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Toward Improved Inertial-based Odometry via

Learning-based IMU Online Calibration∗

Huakun Liu

Abstract

Modern navigation approaches, such as inertial odometry and visual-inertial

odometry, are highly dependent on the inertial measurement unit (IMU). How-

ever, for low-cost IMU, the uncalibrated bias and noise will quickly propagate er-

rors over time. This paper presents a deep data-driven inertial measurement unit

(IMU) online calibration (DUET) method that can compensate for the run-time

errors of the accelerometer and gyroscope to improve inertial-based odometry.

We design a differential error learning strategy based on the kinematic motion

model to train the sensor error compensation model. This strategy allows our

method to learn IMU sensor errors, such as scale factors, axis-misalignment, and

biases, solely from displacement and orientation increments given by external

tracking systems. Then during the odometry computation, the trained model

leverages the past inertial data to mitigate the sensor errors and thus reduces

the integration errors to reflect the odometry state. The experiments were con-

ducted on two public visual-inertial datasets. The results show that our method

can reduce the errors of the accelerometer and gyroscope by 52% and 87%, re-

spectively. These result in an average of 20% improvement in the orientation

estimation accuracy compared with state-of-the-art learning-based methods, an

average of 77% improvement in the velocity estimation accuracy compared with

those from raw accelerations, and an average of 20% improvement in the position

estimation accuracy of visual-inertial odometry, which is comparable to existing

learning-based methods with lower operational complexity.

Keywords: inertial sensors, calibration, localization, deep learning
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1 Introduction

Odometry is a process to track the position and orientation of the tracking tar-

get relative to its starting pose in a 3D space. It is a fundamental element for

various applications in health care [1,2], robotics [3], and virtual/augmented real-

ity [4]. Recent odometry methods are mainly inertial-based, such as visual-inertial

odometry (VIO) [5] and inertial-only odometry (IO) [6]. The essential compo-

nent of inertial-based odometry is the microelectromechanical system (MEMS)

inertial measurement unit (IMU). It consists of an accelerometer and a gyroscope

that measure accelerations and angular velocities to provide continuous and high-

frequency tracking.

VIO uses a lightweight camera to capture visual data and a low-cost and small-

size MEMS IMU to measure inertial data. By fusing the visual data and inertial

data, it has achieved centimeter-level accuracy in 6 degrees of freedom (DoF)

odometry [7]. However, in challenging scenes, such as extreme brightness and dy-

namic environments, its accuracy is degraded to meter-level when visual odometry

fails, and the odometry relies solely on IMU measurement integration [8]. IO is

seen as the most compact method because it utilizes only a small MEMS IMU

and has lower computational complexity and higher robustness to surrounding

changes. However, it suffers from low accuracy due to the rapid accumulation of

various IMU errors during the integration [6]. The MEMS IMU errors include

scale factors, axis-misalignment, zero-biases, and noise [9]. During the integra-

tion process, these errors explode exponentially with time. As a result, IO is

unreliable even for a few seconds.

IMU calibration is a method to diminish these problems. It is a process to

measure and compensate for gyroscope and accelerometer errors before or dur-

ing odometry computation to mitigate the negative impact of IMU errors on

inertial-based odometry results. Traditional offline calibration methods, such as
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the multi-position method, can identify the unknown error parameters by opti-

mization algorithms with external reference information [10–13]. However, they

have strict requirements for complicated procedures and expensive experimental

equipment, such as using a large-scale turntable and moving the device in spec-

ified patterns. Furthermore, they are not applicable to handling high non-linear

and time-varying errors [9]. Online calibration methods, such as sensor fusion

and filtering-based methods [14], can estimate and compensate for run-time IMU

errors by fusing multi-sensor and using additional information. It is capable of

handling poor offline calibration and time-varying sensor errors, thus improving

the odometry results at run-time. However, the performance is highly dependent

on the fused sensors’ reliability. For example, in visually challenging scenarios

such as dark environment, VIO no longer applies to error compensation [8]. The

dependencies on the additional sensors also prevent them from being used in IO.

Recent data-driven online calibration methods, such as Denoising IMU Gyro

(DIG) [15] and Temporal Convolutional Network Denoising IMU Gyro (TCN-

DIG) [16], use supervised learning to train a calibration model and then directly

output correction terms, that is, biases and noise, by inputting the run-time

inertial data. These learning-based standalone systems are capable of calibrating

complex run-time sensor errors from only IMU sequences and have demonstrated

superior performance over traditional filtering-based approaches [17].

In inertial-based odometry scenarios, it is feasible to learn an IMU calibra-

tion model in the training process using the dynamic positions and orientations

captured by high-precision tracking systems such as the laser tracker and the

optical tracker [18–21]. However, current methods require additional sensors

and assumption-based processed data such as derived accelerations based on the

constant-velocity assumption in addition to the tracking system. This increases

the operational complexity and limits the scenarios in which these data-driven

methods can be applied. Currently, there is still a lack of a simple yet univer-

sal data-driven calibration model and learning strategy for robust inertial-based

odometry.

The main challenge arises from the module that calibrates the accelerome-

ters. On the one hand, an accelerometer senses not only its linear acceleration

but also the local gravity. As a result, the presence of a standard gravity value
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leads to larger noise densities in accelerometers compared to gyroscopes. This

increases the difficulty of predicting its correction term, i.e., bias and noise [22].

On the other hand, tracking systems such as laser and optical trackers only cap-

ture high-precision positions and orientations. Training the gyroscope calibra-

tion model from the ground truth orientations is feasible because the orientation

can be obtained by directly integrating the angular velocity. However, train-

ing the accelerometer calibration model based on ground truth positions is not

straightforwardly feasible unless ground truth velocities or accelerations are also

provided [20].

Most data-driven IMU calibration studies have focused on learning the calibra-

tion model using extra sensors and assumption-based processed data, in addition

to high-precision tracking systems. However, in this work, we propose to learn

sensor errors solely from high-precision orientations and positions without addi-

tional sensors, which allows data-driven calibration to be applied to a broader

range of scenarios. This obtained performance is attributed to a loss function

designed based on the kinematic motion model. Moreover, we conducted the first

comprehensive experiments on datasets covering multiple scenarios using differ-

ent metrics to delve into the impact of data-driven calibration methods on IO

and VIO. Our main contributions are as follows:

• A deep data-driven IMU calibration method based on two connected dilated

convolution networks for calibrating dynamic gyroscope and accelerometer

data simultaneously. With this, we overcome the limitation of using sepa-

rate models to calibrate gyroscope and accelerometer data, respectively.

• A loss function based on the kinematic motion model for learning the er-

rors using solely ground truth positions and orientations. This simplifies

the learning process and improves the applicability of data-driven IMU cal-

ibration methods.

• A first thorough analysis through extensive experiments on sensor readings,

velocity, orientation, and position estimates to evaluate the impact of the

data-driven IMU calibration method on the 6-DoF inertial odometry and

visual-inertial odometry. The results reveal the effectiveness of data-driven

calibration on reducing the error accumulation rate of IO and improving

3



the robustness of VIO.

