

rules for each tag type.

Levenshtein Transformer [43], a non-autoregressive Transformer encoder-decoder

model, predicts deletion, placeholder insertion, and word filling. It can be used

for the APE task by rewriting an MT sentence, but it cannot represent reordering

and detecting untranslated words. Seq2Edits [109] edits an input text by span

tagging and replacement prediction to improve interpretability for text-editing

tasks. However, it is not suitable for the APE task because it only monotonically

edits an MT output from left to right according to the tags and cannot perform

reordering of spans or inserting missing words which often occur in erroneous

translations. FELIX [73] breaks down text editing into three components: tag-

ging, reordering, and word in-filling. It performs tagging using a pre-trained en-

coder model like BERT, reordering using a pointer network, and predicting words

of replacement and insertion using a masked language model. However, it does

not explicitly use source information. In addition, word insertion is predicted

non-autoregressively; thus, the number of words to be inserted must be given

in advance for the insertion operation, which is not trivial. EdiT5 [74] uses the

T5 [95] encoder-decoder and decomposes the editing process into (1) tagging that

decides which tokens are kept, (2) reordering the input tokens, and (3) insertion

that infills the missing tokens. Unlike FELIX, Edit5 uses the autoregressive T5

50

decoder for word prediction, allowing for variable length insertion. However, the

positions that can be inserted depend on the special tokens used in pre-training

of T5 for filling masked spans, e.g., <extra id 6> as <pos6>; thus, the number

of positions that can be inserted is limited to those observed in pre-training.

4.2.2 Word-Level Quality Estimation

The word-level quality estimation task estimates the word-level quality of MT

sentences, which is closely related to the post-editing task. It is divided into three

binary classifications [108]: MT-tag, MT-gap, and SRC-tag. MT-tag detects

erroneous words in MT sentences. MT-gap predicts where to insert untranslated

words in MT sentences, and SRC-tag detects untranslated source words.

Predictor-estimator model [62, 63] is a well-known architecture for the word-

level quality estimation task, in which the predictor is used for feature extrac-

tion from translation results while the estimator estimates the translation quality

based on the features from the predictor. Ding et al. [28] used Levenshtein Trans-

former [43] for the word-level quality estimation task. Their method uses the edit

probabilities of deletion and insertion of Levenshtein Transformer as tag predic-

tion probabilities instead of explicitly predicting OK/BAD tags. DirectQE [21]

is a pre-training method designed for the QE task, which consists of two com-

ponents: generator and detector. In pre-training, The generator rewrites words

by a cross-lingual masked language model, then the detector detects the replaced

words. After pre-training, the detector model is fine-tuned with real QE data.

SiameseTransQuest [96] employed the word-level QE architecture using XLM-R

for the sentence-level quality estimation task, and they showed that using XLM-R

is effective in the QE task. Ranasinghe et al. [97] demonstrated that the fine-

tuned XLM-R predicts word-level QE on other language pairs than a language

pair that is trained explicitly, i.e., the model can perform zero-shot QE.

4.2.3 Automatic Post Editing

The automatic post-editing (APE) task aims to improve the translation quality

by editing translations generated from black-box MT models [12]. The APE

system receives the source and MT sentences and generates the post-edited (PE)

51

sentence. This task mainly evaluates correction performance using translation

edit rate (TER) [107] based on the edit distance between the human-revised

translation and the corrected sentence.

Correia and Martins [20] built a sequence-to-sequence APE system by only

fine-tuning pre-trained BERT models, in which weight initialization is carefully

designed to employ pre-trained weights for both encoder and decoder. In the

APE shared task, the high-ranked systems often employ Transformer encoder-

decoder architectures with pre-trained models [12, 5, 124, 118, 68, 24, 51]. The

sequence-to-sequence model, which learns post-editing in an end-to-end manner,

can achieve high translation quality; however, it cannot explicitly expose the

editing process, making it hard to utilize the model in scenarios that require

manual checking. The copy mechanism [41] can be used for APE tasks by copying

words in MT sentences that do not need to be modified [50]. This model can show

us edited and non-edited words using the copy probability. Neural Programmer-

Interpreter (NPI) [117] generates PE sentences by predicting the edit actions and

the target tokens comprising three editing operations: keep, delete, and insert.

Although NPI is more interpretable than the sequence-to-sequence models, it

cannot represent reordering nor differentiate replacement and insertion. Deoghare

et al. [25] incorporated the word-level quality estimation into an APE model.

Their model predicts which word should be edited through multi-task learning;

however, it cannot use human-annotated QE tags because the information of QE

tags, which is passed to the decoder, is represented as hidden vectors.

4.3 Proposed Model: Detector–Corrector

4.3.1 Edit Operations

We first discuss edit operations that our model treats. In previous work, the

most widely used operations are deletion, replacement, and insertion [117, 43,

16, 73, 74]. Note that some models support only a few operations. For example,

Levenshtein Transformer does not perform the replacement operation explicitly.

In the GEC task, GECToR [89] and Seq2Edits [109] predict error type tags

for each input token or span. Their models provide more human-interpretable

52

Figure 4.2: Overview of our detector model. The model detects OK and BAD

tags as 0 and 1, respectively.

outputs by predefining many types of edit operations based on the human ten-

dency to make grammatical errors. This study attempts to correct translations

generated from any MT systems and we do not care about a particular model;

thus, it is difficult to predefine specific error types.

Since the above-mentioned general operations, i.e., deletion, insertion, and re-

placement, are designed for monolingual text editing tasks, these operations may

lack the edits required for the translation post-editing. For instance, word re-

ordering might be helpful for translations of language pairs that have different

word orders [129, 15]. If a translation model generates n-gram repetition, n-gram

deduplication will be needed [45]. In industrial translation, lexical substitution

by matching to the bilingual dictionary is necessary to deal with terminology

translation [6].

In this study, we focus on the operations of deletion, insertion, replacement,

and word reordering, which are employed in the several evaluation metrics of

the translation quality, e.g., TER [107], CDER [69], and extended edit distance

(EED) [110].

53

4.3.2 Detector

Our detector model (Figure 4.2) predicts shift and edit operations based on trans-

lation edit rate (TER) [107]. TER iteratively reorders an input sequence to

minimize the edit distance from the target sequence, called “shift” operation,

then calculates edit distance between the reordered input sequence and the tar-

get sequence, called “edit” operations. To represent this TER behavior, our

detector model performs tagging to predict whether edits are need needed (“Tag-

ging” in Figure 4.2), and reordering of the given MT sentence with a pointer

network [114] (“Reordering” in Figure 4.2). Let x = (x1, . . . , x|x|) ∈ V∗ and

y = (y1, . . . , y|y|) ∈ V∗ denote the given source sentence and its translation gen-

erated by machine translation (MT sentence), respectively, where V∗ is the Kleene

closure of the vocabulary1 V . Note that both x and y always have the end-of-

sentence symbol “</s>” as the last tokens, i.e., x|x| = y|y| = “</s>”. Let x◦y be

the concatenated sequence, where ◦ represents the join operation with a separator

token between the sequences2. XLM-RoBERTa (XLM-R) encoder [19] encodes

the concatenated sequence x ◦ y into D-dimensional hidden vectors through L

layers H(L) = (h
(L)
1 , . . . ,h

(L)
|x◦y|)

⊤ ∈ R|x◦y|×D.

Tagging To perform tagging, we train a word-level quality estimation model.

In particular, the detector model performs three binary classifications as defined

by Specia et al. [108]: MT-tag, MT-gap, and SRC-tag.

Let oT ∈ {0, 1}|y| denote the MT-tag which represents whether an MT token

would be edited, i.e., oTi = 1 if yi is deletion or replacement in a TER edit

sequence, e.g., “bier” in Figure 4.2. The MT-tag classification identifies whether

an MT token should be edited based on the bad probabilities:

pTi := p(oTi = 1|x,y) = σ(w⊤
T h

(lT)
yi

), (4.1)

wherewT ∈ RD is a learned parameter for MT-tag prediction, 1 ≤ lT ≤ L denotes

the layer used for MT-tag prediction, and σ : R → [0, 1] is a sigmoid function.

1We employ XLM-R, a multilingual encoder; thus, the vocabulary is shared between the source

and target languages.
2In XLM-R, the class token is represented by “<s>”, and two sentences are joined by “</s>”

symbols, like “<s> a b c </s> </s> A B </s>”. We regard the first symbol as the end-of-

sentence symbol of the first sentence, i.e., x|x|, and the second one as the separator token.

54

Note that h
(l)
yi is a row of H(l), which is the hidden vector corresponding to the

token yi in the l-th layer.

Similarly, MT-gap classification predicts whether some words need to be in-

serted at a token boundary in the MT sentence based on the insertion probabili-

ties:

pGi := p(oGi = 1|x,y) = σ(w⊤
G[h

(lG)
yi−1

;h(lG)
yi

]), (4.2)

where oG ∈ {0, 1}|y| represents insertion in a TER edit sequence, e.g., the token

boundary between “bier” and “</s>” in Figure 4.2. wG ∈ R2D is a learned

parameter for MT-gap prediction, 1 ≤ lG ≤ L denotes the layer used for MT-gap

prediction, and [·; ·] denotes the concatenation of two vectors. Note that y0 is the

separator token between the source and MT sentences.

Likewise, the SRC-tag oS ∈ {0, 1}|x| is constructed from a source-target word

alignment as xi = 1 if xi is not aligned to any target token like “Jeden” and

“Abend” in Figure 4.2. In this paper, we used awesome-align [30] to obtain

the gold alignment. The SRC-tag classification predicts whether a source token

is untranslated or not using the probabilities:

pSi := p(oSi = 1|x,y) = σ(w⊤
Sh

(lS)
xi

), (4.3)

where wS ∈ RD is a learned parameter for SRC-tag prediction and 1 ≤ lS ≤ L

denotes the layer used for SRC-tag prediction.

During inference, each tag oT , oG, and oS are respectively predicted to be

“BAD” when each probability pi is greater than 0.5, and “OK” otherwise.

Reordering Our detector also predicts reordering by generating the reordered

sequence ȳ = (ȳ1, . . . , ȳ|ȳ|) using the pointer network [114] at the top of the

decoder. It autoregressively selects the next token for each timestep from the

MT sentence according to the probability pR, as follows:

ȳ∗ = argmax
(ȳ1,...,ȳ|ȳ|)

|y|∏
i=1

pR(ȳi|x,y, ȳ<i), (4.4)

pR(ȳi = yj|x,y, ȳ<i) ∝ exp(k⊤
yj
qȳi), (4.5)

kyj = Wkhyj , (4.6)

qȳi = WqDecoder(ȳ<i,H
(L)), (4.7)

55

where Decoder : V∗ × R|x◦y|×D → RD is a Transformer decoder that computes

a hidden vector of the i-th step qȳi from the given encoder hidden vectors and

the prefix of reordered sequence. Wq ∈ RD×D and Wk ∈ RD×D are the learned

parameters, and ȳ∗ is the reordered sequence predicted by the model. Note that

the hidden vectors H (L) are computed using the same encoder as used in tagging.

During inference, the tokens of the MT sentence and their corresponding MT-

tag and MT-gap are reordered according to the order of ȳ∗. Note that the MT-

gap tags are reordered in accordance with the order of their right-side tokens of

boundaries. For example, in Figure 4.2, the MT-gap model predicts that some

words need to be inserted at the token boundary between “bier” and “</s>”, and

the boundary position is attached to the left of “</s>” after reordering.

Objective function We trained the MT-tag, MT-gap, and SRC-tag classifica-

tions by minimizing their objective functions, LT , LG, and LS, computed by the

binary cross-entropy, as follows:

−
∑
i

(oi log pi + (1− oi) log(1− pi)) , (4.8)

where oi ∈ {0, 1} is the ground truth label of the probability pi. The model

is also trained to generate reordered MT sentences by minimizing the following

cross-entropy:

LR = −
|y|∑
i=1

log pR(ȳi|x,y, ȳ<i), (4.9)

where the gold reordered sequence is created from the TER shift alignment.

Finally, our detector model is trained by minimizing the following objective L
through multi-task learning:

L = LT + LG + LS + LR. (4.10)

Note that all loss functions in L are computed during a single forward pass since

the encoder parameters are shared between all tagging and reordering predictions.

4.3.3 Corrector

The corrector model (Figure 4.3) corrects the reordered MT sentence by gen-

erating tokens corresponding to the erroneous spans identified by MT-tag and

56

Figure 4.3: Token generation within each tagged span by our corrector model.

57

MT-gap predictions. The corrector represents edit operations by predicting zero

words in a bad span for deletion, one or more words in a bad span for replace-

ment, and one or more words in an insertion span for insertion, as shown on the

output of the decoder in Figure 4.3.

First, the tags predicted by the detector model are used to annotate the source

sentence and its corresponding reordered MT output as span tags. In the source

sentence, <bad> and </bad> tags are inserted to the beginning and end of un-

translated spans, respectively, using the SRC-tag oS, as shown on the left side of

the input of the XLM-R encoder in Figure 4.3. Similarly, <bad> and </bad> tags

are inserted into reordered MT output where identified by the MT-tag tagging

oT in addition to the <ins> and </ins> tags to the positions that need to be

inserted words, as shown on the right side of the input of the XLM-R encoder in

Figure 4.3.

Next, the annotated source and reordered MT sentences are concatenated with

the separator token and fed into the encoder. We initialize the corrector encoder

with XLM-R as well as the detector model in order to preserve consistency with

the subword unit tags used in the detector. Then, the decoder generates tokens

for all tagged spans in the left-to-right manner until the number of corrected spans

satisfies the number of bad and insertion spans in the annotated reordered MT

sentence. Finally, our detector–corrector outputs a corrected target sentence by

replacing each tagged span of the MT sentence with a token sequence predicted

by the corrector decoder.

Our corrector can be regarded as a translation suggestion (TS) model [126, 127],

in which better alternative translations are suggested phrase-by-phrase by re-

placing incorrect translation spans. Our model differs from TS models in that

untranslated spans in source sentences are explicitly identified and incorrect trans-

lations and/or insertions are clearly differentiated by the bad and insertion tags,

respectively. Furthermore, MT sentences are reordered and multiple spans are

corrected in our model, which are out of the scope of the TS task3.

3The TS task assumes only a single incorrect span for each sentence and does not treat

reordering.

58

4.3.4 Data Augmentation

Data Augmentation for Detector

Since the detector–corrector is trained to correct only erroneous spans identified

by the detector, improving the tagging accuracy will directly lead to improved

translation quality. For this purpose, we create the synthetic data from the

reference translations of the training data and let the detector learn the editing

operations of deletion, replacement, and insertion. We randomly delete tokens

with a probability of 5%, insert tokens with a probability of 10%, and replace

tokens with a probability of 30%. We employ XLM-R to fill the masked tokens

for the replacement and insertion decision.

Data Augmentation for Corrector

The training data for the corrector model is created from the tokens for each

span identified as an error using the oracle annotated source and MT sentences.

However, the detector might make wrong decision during inference, which might

cause a large discrepancy between the training and inference for the corrector.

In addition, the performance of the corrector might suffer from the limited cov-

erage of the vocabulary in the training data when compared with a conventional

sequence-to-sequence MT model. For these reasons, we employ two simple data

augmentation methods for the corrector model without additional computational

cost: MT training and PE training. These two augmentation methods are or-

thogonal with each other; thus, they can be combined.

MT Training In MT training, the corrector model is trained to predict the PE

sentence from only the source sentence without the corresponding MT sentence.

To preserve the model consistency, an MT output is treated as an empty text by

augmenting with “<ins> </ins>” so that the model learns to insert the whole

PE sentence from the empty MT sentence. The encoder input sequence of MT

training is formulated as follows:

<bad> x </bad> ◦ <ins> </ins>, (4.11)

and the corrector is trained to generate the post-edited sentence with the inser-

tion, i.e., <ins> yPE </ins>, where yPE ∈ V∗ is the post-edited sentence.

59

PE Training PE training differs from MT training in that the MT sentences

are given. The corrector model is trained to generate the whole PE sentence

from the given source and MT sentences. This is the same setting as the stan-

dard sequence-to-sequence APE model training, except that the MT sentence is

explicitly annotated as “<bad>”. To maintain model consistency, the whole MT

sentence is treated as a bad span to be corrected:

x ◦ <bad> y </bad>, (4.12)

and the model learns to replace the MT sentence with the PE sentence, i.e., the

model is trained to generate <bad> yPE </bad>.