The rest of the paper is organized as follows. In Section 2, we introduce the re-

lated work, which includes traditional and state-of-the-art data-driven gyroscope

and accelerometer calibration methods. In Section 3, we introduce our deep IMU

calibration method. Finally, Section 4 provides the experimental results, and the

conclusions and future directions are presented in Section 5 and Section 6.
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2 Related works

With the introduction of deep learning methods, MEMS IMU calibrations can be

divided into two categories: traditional calibration and data-driven calibration.

2.1 Traditional Calibration

2.1.1 Traditional Offline Calibration

Traditional offline calibration methods use parameter state estimation algorithms

such as least squares [23] and maximum likelihood estimation [24] to solve the

error coefficient by fusing the IMU readings and external reference information.

Traditional calibration methods are further divided into two categories: non-

autonomous and autonomous calibration, based on the source of reference infor-

mation [9].

The reference information of non-autonomous calibration is obtained from

high-precision equipment such as high-precision turntables [25]. The control-

lable turntables make specific and accurate motion. Then the reference motion is

used to solve the IMU error parameters. They are the most accurate calibration

methods. However, due to the complex procedures and the need for expensive

equipment, non-autonomous calibration methods are only suitable for use in large

companies and in scenarios with specialized needs. Autonomous calibrations, on

the contrary, do not dependent on high-precision equipment. They rely on exter-

nal reference excitation, such as the local gravity, magnetic fields, and the Earth’

s rotation rate [23]. These methods based on the characteristics of the gyroscope

and accelerometer, that is, the static accelerometer measures only the gravity and

the static gyroscope measures the Earth’s rotation rate. In such cases, we can

use these natural reference value to optimize and correct the error parameters.

In addition, for 9-axis IMU, the magnetic fields measured by the magnetometer
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also provide a reference for correcting the gyroscope. Although these methods are

simpler and more efficient than non-autonomous calibration methods, they may

fail for low-cost MEMS IMUs due to the inability to sense smaller natural refer-

ences and external environmental disturbances. For example, low-cost gyroscopes

cannot accurately sense the Earth’s rotation, and indoor geomagnetic fields can-

not be accurately measured due to disturbances. Furthermore, considering the

time-varying characteristics of sensor errors is also a challenge for traditional of-

fline methods For details about traditional offline calibration, a survey on MEMS

inertial sensor calibration is a reference [9].

2.1.2 Traditional Online Calibration

Traditional online calibration, utilizing filtering or optimization-based methods,

performs error estimation by fusing multiple sensors such as magnetometer and

camera. They are capable of estimating the varying sensor errors in run-time,

thereby maintaining accurate calibrations. IMU-only online calibration, such as

Madgwick orientation filter [26] and complementary filter [27], enables computing

the gyroscope errors from the accelerometer and magnetometer. These methods

are advantageous due to their efficiency and low computational load, making them

an ideal choice for resource-limited systems. Visual-based online filtering-based

methods such as VIO [28, 29], are more advanced methods that combine visual

data from a camera and inertial data from an IMU to estimate the IMU error

in run-time. By integrating visual data, VIO can correct drift errors typically

encountered in IMU-only systems for long-term running. VIO is a highly effec-

tive approach in GPS-denied environments and is commonly used in autonomous

vehicle navigation and augmented reality applications. However, the computa-

tional load and complexity of VIO are much higher compared to the IMU-only

optimization-based methods, and its performance is dependent on good quality

visual data and robust feature tracking [8].
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2.2 Data-driven Calibration

Deep learning has provided new possibilities for unimodal position estimation

from IMU. For instance, it is used to extract latent features from IMU signals

to estimate the velocity [6], orientation [17,30], and displacement [31–34]. These

methods have seen great success in 6-DoF IO, owing to avoiding the error accu-

mulation caused by the integration process. Additionally, using data-driven deep

learning to calibrate run-time gyroscopes and accelerometers has become popu-

lar [35]. This is because introducing deep learning decreases human intervention,

facilitates the realization of autonomous online calibration systems, and is well

coupled with inertial-based odometry [9].

2.2.1 Data-driven Gyroscope Calibration

In [36], the first long short-term memory (LSTM)-recurrent neural network (RNN)-

based denoising method was proposed to denoise IMU gyroscope signals. Com-

pared to autoregressive and moving average models, the standard deviation of

denoised signals decreased by up to 42.4% with deep learning. In [17], learning-

based OriNet was proposed to estimate the 3D orientation with a genetic bias

calibration algorithm. The orientation estimation in real scenarios was improved

by 72% compared to the complementary filter and 89% compared to Madgwick

filter. Consequently, there is a growing interest in applying learning-based meth-

ods to improve inertial-based odometry. Brossard et al. [15] proposed a convolu-

tional neural network (CNN) to predict the run-time gyroscope correction term,

i.e., zero bias and noise, and to find the optimal coefficients of scale factor and

axis-misalignment during training from measured accelerometer and gyroscope

readings. The experimental results on two public VIO datasets demonstrated the

comparative orientation estimation accuracy from IMU only with VIO. Then,

Huang et al. [16] used a temporal convolutional network to further improve the

performance of the gyroscope online calibration. They showed that the orien-

tation estimated from the calibrated gyroscope data could be used to improve

the accuracy of the VIO position estimation. The absolute translation error of

3D position was reduced by 33%, i.e., from 61.48 cm to 39.52 cm, through the

online learning-based calibration. To solve the low generalizability problem of

7



data-driven denoising models, Yao [37] proposed a few-shot domain adaptation

gyroscope calibration method that consists of an embedding module, restructor

module, and generator module.

2.2.2 Data-driven Accelerometer Calibration

Engelsman and Klein [22] implemented three learning algorithms and one ma-

chine learning method, including unidirectional bi-layer LSTM, bi-directional one-

layer RNN, bi-directional one-layer gated recurrent unit (GRU), and k-nearest

neighbor, to calibrate the accelerometer. The evaluation of a simulated dataset

and static accelerometer data showed that data-driven accelerometer calibration

achieves a 60% noise reduction and 20% improvement in stationary course align-

ment compared to traditional methods.

Our basic network structure is similar to the aforementioned data-driven gy-

roscope or accelerometer calibration methods, which are based on convolutional

neural networks. However, instead of calibrating only one component of an IMU,

we simultaneously calibrate the gyroscope and accelerometer.

2.2.3 Data-driven IMU Calibration

Chen et al. [18] used a convolutional neural network to reduce errors from both

the accelerometer and gyroscope in a laboratory environment. As a reference, the

ground truth acceleration and angular velocity data were generated from a well-

designed linear motion stage and a rotary motor. Zhang et al. [19] trained an RNN

to calibrate the run-time gyroscope and accelerometer. Additional high-quality

sensors and sensor fusion algorithms provide ground truth orientations, velocities,

and positions to train the calibration model. Similarly, Steinbrener et al. [20]

proposed LSTM-based and Transformer-based methods to output calibrated IMU

measurements for real-time 6-DoF pose estimation. The ground truth velocities

are computed from positions based on the assumption that velocities are constant

between two consecutive frames. Recently, Buchanan et al. [21] proposed to train

both LSTM and Transformer from the optimized ground truth biases of target

IMU to learn and compensate for the bias. They showed that fusing the data-

driven bias compensation model with VIO reduced the drift rate by an average

8



of 15%.

Our objective is similar to these studies to build the calibration model from

high-precision dynamic motion data and then mitigate the sensor errors at run-

time. Nevertheless, these methods are forced to rely on external sensors and

complex setups to learn the model. In contrast, our proposed general learning

strategy keeps us from relying on these.
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3 Methods

In this section, we first present an IMU sensor error model and a kinematic motion

model used in inertial-based odometry, followed by our deep IMU calibration

network structure and the loss function.

3.1 Preliminaries

Sensor error model A MEMS IMU consists of an accelerometer and a gyro-

scope that measures the acceleration a and the angular velocity ω of the carrier.

However, the measurement contains not only the true a and ω, but also other

error terms, as shown in Figure 3.1. There errors are mainly caused by imperfect

assembling procedures and the influence of temperature on the MEMS IMU’s

silicon [9].

Given a three-axis strapdown accelerometer and gyroscope, a commonly used

error model is established as follows [9]:

ũ = (S +N )u+ b+ n, (3.1)

where ũ ∈ R3 and u ∈ R3 denote the measurement output of an IMU and the

true acceleration or angular velocity, respectively.

S =

sx 0 0

0 sy 0

0 0 sz

 (3.2)

S ∈ R3×3 is the scale factor that refers to the ratio between the output quantity

and the input quantity. This ratio is caused mainly by sensitivity of the circuit

10



ideal output 
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input

output

scale factor

measured output

axis-misalignment

x

y

z

zero-bias
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input

measured outputoutput

noise

noise

probability

2

Figure 3.1: Illustration of IMU errors.

on each axis. It is a 3× 3 identity matrix in the ideal condition.

N =

 0 γxy γxz

γyx 0 γyz

γzx γzy 0

 (3.3)

N ∈ R3×3 denotes the axis-misalignment error results from the non-orthogonality

between each axis, which is caused by the manufacturing technique limitations.

b =

bxby
bz

 (3.4)
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b ∈ R3 is the so-called zero-bias. It is the output value of the accelerometer or

gyroscope when the measured physical quantity is equal to zero.

n =

nx

ny

nz

 (3.5)

n ∈ R3 is commonly assumed to be the high-frequency random sensor white noise

that follows the zero-mean Gaussian distribution.

Kinematic motion model Inertial and visual-inertial odometry calculate the

trajectory from the acceleration and angular velocity obtained from an IMU using

the kinematic motion model. The core processing is to rotate the acceleration

from the IMU frame to a fixed global frame and then accumulate it to compute

the velocity and the moving distance.

Given the angular velocity ω obtained from a gyroscope, the special orthogonal

rotation matrix in 3D space R ∈ SO(3) that maps from IMU frame to global

frame at time step i can be expressed as follows:

Ri = Ri−1 exp(ωi−1∆t), (3.6)

where exp(·) is the SO(3) exponential map and ∆t is the time interval of two

consecutive frames. The velocity v in the global frame is then calculated by

rotating the measured acceleration a and removing the local gravity g,

vi = vi−1 + (Ri−1ai−1 + g)∆t, g =

 0

0

−g

 . (3.7)

Finally, the position in the fixed global frame is calculated as follows:

pi = pi−1 + vi−1∆t+
1

2
(Ri−1ai−1 + g)∆t2. (3.8)

3.2 Problem Modeling

According to the sensor error model in (3.1), the value ui of an IMU accelerometer

or gyroscope at time step i can be expressed as follows:

ui = (S +N )−1 (ũi − (bi + ni)) . (3.9)
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To simplify the problem, we denote (S+N )−1 and (bi+ni) in (3.9) by C ∈ R3×3

and εi ∈ R3, respectively. C contains both the scale factor and axis-misalignment.

εi is the correction term that contains zero bias and noise. They are expressed

as follows:

C =

 sx γxy γxz

γyx sy γyz

γzx γzy sz


−1

, (3.10)

εi =

bx + nx

by + ny

bz + nz

 . (3.11)

Then, we have

ui = C(ũi − εi). (3.12)

In this paper, we aim to improve the IMU data reliability by learning, predicting,

and compensating for C and εi using a deep neural network.

3.3 Network Structure

Our network structure is based on the dilated convolutional neural network [38].

A dilated CNN is a type of CNN that uses dilated convolutions to exponentially

expand the receptive field with few memory consumption and efficient compu-

tation. The dilated convolutions enable the network to maintain the temporal

property of the data and capture long-range contextual information, making it

suitable for time-series data. This network is widely used for data-driven calibra-

tion because it is lightweight and has no loss of accuracy compared to recurrent

neural networks [15,16].

As shown in Figure 3.2, we define the network as predicting the correction term

ε̂a,i and ε̂g,i for the accelerometer and the gyroscope from uncalibrated IMU data.

In particular, we leverage the current frame and past N frames of uncalibrated

3-axis accelerations (ãi−N , · · · , ãi) and 3-axis angular velocities (ω̃i−N , · · · , ω̃i)

to predict the correction term ε̂g,i. In addition, we optimize the multiplier Cg for

the angular velocity ωi during training. The neural network that predicts ε̂g,i at

13
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Figure 3.2: The flowchart of building the calibration model and the network archi-

tecture for calibrating run-time gyroscope and accelerometer measure-

ments. The first dilated convolutional network inputs N + 1 frames

raw IMU measurements and outputs current frame calibrated angu-

lar velocity. Then the second dilated convolutional network inputs

N +1 frames calibrated angular velocities and raw accelerations then

outputs the current frame calibrated acceleration. N = 340 is de-

termined by the network architecture Figure 3.3. When training the

calibration model, the ground truth orientations and positions are

used to compute the loss with inferred values from calibrated angular

velocities and accelerations.
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Figure 3.3: Illustration of the network architecture. fg is a four-layer dilated con-

volutional neural network. Each layer of the neural network consists

of four components, i.e., a 1-d convolutional neural network with ker-

nel size equals 5, batch normalization, GELU activation function, and

dropout layer. The input channels of each layer are 3, 16, 32, and 64.

The out channels of each layer are 16, 32, 64, and 128. A 1 × 1

convolutional neural network with 128 input channels equals 128 and

3 output channels is followed by the four-layer neural network and

outputs the calibrated angular velocity. fa has the same structure as

fg. However, the input of fa is composed of the output of fg and raw

accelerations.
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time step i can be expressed as follows:

ε̂g,i = fg((ãi−N , ω̃i−N), · · · , (ãi, ω̃i)), (3.13)

where fg(·) is the function defined by a dilated convolutional neural network.