4.3.5 Lightweight Iterative Refinement

The detector model detects each erroneous span in a non-autoregressive manner;

thus, a single inference may not generate sufficiently correct PE sentences that

are consistent across the entire sentence. To address such issues, some prior

non-autoregressive models [43, 59, 89] decode sequences by iteratively feeding

the output into the model. We follow the practice by iteratively refining an MT

sentence by treating the post-edited sentence corrected by our model as an MT

output, i.e., the corrected sentence in the k − 1-th iteration is used as the input

of the detector model in the k-th iteration. However, the iterative refinement

approach demands huge computation in particular for our approach, in which an

end-to-end inference predicts three edit operations in the following order: tagging,

reordering, and correcting.

Tagging can be predicted with only a single forward pass of the detector en-

coder, and correcting can be finished very quickly since it generates only a few

words for each erroneous span. In contrast, reordering is relatively slower than

the other operations because the decoder runs for the length of the MT sentence

in an auto-regressive manner.

In order to overcome such bottleneck, we propose lightweight refinement, in

which inference is carried out only by predicting tags and generating correct

tokens without reordering after the second time in the iterative refinement.

60

4.4 Experiments

4.4.1 Setup

We compared the translation quality of our detector–corrector with that of the

sequence-to-sequence (seq2seq) APEmodel and Levenshtein Transformer (LevT) [43].

We evaluated TER (↓T), BLEU (↑B), and COMET (↑C) using sacreBLEU [94]

and COMET4 [98, 99] in the WMT’20 English–German (En–De) and English–

Chinese (En–Zh) automatic post-editing tasks.

Datasets Training data came from WMT’20 APE tasks, which were created

from wikipedia articles that contain 7,000 sentences, and we applied upsampling

by 20 times to them. In addition to the provided data, we created additional

training data that consists of ⟨source sentence, MT sentence, PE sentence⟩ triplets
using a parallel corpus following the idea from Negri et al. [86]. In particular, we

randomly sampled 2 million sentences from the training data of the WMT’19 En–

De and En–Zh translation tasks and translated them with MT models, which were

used to generate the data for the APE tasks [37]. As described in Section 4.3.4,

the training data for the detector and corrector were further augmented. The

data statistics are shown in the appendix (Table A.2).

Models The seq2seq APE model, LevT, and our detector–corrector comprise

the XLM-R large encoder and Transformer decoder. The seq2seq, LevT, and

corrector models were trained in 60,000 steps, and the detector model was trained

in 40,000 steps. All models were optimized by Adam optimizer (β1 = 0.9, β2 =

0.98, ϵ = 10−8). The learning rate was linearly increased up to 4,000 steps and

then decayed proportional to the inverse square root of the training steps. The

beam size was set to 5, and the length penalty was set to α = 1.0. We saved

checkpoints of all models for every 1,000 steps and took an average of the last

5 checkpoints. The LevT edited the MT sentences 5 times iteratively, and the

detector–corrector edited 4 times, i.e., k = 4, by tuning on the development

set. For tagging, we used the intermediate representations of the 20th layer, i.e.,

4https://huggingface.co/Unbabel/wmt22-comet-da

61

https://huggingface.co/Unbabel/wmt22-comet-da

Dataset Model ↓T ↑B ↑C

En–De do nothing (MT) 31.3 50.2 77.1

seq2seq 28.4 53.3 77.7

LevT [43] 31.9 49.4 75.6

detector–corrector 27.7† 53.6 79.6†

En–Zh do nothing (MT) 58.3 24.3 86.3

seq2seq 56.7 26.0 89.4†

LevT [43] 59.3 23.6 86.0

detector–corrector 56.0 26.1 89.2

Table 4.1: Comparison of post-editing performance in the WMT’20 En–De and

En–Zh APE tasks. Do nothing (MT) does not edit MT sentences and

the scores are calculated between MT and PE sentences. The best

scores of each dataset are emphasized by the bold font. The symbol †
indicates that the score difference is statistically significant (p < 0.05)

between seq2seq and detector–corrector.

lT = lG = lS = 20 in En–De, and the 24th layer, i.e., lT = lG = lS = 24 in En–Zh.

The details of each model are shown in the appendix (Table A.1).

4.4.2 Results

Our main results are shown in Table 4.1. Our detector–corrector model im-

proved TER and BLEU from both LevT and seq2seq models. Especially in TER,

detector–corrector outperforms the black-box seq2seq model by 0.7 % in En–De

and En–Zh while providing the editing process.

Table 4.2 shows the ablation study of our proposed methods. In the table,

“light-iter” denotes the lightweight iterative refinement, and “DAug” denotes

data augmentation. The results show that both lightweight iterative refinement

and data augmentation for the detector and corrector are effective, which improve

the TER scores by 3.5 % in En–De and 5.2 % in En–Zh compared to the vanilla

detector–corrector.

Our data augmentation for the detector can be used for other baseline models,

62

En–De En–Zh

Model ↓T ↑B ↑C ↓T ↑B ↑C

ours 27.7† 53.6† 79.6† 56.0† 26.1† 89.2†

- light-iter 28.9 52.1 77.7 56.6 25.5 88.0

-- MT training 29.3 51.5 77.7 56.6 25.4 88.3

-- PE training 29.2 51.8 77.7 56.6 25.2 88.3

-- DAug for corrector 30.2 50.1 77.6 57.0 24.9 88.6

--- DAug for detector 31.2 49.0 77.1 61.2 22.7 86.7

Table 4.2: Ablation study of our methods in the WMT’20 En–De and En–Zh APE

tasks. The symbol † indicates that the score difference is statistically

significant (p < 0.05) between “ours” and “- light-iter”.

↓T ↑B ↑C

Dataset Model w/o w w/o w w/o w

En–De seq2seq 28.4 28.4 53.3 52.9 77.7 78.0

LevT 31.9 32.1 49.4 49.0 75.6 75.8

En–Zh seq2seq 56.7 57.0 26.0 26.0 89.4 89.5

LevT 59.3 59.9 23.6 23.4 86.0 86.1

Table 4.3: Translation quality of baseline models trained using our data augmen-

tation for the detector.

seq2seq and LevT5. To confirm that the data augmentation is effective for our

model, we also trained the baseline models using the augmented data. Table 4.3

shows that the translation quality of baseline models trained on the augmented

data. Unlike the “DAug for detector” row in Table 4.2, there is no improvement

in all metrics of more than 1 % even if the augmented data is used. This is

because the data augmentation for the detector is designed to enhance word-level

quality estimation.

To summarize, we confirmed that our model outperformed LevT and a black-

5The data augmentation for corrector cannot be applied to other models because they have

been already trained to generate the whole target sentence.

63

Tagging Dataset DAug MCC F1-OK F1-BAD

Target En–De w/o 0.468 0.935 0.523

w/ 0.475 0.937 0.526

En–Zh w/o 0.505 0.893 0.602

w/ 0.537 0.902 0.619

Source En–De w/o 0.782 0.985 0.794

w/ 0.791 0.985 0.805

En–Zh w/o 0.641 0.943 0.695

w/ 0.676 0.948 0.724

Table 4.4: Word-level quality estimation performance of our detector model.

box seq2seq model, and our approaches mitigate the translation quality degra-

dation issue caused by predicting tags in a non-autoregressive manner and being

trained from only a vocabulary limited to correction words.

4.5 Discussion

4.5.1 Accuracy of the Detector

We evaluated the tagging performance of our detector model and investigated

the effectiveness of data augmentation for the detector. Since tags are predicted

on subword units, we assigned a BAD tag to a word if one of the subwords in

the word was assigned a BAD tag. The gold tags are calculated from the TER

edit sequence after applying the shift operations in the same way as described in

Section 4.3.2.

Table 4.4 shows the results of the word-level quality estimation. In the table,

“MCC” denotes Matthews correlation coefficient [80]. “Target” and “Source” are

the target-side tagging, i.e., MT-tag and MT-gap without distinction, and the

source-side tagging, i.e., SRC-tag, respectively. We only compared our models

with and without data augmentation. This is because in the WMT’20 word-level

QE task, the target-side tags are produced from TER edit operations without shift

64

Dataset Model ↓T ↑B ↑C

En–De do nothing (MT) 31.3 50.2 77.1

detector–corrector 27.7 53.6 79.6

w/ oracle tags 13.8 74.6 82.9

(-13.9) (+21.0) (+3.3)

En–Zh do nothing (MT) 58.3 24.3 86.3

detector–corrector 56.0 26.1 89.2

w/ oracle tags 33.2 46.6 90.1

(-22.8) (+20.5) (+0.9)

Table 4.5: Correction performance in the WMT’20 En–De and En–Zh APE tasks

when the erroneous spans are given manually.

operations, and the source-side tags are produced by fast align6 [31], while in

our model the target-side tags include the shift operation and the source-side tags

are produced by awesome-align. The results show that the data augmentation

for the detector improved the all MCC scores, which has the direct impact to the

improvements measured by BLEU and TER for our detector–corrector as shown

in Table 4.2.

We also observed that the F1-BAD scores of the target-side tagging are not high

in both language pairs. In particular, the accuracy of erroneous span detection

is 0.526 and 0.619 in En–De and En–Zh, respectively. This low accuracy could

be the reason why the correction performance is only improved by 0.7% TER

compared with the seq2seq model. Because the corrector model only corrects

the detected spans, the F1-BAD scores are closely linked to the correction perfor-

mance of our detector–corrector. The problem of the error detection performance

is one of the remaining challenges in this study.

4.5.2 Correction Performance of Oracle Tagged Sentences

We evaluated the performance of the corrector model for oracle tags, assuming a

setting in which error spans are given manually. Oracle tags were given from the

6SimAlign [52] is employed since the WMT’21 word-level QE task.

65

En–De En–Zh

Reordering ↓T ↑B ↑C ↓T ↑B ↑C

w/ 28.9 52.1 77.7 56.6 25.5 88.0

w/o 28.9 52.4 78.2 57.4 24.9 88.1

Table 4.6: Translation quality of detector–corrector with and without reordering.

Note that we evaluated translation quality on the results of the first

iteration in iterative refinement.

En–De En–Zh

Reordering # of edits TERMT # of edits TERMT

w/ 2,506 17.6 5,603 31.6

w/o 2,614 18.5 7,410 38.0

Table 4.7: The total number of spans tagged by the detector and TER scores

that measured the amount of editing from the MT sentence to the

post-edited sentence corrected by the corrector in the WMT’20 APE

En–De and En–Zh tasks.

TER alignment between the MT sentence and the reference translation as well

as the supervision in the training data.

In Table 4.5, “w/ oracle tags” shows the result of oracle correction in the

WMT’20 En–De and En–Zh APE tasks. The results showed that when given the

ideal tags, the correction performance significantly improved by -13.9 and -22.8 %

TER, +21.0 and +20.5 % BLEU, and +3.3 and +0.9 % COMET in En–De and

En–Zh, respectively. This means that the corrector model has been successfully

trained, and a further improvement in post-editing performance can be achieved

by improving the accuracy of the detector model.

4.5.3 Ablation Study of Reordering

We also investigated the effectiveness of using the reordering operation. The

training data for the model without reordering was created from the edit align-

66

1 2 3 4 5
k

29.0

29.5

30.0

30.5

31.0

TE
R

Refinement
full-iter
light-iter
baseline (MT)

(a) Comparison of TER scores for each

iteration.

1 2 3 4 5
k

50.5

51.0

51.5

52.0

52.5

53.0

BL
EU

Refinement
full-iter
light-iter
baseline (MT)

(b) Comparison of BLEU scores for

each iteration.

Figure 4.4: Comparison of various iterations in iterative refinement. The scores

were evaluated on the development set in the WMT’20 En–De APE

task.

ments based on the edit distance. We compared the translation quality in the

first iteration. Table 4.6 shows the experimental results of detector–corrector

with and without reordering. In TER, which indicates the number of edits to the

reference translation, detector–corrector without reordering resulted in the same

score as detector–corrector with reordering in En–De and degraded in En–Zh.

To investigate this gap in TER scores, we counted the total number of spans

tagged by the detector and evaluated the TER score that measured the num-

ber of edits from the MT sentence to the post-edited sentence corrected by our

detector–corrector (TERMT). Table 4.7 shows that the number of edited spans

was decreased by reordering, especially in En–Zh. In addition, the reordering op-

eration reduces the TERMT by 0.9% and 6.4% in En–De and En–Zh, respectively.

This means that the number of edits from the MT sentence and the number of

edits to the reference translation decreases by using the reordering operation;

hence, the editing process becomes easier for humans to interpret.

In summary, we confirmed that reordering is effective in reducing the number

of edits, as shown by the TER scores in Table 4.6 and Table 4.7.

67

1 2 3 4 5
k

1.4
1.6
1.8
2.0
2.2
2.4

of

 ta
gg

ed
 sp

an
s Refinement

light-iter
full-iter

Figure 4.5: Number of tagged spans per sentence in the WMT’20 En–De APE

task.

4.5.4 Effectiveness of Iterative Refinement

To verify the effectiveness of iterative refinement, we evaluated BLEU and TER

scores in the WMT’20 En–De APE task at various numbers of inference itera-

tions k ∈ {1, 2, 3, 4, 5} on the development set. We also compared the difference

between including (“full-iter”) and not including (“light-iter”) reordering when

k ≥ 2. Figure 4.4(a) and 4.4(b) shows that the first iterative refinement (k = 2)

significantly improved the TER and BLEU scores from the first inference (k = 1).

From k = 2 to 4, we see a slight improvement in both TER and BLEU. Compar-

ing the iterative refinement methods, light-iter was slightly more accurate than

full-iter, but the difference is lower than 0.1 % in both metrics.

Figure 4.5 shows the average number of bad- and insertion-tagged spans of

MT sentences, which was corrected by the corrector. The figure shows that

the number of corrected spans decreases in each iteration, especially when it

significantly decreases in the second refinement, i.e., k = 2, which corresponds to

the decrease of TER and BLEU in Figure 4.5.

We also measured the cumulative time for each inference step. Figure 4.6 shows

the total inference time in seconds for full-iter and light-iter when processing 1,000

sentences. In the figure, “k-D” and “k-C” denote the k-th inference step of the

detector model and corrector model, respectively. It can be seen that light-iter

68

1-D 1-C 2-D 2-C 3-D 3-C 4-D 4-C 5-D 5-C
Inference step

10

20

30

40

50

60

Cu
m

ul
at

iv
e

se
co

nd
s Refinement

light-iter
full-iter

Figure 4.6: Cumulative time taken for each inference step. “k-D” and “k-C”

denote the k-th inference step of the detector model and corrector

model, respectively.

infers faster than full-iter because light-iter does not predict reordering, which is

time-consuming, in the detector inference at each iteration in k ≥ 2.

From the results, our detector–corrector is further improved by using iterative

refinement at least twice, and the inference speed is reduced by two-thirds using

our lightweight iterative refinement without losing qualities.

4.5.5 Case Study: Editing Process

We analyzed examples of the editing processes of detector–corrector. Table 4.8

shows an example of the editing process of an MT sentence. In the table, the

“Annotated source” line is the source sentences annotated with SRC-tag by the

detector, and the “Annotated MT” line is the reordered MT sentences annotated

with MT-tag and MT-gap by the detector. The “Correction” and “Output” lines

are the correction sequence generated by the corrector and the outputs of the

detector–corrector, respectively. The table shows that our model detects and

corrects the erroneous spans iteratively, and outputs the sentence with 17.7 TER

in the second iteration. Note that the detector did not detect any erroneous

spans in this example when k ≥ 3. The table also shows that our model swaps

two spans, “89 岁” and “佐治亚州 李”, which makes the word order align with

69

Source Georgia Lee , 89 , Australian jazz and blues singer .

Reference 乔治亚 · 李 (Georgia Lee) , 89 岁 , 澳大利亚 爵士 和 蓝调

歌手 。

MT (TER=64.7) 89 岁 的 佐治亚州 李 , 澳大利亚 爵士乐 和 布鲁斯 歌手 .

Reordered MT 的 佐治亚州 李 89 岁 , 澳大利亚 爵士乐 和 布鲁斯 歌手 .

k = 1

Annotated source Georgia Lee <bad>, </bad> 89 , Australian jazz and blues

singer .