Then, the calibrated angular velocity ω̂i is computed by

ω̂i = Ĉg(ω̃i − ε̂g,i). (3.14)

After obtaining calibrated angular velocities, we pass these values with uncali-

brated accelerations into the second dilated neural network to optimize the mul-

tiplier Ca during training and predict the acceleration correction term ε̂a,i, which

is defined as follows:

ε̂a,i = fa((ãi−N , ω̂i−N), · · · , (ãi, ω̂i)). (3.15)

Similarly, the calibrated acceleration âi is computed by

âi = Ĉa(ãi − ε̂a,i). (3.16)

The network architecture is presented in Figure 3.3. The neural network fg(·) is
structured with four dilated convolutional layers. Every layer in this network has

a sequence of four components: a one-dimensional convolutional neural network

with a kernel size of 5, batch normalization, a GELU activation function, and a

dropout layer. The input channel counts across these layers are sequentially 3,

16, 32, and 64, while their corresponding output channels are 16, 32, 64, and 128.

Subsequent to these four layers, there’s a 1×1 convolutional layer with 128 input

channels and 3 output channels, which produces the calibrated angular velocity.

The structure of fa(·) mirrors that of fg(·). Note that the input of fa(·) consists
of uncalibrated accelerations and calibrated angular velocities, which are used to

connect fa(·) and fg(·). Furthermore, from (3.8), the accurate inferred position

depends on both angular velocity and acceleration. Thus, it is reasonable to learn

the acceleration error from calibrated angular velocities, which also mitigates the

impact of gyroscope errors.

3.4 Loss Function

The most straightforward way to train the model is to minimize the loss between

the predicted and target ground truth acceleration and angular velocity. However,
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Multi-task 
Loss

Ground truth

Figure 3.4: Schematic diagram of the proposed loss function. The target is to

minimize: 1) the residuals between the ground truth displacement

difference and the calibrated displacement difference with the condi-

tion of T window size for each displacement; 2) the difference between

the accumulated orientation from calibrated angular velocity and the

ground truth orientation over T
2
windows.

given high-precision positions and orientations, acquiring the dynamic ground

truth IMU data at a high IMU frequency (200 Hz or more) is not feasible in

practice. This is because the derivative process of high-precision positions suffers

from a jitter problem [20] (see Section 4.4.2 for more details). Therefore, solely

using ground truth positions and orientations for learning is a preferred solution.

We first consider learning accelerometer errors from positions. From the posi-

tion inference function (3.8), the displacement between two consecutive frames,

i.e., with the condition that the window size equals to 1, can be expressed as:

pi − pi−1 = vi−1∆t+
1

2
(Ri−1ai−1 + g)∆t2 (3.17)

= vi−1∆t+
1

2
aW
i−1∆t2, (3.18)

where

aW
i−1 = Ri−1ai−1 + g (3.19)
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is the linear acceleration in the fixed world frame at time step i − 1. However,

the initial velocity vi−1 in (3.17) is not available in practice, especially when the

tracked object does not move from stationary. Thus, to remove the effect of the

uncertain vi−1, we consider a consecutive displacement between pi−2 and pi−1 as

pi−1 − pi−2 = vi−2∆t+
1

2
aW
i−2∆t2. (3.20)

Then, according to the velocity inference function (3.7), equation (3.17) can be

further formulated as:

pi − pi−1 = (vi−2 + aW
i−2∆t)∆t+

1

2
aW
i−1∆t2

= vi−2∆t+ aW
i−2∆t2 +

1

2
aW
i−1∆t2. (3.21)

We define ∆pi−2,i as the difference of displacement pi−pi−1 and pi−1−pi−2, that

is,

∆pi−2,i = (pi − pi−1)− (pi−1 − pi−2)

=
1

2
aW
i−2∆t2 +

1

2
aW
i−1∆t2. (3.22)

Thus, the displacement difference can be expressed as a function of the linear

acceleration in the fixed world frame. However, using (3.22) still suffers from high-

frequency position jitters. We thus expand the window size of each displacement

to T and calculate the cumulative difference over 2T windows. This allows for

attenuating position jitter effects in the calculation by enlarging the displacement

difference. Similar to the calculation of ∆pi−2,i, we derive that ∆pi−2T,i can

be expressed as only related to the linear acceleration within the corresponding

period as:

∆pi−2T,i = (pi − pi−T )− (pi−T − pi−2T )

=
T∑

j=1

jaW
i−2T+j−1∆t2 +

T−1∑
j=1

(T − j)aW
i−T+j−1∆t2

+
1

2

T−1∑
j=0

(aW
i−T+j − aW

i−2T+j)∆t2, (3.23)

18



where T is the window size of each displacement. aW
i+j is the linear acceleration

in the fixed world frame at time step i+ j and computed as:

aW
i+j = Ri+jai+j + g. (3.24)

Figure 3.4 represents the schematic diagram of the loss function. We define the

loss function based on (3.23) and (3.24) as:

L1

(
(p,R), â

)
=

∑
i

ρ(∆pi−2T,i −∆p̂i−2T,i), (3.25)

where ∆pi−2T,i is computed from ground truth positions, ∆p̂i−2T,i is calculated

from the computed acceleration (âi−2T , · · · , âi) through (3.16), (3.23), and (3.24),

and ρ(·) is the Huber loss function [39].

In order to train the model for gyroscope calibration, we minimize the accu-

mulated orientation error within every T/2 windows as:

L2(R, ω̂) =
∑
i

ρ
(
logSO3

(
∆Ri,i+T

2
∆R̂

−1

i,i+T
2

))
(3.26)

∆Ri,i+T
2
= R−1

i Ri+T
2

(3.27)

∆R̂i,i+T
2
=

i+T
2
−1∏

j=i

expSO3(ω̂j∆t) (3.28)

where logSO3(·) is the SO(3) logarithm map. Note that the output of the first layer

network is also used as the input of the second layer network. Thus, we set a larger

error calculation frequency of gyroscope than that of accelerometer, as every T
2

windows against every 2T windows. This allows for a faster convergence of the

first layer network for calibrating gyroscope and further aided in the training of

the second layer network used to calibrate the accelerometer.

Finally, we use the sum of L1 and L2 to jointly train the network:

L = w1L1

(
(p,R), â

)
+ w2L2(R, ω̂). (3.29)

The computational complexity of L is O(n), however, in practice, the computa-

tion time depends more on the window size T because of the matrix multiplica-

tions when calculating the accumulated orientation within each window. In our
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experiments, we analyzed the impact of T on the training time, see Section 4.6

for details. Furthermore, for balancing the two loss terms, we adopt multi-task

training strategy [40] to adapt the weights as

L =
1

2c1
L1

(
(p,R), â

)
+ ln(1 + c21)

+
1

2c2
L2(R, ω̂) + ln(1 + c22), (3.30)

where c1 and c2 are parameters optimized during training. The objective of (3.30)

is to train the calibration model by minimizing the adaptive weighted sum of the

accumulated displacement error and orientation error.
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4 Experiments

In this section, we present two experiments to evaluate the proposed method.