Annotated MT <bad>的</bad> 佐治亚 <bad>州</bad> 李 <ins></ins> 89

岁 , 澳大利亚 爵士乐 和 <bad> 布鲁斯</bad> 歌手

<bad>.</bad>

Correction <bad></bad> <bad> · </bad> <ins>,</ins>

<bad>蓝调</bad> <bad>。</bad>

Output (TER=35.3) 佐治亚 · 李 , 89 岁 , 澳大利亚 爵士乐 和 蓝调 歌手 。

k = 2

Annotated source Georgia Lee , 89 , Australian jazz and blues singer .

Annotated MT 佐治亚 · 李 <ins></ins> , 89 岁 , 澳大利亚 爵士乐 和 蓝

调 歌手 。

Correction <ins> (George Lee) </ins>

Output (TER=17.7) 佐治亚 · 李 (George Lee) , 89 岁 , 澳大利亚 爵士乐 和 蓝

调 歌手 。

Table 4.8: An example of the editing process.

the source sentence and reference translation. In this case, the person name

“Georgia” is mistranslated to “George”, but the output of k = 2 has a lower

TER score (TER=17.7) than the MT output (TER=64.7); thus, the editing cost

was reduced. In the future, we need to improve the detection performance to

detect “George” detect as a mistranslation.

70

4.6 Limitations

Our study focuses on correcting translation errors, and thus our model cannot

detect and correct non-factual information when including them in a source sen-

tence. In addition, our model only corrects the erroneous spans detected by the

detector; thus, spans that the detector fails to detect may remain uncorrected.

In addition, in our method, multiple editing processes can be considered for

the same translation, but we trained models from a single editing process. It may

improve the correction performance by training models from multiple editing

processes.

This study only focuses on edit operations based on TER calculation: dele-

tion, insertion, replacement, and word reordering. However, as mentioned in

Section 4.3.1, there are other edit operations, e.g., lexical substitution by match-

ing to the dictionary and n-gram deduplication. In addition, if the model-specific

errors are classified, it would be possible to train a detector with their error type

tags.

4.7 Conclusion

We proposed “detector–corrector”, the edit-based automatic post-editing (APE)

model, which explains which words are wrong in MT sentences and how to correct

them for human post-editors. Experiments on the WMT’20 English–German and

English–Chinese APE tasks showed that our detector–corrector model provides

the editing process and outperformed the previous edit-based model, Levenshtein

Transformer, and a black-box sequence-to-sequence APE model in TER.

In the future, we will further investigate what is needed to reduce the workload

of human post-editors. In addition, the corrector model can generate multiple

correction candidates. Specifically, the use of diverse beam search and sampling-

based decoding methods could be helpful to provide diverse translation sugges-

tions. We would like to confirm that whether the corrector model can be utilized

for the translation suggestion task in future work.

71

Chapter 5

Conclusion

5.1 Summary

This dissertation improved the efficiency of the translation process from both

translation and post-editing aspects.

For domain adaptation, our subset kNN-MT improves the decoding speed of

kNN-MT by two methods: (1) retrieving neighbor tokens from only the neighbor

sentences of the input sentence, not from all sentences, and (2) efficient distance

computation technique that is suitable for subset neighbor search using a look-up

table. Our subset kNN-MT achieved a speed-up of up to 134.2 times and an

improvement in BLEU of up to 1.6 compared with kNN-MT in the WMT’19

De–En translation task, the domain adaptation tasks in De–En and En–Ja, and

the Flores101 multilingual translation task.

In addition, we proposed “detector–corrector”, the edit-based automatic post-

editing (APE) model, which explains which words are wrong in MT sentences

and how to correct them for human post-editors. Experiments on the WMT’20

English-to-German and English-to-Chinese APE tasks showed that our detector–

corrector model provides the editing process and outperforming a black-box sequence-

to-sequence APE model and an edit-based model, Levenshtein Transformer.

To summarize, we tackled problems from translation to post-editing that are

assumed in the real world translation processes, and confirmed that our sub-

set kNN-MT is effective for domain adaptation and our detector–corrector can

present an editing process without degrading the translation quality for post-

editing.

72

5.2 Limitations and Future Work

In this section, we discuss the limitations and future work of this dissertation.

We hope to address these issues in the future.

5.2.1 Detection and Correction Performance of

Detector–Corrector

The performance of error detection and error correction of detector–corrector is

still not enough. Especially, the MCC and F1-BAD scores in the target side

tagging are about 50% shown in Table 4.4; the improvements of these scores are

one of the challenges in future work. Table 4.4 also shows that data augmentation

improves tagging accuracy, so we would like to investigate more effective methods

of pseudo-data creation.

In addition, the error correction might be improved by other approaches. As

above-mentioned, the performance of erroneous span detection is not enough;

thus, the corrector is susceptible to the detection errors because detector–corrector

is a cascade model and the detection errors directly propagate to the corrector.

To address the issue and make the model more robust, we will attempt to use

an end-to-end detector–corrector model, where the detector and corrector are

connected as a single model in future work. In that model, the erroneous span

detection is predicted as a sub-task, and the predicted tags are regarded as latent

variables. This approach might not only mitigate the error propagation from the

detector to the corrector but also it allows to marginalize multiple edit paths from

the MT output sentences to the post-edited sentences.

5.2.2 Bridging Subset kNN-MT and Detector–Corrector

Integrating the two proposed models, subset kNN-MT and detector–corrector,

is one of the future directions. Dinh et al. [29] proposed kNN-QE, which uses

kNN-MT to estimate the translation quality. In particular, the approaches that

use kNN retrieval may potentially improve the performance of error detection,

especially in the out-of-domain without additional training. In addition, kNN-

based error detection can work with only parallel corpora; in other words, triplet

73

data, i.e., source, MT output, and PE sentences, is not necessary. Thus, it can

use existing resources effectively.

Another aspect of the kNN-based error detection is an improvement of inter-

pretability. Users can see translation examples to understand the reason why

the spans are detected as errors. For instance, kNN-based error detection and

correction using translation memory will be an improvement of this dissertation.

As with the kNN-MT, the issue of computational complexity will be a challenge

in the kNN-based error detection and correction; thus, we hope that our subset

retrieval reduces the computational cost and makes it more efficient.

5.2.3 Introduction Our Methods to Actual Translation

Scene

One of the future work is to incorporate both subset kNN-MT and detector–

corrector into the actual translation process and evaluate how much the workload

of human translators is reduced.

5.2.4 Applying Our Methods to Large Language Models

Both the subset kNN-MT and the detector–corrector are designed for the encoder-

decoder model. Recently, decoder-only models like large language model (LLM)

have been successful in various NLP tasks; thus, we would like to apply our

methods to such models. In subset kNN-MT, it is necessary to create a sentence

datastore from monolingual data. Since the input and output sentences are not

explicitly separated in the language model, what we should use for the key vector

of the sentence datastore is not trivial. For example, the user prompt could be

the query and key vector. However, in a QA task, even if neighboring questions

of the given input question can be retrieved, the answer or its related facts are

not retrieved.

In detector–corrector, it is necessary to represent tagging and reordering using

generation models. Tagging needs constraints to generate the tag sequence which

has the same length as the input sentence, and reordering needs constraints to

generate the reordered sentence which contains only the input words. These

constraints could be realized by using constrained decoding [49, 13].

74

5.2.5 Extension to Multimodal Models

The proposed method could be extended to use modalities other than text. Sub-

set kNN-MT can be applied to the speech-to-text translation, in which input

sentences are given by speech, by building a sentence datastore with the speech

vector [102] as the key.

5.2.6 Human-Computer Interaction

Detector–corrector can be combined with interfaces other than keyboard input to

reduce the human workload further. For example, a touchscreen can be used for

reordering and deletion [47]. By presenting edit candidates with an interface that

is suitable for each edit operation, post-editing can be performed more intuitively.

5.2.7 Interpretable Neural Machine Translation

While there are other aspects of the interpretability of NMT, this dissertation

focused only on generation based on translation examples and providing the post-

editing processes. As long as users of machine translation and reader of translated

documents are human, we still need to improve the interpretability of machine

translation. There are other problems in the field; for example, the influence of

training data and input tokens on the generation [111, 116], understanding of the

role of each parameter and layer [27, 115], combination of previous interpretable

approaches with neural models [60, 61], employing more interpretable model

architectures [48].

In the studies of this dissertation, subset kNN-MT can provide which tokens in

the datastore are useful for generating each target token by using interpretable

kNN method; however, it is hard to understand what the key and query vectors

represent in the feature space. To disentagle the high-dimensional contextualized

embeddings, independent component analysis (ICA) might be helpful [123]. ICA

has a PCA transformation internally; hence, we can aim for both dimensional-

ity reduction to reduce the computational complexity and improvement of the

interpretability of the vector representations.

In the study of detector–corrector, the detector model learned the error de-

tection capabilities by being trained to predict the tags using the middle layer

75

of the XLM-R encoder. We empirically observed that it is not always better to

predict in the last layer, but better to tune which layer should be used. This

phenomenon has been also observed in the other tasks like cross-lingual word

alignment [52, 30, 119]. If we can understand what information each layer of

the pretrained model captures, it would be possible to design high performance

models.

76

Acknowledgements

はじめに，本論文の執筆にあたり，奈良先端科学技術大学院大学 (NAIST) 教授
渡辺太郎先生に深く感謝いたします．渡辺先生とお会いしたのは，私が初めて参
加した学会である，2019年の言語処理学会年次大会のことでした．当時まだ学部
生だった私の研究発表を最前列で聞いていただき，大変参考になる助言や質問を
いただきました．学会中のお昼休みにお話していただいたことも鮮明に覚えてい
ます．実は私が博士進学を心に決めたのはそのときのことでした．その後，博士
の進学先を考え始めたころにちょうどNAISTに移られた旨を耳にし，迷うこと
なく渡辺研への進学を志願しました．先生から学んだことはここに書ききれない
くらい多く，研究についてはもちろん，研究以外のことまで含めて大変お世話に
なりました．先生のもとで機械翻訳の研究に取り組めた経験は私の宝です．
同研究室准教授 上垣外英剛先生は着任されてすぐに気さくにお話していただ

き，何度も研究相談に乗っていただきました．いつもどんなに小さなアイデアで
も上垣外先生に相談するとどんどん議論が進み，研究のモチベーションも高まり
ました．助教 大内啓樹先生はユニークな研究テーマの発想や惹きつけられるプ
レゼンテーションなど，研究活動において大切なことを示していただきました．
また，同じ部屋で日々の雑談や挨拶を通して，肩の力を抜いて作業することがで
きました．
NAIST教授 中村哲先生には，お忙しい中公聴会にご参加いただきました．中

村先生にはACL2023の開催地トロントにてお話していただき，機械翻訳におい
て直積量子化の技術を活用していることに興味を持っていただいたことを覚えて
います．
NAIST教授 Sakti先生には，着任されてすぐのご多忙な時期にもかかわらず，

快く副査を引き受けていただき，大変感謝しております．
研究室秘書の北川裕子さんには，入学してから 3年半，多岐にわたる事務でお

世話になりました．変則的な要望に対しても明るく迅速に対応していただいたこ
とに感謝いたします．

77

研究室の同期には他愛ない話から進路や研究の相談までしていただき，いつも
元気をもらいました．先輩・後輩は皆さん非常に優秀で，また多様性に満ちてお
り，刺激的な研究生活を送ることができました．博士生活を支えていただいた皆
さんに感謝いたします．
大学外では，情報通信研究機構 (NICT) 翻訳研がもう一つの研究生活の場でし

た．副査も引き受けていただきました内山将夫さんには，NAISTに来る前の修士
インターンのときからお世話になり，いつも一つ先を見据えた助言をいただきま
した．内山将夫さん，田中英輝さん，隅田英一郎さんには，NICTにお誘いいた
だきました．業務面のみならず，潤沢な計算機資源や給与の面も含め，何一つ不
自由なくのびのびと研究できる環境を作っていただいたことに感謝いたします．
翻訳研のアシスタントの皆さまには日々の研究生活の支援から海外出張のための
手続きなど，大変お世話になりました．翻訳研の研究員の皆さまには進捗報告な
どを通して研究の議論をしていただきました．NICT翻訳研に所属しながら博士
生活を送れたことに感謝いたします．
東京大学講師松井勇佑先生には近傍探索やベクトル量子化について，深く相談

に乗っていただきました．この博士課程で奥深い近傍探索の世界を知れたこと，
機械翻訳×近傍探索の研究でACLに論文が採択されたこと，近傍探索を新たな
武器にして活動の幅を広げられたことなど，松井先生との出会いはこの博士課程
において重要のものとなりました．先生とご一緒に研究できたことに感謝いたし
ます．
NTTコミュニケーション科学基礎研究所 (CS研) 永田昌明さんには，博士 1年

のときにインターンに受け入れていただき，その後長期に渡り共同研究していた
だきました．永田さんの翻訳・機械翻訳に対する考え方は，長年第一線でこの分
野に取り組まれてきたからこそのエッセンスが詰まっているように感じました．
ご一緒に共同研究できたことに感謝いたします．
修士課程においてご指導いただきました，愛媛大学 教授 二宮崇先生，助教 梶

原智之先生，同志社大学 准教授 田村晃裕先生に感謝いたします．二宮先生とは，
大学に入学してすぐに LISPの話で打ち解けたのを覚えています．自然言語処理
に足を踏み入れるきっかけになったのは二宮先生でした．梶原先生には赴任され
てすぐのお忙しい中，研究だけでなく博士進学における不安などの相談にも乗っ
ていただきました．田村先生にはいつも気さくに話しかけていただき，研究活動
の楽しさを学びました．また，博士課程でもお世話になったNICTに修士でイン
ターンに行かせていただきましたが，これは田村先生にご提案いただいたことで

78

実現し，大変貴重な経験を積むことができました．二宮研の先生方やスタッフの
皆さま，当時の同期や先輩・後輩の皆さんに感謝いたします．
最後に，ここまで支えていただいた家族と友達に感謝いたします．

79

Bibliography

[1] R. Aharoni and Y. Goldberg. Unsupervised domain clusters in pretrained

language models. In D. Jurafsky, J. Chai, N. Schluter, and J. Tetreault,

editors, Proceedings of the 58th Annual Meeting of the Association for Com-

putational Linguistics, pages 7747–7763, Online, July 2020. Association

for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.692. URL

https://aclanthology.org/2020.acl-main.692.

[2] F. André, A.-M. Kermarrec, and N. Le Scouarnec. Cache locality is not

enough: High-performance nearest neighbor search with product quantiza-

tion fast scan. Proc. VLDB Endow., 9(4):288â299, dec 2015. ISSN 2150-

8097. doi: 10.14778/2856318.2856324. URL https://doi.org/10.14778/

2856318.2856324.

[3] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by

jointly learning to align and translate. In Y. Bengio and Y. LeCun, editors,

3rd International Conference on Learning Representations, ICLR 2015, San

Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL

http://arxiv.org/abs/1409.0473.

[4] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer. Scheduled sampling for

sequence prediction with recurrent neural networks. In Proceedings of the

28th International Conference on Neural Information Processing Systems -

Volume 1, NIPS’15, page 1171 ‒ 1179, Cambridge, MA, USA, 2015. MIT

Press.

[5] P. Bhattacharyya, R. Chatterjee, M. Freitag, D. Kanojia, M. Negri, and

M. Turchi. Findings of the WMT 2022 shared task on automatic post-

editing. In P. Koehn, L. Barrault, O. Bojar, F. Bougares, R. Chatter-

jee, M. R. Costa-jussà, C. Federmann, M. Fishel, A. Fraser, M. Freitag,

80

https://aclanthology.org/2020.acl-main.692
https://doi.org/10.14778/2856318.2856324
https://doi.org/10.14778/2856318.2856324
http://arxiv.org/abs/1409.0473

Y. Graham, R. Grundkiewicz, P. Guzman, B. Haddow, M. Huck, A. Ji-

meno Yepes, T. Kocmi, A. Martins, M. Morishita, C. Monz, M. Nagata,

T. Nakazawa, M. Negri, A. Névéol, M. Neves, M. Popel, M. Turchi, and

M. Zampieri, editors, Proceedings of the Seventh Conference on Machine

Translation (WMT), pages 109–117, Abu Dhabi, United Arab Emirates

(Hybrid), Dec. 2022. Association for Computational Linguistics. URL

https://aclanthology.org/2022.wmt-1.5.