In the first experiment, we analyze the direct output of our model, i.e., the

predicted sensor error, and compare it with the raw sensor errors. In the second

experiment, we evaluate the proposed method in terms of orientation, velocity,

and position estimation by comparing it with existing methods. Additionally,

we offer two discussions on the generalization issue of the data-driven method

and the hyperparameter T . In the first discussion, we explore the impact of bias

changes on the model performance by analyzing the correlation between biases

and evaluation results. Then, we performed further experimental validation to

clarify these findings. In the second discussion, we analyze the impact of the T on

the model performance and training time. Then, we emphasize a few important

points for setting a proper T .

4.1 Datasets

4.1.1 EuRoC

EuRoC [41] is one of the most used visual-inertial datasets. The dataset contains

various sequences collected by a micro aerial vehicle (MAV). The angular veloc-

ity and specific force were measured using an uncalibrated ADIS16448 IMU at

200 Hz. Ground truth positions were recorded at 20 Hz using a Leica Nova MS50

laser tracker. For sequences collected in a Vicon room, the 6D pose of the MAV

was recorded by the Vicon motion capture system at a rate of 100 Hz. All col-

lected data were precisely time-space aligned with the IMU measurements. Then,

a classic maximum likelihood state estimator incorporated all ground truth and

IMU measurements to estimate final ground truth orientations, positions, veloc-

ities, and the biases of the gyroscope and accelerometer.
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This dataset provides estimated high-precision velocity and IMU sensor biases.

Therefore, it is well suited for experimenting with our method. It enables us

to test sensor error prediction and position estimates. The dataset was split

into training set and test set following the same splitting strategy as in related

works [15, 16], as shown in Table 4.1. The ground truth data was aligned to

the IMU timestamps by interpolation. Additionally, as [42] reported, the ground

truth on the V1 01 sequence of EuRoC is not accurate in its orientation estimate.

Thus, this sequence was not involved in our experiments.

4.1.2 TUM-VI

TUM-VI [8] is a more recent visual-inertial dataset. It was collected by a handheld

device with a non-static start. The IMU data was logged by the Bosch BMI160

IMU at 200 Hz. The accurate 6D pose ground truth was collected using a MoCap

OptiTrack Flex13 at 120 Hz. All data were accurately aligned with the IMU

measurements.

TUM-VI differs from EuRoC in two points. First, this dataset only provides

ground truth positions and orientations thus it is not applicable to methods

that require the use of accurate accelerations, angular velocities, and velocities.

Second, the BMI160 IMU was strictly calibrated using the global optimization

method. Accordingly, the calibrated parameters of the IMU were provided and

the IMU data was calibrated. This allows us to simulate uncalibrated IMU data

based on the given parameters to increase the diversity of the dataset.

We synthesized the uncalibrated IMU data, i.e., auncali and ωuncali, of TUM-VI

based on the given parameters and the formulas in [8] as follows:

auncali = Ma(acali + ba), (4.1)

ωuncali = Mω(ωcali + bω), (4.2)

where Ma and Mω contain scale factors and axis-misalignment, ba and bω are

zero biases, acali and ωcali are the calibrated IMU data provided by the TUM-VI.

The dataset containing the synthesized IMU data is referred to as TUM-VI (Un-

cali) in our experiments. Correspondingly, the dataset containing the calibrated

IMU data is dubbed TUM-VI (Cali). We took the six-room sequences of TUM-

VI (Uncali) and TUM-VI (Cali) as the ground truth 6D poses are available over
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the whole trajectory. Similarly, the ground truth data was aligned to the IMU

timestamps by interpolation and the dataset was split into a training set and test

set, as shown in Table 4.1.

Table 4.1: Train and test sequences.

Dataset Train sequences [length] (No.) Test sequences [length]

EuRoC

MH 01 easy [182 s] (1) MH 02 easy [150 s]

MH 03 medium [150 s] (2) MH 04 difficult [99 s]

MH 05 difficult [111 s] (3) V1 03 difficult [105 s]

V1 02 medium [83.5 s] (4) V2 02 medium [115 s]

V2 01 easy [112 s]

V2 03 difficult [115 s]

TUM-VI
room1 [140 s] (5) room2 [143 s]

room3 [140 s] (6) room4 [111 s]

(Uncali) room5 [141 s] (7) room6 [130 s]

TUM-VI
room1 [140 s] (8) room2 [143 s]

room3 [140 s] (9) room4 [111 s]

(Cali) room5 [141 s] (10) room6 [130 s]

4.2 Method Implementation

Our method was implemented based on PyTorch 1.13. The training process

used an Adam optimizer [43] with 0.01 initial learning rate and 0.1 weight decay,

which was adjusted using a cosine annealing schedule [44]. We empirically set

the window size in loss function T = 64 with the IMU frequency of 200 Hz (see

Section 4.6 for details). Setting T to a power of 2 allows a faster computation of

the loss function by concatenating the multiplications [15]. We trained the model

for 1500 epochs using an NVIDIA TITAN RTX GPU, which took about 1 min

with 8 min training data. In the test, predicting the calibrated IMU data takes

0.24 µs per IMU measurement. We ran our method ten times with the same

setting and then took the mean results.
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Figure 4.1: Predicted error of accelerometer (left) and gyroscope (right) of test

sequence EuRoC-MH 02 easy. All data were averaged every ten sam-

ples. The predicted error has the same trend as the raw error. The

compensated signal errors were shifted to around zero. However, the

noise remains.

4.3 Evaluation of Sensor Error Reduction

Our model aims to predict and compensate for the IMU sensor error. Thus, we

compared the raw sensor error εa, εg with the compensated sensor error εa − ε̂a

and εg − ε̂g to evaluate whether our method correctly predicted and reduced

the errors. Note that we only compared the residuals between the before and

after calibration sensor data and ground truth inertial data. This is because

the output of the data-driven calibration model does not explicitly distinguish

between various types of sensor errors and is not directly related to the underlying

IMU physical characteristics [35].

According to the sensor error model (3.12), we computed the raw error at time

step i as

εa,i = ãi − Ĉ
−1

a ai,

εg,i = ω̃i − Ĉ
−1

g ωi, (4.3)

where ãi, ω̃i are the raw acceleration and angular velocity, respectively. Ĉ
−1

a and

Ĉ
−1

g are the optimized scale factor and axis-misalignment for aligning the IMU
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Figure 4.2: Raw and deep calibrated angular velocity of test sequence EuRoC-

MH 04 difficult. Our method removed the slight drift from raw an-

gular velocity without changing the overall magnitude.

data. ai and ωi are the ideal IMU data derived from the interpolated ground

truth velocity and orientation as

ai = RT
i

(
(vi+1 − vi)

∆t
− g

)
, (4.4)

ωi = logSO3(R
T
i Ri+1)/∆t. (4.5)

We computed the compensated sensor error εa − ε̂a and εg − ε̂g by removing the

predicted error from the raw error. Then the remains were the sensor errors of

our calibrated IMU data. We conducted this experiment only on EuRoC dataset

as the high-precision velocities are available.