[6] N. Bogoychev and P. Chen. Terminology-aware translation with constrained

decoding and large language model prompting. In P. Koehn, B. Haddow,

T. Kocmi, and C. Monz, editors, Proceedings of the Eighth Conference on

Machine Translation, pages 890–896, Singapore, Dec. 2023. Association for

Computational Linguistics. doi: 10.18653/v1/2023.wmt-1.80. URL https:

//aclanthology.org/2023.wmt-1.80.

[7] S. Borgeaud, A. Mensch, J. Hoffmann, T. Cai, E. Rutherford, K. Mil-

lican, G. B. Van Den Driessche, J.-B. Lespiau, B. Damoc, A. Clark,

D. De Las Casas, A. Guy, J. Menick, R. Ring, T. Hennigan, S. Huang,

L. Maggiore, C. Jones, A. Cassirer, A. Brock, M. Paganini, G. Irving,

O. Vinyals, S. Osindero, K. Simonyan, J. Rae, E. Elsen, and L. Sifre. Im-

proving language models by retrieving from trillions of tokens. In K. Chaud-

huri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, and S. Sabato, editors, Pro-

ceedings of the 39th International Conference on Machine Learning, volume

162 of Proceedings of Machine Learning Research, pages 2206–2240. PMLR,

17–23 Jul 2022.

[8] P. F. Brown, J. Cocke, S. A. Della Pietra, V. J. Della Pietra, F. Jelinek,

J. D. Lafferty, R. L. Mercer, and P. S. Roossin. A statistical approach to

machine translation. Computational Linguistics, 16(2):79–85, 1990. URL

https://aclanthology.org/J90-2002.

[9] E. Bugliarello and N. Okazaki. Enhancing machine translation with

dependency-aware self-attention. In D. Jurafsky, J. Chai, N. Schluter,

and J. Tetreault, editors, Proceedings of the 58th Annual Meeting of the

Association for Computational Linguistics, pages 1618–1627, Online, July

81

https://aclanthology.org/2022.wmt-1.5
https://aclanthology.org/2023.wmt-1.80
https://aclanthology.org/2023.wmt-1.80
https://aclanthology.org/J90-2002

2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.

acl-main.147. URL https://aclanthology.org/2020.acl-main.147.

[10] B. Bulte and A. Tezcan. Neural fuzzy repair: Integrating fuzzy matches into

neural machine translation. In A. Korhonen, D. Traum, and L. Màrquez,

editors, Proceedings of the 57th Annual Meeting of the Association for Com-

putational Linguistics, pages 1800–1809, Florence, Italy, July 2019. Asso-

ciation for Computational Linguistics. doi: 10.18653/v1/P19-1175. URL

https://aclanthology.org/P19-1175.

[11] R. Chatterjee, C. Federmann, M. Negri, and M. Turchi. Findings of the

WMT 2019 shared task on automatic post-editing. In O. Bojar, R. Chat-

terjee, C. Federmann, M. Fishel, Y. Graham, B. Haddow, M. Huck, A. J.

Yepes, P. Koehn, A. Martins, C. Monz, M. Negri, A. Névéol, M. Neves,

M. Post, M. Turchi, and K. Verspoor, editors, Proceedings of the Fourth

Conference on Machine Translation (Volume 3: Shared Task Papers, Day

2), pages 11–28, Florence, Italy, Aug. 2019. Association for Computational

Linguistics. doi: 10.18653/v1/W19-5402. URL https://aclanthology.org/

W19-5402.

[12] R. Chatterjee, M. Freitag, M. Negri, and M. Turchi. Findings of the WMT

2020 shared task on automatic post-editing. In L. Barrault, O. Bojar,

F. Bougares, R. Chatterjee, M. R. Costa-jussà, C. Federmann, M. Fishel,

A. Fraser, Y. Graham, P. Guzman, B. Haddow, M. Huck, A. J. Yepes,

P. Koehn, A. Martins, M. Morishita, C. Monz, M. Nagata, T. Nakazawa,

and M. Negri, editors, Proceedings of the Fifth Conference on Machine

Translation, pages 646–659, Online, Nov. 2020. Association for Computa-

tional Linguistics. URL https://aclanthology.org/2020.wmt-1.75.

[13] G. Chen, Y. Chen, Y. Wang, and V. O. Li. Lexical-constraint-aware neural

machine translation via data augmentation. In C. Bessiere, editor, Proceed-

ings of the Twenty-Ninth International Joint Conference on Artificial In-

telligence, IJCAI-20, pages 3587–3593. International Joint Conferences on

Artificial Intelligence Organization, 7 2020. doi: 10.24963/ijcai.2020/496.

URL https://doi.org/10.24963/ijcai.2020/496. Main track.

82

https://aclanthology.org/2020.acl-main.147
https://aclanthology.org/P19-1175
https://aclanthology.org/W19-5402
https://aclanthology.org/W19-5402
https://aclanthology.org/2020.wmt-1.75
https://doi.org/10.24963/ijcai.2020/496

[14] K. Chen, R. Wang, M. Utiyama, L. Liu, A. Tamura, E. Sumita, and

T. Zhao. Neural machine translation with source dependency represen-

tation. In M. Palmer, R. Hwa, and S. Riedel, editors, Proceedings of

the 2017 Conference on Empirical Methods in Natural Language Pro-

cessing, pages 2846–2852, Copenhagen, Denmark, Sept. 2017. Associa-

tion for Computational Linguistics. doi: 10.18653/v1/D17-1304. URL

https://aclanthology.org/D17-1304.

[15] K. Chen, R. Wang, M. Utiyama, and E. Sumita. Neural machine translation

with reordering embeddings. In A. Korhonen, D. Traum, and L. Màrquez,

editors, Proceedings of the 57th Annual Meeting of the Association for Com-

putational Linguistics, pages 1787–1799, Florence, Italy, July 2019. Asso-

ciation for Computational Linguistics. doi: 10.18653/v1/P19-1174. URL

https://aclanthology.org/P19-1174.

[16] M. Chen, T. Ge, X. Zhang, F. Wei, and M. Zhou. Improving the effi-

ciency of grammatical error correction with erroneous span detection and

correction. In B. Webber, T. Cohn, Y. He, and Y. Liu, editors, Proceed-

ings of the 2020 Conference on Empirical Methods in Natural Language

Processing (EMNLP), pages 7162–7169, Online, Nov. 2020. Association for

Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.581. URL

https://aclanthology.org/2020.emnlp-main.581.

[17] C. Chu and R. Wang. A survey of domain adaptation for neural machine

translation. In E. M. Bender, L. Derczynski, and P. Isabelle, editors, Pro-

ceedings of the 27th International Conference on Computational Linguistics,

pages 1304–1319, Santa Fe, New Mexico, USA, Aug. 2018. Association for

Computational Linguistics. URL https://aclanthology.org/C18-1111.

[18] C. Chu, R. Dabre, and S. Kurohashi. An empirical comparison of domain

adaptation methods for neural machine translation. In R. Barzilay and M.-

Y. Kan, editors, Proceedings of the 55th Annual Meeting of the Association

for Computational Linguistics (Volume 2: Short Papers), pages 385–391,

Vancouver, Canada, July 2017. Association for Computational Linguistics.

doi: 10.18653/v1/P17-2061. URL https://aclanthology.org/P17-2061.

83

https://aclanthology.org/D17-1304
https://aclanthology.org/P19-1174
https://aclanthology.org/2020.emnlp-main.581
https://aclanthology.org/C18-1111
https://aclanthology.org/P17-2061

[19] A. Conneau, K. Khandelwal, N. Goyal, V. Chaudhary, G. Wenzek,

F. Guzmán, E. Grave, M. Ott, L. Zettlemoyer, and V. Stoyanov. Un-

supervised cross-lingual representation learning at scale. In D. Jurafsky,

J. Chai, N. Schluter, and J. Tetreault, editors, Proceedings of the 58th

Annual Meeting of the Association for Computational Linguistics, pages

8440–8451, Online, July 2020. Association for Computational Linguistics.

doi: 10.18653/v1/2020.acl-main.747. URL https://aclanthology.org/2020.

acl-main.747.

[20] G. M. Correia and A. F. T. Martins. A simple and effective approach to

automatic post-editing with transfer learning. In A. Korhonen, D. Traum,

and L. Màrquez, editors, Proceedings of the 57th Annual Meeting of the As-

sociation for Computational Linguistics, pages 3050–3056, Florence, Italy,

July 2019. Association for Computational Linguistics. doi: 10.18653/v1/

P19-1292. URL https://aclanthology.org/P19-1292.

[21] Q. Cui, S. Huang, J. Li, X. Geng, Z. Zheng, G. Huang, and J. Chen.

Directqe: Direct pretraining for machine translation quality estimation. In

Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,

pages 12719–12727, 2021.

[22] Y. Dai, Z. Zhang, Q. Liu, Q. Cui, W. Li, Y. Du, and T. Xu. Simple

and scalable nearest neighbor machine translation. In The Eleventh In-

ternational Conference on Learning Representations, 2023. URL https:

//openreview.net/forum?id=uu1GBD9SlLe.

[23] H. Deguchi, A. Tamura, and T. Ninomiya. Dependency-based self-attention

for transformer NMT. In R. Mitkov and G. Angelova, editors, Pro-

ceedings of the International Conference on Recent Advances in Natu-

ral Language Processing (RANLP 2019), pages 239–246, Varna, Bulgaria,

Sept. 2019. INCOMA Ltd. doi: 10.26615/978-954-452-056-4 028. URL

https://aclanthology.org/R19-1028.

[24] S. Deoghare and P. Bhattacharyya. IIT Bombay’s WMT22 automatic

post-editing shared task submission. In P. Koehn, L. Barrault, O. Bojar,

F. Bougares, R. Chatterjee, M. R. Costa-jussà, C. Federmann, M. Fishel,

84

https://aclanthology.org/2020.acl-main.747
https://aclanthology.org/2020.acl-main.747
https://aclanthology.org/P19-1292
https://openreview.net/forum?id=uu1GBD9SlLe
https://openreview.net/forum?id=uu1GBD9SlLe
https://aclanthology.org/R19-1028

A. Fraser, M. Freitag, Y. Graham, R. Grundkiewicz, P. Guzman, B. Had-

dow, M. Huck, A. Jimeno Yepes, T. Kocmi, A. Martins, M. Morishita,

C. Monz, M. Nagata, T. Nakazawa, M. Negri, A. Névéol, M. Neves,

M. Popel, M. Turchi, and M. Zampieri, editors, Proceedings of the Seventh

Conference on Machine Translation (WMT), pages 682–688, Abu Dhabi,

United Arab Emirates (Hybrid), Dec. 2022. Association for Computational

Linguistics. URL https://aclanthology.org/2022.wmt-1.67.

[25] S. Deoghare, D. Kanojia, F. Blain, T. Ranasinghe, and P. Bhattacharyya.

Quality estimation-assisted automatic post-editing. In H. Bouamor, J. Pino,

and K. Bali, editors, Findings of the Association for Computational Lin-

guistics: EMNLP 2023, pages 1686–1698, Singapore, Dec. 2023. Association

for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.115.

URL https://aclanthology.org/2023.findings-emnlp.115.

[26] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of

deep bidirectional transformers for language understanding. In J. Burstein,

C. Doran, and T. Solorio, editors, Proceedings of the 2019 Conference of

the North American Chapter of the Association for Computational Lin-

guistics: Human Language Technologies, Volume 1 (Long and Short Pa-

pers), pages 4171–4186, Minneapolis, Minnesota, June 2019. Association

for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https:

//aclanthology.org/N19-1423.

[27] K. Dhamdhere, M. Sundararajan, and Q. Yan. How important is a neuron.

In International Conference on Learning Representations, 2019. URL https:

//openreview.net/forum?id=SylKoo0cKm.

[28] S. Ding, M. Junczys-Dowmunt, M. Post, and P. Koehn. Levenshtein

training for word-level quality estimation. In M.-F. Moens, X. Huang,

L. Specia, and S. W.-t. Yih, editors, Proceedings of the 2021 Conference

on Empirical Methods in Natural Language Processing, pages 6724–6733,

Online and Punta Cana, Dominican Republic, Nov. 2021. Association for

Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.539. URL

https://aclanthology.org/2021.emnlp-main.539.

85

https://aclanthology.org/2022.wmt-1.67
https://aclanthology.org/2023.findings-emnlp.115
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://openreview.net/forum?id=SylKoo0cKm
https://openreview.net/forum?id=SylKoo0cKm
https://aclanthology.org/2021.emnlp-main.539

[29] T. A. Dinh, T. Palzer, and J. Niehues. Quality estimation with k-nearest

neighbors and automatic evaluation for model-specific quality estimation,

2024. URL https://arxiv.org/abs/2404.18031.

[30] Z.-Y. Dou and G. Neubig. Word alignment by fine-tuning embeddings on

parallel corpora. In P. Merlo, J. Tiedemann, and R. Tsarfaty, editors, Pro-

ceedings of the 16th Conference of the European Chapter of the Association

for Computational Linguistics: Main Volume, pages 2112–2128, Online,

Apr. 2021. Association for Computational Linguistics. doi: 10.18653/v1/

2021.eacl-main.181. URL https://aclanthology.org/2021.eacl-main.181.

[31] C. Dyer, V. Chahuneau, and N. A. Smith. A simple, fast, and effective

reparameterization of IBM model 2. In L. Vanderwende, H. Daumé III,

and K. Kirchhoff, editors, Proceedings of the 2013 Conference of the North

American Chapter of the Association for Computational Linguistics: Hu-

man Language Technologies, pages 644–648, Atlanta, Georgia, June 2013.

Association for Computational Linguistics. URL https://aclanthology.org/

N13-1073.

[32] B. Eikema and W. Aziz. Is MAP decoding all you need? the inadequacy of

the mode in neural machine translation. In D. Scott, N. Bel, and C. Zong,

editors, Proceedings of the 28th International Conference on Computational

Linguistics, pages 4506–4520, Barcelona, Spain (Online), Dec. 2020. Inter-

national Committee on Computational Linguistics. doi: 10.18653/v1/2020.

coling-main.398. URL https://aclanthology.org/2020.coling-main.398.

[33] A. Eriguchi, Y. Tsuruoka, and K. Cho. Learning to parse and translate

improves neural machine translation. In R. Barzilay and M.-Y. Kan, edi-

tors, Proceedings of the 55th Annual Meeting of the Association for Com-

putational Linguistics (Volume 2: Short Papers), pages 72–78, Vancou-

ver, Canada, July 2017. Association for Computational Linguistics. doi:

10.18653/v1/P17-2012. URL https://aclanthology.org/P17-2012.

[34] A. Fan, S. Bhosale, H. Schwenk, Z. Ma, A. El-Kishky, S. Goyal, M. Baines,

O. Celebi, G. Wenzek, V. Chaudhary, N. Goyal, T. Birch, V. Liptchinsky,

86

https://arxiv.org/abs/2404.18031
https://aclanthology.org/2021.eacl-main.181
https://aclanthology.org/N13-1073
https://aclanthology.org/N13-1073
https://aclanthology.org/2020.coling-main.398
https://aclanthology.org/P17-2012

S. Edunov, E. Grave, M. Auli, and A. Joulin. Beyond english-centric mul-

tilingual machine translation. J. Mach. Learn. Res., 22(1), jan 2021. ISSN

1532-4435.

[35] F. Feng, Y. Yang, D. Cer, N. Arivazhagan, and W. Wang. Language-

agnostic BERT sentence embedding. In S. Muresan, P. Nakov, and

A. Villavicencio, editors, Proceedings of the 60th Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers), pages

878–891, Dublin, Ireland, May 2022. Association for Computational Lin-

guistics. doi: 10.18653/v1/2022.acl-long.62. URL https://aclanthology.

org/2022.acl-long.62.

[36] P. Fernandes, A. Farinhas, R. Rei, J. G. C. de Souza, P. Ogayo, G. Neubig,

and A. Martins. Quality-aware decoding for neural machine translation.