Table 4.2 shows the sensor error comparison results. For each sequence, we

averaged the error on each axis to eliminate the noise influence. We show that

our method removed the accelerometer and gyroscope errors by an average of

52% and 86%, respectively. Figure 4.1 shows the comparison of raw errors and
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Figure 4.3: Raw and deep calibrated acceleration of test sequence EuRoC-

MH 04 difficult. Our method removed the slight drift from the raw

acceleration, which is difficult to visually distinguish from the overall

signals. However, The integrated velocity errors were reduced by a

mean of 77%.

our predicted errors on one test sequence. For the accelerometers, we were unable

to predict high-frequency large noise errors. However, our predicted errors had

the same trend as the raw errors, which indicates that our method eliminates

the major low-frequency errors. Similarly, for the gyroscope with lower noise,

low-frequency errors were predicted while high-frequency noise errors remained.

Figure 4.2 and Figure 4.3 illustrate the comparison of raw and our calibrated an-

gular velocities and accelerations for one test sequence, respectively. Our method

shifted the signal slightly, which is visually hard to notice. However, the errors

were reduced by more than 60%.
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Figure 4.4: Raw and learning-based calibrated orientation of test sequence

EuRoC-MH 04 difficult. The orientations estimated from raw angu-

lar velocities drift quickly within a few seconds and are unreliable.

However, the orientations estimated from the calibrated angular ve-

locities are almost the same as the ground-truth orientations.

4.4 Evaluation of Calibration Effect for

Inertial-based Odometry

The evaluation of the velocity, orientation, and position that are calculated from

calibrated IMU data allows an intuitive perception of the change caused by the

calibration. Thus, we inferred and evaluated these data from raw IMU data and

calibrated IMU data using the kinematic motion model (3.6), (3.7), and (3.8).

4.4.1 Comparison of Orientation Estimates

We evaluated the orientation estimates using the following metrics:
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• Absolute Orientation Error (AOE): the root mean square error (RMSE)

between the ground truth and inferred orientation for a whole trajectory

sequence as

AOE =

√√√√ 1

n

n∑
i=1

|| logSO3(R
T
i R̂i)||22, (4.6)

where Ri and R̂i denote the ground truth and inferred rotation matrices

from the angular velocity at time step i through (3.6). logSO(3)(·) is the

SO(3) logarithm map.

• Absolute Yaw Error (AYE): the RMSE between the ground truth and in-

ferred yaw error for a whole trajectory sequence as

AYE =

√√√√ 1

n

n∑
i=1

||γi − γ̂i||22, (4.7)

where γi and γ̂i denote the ground truth and inferred yaw at time step

i. We measure AYE for comparison with the competing method Huang et

al. [16] as it only reported this metric.

In terms of the orientation estimates, the closest works to ours are Brossard et

al. [15], Huang et al. [16], and Buchanan et al. [21]. For the EuRoC dataset,

we ran Brossard et al. ten times with the same setting using the source code

they provided, then took the average results as the baseline for the comparison.

Huang et al. and Buchanan et al. also used the results of Brossard et al. as

baselines. However, the baselines were evaluated in different environments and

metrics. Thus, we used the results provided in their papers directly and show

relative improvement for comparison. Note that Huang et al. only reported

AYE while Buchanan et al. reported AOE. For better comparison, we reported

both. In addition, we calculated the AOE and AYE resulting from the Madgwick

orientation filter [26] for comparison with traditional filter-based methods. For

TUM-VI (Uncali) and TUM-VI (Cali), we compared with Madgwick et al. and

Brossard et al. that used the same evaluation strategy as on EuRoC.

Table 4.3 summarizes the results on EuRoC. Overall, errors of learning-based

methods are smaller than that of the traditional IMU-only filtering-based method,
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which is consistent with the findings in OriNet [17]. In terms of absolute yaw error,

we slightly outperformed Huang et al., even though they use a more sophisticated

TCN network structure. However, in the case of AOE, Buchanan et al. is better

than ours. There are two reasons for this. First, they directly use ground truth

bias for learning and prediction. This allows them to learn pure biases of the

gyroscope without any external impact. However, we use orientation for model

learning, which is more practical but is affected by noise and dynamic motion.

Second, the results may have been caused by network differences because they use

a more sophisticated Transformer network, while we use the basic CNN network.

Note that in this work, instead of using complex networks and optimizing network

parameters to improve performance, we focus on a more general and practical

framework for deep IMU calibration from dynamic high-precision motion data

for inertial-based odometry. Figure 4.4 illustrates the comparison of orientation

estimates.

Table 4.4 shows the AOE on uncalibrated and calibrated TUM-VI dataset.

For the synthesized uncalibrated sequences, we achieved an improvement of over

90% compared to the raw data and outperformed the Brossard et al. by 10% to

20%. This indicates that our method can remove the gyroscope sensor error and

improve the accuracy of orientation estimates. Even for calibrated sequences, our

method achieved an improvement of more than 50% in orientation estimates and

was comparable to that of Brossard et al.

4.4.2 Comparison of Velocity Estimates

We evaluated the performance of calibrated acceleration by comparing the in-

ferred velocity with that of raw acceleration using the absolute velocity error (AVE),

which is defined as:

AVE =

√√√√ 1

n

n∑
i=1

||vi − v̂i||22, (4.8)

where vi denotes the ground truth velocity at time step i, and v̂i is the velocity

computed through (3.7) from the acceleration. To eliminate the impact of orien-

tation errors, we rotated the acceleration using the ground truth orientation. We

only measured the AVE on EuRoC dataset as they provided the accurate veloc-
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Figure 4.5: Raw and deep calibrated velocity of test sequence EuRoC-

MH 04 difficult. The velocities estimated from the raw accelerations

drift linearly with time. The absolute velocity error was achieved at

15 m/s along three axes. However, our method calibrated the acceler-

ation correctly and reduced the absolute velocity error to approximate

1 m/s.

ity ground truth. In addition, we replaced our loss function using mean square

error (MSE) and trained using the ideal acceleration that was derived from the

interpolated ground truth velocity and orientation through (4.4). This follows

the same idea as in [22].

Table 4.5 summarizes the AVE on EuRoC test sequences. Compared to the

results from the raw acceleration, we improved the accuracy by more than 50%

on all test sequences. Besides, we reduced the error to nearly 1 m/s on three of

the test sequences. Compared to the results based on the MSE loss function, we

achieved comparable results that were more robust. This demonstrates that our

proposed position-based loss function not only achieves a similar effect as based
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on ground truth acceleration, but also effectively avoids network overfitting and

being affected by anomalous acceleration. Figure 4.5 illustrates the comparison

of velocity estimates.