In M. Carpuat, M.-C. de Marneffe, and I. V. Meza Ruiz, editors, Pro-

ceedings of the 2022 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technolo-

gies, pages 1396–1412, Seattle, United States, July 2022. Association for

Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.100. URL

https://aclanthology.org/2022.naacl-main.100.

[37] M. Fomicheva, S. Sun, L. Yankovskaya, F. Blain, F. Guzmán, M. Fishel,

N. Aletras, V. Chaudhary, and L. Specia. Unsupervised quality estimation

for neural machine translation. Transactions of the Association for Com-

putational Linguistics, 8:539–555, 2020. doi: 10.1162/tacl a 00330. URL

https://aclanthology.org/2020.tacl-1.35.

[38] T. Ge, K. He, Q. Ke, and J. Sun. Optimized product quantization. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 36(4):744–755,

2014. doi: 10.1109/TPAMI.2013.240.

[39] J. Gehring, M. Auli, D. Grangier, and Y. Dauphin. A convolutional en-

coder model for neural machine translation. In R. Barzilay and M.-Y.

Kan, editors, Proceedings of the 55th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers), pages 123–135,

87

https://aclanthology.org/2022.acl-long.62
https://aclanthology.org/2022.acl-long.62
https://aclanthology.org/2022.naacl-main.100
https://aclanthology.org/2020.tacl-1.35

Vancouver, Canada, July 2017. Association for Computational Linguistics.

doi: 10.18653/v1/P17-1012. URL https://aclanthology.org/P17-1012.

[40] N. Goyal, C. Gao, V. Chaudhary, P.-J. Chen, G. Wenzek, D. Ju, S. Kr-

ishnan, M. Ranzato, F. Guzmán, and A. Fan. The Flores-101 evaluation

benchmark for low-resource and multilingual machine translation. Trans-

actions of the Association for Computational Linguistics, 10:522–538, 2022.

doi: 10.1162/tacl a 00474. URL https://aclanthology.org/2022.tacl-1.30.

[41] J. Gu, Z. Lu, H. Li, and V. O. Li. Incorporating copying mechanism

in sequence-to-sequence learning. In K. Erk and N. A. Smith, editors,

Proceedings of the 54th Annual Meeting of the Association for Compu-

tational Linguistics (Volume 1: Long Papers), pages 1631–1640, Berlin,

Germany, Aug. 2016. Association for Computational Linguistics. doi:

10.18653/v1/P16-1154. URL https://aclanthology.org/P16-1154.

[42] J. Gu, Y. Wang, K. Cho, and V. O. K. Li. Search engine guided neural

machine translation. AAAI, 2018.

[43] J. Gu, C. Wang, and J. Zhao. Levenshtein transformer. In H. Wallach,

H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,

editors, Advances in Neural Information Processing Systems, volume 32.

Curran Associates, Inc., 2019.

[44] S. Gu and Y. Feng. Investigating catastrophic forgetting during continual

training for neural machine translation. In D. Scott, N. Bel, and C. Zong,

editors, Proceedings of the 28th International Conference on Computational

Linguistics, pages 4315–4326, Barcelona, Spain (Online), Dec. 2020. Inter-

national Committee on Computational Linguistics. doi: 10.18653/v1/2020.

coling-main.381. URL https://aclanthology.org/2020.coling-main.381.

[45] N. M. Guerreiro, E. Voita, and A. Martins. Looking for a needle in a

haystack: A comprehensive study of hallucinations in neural machine trans-

lation. In A. Vlachos and I. Augenstein, editors, Proceedings of the 17th

Conference of the European Chapter of the Association for Computational

Linguistics, pages 1059–1075, Dubrovnik, Croatia, May 2023. Association

88

https://aclanthology.org/P17-1012
https://aclanthology.org/2022.tacl-1.30
https://aclanthology.org/P16-1154
https://aclanthology.org/2020.coling-main.381

for Computational Linguistics. doi: 10.18653/v1/2023.eacl-main.75. URL

https://aclanthology.org/2023.eacl-main.75.

[46] J. He, G. Neubig, and T. Berg-Kirkpatrick. Efficient nearest neighbor

language models. In M.-F. Moens, X. Huang, L. Specia, and S. W.-t.

Yih, editors, Proceedings of the 2021 Conference on Empirical Methods in

Natural Language Processing, pages 5703–5714, Online and Punta Cana,

Dominican Republic, Nov. 2021. Association for Computational Linguis-

tics. doi: 10.18653/v1/2021.emnlp-main.461. URL https://aclanthology.

org/2021.emnlp-main.461.

[47] N. Herbig, T. Düwel, S. Pal, K. Meladaki, M. Monshizadeh, A. Krüger,

and J. van Genabith. MMPE: A Multi-Modal Interface for Post-Editing

Machine Translation. In D. Jurafsky, J. Chai, N. Schluter, and J. Tetreault,

editors, Proceedings of the 58th Annual Meeting of the Association for Com-

putational Linguistics, pages 1691–1702, Online, July 2020. Association

for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.155. URL

https://aclanthology.org/2020.acl-main.155.

[48] J. Hewitt, J. Thickstun, C. Manning, and P. Liang. Backpack language

models. In A. Rogers, J. Boyd-Graber, and N. Okazaki, editors, Proceedings

of the 61st Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), pages 9103–9125, Toronto, Canada, July 2023.

Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.

506. URL https://aclanthology.org/2023.acl-long.506.

[49] C. Hokamp and Q. Liu. Lexically constrained decoding for sequence gen-

eration using grid beam search. In R. Barzilay and M.-Y. Kan, editors,

Proceedings of the 55th Annual Meeting of the Association for Computa-

tional Linguistics (Volume 1: Long Papers), pages 1535–1546, Vancou-

ver, Canada, July 2017. Association for Computational Linguistics. doi:

10.18653/v1/P17-1141. URL https://aclanthology.org/P17-1141.

[50] X. Huang, Y. Liu, H. Luan, J. Xu, and M. Sun. Learning to copy for

automatic post-editing. In K. Inui, J. Jiang, V. Ng, and X. Wan, ed-

itors, Proceedings of the 2019 Conference on Empirical Methods in Nat-

89

https://aclanthology.org/2023.eacl-main.75
https://aclanthology.org/2021.emnlp-main.461
https://aclanthology.org/2021.emnlp-main.461
https://aclanthology.org/2020.acl-main.155
https://aclanthology.org/2023.acl-long.506
https://aclanthology.org/P17-1141

ural Language Processing and the 9th International Joint Conference on

Natural Language Processing (EMNLP-IJCNLP), pages 6122–6132, Hong

Kong, China, Nov. 2019. Association for Computational Linguistics. doi:

10.18653/v1/D19-1634. URL https://aclanthology.org/D19-1634.

[51] X. Huang, X. Lou, F. Zhang, and T. Mei. LUL’s WMT22 automatic

post-editing shared task submission. In P. Koehn, L. Barrault, O. Bojar,

F. Bougares, R. Chatterjee, M. R. Costa-jussà, C. Federmann, M. Fishel,

A. Fraser, M. Freitag, Y. Graham, R. Grundkiewicz, P. Guzman, B. Had-

dow, M. Huck, A. Jimeno Yepes, T. Kocmi, A. Martins, M. Morishita,

C. Monz, M. Nagata, T. Nakazawa, M. Negri, A. Névéol, M. Neves,

M. Popel, M. Turchi, and M. Zampieri, editors, Proceedings of the Seventh

Conference on Machine Translation (WMT), pages 689–693, Abu Dhabi,

United Arab Emirates (Hybrid), Dec. 2022. Association for Computational

Linguistics. URL https://aclanthology.org/2022.wmt-1.68.

[52] M. Jalili Sabet, P. Dufter, F. Yvon, and H. Schütze. SimAlign: High

quality word alignments without parallel training data using static and

contextualized embeddings. In T. Cohn, Y. He, and Y. Liu, editors, Find-

ings of the Association for Computational Linguistics: EMNLP 2020, pages

1627–1643, Online, Nov. 2020. Association for Computational Linguistics.

doi: 10.18653/v1/2020.findings-emnlp.147. URL https://aclanthology.org/

2020.findings-emnlp.147.

[53] H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest

neighbor search. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 33(1):117–128, 2011.

[54] L. Jin, J. He, J. May, and X. Ma. Challenges in context-aware neu-

ral machine translation. In H. Bouamor, J. Pino, and K. Bali, editors,

Proceedings of the 2023 Conference on Empirical Methods in Natural Lan-

guage Processing, pages 15246–15263, Singapore, Dec. 2023. Association for

Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.943. URL

https://aclanthology.org/2023.emnlp-main.943.

90

https://aclanthology.org/D19-1634
https://aclanthology.org/2022.wmt-1.68
https://aclanthology.org/2020.findings-emnlp.147
https://aclanthology.org/2020.findings-emnlp.147
https://aclanthology.org/2023.emnlp-main.943

[55] J. Johnson, M. Douze, and H. Jégou. Billion-scale similarity search with

GPUs. IEEE Transactions on Big Data, 7(3):535–547, 2019.

[56] K. S. Jones. A statistical interpretation of term specificity and its applica-

tion in retrieval. Journal of documentation, 1972.

[57] K. S. Jones, S. Walker, and S. E. Robertson. A probabilistic model of

information retrieval: development and comparative experiments: Part 2.

Information processing & management, 36(6):809–840, 2000.

[58] M. Junczys-Dowmunt and R. Grundkiewicz. MS-UEdin submission to the

WMT2018 APE shared task: Dual-source transformer for automatic post-

editing. In O. Bojar, R. Chatterjee, C. Federmann, M. Fishel, Y. Gra-

ham, B. Haddow, M. Huck, A. J. Yepes, P. Koehn, C. Monz, M. Ne-

gri, A. Névéol, M. Neves, M. Post, L. Specia, M. Turchi, and K. Ver-

spoor, editors, Proceedings of the Third Conference on Machine Transla-

tion: Shared Task Papers, pages 822–826, Belgium, Brussels, Oct. 2018.

Association for Computational Linguistics. doi: 10.18653/v1/W18-6467.

URL https://aclanthology.org/W18-6467.

[59] J. Kasai, J. Cross, M. Ghazvininejad, and J. Gu. Non-autoregressive ma-

chine translation with disentangled context transformer. In H. D. III and

A. Singh, editors, Proceedings of the 37th International Conference on Ma-

chine Learning, volume 119 of Proceedings of Machine Learning Research,

pages 5144–5155. PMLR, 13–18 Jul 2020.

[60] U. Khandelwal, O. Levy, D. Jurafsky, L. Zettlemoyer, and M. Lewis.

Generalization through memorization: Nearest neighbor language mod-

els. In International Conference on Learning Representations, 2020. URL

https://openreview.net/forum?id=HklBjCEKvH.

[61] U. Khandelwal, A. Fan, D. Jurafsky, L. Zettlemoyer, and M. Lewis. Near-

est neighbor machine translation. In International Conference on Learn-

ing Representations (ICLR), 2021. URL https://openreview.net/forum?

id=7wCBOfJ8hJM.

91

https://aclanthology.org/W18-6467
https://openreview.net/forum?id=HklBjCEKvH
https://openreview.net/forum?id=7wCBOfJ8hJM
https://openreview.net/forum?id=7wCBOfJ8hJM

[62] H. Kim, H.-Y. Jung, H. Kwon, J.-H. Lee, and S.-H. Na. Predictor-

estimator: Neural quality estimation based on target word prediction for

machine translation. ACM Trans. Asian Low-Resour. Lang. Inf. Pro-

cess., 17(1), sep 2017. ISSN 2375-4699. doi: 10.1145/3109480. URL

https://doi.org/10.1145/3109480.

[63] H. Kim, J.-H. Lee, and S.-H. Na. Predictor-estimator using multilevel

task learning with stack propagation for neural quality estimation. In

O. Bojar, C. Buck, R. Chatterjee, C. Federmann, Y. Graham, B. Had-

dow, M. Huck, A. J. Yepes, P. Koehn, and J. Kreutzer, editors, Proceedings

of the Second Conference on Machine Translation, pages 562–568, Copen-

hagen, Denmark, Sept. 2017. Association for Computational Linguistics.

doi: 10.18653/v1/W17-4763. URL https://aclanthology.org/W17-4763.

[64] T. Kocmi, R. Bawden, O. Bojar, A. Dvorkovich, C. Federmann, M. Fishel,

T. Gowda, Y. Graham, R. Grundkiewicz, B. Haddow, R. Knowles,

P. Koehn, C. Monz, M. Morishita, M. Nagata, T. Nakazawa, M. Novák,

M. Popel, and M. Popović. Findings of the 2022 conference on machine

translation (WMT22). In P. Koehn, L. Barrault, O. Bojar, F. Bougares,

R. Chatterjee, M. R. Costa-jussà, C. Federmann, M. Fishel, A. Fraser,

M. Freitag, Y. Graham, R. Grundkiewicz, P. Guzman, B. Haddow,

M. Huck, A. Jimeno Yepes, T. Kocmi, A. Martins, M. Morishita, C. Monz,

M. Nagata, T. Nakazawa, M. Negri, A. Névéol, M. Neves, M. Popel,

M. Turchi, and M. Zampieri, editors, Proceedings of the Seventh Confer-

ence on Machine Translation (WMT), pages 1–45, Abu Dhabi, United Arab

Emirates (Hybrid), Dec. 2022. Association for Computational Linguistics.

URL https://aclanthology.org/2022.wmt-1.1.

[65] P. Koehn and R. Knowles. Six challenges for neural machine translation.

In T. Luong, A. Birch, G. Neubig, and A. Finch, editors, Proceedings of the

First Workshop on Neural Machine Translation, pages 28–39, Vancouver,

Aug. 2017. Association for Computational Linguistics. doi: 10.18653/v1/

W17-3204. URL https://aclanthology.org/W17-3204.

[66] S. Läubli, C. Amrhein, P. Düggelin, B. Gonzalez, A. Zwahlen, and M. Volk.

92

https://doi.org/10.1145/3109480
https://aclanthology.org/W17-4763
https://aclanthology.org/2022.wmt-1.1
https://aclanthology.org/W17-3204

Post-editing productivity with neural machine translation: An empirical

assessment of speed and quality in the banking and finance domain. In

M. Forcada, A. Way, B. Haddow, and R. Sennrich, editors, Proceedings of

Machine Translation Summit XVII: Research Track, pages 267–272, Dublin,

Ireland, Aug. 2019. European Association for Machine Translation. URL

https://aclanthology.org/W19-6626.

[67] A. Lee, M. Auli, and M. Ranzato. Discriminative reranking for neural

machine translation. In C. Zong, F. Xia, W. Li, and R. Navigli, editors,

Proceedings of the 59th Annual Meeting of the Association for Computa-

tional Linguistics and the 11th International Joint Conference on Natural

Language Processing (Volume 1: Long Papers), pages 7250–7264, Online,

Aug. 2021. Association for Computational Linguistics. doi: 10.18653/v1/

2021.acl-long.563. URL https://aclanthology.org/2021.acl-long.563.

[68] J. Lee, W. Lee, J. Shin, B. Jung, Y.-K. Kim, and J.-H. Lee. POSTECH-

ETRI’s submission to the WMT2020 APE shared task: Automatic post-

editing with cross-lingual language model. In L. Barrault, O. Bojar,

F. Bougares, R. Chatterjee, M. R. Costa-jussà, C. Federmann, M. Fishel,

A. Fraser, Y. Graham, P. Guzman, B. Haddow, M. Huck, A. J. Yepes,

P. Koehn, A. Martins, M. Morishita, C. Monz, M. Nagata, T. Nakazawa,

and M. Negri, editors, Proceedings of the Fifth Conference on Machine

Translation, pages 777–782, Online, Nov. 2020. Association for Computa-

tional Linguistics. URL https://aclanthology.org/2020.wmt-1.82.

[69] G. Leusch, N. Ueffing, and H. Ney. CDER: Efficient MT evaluation using

block movements. In D. McCarthy and S. Wintner, editors, 11th Conference

of the European Chapter of the Association for Computational Linguistics,

pages 241–248, Trento, Italy, Apr. 2006. Association for Computational

Linguistics. URL https://aclanthology.org/E06-1031.

[70] E. K.-Y. Liu. Low-resource neural machine translation: A case study of

Cantonese. In Y. Scherrer, T. Jauhiainen, N. Ljubešić, P. Nakov, J. Tiede-

mann, and M. Zampieri, editors, Proceedings of the Ninth Workshop on

NLP for Similar Languages, Varieties and Dialects, pages 28–40, Gyeongju,

93

https://aclanthology.org/W19-6626
https://aclanthology.org/2021.acl-long.563
https://aclanthology.org/2020.wmt-1.82
https://aclanthology.org/E06-1031

Republic of Korea, Oct. 2022. Association for Computational Linguistics.

URL https://aclanthology.org/2022.vardial-1.4.

[71] M.-T. Luong and C. Manning. Stanford neural machine translation systems

for spoken language domains. In M. Federico, S. Stüker, and J. Niehues, ed-

itors, Proceedings of the 12th International Workshop on Spoken Language

Translation: Evaluation Campaign, pages 76–79, Da Nang, Vietnam, Dec.

3-4 2015. URL https://aclanthology.org/2015.iwslt-evaluation.11.

[72] T. Luong, H. Pham, and C. D. Manning. Effective approaches to attention-

based neural machine translation. In L. Màrquez, C. Callison-Burch, and

J. Su, editors, Proceedings of the 2015 Conference on Empirical Meth-

ods in Natural Language Processing, pages 1412–1421, Lisbon, Portugal,

Sept. 2015. Association for Computational Linguistics. doi: 10.18653/v1/

D15-1166. URL https://aclanthology.org/D15-1166.

[73] J. Mallinson, A. Severyn, E. Malmi, and G. Garrido. FELIX: Flexi-

ble text editing through tagging and insertion. In T. Cohn, Y. He, and

Y. Liu, editors, Findings of the Association for Computational Linguistics:

EMNLP 2020, pages 1244–1255, Online, Nov. 2020. Association for Com-

putational Linguistics. doi: 10.18653/v1/2020.findings-emnlp.111. URL

https://aclanthology.org/2020.findings-emnlp.111.

[74] J. Mallinson, J. Adamek, E. Malmi, and A. Severyn. EdiT5: Semi-

autoregressive text editing with t5 warm-start. In Y. Goldberg, Z. Kozareva,

and Y. Zhang, editors, Findings of the Association for Computational Lin-

guistics: EMNLP 2022, pages 2126–2138, Abu Dhabi, United Arab Emi-

rates, Dec. 2022. Association for Computational Linguistics. doi: 10.

18653/v1/2022.findings-emnlp.156. URL https://aclanthology.org/2022.

findings-emnlp.156.

[75] E. Malmi, S. Krause, S. Rothe, D. Mirylenka, and A. Severyn. Encode, tag,

realize: High-precision text editing. In K. Inui, J. Jiang, V. Ng, and X. Wan,

editors, Proceedings of the 2019 Conference on Empirical Methods in Nat-

ural Language Processing and the 9th International Joint Conference on

Natural Language Processing (EMNLP-IJCNLP), pages 5054–5065, Hong

94

https://aclanthology.org/2022.vardial-1.4
https://aclanthology.org/2015.iwslt-evaluation.11
https://aclanthology.org/D15-1166
https://aclanthology.org/2020.findings-emnlp.111
https://aclanthology.org/2022.findings-emnlp.156
https://aclanthology.org/2022.findings-emnlp.156

Kong, China, Nov. 2019. Association for Computational Linguistics. doi:

10.18653/v1/D19-1510. URL https://aclanthology.org/D19-1510.

[76] P. H. Martins, Z. Marinho, and A. F. T. Martins. Chunk-based near-

est neighbor machine translation. In Y. Goldberg, Z. Kozareva, and

Y. Zhang, editors, Proceedings of the 2022 Conference on Empirical Meth-

ods in Natural Language Processing, pages 4228–4245, Abu Dhabi, United

Arab Emirates, Dec. 2022. Association for Computational Linguistics. doi:

10.18653/v1/2022.emnlp-main.284. URL https://aclanthology.org/2022.

emnlp-main.284.

[77] S. Maruf, A. F. T. Martins, and G. Haffari. Selective attention for context-

aware neural machine translation. In J. Burstein, C. Doran, and T. Solorio,

editors, Proceedings of the 2019 Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Tech-

nologies, Volume 1 (Long and Short Papers), pages 3092–3102, Minneapo-

lis, Minnesota, June 2019. Association for Computational Linguistics. doi:

10.18653/v1/N19-1313. URL https://aclanthology.org/N19-1313.

[78] Y. Matsui, R. Hinami, and S. Satoh. Reconfigurable inverted index. In

ACM International Conference on Multimedia (ACMMM), pages 1715–

1723, 2018.

[79] Y. Matsui, Y. Imaizumi, N. Miyamoto, and N. Yoshifuji. Arm 4-bit pq:

Simd-based acceleration for approximate nearest neighbor search on arm. In

ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pages 2080–2084, 2022. doi: 10.1109/

ICASSP43922.2022.9746589.

[80] B. W. Matthews. Comparison of the predicted and observed secondary

structure of t4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-

Protein Structure, 405(2):442–451, 1975.

[81] Y. Meng, X. Li, X. Zheng, F. Wu, X. Sun, T. Zhang, and J. Li. Fast near-

est neighbor machine translation. In S. Muresan, P. Nakov, and A. Villav-

icencio, editors, Findings of the Association for Computational Linguis-

tics: ACL 2022, pages 555–565, Dublin, Ireland, May 2022. Association for

95

https://aclanthology.org/D19-1510
https://aclanthology.org/2022.emnlp-main.284
https://aclanthology.org/2022.emnlp-main.284
https://aclanthology.org/N19-1313

Computational Linguistics. doi: 10.18653/v1/2022.findings-acl.47. URL

https://aclanthology.org/2022.findings-acl.47.

[82] T. Mihaylova and A. F. T. Martins. Scheduled sampling for transformers.

In F. Alva-Manchego, E. Choi, and D. Khashabi, editors, Proceedings of

the 57th Annual Meeting of the Association for Computational Linguistics:

Student Research Workshop, pages 351–356, Florence, Italy, July 2019. As-

sociation for Computational Linguistics. doi: 10.18653/v1/P19-2049. URL

https://aclanthology.org/P19-2049.

[83] M. Morishita, K. Chousa, J. Suzuki, and M. Nagata. JParaCrawl v3.0:

A large-scale English-Japanese parallel corpus. In N. Calzolari, F. Béchet,

P. Blache, K. Choukri, C. Cieri, T. Declerck, S. Goggi, H. Isahara, B. Mae-

gaard, J. Mariani, H. Mazo, J. Odijk, and S. Piperidis, editors, Proceedings

of the Thirteenth Language Resources and Evaluation Conference, pages

6704–6710, Marseille, France, June 2022. European Language Resources

Association. URL https://aclanthology.org/2022.lrec-1.721.

[84] M. Nagao. A framework of a mechanical translation between japanese and

english by analogy principle. In Proc. of the International NATO Sympo-

sium on Artificial and Human Intelligence, pages 173–180, 1984.

[85] T. Nakazawa, M. Yaguchi, K. Uchimoto, M. Utiyama, E. Sumita, S. Kuro-

hashi, and H. Isahara. ASPEC: Asian scientific paper excerpt corpus. In

N. Calzolari, K. Choukri, T. Declerck, S. Goggi, M. Grobelnik, B. Mae-

gaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, and S. Piperidis, edi-

tors, Proceedings of the Tenth International Conference on Language Re-

sources and Evaluation (LREC’16), pages 2204–2208, Portorož, Slove-

nia, May 2016. European Language Resources Association (ELRA). URL

https://aclanthology.org/L16-1350.

[86] M. Negri, M. Turchi, R. Chatterjee, and N. Bertoldi. ESCAPE: a large-scale

synthetic corpus for automatic post-editing. In N. Calzolari, K. Choukri,

C. Cieri, T. Declerck, S. Goggi, K. Hasida, H. Isahara, B. Maegaard,

J. Mariani, H. Mazo, A. Moreno, J. Odijk, S. Piperidis, and T. Toku-

naga, editors, Proceedings of the Eleventh International Conference on

96

https://aclanthology.org/2022.findings-acl.47
https://aclanthology.org/P19-2049
https://aclanthology.org/2022.lrec-1.721
https://aclanthology.org/L16-1350

Language Resources and Evaluation (LREC 2018), Miyazaki, Japan, May

2018. European Language Resources Association (ELRA). URL https:

//aclanthology.org/L18-1004.

[87] G. Neubig. The Kyoto free translation task.

http://www.phontron.com/kftt, 2011.

[88] G. Neubig. Forest-to-string SMT for Asian language translation: NAIST at

WAT 2014. In T. Nakazawa, H. Mino, I. Goto, S. Kurohashi, and E. Sumita,

editors, Proceedings of the 1st Workshop on Asian Translation (WAT2014),

pages 20–25, Tokyo, Japan, Oct. 2014. Workshop on Asian Translation.

URL https://aclanthology.org/W14-7002.

[89] K. Omelianchuk, V. Atrasevych, A. Chernodub, and O. Skurzhanskyi.

GECToR – grammatical error correction: Tag, not rewrite. In J. Burstein,

E. Kochmar, C. Leacock, N. Madnani, I. Pilán, H. Yannakoudakis, and

T. Zesch, editors, Proceedings of the Fifteenth Workshop on Innovative Use

of NLP for Building Educational Applications, pages 163–170, Seattle, WA,

USA → Online, July 2020. Association for Computational Linguistics. doi:

10.18653/v1/2020.bea-1.16. URL https://aclanthology.org/2020.bea-1.16.

[90] M. Ott, M. Auli, D. Grangier, and M. Ranzato. Analyzing uncertainty

in neural machine translation. In J. G. Dy and A. Krause, editors, Pro-

ceedings of the 35th International Conference on Machine Learning, ICML

2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80

of Proceedings of Machine Learning Research, pages 3953–3962. PMLR,

2018.

[91] M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grangier,

and M. Auli. fairseq: A fast, extensible toolkit for sequence modeling.

In W. Ammar, A. Louis, and N. Mostafazadeh, editors, Proceedings of

the 2019 Conference of the North American Chapter of the Association

for Computational Linguistics (Demonstrations), pages 48–53, Minneapolis,

Minnesota, June 2019. Association for Computational Linguistics. doi: 10.

18653/v1/N19-4009. URL https://aclanthology.org/N19-4009.

97

https://aclanthology.org/L18-1004
https://aclanthology.org/L18-1004
https://aclanthology.org/W14-7002
https://aclanthology.org/2020.bea-1.16
https://aclanthology.org/N19-4009

[92] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for

automatic evaluation of machine translation. In P. Isabelle, E. Charniak,

and D. Lin, editors, Proceedings of the 40th Annual Meeting of the Asso-

ciation for Computational Linguistics, pages 311–318, Philadelphia, Penn-

sylvania, USA, July 2002. Association for Computational Linguistics. doi:

10.3115/1073083.1073135. URL https://aclanthology.org/P02-1040.

[93] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-

sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:

Machine learning in Python. Journal of Machine Learning Research, 12:

2825–2830, 2011.

[94] M. Post. A call for clarity in reporting BLEU scores. In O. Bojar, R. Chat-

terjee, C. Federmann, M. Fishel, Y. Graham, B. Haddow, M. Huck, A. J.

Yepes, P. Koehn, C. Monz, M. Negri, A. Névéol, M. Neves, M. Post, L. Spe-

cia, M. Turchi, and K. Verspoor, editors, Proceedings of the Third Con-

ference on Machine Translation: Research Papers, pages 186–191, Brus-

sels, Belgium, Oct. 2018. Association for Computational Linguistics. doi:

10.18653/v1/W18-6319. URL https://aclanthology.org/W18-6319.

[95] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou,

W. Li, and P. J. Liu. Exploring the limits of transfer learning with a unified

text-to-text transformer. Journal of Machine Learning Research, 21(140):

1–67, 2020. URL http://jmlr.org/papers/v21/20-074.html.

[96] T. Ranasinghe, C. Orasan, and R. Mitkov. TransQuest: Translation quality

estimation with cross-lingual transformers. In D. Scott, N. Bel, and C. Zong,

editors, Proceedings of the 28th International Conference on Computational

Linguistics, pages 5070–5081, Barcelona, Spain (Online), Dec. 2020. Inter-

national Committee on Computational Linguistics. doi: 10.18653/v1/2020.

coling-main.445. URL https://aclanthology.org/2020.coling-main.445.

[97] T. Ranasinghe, C. Orasan, and R. Mitkov. An exploratory analysis of

multilingual word-level quality estimation with cross-lingual transformers.

In C. Zong, F. Xia, W. Li, and R. Navigli, editors, Proceedings of the

98

https://aclanthology.org/P02-1040
https://aclanthology.org/W18-6319
http://jmlr.org/papers/v21/20-074.html
https://aclanthology.org/2020.coling-main.445

59th Annual Meeting of the Association for Computational Linguistics and

the 11th International Joint Conference on Natural Language Processing

(Volume 2: Short Papers), pages 434–440, Online, Aug. 2021. Association

for Computational Linguistics. doi: 10.18653/v1/2021.acl-short.55. URL

https://aclanthology.org/2021.acl-short.55.

[98] R. Rei, C. Stewart, A. C. Farinha, and A. Lavie. COMET: A neural frame-

work for MT evaluation. In B. Webber, T. Cohn, Y. He, and Y. Liu, edi-

tors, Proceedings of the 2020 Conference on Empirical Methods in Natural

Language Processing (EMNLP), pages 2685–2702, Online, Nov. 2020. Asso-

ciation for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.

213. URL https://aclanthology.org/2020.emnlp-main.213.

[99] R. Rei, J. G. C. de Souza, D. Alves, C. Zerva, A. C. Farinha, T. Glushkova,

A. Lavie, L. Coheur, and A. F. T. Martins. COMET-22: Unbabel-IST

2022 submission for the metrics shared task. In P. Koehn, L. Barrault,

O. Bojar, F. Bougares, R. Chatterjee, M. R. Costa-jussà, C. Federmann,

M. Fishel, A. Fraser, M. Freitag, Y. Graham, R. Grundkiewicz, P. Guzman,

B. Haddow, M. Huck, A. Jimeno Yepes, T. Kocmi, A. Martins, M. Mor-

ishita, C. Monz, M. Nagata, T. Nakazawa, M. Negri, A. Névéol, M. Neves,

M. Popel, M. Turchi, and M. Zampieri, editors, Proceedings of the Seventh

Conference on Machine Translation (WMT), pages 578–585, Abu Dhabi,

United Arab Emirates (Hybrid), Dec. 2022. Association for Computational

Linguistics. URL https://aclanthology.org/2022.wmt-1.52.

[100] R. Rei, M. Treviso, N. M. Guerreiro, C. Zerva, A. C. Farinha, C. Maroti,

J. G. C. de Souza, T. Glushkova, D. Alves, L. Coheur, A. Lavie, and A. F. T.

Martins. CometKiwi: IST-unbabel 2022 submission for the quality estima-

tion shared task. In P. Koehn, L. Barrault, O. Bojar, F. Bougares, R. Chat-

terjee, M. R. Costa-jussà, C. Federmann, M. Fishel, A. Fraser, M. Fre-

itag, Y. Graham, R. Grundkiewicz, P. Guzman, B. Haddow, M. Huck,

A. Jimeno Yepes, T. Kocmi, A. Martins, M. Morishita, C. Monz, M. Na-

gata, T. Nakazawa, M. Negri, A. Névéol, M. Neves, M. Popel, M. Turchi,

and M. Zampieri, editors, Proceedings of the Seventh Conference on Ma-

chine Translation (WMT), pages 634–645, Abu Dhabi, United Arab Emi-

99

https://aclanthology.org/2021.acl-short.55
https://aclanthology.org/2020.emnlp-main.213
https://aclanthology.org/2022.wmt-1.52

rates (Hybrid), Dec. 2022. Association for Computational Linguistics. URL

https://aclanthology.org/2022.wmt-1.60.

[101] N. Reimers and I. Gurevych. Sentence-BERT: Sentence embeddings us-

ing Siamese BERT-networks. In K. Inui, J. Jiang, V. Ng, and X. Wan,

editors, Proceedings of the 2019 Conference on Empirical Methods in Nat-

ural Language Processing and the 9th International Joint Conference on

Natural Language Processing (EMNLP-IJCNLP), pages 3982–3992, Hong

Kong, China, Nov. 2019. Association for Computational Linguistics. doi:

10.18653/v1/D19-1410. URL https://aclanthology.org/D19-1410.