Although accelerometer calibration can be achieved on the basis of ground truth

acceleration, in practice it is difficult to obtain relatively accurate acceleration

using only high-precision pose tracking devices. Current studies [20] typically

extrapolate this information solely from ground truth positions and orientations

as

ai =
pi+1 − 2pi + pi−1

∆t2
. (4.9)

However, this derivation is impaired in practice by the position jitter of the track-

ing system. As shown in Figure 4.6, the derived acceleration changed abruptly

and had higher noise than the raw acceleration, due to sharp fluctuations in the

position ground truth. Therefore, our proposed position-based method is more

flexible and robust than methods based on accelerations and angular velocities.

4.4.3 Comparison of Position Estimates via Inertial-only

Odometry

Position estimates are the most relevant indicator for inertial-based odometry.

Thus, we inferred the position from calibrated IMU data using the kinematic mo-

tion model used in inertial-based odometry. Then we compared the results with

that of raw IMU data. We also compared the results from IMU data calibrated for

the gyroscope only to evaluate the effect of calibrating for both the gyroscope and

the accelerometer. To evaluate the accumulated error of inertial-only odometry,

we used the relative translation error (RTE), which is computed as follows:

RTE =
1

m

m∑
i=1

√√√√ 1

n

n∑
j=1

||p̂j,T ′ − pj,T ′ ||22, (4.10)

where p and p̂ are the ground truth position and the estimated position, respec-

tively. n is the number of samples during a duration window T ′. We randomly

chose m segments of length T ′, computed the estimated position from a ground

truth start, and then averaged the results. RTE is more suitable than absolute

translation error for evaluating inertial-only odometry because it excludes the
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Figure 4.6: Comparison of raw acceleration and derived acceleration from ground

truth positions and orientations of EuRoC MH 02 easy (left) and

TUM-VI Cali Room2 (right). The derived acceleration suffered from

position fluctuation.

influence of sequence length on the results and focuses only on the accumulated

error over a specific duration. We set m = 50, T ′ = 30s in our experiments.

As shown in Figure 4.7, the position estimates were unreliable on EuRoC and

TUM-VI (Uncali) datasets, in which the IMUs were uncalibrated. In contrast,

our method reduced the position error accumulated in 30 s by approximately

90%, when compared to that obtained from raw IMU data. Even compared to

the position estimates from the already well-calibrated IMU, we reduced the er-

rors by at most 30%. Moreover, our accumulated errors were reduced by at least

20% compared to the errors of calibrated gyroscope only. This indicates that cal-

ibrating the gyroscope and accelerometer further reduces the error accumulation

rate than calibrating the gyroscope only.

Figure 4.8 illustrates the error accumulation with time for one test sequence
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Figure 4.7: Relative Translation Error (RTE) in 30 s on the test sequences of

EuRoC (top), TUM-VI Uncali (middle), and TUM-VI Cali (bottom).

Our method significantly reduced the accumulated error on the se-

quences that use uncalibrated IMU while slightly improved the accu-

racy on the sequences that use calibrated IMU.

of EuRoC. The position errors from raw IMU data and IMU data measured only

with accelerometer calibration increase exponentially with time, and exceed 1

km in 30 s. Our method slows down the rate of error accumulation and reduces

the error to 10 m in 30 s. Compared to only gyroscope calibration, the error is

reduced by more than 50%.

4.4.4 Comparison of Position Estimates via

Visual-inertial Odometry

Data-driven IMU calibration is still being studied as a promising approach to im-

prove the accuracy and robustness of VIO. As Zhang et al. [19] and Buchanan et

al. [21] reported, the processed IMU data through data-driven methods improved

the position estimate accuracy of VIO by at most 66%. In this work, we eval-
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Figure 4.8: Relative Translation Error (RTE) on test sequence MH 04 difficult

of EuRoC dataset. The error from raw IMU data exponentially in-

creased with time, while our method reduced the accumulated error

to 10 m in 30 s.

uated the position estimates from VINS-Mono [28] with raw IMU data and our

calibrated IMU data to assess the impact of data-driven IMU calibration on VIO

in different scenarios. Note that we only listed the results of competing methods

but did not directly compare them because each method was based on a different

VIO algorithm. We used the absolute translation error (ATE) to measure the

performance, which is computed as

ATE =

√√√√ 1

n

n∑
i=1

||p̂i − pi||22, (4.11)

where n is the number of samples over a whole sequence.

Table 4.7 shows the ATE on all test sequences. For EuRoC test sequences

(No.1-4), our calibrated IMU data reduced the position estimates error by an av-

erage of 20%. This improvement is limited because the good visual conditions of
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these sequences allowed high accuracy of VIO. For TUM-VI Uncali test sequences

(No.5-7), the VINS-Mono failed with raw IMU data. As shown in Figure 4.9, a

dramatic position drift appears at the beginning of VIO with raw IMU trajec-

tory. This is because TUM-VI does not start from a stationary state and the

fast rotation challenging scenes are difficult to track accurately at the beginning,

resulting in the IMU not being well calibrated in real-time. In contrast, our cali-

brated IMU helps VIO overcome the shaky start and ensure continued odometry.

This indicates that our method can improve the robustness of VIO, especially for

challenging visual situations. However, for TUM-VI Cali test sequences (No.8-

10), our method was not able to further improve the calibrated IMU but had a

negative effect on the position estimates accuracy of VIO. This is because per-

forming data-driven calibration on the IMU data that has already been optimized

using the global optimization method impairs the data and further leads to a re-

duction in the position estimate accuracy. This indicates that our method is not

applicable to optimized and processed IMU data.

In Section 4.3, we showed that our method successfully predicted the low-

frequency sensor errors and removed them from the raw gyroscope and accelerom-

eter measurements. In Section 4.4.1, Section 4.4.2, and Section 4.4.3, we con-

ducted experiments in terms of IO and showed that our method reduces the

orientation, velocity estimates errors as well as the error accumulation rate. We

verified the feasibility of data-driven IMU calibration from high-precision track-

ing trajectory only, which is a promising method for calibrating IMU in VIO. To

further explore the impact of our method on VIO, in Section 4.4.4, we conducted

experiments on three different scenarios. The results showed that: 1) for good

visual conditions and uncalibrated IMU, our method slightly improves the po-

sition estimates accuracy; however, 2) for calibrated IMU, our method impairs

the position estimates; 3) once visual information is temporarily unreliable, our

method is an effective way to improve the robustness and accuracy of VIO.

4.5 Discussion on Impact of Bias Changes

We note that in Table 4.2, the error reduction on the gyroscope is better than on

the accelerometer. This is primarily due to the substantial changes in accelerom-
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eter errors, especially for the biases. This issue is also known as the generalization

issue of data-driven approaches, i.e., trained on one domain and tested on an-

other domain suffered from performance degradation [35]. Therefore, we provide

experimental evaluation regarding the impact of bias changes on the data-driven

model performance. We analyzed this impact by investigating provided biases of

EuRoC sequences and performing further experiments through the training-test

splitting of the data collected on different days.

As shown in Figure 4.10, we calculated the mean bias of each sequence in Eu-

RoC. Overall, the biases of the acceleration vary considerably for each sequence.