[102] S. Schneider, A. Baevski, R. Collobert, and M. Auli. wav2vec: Unsuper-

vised pre-training for speech recognition. In G. Kubin and Z. Kacic, edi-

tors, Interspeech 2019, 20th Annual Conference of the International Speech

Communication Association, Graz, Austria, 15-19 September 2019, pages

3465–3469. ISCA, 2019. doi: 10.21437/INTERSPEECH.2019-1873.

[103] H. Schwenk, G. Wenzek, S. Edunov, E. Grave, A. Joulin, and A. Fan.

CCMatrix: Mining billions of high-quality parallel sentences on the web.

In C. Zong, F. Xia, W. Li, and R. Navigli, editors, Proceedings of the

59th Annual Meeting of the Association for Computational Linguistics and

the 11th International Joint Conference on Natural Language Processing

(Volume 1: Long Papers), pages 6490–6500, Online, Aug. 2021. Association

for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.507. URL

https://aclanthology.org/2021.acl-long.507.

[104] T. Sellam, D. Das, and A. Parikh. BLEURT: Learning robust metrics for

text generation. In D. Jurafsky, J. Chai, N. Schluter, and J. Tetreault,

editors, Proceedings of the 58th Annual Meeting of the Association for

Computational Linguistics, pages 7881–7892, Online, July 2020. Associa-

tion for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.704.

URL https://aclanthology.org/2020.acl-main.704.

[105] R. Sennrich, B. Haddow, and A. Birch. Improving neural machine trans-

lation models with monolingual data. In K. Erk and N. A. Smith, edi-

tors, Proceedings of the 54th Annual Meeting of the Association for Com-

100

https://aclanthology.org/2022.wmt-1.60
https://aclanthology.org/D19-1410
https://aclanthology.org/2021.acl-long.507
https://aclanthology.org/2020.acl-main.704

putational Linguistics (Volume 1: Long Papers), pages 86–96, Berlin,

Germany, Aug. 2016. Association for Computational Linguistics. doi:

10.18653/v1/P16-1009. URL https://aclanthology.org/P16-1009.

[106] A. Sharma, P. Gupta, and A. Nelakanti. Adapting neural machine trans-

lation for automatic post-editing. In L. Barrault, O. Bojar, F. Bougares,

R. Chatterjee, M. R. Costa-jussa, C. Federmann, M. Fishel, A. Fraser,

M. Freitag, Y. Graham, R. Grundkiewicz, P. Guzman, B. Haddow,

M. Huck, A. J. Yepes, P. Koehn, T. Kocmi, A. Martins, M. Morishita, and

C. Monz, editors, Proceedings of the Sixth Conference on Machine Trans-

lation, pages 315–319, Online, Nov. 2021. Association for Computational

Linguistics. URL https://aclanthology.org/2021.wmt-1.35.

[107] M. Snover, B. Dorr, R. Schwartz, L. Micciulla, and J. Makhoul. A study

of translation edit rate with targeted human annotation. In Proceedings

of the 7th Conference of the Association for Machine Translation in the

Americas: Technical Papers, pages 223–231, Cambridge, Massachusetts,

USA, Aug. 8-12 2006. Association for Machine Translation in the Americas.

URL https://aclanthology.org/2006.amta-papers.25.

[108] L. Specia, F. Blain, M. Fomicheva, E. Fonseca, V. Chaudhary, F. Guzmán,

and A. F. T. Martins. Findings of the WMT 2020 shared task on qual-

ity estimation. In L. Barrault, O. Bojar, F. Bougares, R. Chatterjee,

M. R. Costa-jussà, C. Federmann, M. Fishel, A. Fraser, Y. Graham,

P. Guzman, B. Haddow, M. Huck, A. J. Yepes, P. Koehn, A. Martins,

M. Morishita, C. Monz, M. Nagata, T. Nakazawa, and M. Negri, editors,

Proceedings of the Fifth Conference on Machine Translation, pages 743–

764, Online, Nov. 2020. Association for Computational Linguistics. URL

https://aclanthology.org/2020.wmt-1.79.

[109] F. Stahlberg and S. Kumar. Seq2Edits: Sequence transduction using span-

level edit operations. In B. Webber, T. Cohn, Y. He, and Y. Liu, editors,

Proceedings of the 2020 Conference on Empirical Methods in Natural Lan-

guage Processing (EMNLP), pages 5147–5159, Online, Nov. 2020. Associ-

101

https://aclanthology.org/P16-1009
https://aclanthology.org/2021.wmt-1.35
https://aclanthology.org/2006.amta-papers.25
https://aclanthology.org/2020.wmt-1.79

ation for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.

418. URL https://aclanthology.org/2020.emnlp-main.418.

[110] P. Stanchev, W. Wang, and H. Ney. EED: Extended edit distance mea-

sure for machine translation. In O. Bojar, R. Chatterjee, C. Federmann,

M. Fishel, Y. Graham, B. Haddow, M. Huck, A. J. Yepes, P. Koehn, A. Mar-

tins, C. Monz, M. Negri, A. Névéol, M. Neves, M. Post, M. Turchi, and

K. Verspoor, editors, Proceedings of the Fourth Conference on Machine

Translation (Volume 2: Shared Task Papers, Day 1), pages 514–520, Flo-

rence, Italy, Aug. 2019. Association for Computational Linguistics. doi:

10.18653/v1/W19-5359. URL https://aclanthology.org/W19-5359.

[111] M. Sundararajan, A. Taly, and Q. Yan. Axiomatic attribution for deep

networks. In Proceedings of the 34th International Conference on Machine

Learning - Volume 70, ICML’17, page 3319 ‒ 3328. JMLR.org, 2017.

[112] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with

neural networks. In Proceedings of the 27th International Conference on

Neural Information Processing Systems - Volume 2, NIPS’14, page 3104 ‒
3112, Cambridge, MA, USA, 2014. MIT Press.

[113] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

L. Kaiser, and I. Polosukhin. Attention is all you need. In I. Guyon,

U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and

R. Garnett, editors, Advances in Neural Information Processing Systems

30, pages 5998–6008. Curran Associates, Inc., 2017.

[114] O. Vinyals, M. Fortunato, and N. Jaitly. Pointer networks. In C. Cortes,

N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors, Advances

in Neural Information Processing Systems, volume 28. Curran Asso-

ciates, Inc., 2015. URL https://proceedings.neurips.cc/paper/2015/file/

29921001f2f04bd3baee84a12e98098f-Paper.pdf.

[115] E. Voita, D. Talbot, F. Moiseev, R. Sennrich, and I. Titov. Analyzing multi-

head self-attention: Specialized heads do the heavy lifting, the rest can be

pruned. In A. Korhonen, D. Traum, and L. Màrquez, editors, Proceedings of

102

https://aclanthology.org/2020.emnlp-main.418
https://aclanthology.org/W19-5359
https://proceedings.neurips.cc/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf

the 57th Annual Meeting of the Association for Computational Linguistics,

pages 5797–5808, Florence, Italy, July 2019. Association for Computational

Linguistics. doi: 10.18653/v1/P19-1580. URL https://aclanthology.org/

P19-1580.

[116] E. Voita, R. Sennrich, and I. Titov. Analyzing the source and target

contributions to predictions in neural machine translation. In C. Zong,

F. Xia, W. Li, and R. Navigli, editors, Proceedings of the 59th An-

nual Meeting of the Association for Computational Linguistics and the

11th International Joint Conference on Natural Language Processing (Vol-

ume 1: Long Papers), pages 1126–1140, Online, Aug. 2021. Association

for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.91. URL

https://aclanthology.org/2021.acl-long.91.

[117] T.-T. Vu and G. Haffari. Automatic post-editing of machine translation: A

neural programmer-interpreter approach. In E. Riloff, D. Chiang, J. Hock-

enmaier, and J. Tsujii, editors, Proceedings of the 2018 Conference on Em-

pirical Methods in Natural Language Processing, pages 3048–3053, Brussels,

Belgium, Oct.-Nov. 2018. Association for Computational Linguistics. doi:

10.18653/v1/D18-1341. URL https://aclanthology.org/D18-1341.

[118] J. Wang, K. Wang, K. Fan, Y. Zhang, J. Lu, X. Ge, Y. Shi, and Y. Zhao.

Alibaba’s submission for the WMT 2020 APE shared task: Improving au-

tomatic post-editing with pre-trained conditional cross-lingual BERT. In

L. Barrault, O. Bojar, F. Bougares, R. Chatterjee, M. R. Costa-jussà,

C. Federmann, M. Fishel, A. Fraser, Y. Graham, P. Guzman, B. Had-

dow, M. Huck, A. J. Yepes, P. Koehn, A. Martins, M. Morishita, C. Monz,

M. Nagata, T. Nakazawa, and M. Negri, editors, Proceedings of the Fifth

Conference on Machine Translation, pages 789–796, Online, Nov. 2020.

Association for Computational Linguistics. URL https://aclanthology.org/

2020.wmt-1.84.

[119] W. Wang, G. Chen, H. Wang, Y. Han, and Y. Chen. Multilingual

sentence transformer as a multilingual word aligner. In Y. Goldberg,

Z. Kozareva, and Y. Zhang, editors, Findings of the Association for Com-

103

https://aclanthology.org/P19-1580
https://aclanthology.org/P19-1580
https://aclanthology.org/2021.acl-long.91
https://aclanthology.org/D18-1341
https://aclanthology.org/2020.wmt-1.84
https://aclanthology.org/2020.wmt-1.84

putational Linguistics: EMNLP 2022, pages 2952–2963, Abu Dhabi, United

Arab Emirates, Dec. 2022. Association for Computational Linguistics.

doi: 10.18653/v1/2022.findings-emnlp.215. URL https://aclanthology.org/

2022.findings-emnlp.215.

[120] J. Wieting, T. Berg-Kirkpatrick, K. Gimpel, and G. Neubig. Beyond

BLEU:training neural machine translation with semantic similarity. In

A. Korhonen, D. Traum, and L. Màrquez, editors, Proceedings of the

57th Annual Meeting of the Association for Computational Linguistics,

pages 4344–4355, Florence, Italy, July 2019. Association for Computational

Linguistics. doi: 10.18653/v1/P19-1427. URL https://aclanthology.org/

P19-1427.

[121] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,

M. Krikun, Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah, M. John-

son, X. Liu, L. Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens,

G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J. Riesa, A. Rudnick,

O. Vinyals, G. Corrado, M. Hughes, and J. Dean. Google’s neural machine

translation system: Bridging the gap between human and machine transla-

tion. CoRR, abs/1609.08144, 2016. URL http://arxiv.org/abs/1609.08144.

[122] J. Xu, J. Crego, and J. Senellart. Boosting neural machine translation with

similar translations. In D. Jurafsky, J. Chai, N. Schluter, and J. Tetreault,

editors, Proceedings of the 58th Annual Meeting of the Association for Com-

putational Linguistics, pages 1580–1590, Online, July 2020. Association

for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.144. URL

https://aclanthology.org/2020.acl-main.144.

[123] H. Yamagiwa, M. Oyama, and H. Shimodaira. Discovering universal geom-

etry in embeddings with ICA. In H. Bouamor, J. Pino, and K. Bali, editors,

Proceedings of the 2023 Conference on Empirical Methods in Natural Lan-

guage Processing, pages 4647–4675, Singapore, Dec. 2023. Association for

Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.283. URL

https://aclanthology.org/2023.emnlp-main.283.

[124] H. Yang, M. Wang, D. Wei, H. Shang, J. Guo, Z. Li, L. Lei, Y. Qin,

104

https://aclanthology.org/2022.findings-emnlp.215
https://aclanthology.org/2022.findings-emnlp.215
https://aclanthology.org/P19-1427
https://aclanthology.org/P19-1427
http://arxiv.org/abs/1609.08144
https://aclanthology.org/2020.acl-main.144
https://aclanthology.org/2023.emnlp-main.283

S. Tao, S. Sun, and Y. Chen. HW-TSC’s participation at WMT 2020

automatic post editing shared task. In L. Barrault, O. Bojar, F. Bougares,

R. Chatterjee, M. R. Costa-jussà, C. Federmann, M. Fishel, A. Fraser,

Y. Graham, P. Guzman, B. Haddow, M. Huck, A. J. Yepes, P. Koehn,

A. Martins, M. Morishita, C. Monz, M. Nagata, T. Nakazawa, and M. Negri,

editors, Proceedings of the Fifth Conference on Machine Translation, pages

797–802, Online, Nov. 2020. Association for Computational Linguistics.

URL https://aclanthology.org/2020.wmt-1.85.

[125] Y. Yang, L. Huang, and M. Ma. Breaking the beam search curse: A study of

(re-)scoring methods and stopping criteria for neural machine translation.

In E. Riloff, D. Chiang, J. Hockenmaier, and J. Tsujii, editors, Proceed-

ings of the 2018 Conference on Empirical Methods in Natural Language

Processing, pages 3054–3059, Brussels, Belgium, Oct.-Nov. 2018. Associ-

ation for Computational Linguistics. doi: 10.18653/v1/D18-1342. URL

https://aclanthology.org/D18-1342.

[126] Z. Yang, F. Meng, Y. Zhang, E. Li, and J. Zhou. Findings of the WMT

2022 shared task on translation suggestion. In P. Koehn, L. Barrault,

O. Bojar, F. Bougares, R. Chatterjee, M. R. Costa-jussà, C. Federmann,

M. Fishel, A. Fraser, M. Freitag, Y. Graham, R. Grundkiewicz, P. Guzman,

B. Haddow, M. Huck, A. Jimeno Yepes, T. Kocmi, A. Martins, M. Mor-

ishita, C. Monz, M. Nagata, T. Nakazawa, M. Negri, A. Névéol, M. Neves,

M. Popel, M. Turchi, and M. Zampieri, editors, Proceedings of the Seventh

Conference on Machine Translation (WMT), pages 821–829, Abu Dhabi,

United Arab Emirates (Hybrid), Dec. 2022. Association for Computational

Linguistics. URL https://aclanthology.org/2022.wmt-1.76.

[127] Z. Yang, F. Meng, Y. Zhang, E. Li, and J. Zhou. WeTS: A benchmark

for translation suggestion. In Y. Goldberg, Z. Kozareva, and Y. Zhang,

editors, Proceedings of the 2022 Conference on Empirical Methods in Nat-

ural Language Processing, pages 5278–5290, Abu Dhabi, United Arab

Emirates, Dec. 2022. Association for Computational Linguistics. doi:

10.18653/v1/2022.emnlp-main.353. URL https://aclanthology.org/2022.

emnlp-main.353.

105

https://aclanthology.org/2020.wmt-1.85
https://aclanthology.org/D18-1342
https://aclanthology.org/2022.wmt-1.76
https://aclanthology.org/2022.emnlp-main.353
https://aclanthology.org/2022.emnlp-main.353

[128] G. Yasui, Y. Tsuruoka, and M. Nagata. Using semantic similarity as

reward for reinforcement learning in sentence generation. In F. Alva-

Manchego, E. Choi, and D. Khashabi, editors, Proceedings of the 57th

Annual Meeting of the Association for Computational Linguistics: Stu-

dent Research Workshop, pages 400–406, Florence, Italy, July 2019. As-

sociation for Computational Linguistics. doi: 10.18653/v1/P19-2056. URL

https://aclanthology.org/P19-2056.

[129] J. Zhang, M. Wang, Q. Liu, and J. Zhou. Incorporating word reordering

knowledge into attention-based neural machine translation. In R. Barzilay

and M.-Y. Kan, editors, Proceedings of the 55th Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers), pages

1524–1534, Vancouver, Canada, July 2017. Association for Computational

Linguistics. doi: 10.18653/v1/P17-1140. URL https://aclanthology.org/

P17-1140.

[130] J. Zhang, M. Utiyama, E. Sumita, G. Neubig, and S. Nakamura. Guiding

neural machine translation with retrieved translation pieces. In M. Walker,

H. Ji, and A. Stent, editors, Proceedings of the 2018 Conference of the

North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, Volume 1 (Long Papers), pages 1325–1335,

New Orleans, Louisiana, June 2018. Association for Computational Linguis-

tics. doi: 10.18653/v1/N18-1120. URL https://aclanthology.org/N18-1120.

[131] X. Zheng, Z. Zhang, J. Guo, S. Huang, B. Chen, W. Luo, and J. Chen.

Adaptive nearest neighbor machine translation. In C. Zong, F. Xia, W. Li,

and R. Navigli, editors, Proceedings of the 59th Annual Meeting of the As-

sociation for Computational Linguistics and the 11th International Joint

Conference on Natural Language Processing (Volume 2: Short Papers),

pages 368–374, Online, Aug. 2021. Association for Computational Linguis-

tics. doi: 10.18653/v1/2021.acl-short.47. URL https://aclanthology.org/

2021.acl-short.47.

106

https://aclanthology.org/P19-2056
https://aclanthology.org/P17-1140
https://aclanthology.org/P17-1140
https://aclanthology.org/N18-1120
https://aclanthology.org/2021.acl-short.47
https://aclanthology.org/2021.acl-short.47

Appendices

A Detector–Corrector: Edit-Based Automatic

Post Editing for Human Post-Editing –

Supplementary Material

A.1 Tools, Models, and Datasets

Tools We implemented all models in fairseq which is published under the

MIT-license.

Models We used the following pre-trained NMTmodels implemented in fairseq

to create the training data.

• En-De: https://www.quest.dcs.shef.ac.uk/wmt20 files qe/models en-de.tar.

gz

• En-Zh:https://www.quest.dcs.shef.ac.uk/wmt20 files qe/models en-zh.tar.gz

Our models were trained by using NVIDIA A6000 GPU. The training costs,

“GPU hours”, multiplied by the number of GPUs and computation time, are

shown in Table A.1. Note that the translation performance for each model was

evaluated with only a single training.

Datasets We evaluated all models using WMT’20 APE datasets published un-

der the Creative Commons Zero v1.0 Universal license. Parallel data of the

WMT’19 En-De and En-Zh translation tasks, used in our training data, can

be used for research purposes as described in https://www.statmt.org/wmt19/

107

https://www.quest.dcs.shef.ac.uk/wmt20_files_qe/models_en-de.tar.gz
https://www.quest.dcs.shef.ac.uk/wmt20_files_qe/models_en-de.tar.gz
https://www.quest.dcs.shef.ac.uk/wmt20_files_qe/models_en-zh.tar.gz
https://www.statmt.org/wmt19/translation-task.html
https://www.statmt.org/wmt19/translation-task.html

translation-task.html. In the En-Zh task, we tokenized the test set of the En-Zh

APE task using jieba1 to calculate the TER and BLEU scores.

The statistics of the training data are shown in Table A.2.

1https://github.com/fxsjy/jieba

108

https://www.statmt.org/wmt19/translation-task.html
https://github.com/fxsjy/jieba

Seq2Seq

Encoder XLM-R large

#layers 24

Decoder Transformer decoder

#layers 6

Hidden size 1024

FFN hidden size 4096

Learning rate 1e-4

Batch size 24,000 tokens

Training steps 60,000

Training cost 24.6 GPU hours

LevT

Encoder XLM-R large

#layers 24

Decoder Transformer decoder

#layers 6

Hidden size 1024

FFN hidden size 4096

Learning rate 1e-4

Batch size 12,000 tokens

Training steps 60,000

Training cost 12.4 GPU hours

Detector

Encoder XLM-R large

#layers 24

Decoder Transformer decoder

#layers 4

Hidden size 1024

FFN hidden size 4096

Learning rate 3e-5

Batch size 6,000 tokens

Training steps 40,000

Training cost 8.0 GPU hours

Corrector

Encoder XLM-R large

#layers 24

Decoder Transformer decoder

#layers 6

Hidden size 1024

FFN hidden size 4096

Learning rate 1e-4

Batch size 24,000 tokens

Training steps 60,000

Training cost 29.0 GPU hours

Table A.1: Hyperparameters of the models.

109

DAug for detector

w/o w/

(1) APE task data 7,000 7,000

(2) Translation task data 2,000,000 2,000,000

Training data of detector

Base data: (1)×20 + (2) 2,140,000 4,280,000

Training data of corrector

Base data: (1)×20 + (2) 2,140,000 4,280,000

+ MT training 4,280,000 8,560,000

+ PE training 4,280,000 8,560,000

+ MT & PE training 6,420,000 12,840,000

Table A.2: Statistics of the training data. In the experiment, to make the differ-

ence in data size fair, we trained with the same number of parameter

updates without using the number of epochs, i.e., the number of train-

ing epochs decreases as the data size increases.

Dataset Development Test

WMT’20 En-De APE 1,000 1,000

WMT’20 En-Zh APE 1,000 1,000

Table A.3: Statistics of the development and test sets.

110

List of Publications

Journals

1. Hiroyuki Deguchi, Taro Watanabe, Yusuke Matsui, Masao Utiyama, Hideki

Tanaka, Eiichiro Sumita. “Subset Retrieval Nearest Neighbor Machine

Translation”, 自然言語処理, Vol.31, No.2, pp.374–406 , 2024年 6月.

2. 出口 祥之, 内山 将夫, 田村 晃裕, 二宮 崇, 隅田 英一郎. “ニューラル機械
翻訳のためのバイリンガルなサブワード分割”, 自然言語処理, Vol.28, No.2,

pp.632–650, 2021年 6月.

3. 出口 祥之, 田村 晃裕, 二宮 崇. “係り受け構造に基づく Attentionの制約
を用いた Transformerニューラル機械翻訳”, 自然言語処理, Vol.27, No.3,

pp.553–571, 2020年 9月.

International Conferences and Workshops

1. Hiroyuki Deguchi, Yusuke Sakai, Hidetaka Kamigaito, Taro Watanabe,

Hideki Tanaka, Masao Utiyama. “Centroid-Based Efficient Minimum Bayes

Risk Decoding”, Findings of the Association for Computational Linguistics:

ACL2024 (Findings of ACL2024), pp. 11009–11018, Bangkok, Thailand,

August 2024.

2. Hiroyuki Deguchi, Masaaki Nagata, Taro Watanabe. “Detector–Corrector:

Edit-Based Automatic Post Editing for Human Post Editing”, Proceedings

of the 25th Annual Conference of the European Association for Machine

Translation (EAMT2024), pp. 191–206, Sheffield, United Kingdom, June

2024.

111

3. Hiroyuki Deguchi, Kenji Imamura, Yuto Nishida, Yusuke Sakai, Justin Vas-

selli, Taro Watanabe. “NAIST-NICT WMT’23 General MT Task Sub-

mission”, Proceedings of the Eighth Conference on Machine Translation

(WMT’23), pp.110–118, Singapore, December 2023.

4. Hiroyuki Deguchi, Taro Watanabe, Yusuke Matsui, Masao Utiyama, Hideki

Tanaka, Eiichiro Sumita, “Subset Retrieval Nearest Neighbor Machine Trans-

lation”, Proceedings of the 61st Annual Meeting of the Association for Com-

putational Linguistics (Volume 1: Long Papers) (ACL2023), pp.174–189,

Toronto, Canada, July 2023.

5. Hiroyuki Deguchi, Kenji Imamura, Masahiro Kaneko, Yuto Nishida, Yusuke

Sakai, Justin Vasselli, Huy Hien Vu, Taro Watanabe. “NAIST-NICT-TIT

WMT22 General MT Task Submission”, Proceedings of the Seventh Con-

ference on Machine Translation (WMT’22), pp.244–250, Abu Dhabi, United

Arab Emirates (Hybrid), December 2022.

6. Hiroyuki Deguchi, Akihiro Tamura, Takashi Ninomiya. “Synchronous Syn-

tactic Attention for Transformer NMT”, Proceedings of the 59th Annual

Meeting of the Association for Computational Linguistics and the 11th In-

ternational Joint Conference on Natural Language Processing: Student Re-

search Workshop (ACL-IJCNLP SRW 2021), pp.348–355, Bangkok, Thai-

land (Online), August 2021.

7. Hiroyuki Deguchi, Masao Utiyama, Akihiro Tamura, Takashi Ninomiya,

Eiichiro Sumita. “Bilingual Subword Segmentation for Neural Machine

Translation”, Proceedings of the 28th International Conference on Com-

putational Linguistics (COLING 2020), pp.4287 ‒ 4297, Barcelona, Spain

(Online), December 2020.

8. Hiroyuki Deguchi, Akihiro Tamura, Takashi Ninomiya. “Dependency-Based

Self-Attention for Transformer NMT”, Proceedings of International Con-

ference Recent Advances in Natural Language Processing (RANLP 2019),

pp.239 ‒ 246, Varna, Bulgaria, September 2019.

112

Domestic Conferences

1. 出口 祥之, 鴨田 豪, 松下 祐介, 慶田 開, 和賀 正樹, 横井 祥, “柔らかい
grep/KWICに向けて：高速単語列マッチングの埋め込み表現による連続
化”, NLP若手の会 (YANS) 第 19回シンポジウム (2024), 2024年 9月. (デ
モ賞, リクルート賞)

2. 夏見 昂樹, 出口 祥之, 上垣外 英剛, 渡辺 太郎, “知識蒸留モデルと合意をと
る頑健な行列補完を用いた高速な確率的最小ベイズリスク復号法”, NLP若
手の会 (YANS) 第 19回シンポジウム (2024), 2024年 9月.

3. 岩國 巧, 出口 祥之, 上垣外 英剛, 渡辺 太郎, “機械翻訳の評価指標における
信頼度の評価”, NLP若手の会 (YANS) 第 19回シンポジウム (2024), 2024

年 9月.

4. 五藤 巧, 出口 祥之, 上垣外 英剛, 渡辺 太郎, “k近傍事例を用いたニューラ
ルモデルの予測における定量的な解釈”, 情報処理学会研究報告, 自然言語
処理研究会, 2024-NL-261 (15), pp.1–9, 2024年 9月.

5. 出口 祥之, 渡辺 太郎, 松井 勇佑, 内山 将夫, 田中 英輝, 隅田 英一郎, “サブ
セット探索を用いた高速な kNNニューラル機械翻訳”, 第 1回AAMT若手
翻訳研究会, 2024年 3月. (最優秀賞)

6. 出口 祥之, 坂井 優介, 上垣外 英剛, 渡辺 太郎, “疑似参照訳文ベクトルの重
心に基づく高速なニューラル最小ベイズリスク復号”, 言語処理学会 第 30

回年次大会, 2024年 3月. (シェルパ・アンド・カンパニー賞)

7. 西田 悠人, 森下 睦, 出口 祥之, 上垣外 英剛, 渡辺 太郎, “kNN言語モデル
は低頻度語の予測に役立つか？”, 言語処理学会 第 30回年次大会, 2024年 3

月. (第一著者若手奨励賞)

8. 出口 祥之, 平野 颯, 星野 智紀, 西田 悠人, Justin Vasselli, 渡辺 太郎, “knn-

seq: 高速・拡張可能なkNN機械翻訳フレームワーク”, NLP若手の会 (YANS)

第 18回シンポジウム (2023), 2023年 8月. (奨励賞)

9. 林 和樹, 出口 祥之, Xincan Feng, 上垣外 英剛, 林 克彦, 渡辺 太郎, “kNN-

LMによる知識グラフを用いた大規模言語モデルにおける知識の操作”, NLP

113

若手の会 (YANS) 第 18回シンポジウム (2023), 2023年 8月. (第一著者奨
励賞)

10. 出口 祥之, 渡辺 太郎, 松井 勇佑, 内山 将夫, 田中 英輝, 隅田 英一郎, “近傍
文検索を用いたサブセット kNNニューラル機械翻訳”, 言語処理学会 第 29

回年次大会, pp.283 ‒ 288, 2023年 3月.

11. 芳賀 あかり, 平尾 努, 帖佐 克己, 本多 右京, 出口 祥之, 渡辺 太郎, “画像
キャプショニングのための制約語の抽出法”, 言語処理学会 第 29回年次大
会, pp.2206 ‒ 2210, 2023年 3月.

12. 井手 佑翼, 出口 祥之, 五藤 巧, Armin Sarhangzadeh, 渡辺 太郎. “後続文脈
の考慮が文法誤り訂正性能にもたらす影響の調査”, 情報処理学会研究報告,

自然言語処理研究会, 2022-NL-253, 2022年 9月.

13. 出口 祥之, 田村 晃裕, 二宮 崇. “同期注意制約を与えた依存構造に基づく
Transformer NMT”, 言語処理学会 第 27回年次大会, pp.1369 ‒ 1374, 2021

年 3月.

14. 佐々木 拓馬, 田村 晃裕, 出口 祥之, 二宮 崇, 加藤 恒夫. “逆順デコーダを用
いた係り受け構造に基づく Transformerニューラル機械翻訳”, 言語処理学
会 第 27回年次大会, pp.133 ‒ 137, 2021年 3月.

15. 出口 祥之, 内山 将夫, 田村 晃裕, 二宮 崇, 隅田 英一郎. “ニューラル機械翻
訳のためのバイリンガルなサブワード分割”, 情報処理学会研究報告, 自然
言語処理研究会, 2020-NL-246 (22), pp.1 ‒ 8, 2020年 12月. (優秀研究賞)

16. 出口 祥之, 田村 晃裕, 二宮 崇. “同期注意制約を与えた Transformerによ
るニューラル機械翻訳”, 言語処理学会 第 26回年次大会, pp.1459 ‒ 1462,

2020年 3月.

17. 出口 祥之, 田村 晃裕, 二宮 崇. “係り受け構造に基づくAttentionの制約を
用いたNMT”, 言語処理学会 第 25回年次大会, pp.13 ‒ 16, 2019年 3月.

114

Awards

1. 2024/09/06 デモ賞, リクルート賞, NLP若手の会 (YANS) 第 19回シンポジ
ウム (2024)

2. 2024/03/22 最優秀賞, 第 1回AAMT若手翻訳研究会

3. 2024/03/14 シェルパ・アンド・カンパニー賞, 言語処理学会 第 30回年次
大会

4. 2023/08/31 奨励賞, NLP若手の会 (YANS) 第 18回シンポジウム (2023)

5. 2022/01/14 優秀先端学生賞, 奈良先端科学技術大学院大学 創発的先端人材
育成

6. 2020/12/03 優秀研究賞, 情報処理学会 第 246回自然言語処理研究会

115

	Introduction
	Background
	Challenges in Neural Machine Translation
	Domain Adaptation
	Post-Editing

	Research Objective
	Structure of the Dissertation

	Preliminaries
	Machine Translation
	Approaches
	Evaluation

	k-Nearest-Neighbor Search
	Nearest Neighbor Search
	Product Quantization

	Subset Retrieval Nearest Neighbor Machine Translation
	Introduction
	kNN-MT
	Proposed Model: Subset kNN-MT
	Subset Retrieval
	Efficient Distance Computation Using Look-up Table
	Sentence Encoder

	Implementation Details
	Experiments
	Setup
	In-Domain Translation
	Domain Adaptation
	Multilingual Translation

	Discussion
	Case Study: Effects of Subset Search
	Diversity of Subset Sentences
	Analysis of Decoding Speed
	Relationship Between Neural/Non-neural Encoders and Translation Quality

	Related Work
	Limitations
	Conclusion

	Detector–Corrector: Edit-Based Automatic Post Editing for Human Post-Editing
	Introduction
	Background and Related Work
	Edit-Based Model
	Word-Level Quality Estimation
	Automatic Post Editing

	Proposed Model: Detector–Corrector
	Edit Operations
	Detector
	Corrector
	Data Augmentation
	Lightweight Iterative Refinement

	Experiments
	Setup
	Results

	Discussion
	Accuracy of the Detector
	Correction Performance of Oracle Tagged Sentences
	Ablation Study of Reordering
	Effectiveness of Iterative Refinement
	Case Study: Editing Process

	Limitations
	Conclusion

	Conclusion
	Summary
	Limitations and Future Work
	Detection and Correction Performance of Detector–Corrector
	Bridging Subset kNN-MT and Detector–Corrector
	Introduction Our Methods to Actual Translation Scene
	Applying Our Methods to Large Language Models
	Extension to Multimodal Models
	Human-Computer Interaction
	Interpretable Neural Machine Translation

	Acknowledgements
	Appendices
	Detector–Corrector: Edit-Based Automatic Post Editing for Human Post-Editing – Supplementary Material
	Tools, Models, and Datasets

	List of Publications