This has resulted in a general AVE improvement in the range of 80% to 90%,

as shown in Table 4.5. Notably, the acceleration biases of the V2 02 medium se-

quence in the x-axis and the y-axis were completely different from others. These

can be considered outlier patterns for the data-driven model, resulting in only a

51% improvement in AVE. In contrast, the changes in biases for angular velocity

are more minor than those for acceleration. As such, the AOE has more than

90% improvement on all test sequences.

The low-cost MEMS IMU errors vary with time. To further validate the impact

of error changes on model performance, we split the EuRoC into training and test

data according to the data collection time, i.e., five MH sequences collected on the

same day into training data and five V(icon) sequences into test data. Among the

five test sequences, V1 02 and V1 03 were collected one day after the collection

of MH sequences, and the other three test sequences were collected four months

later.

A similar finding is evidenced by the results in Table 4.8. The model consis-

tently performs above 90% in reducing the AOE where the bias changes among

all sequences are not substantial. Nevertheless, the performance still degraded

by about 5% on the test sequences collected four months later. As for the accel-

eration error mitigation, the model performance has degraded due to the large

magnitude of bias changes. The average AVE improvement in the first four test

sequences is 55%, ranging from 36% to 87%. On the V2 03, the completely

different biases on all three axes result in a negative improvement on the AVE.

The generalization problem is always a major challenge for deep learning meth-

ods. Further experiments have shown that large differences between training and
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test data patterns lead to model performance degradation, which confirms the

challenges summarized in the previous work [35,45]. We now provide two points

that we consider useful to solve this issue and push the model into practice in the

future: 1) the current proposed method does not take into account the factors

that will significantly affect the errors such as temperature, dynamic forces, etc.

The integration of these variables into the data-driven model may improve the

adaptability of the model to different scenarios; 2) it may prove helpful to inte-

grate the current framework with potential online adaptation learning strategies,

such as few-shot learning and test-time optimization.

4.6 Discussion on Choice of T

In our loss function, T is a key hyperparameter because it affects the effective-

ness of model learning and training time complexity. Thus, we emphasize a few

important points to choose a proper T successfully. We evaluated the effect of dif-

ferent T on the training time and the mode performance on the EuRoC dataset,

respectively.

As shown in Figure 4.11a, as T increases, RTE and AVE decrease and stabilize

when T reaches 64. This exhibits the negative effect of position jitter on model

training when T is small, e.g., T = 4, and verifies that increasing T mitigates

this effect effectively. However, AOE increases as T continues to increase, e.g.,

from 128 to 256. This is because our loss function aims to minimize the error

of accumulated values within T windows, and an overly large T , that is, a large

window size, would be detrimental to learning local error patterns and thus re-

duces the accuracy. This type of variation is similar to a low-pass filter in that

a suitable value is chosen to reduce high-frequency noise and ensure that the

necessary information is not lost.

Figure 4.11b illustrates the 1) training time per epoch; 2) computation time of

L1; 3) computation time of L2 with respect to T . As T increases, the total training

time increases, which is mainly caused by the increased computation time of L2.

We compute the accumulated orientation within each window in parallel. Thus,

the larger T is, the more rotation matrices need to be multiplied within each

window. However, by computing two adjacent cumulative orientations in parallel
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within each window, the time complexity of L2 can be reduced from O(T ) to

O(log(T )) when T is an exponent of 2 [15]. Therefore, as shown in Figure 4.11b,

the running time does not increase noticeably when T is a power of 2. We note

that T does not affect the computation time of L1. In calculating L1, we first

rotate all accelerations into the fixed world frame, then divide them according

to the window size T and sum up accelerations within each window. Because

T has a negligible impact on the computation time of the summation and the

acceleration rotation is independent of T , the computation time of L1 does not

vary with T .

The choice of T depends on the extent of the jitter in the ground truth motion

data of the training set. Also, while guaranteeing the performance of the trained

model, a smaller T can shorten the training time.
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Table 4.2: IMU Sensor Errors on EuRoC Test Sequences,

Acceleration (Improvement) [×10−2m/s2 (%)]/Angular Velocity (Im-

provement) [×10−2rad/s (%)].

x-axis

No. εa/εg (εa − ε̂a)/(εg − ε̂g)

1 0.40/0.26 0.24 (41%)/0.025 (90%)

2 3.52/0.22 1.02 (71%)/0.084 (61%)

3 1.26/0.38 0.64 (49%)/0.073 (81%)

4 2.75/0.13 0.38 (86%)/0.076 (42%)

average improvement: 62%/69%

y-axis

No. εa/εg (εa − ε̂a)/(εg − ε̂g)

1 6.30/2.11 0.39 (94%)/0.033 (98%)

2 1.69/2.10 0.29 (83%)/0.247 (88%)

3 9.30/2.55 6.69 (28%)/0.243 (90%)

4 3.31/2.48 6.50 (-96%)/0.120 (95%)

average improvement: 27%/93%

z-axis

No. εa/εg (εa − ε̂a)/(εg − ε̂g)

1 0.44/7.71 0.13 (70%)/0.074 (99%)

2 2.47/7.67 0.88 (64%)/0.233 (97%)

3 1.04/7.70 0.11 (89%)/0.123 (98%)

4 3.45/7.86 1.81 (47%)/0.076 (99%)

average improvement: 67%/98%

Errors were averaged on each axis to eliminate the noise effect.

All values are shown in absolute terms.

The improvement (%) of x relative to y = 1− x
y
, the computation

is the same for the other parts in the paper.
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Table 4.3: Absolute Orientation Error/Absolute Yaw Error (Improvement)

[deg/deg (%)] on EuRoC test sequences.

Huang et al.1

No. Madgwick et al. Baseline∗ Method

1 115.11/44.07 -/0.67 -/1.35 (-101%)

2 100.04/41.67 -/1.02 -/1.19 (-17%)

3 85.25/29.46 -/1.80 -/1.00 (44%)

4 110.74/42.20 -/1.94 -/1.63 (16%)

Buchanan et al.2

No. Baseline∗ Method

1 3.21/- 2.86 (11%)/-

2 0.89/- 0.76 (15%)/-

3 4.78/- 1.87 (61%)/-

4 3.78/- 1.31 (65%)/-

DUET1

No. Baseline∗ Method

1 6.20/5.17 4.78 (23%)/3.43 (34%)

2 1.46/1.13 1.96 (-34%)/1.29 (-14%)

3 1.91/1.28 1.73 (9%)/1.12 (13%)

4 3.86/3.02 3.66 (5%)/1.57 (48%)

1 Integration from IMU data only.
2 Fusion with visual features.
∗ All baselines are Brossard et al., but were evaluated in different ways.
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Table 4.4: Absolute Orientation Error Uncalib/Calib [deg/deg] on TUM-VI test

sequences.

No. Madgwick et al. Brossard et al. DUET

5/8 115.44/14.45 15.45/2.49 1.77/1.72

6/9 59.11/3.55 18.70/0.99 1.12/1.09

7/10 104.80/5.37 20.02/2.02 2.05/1.91

Table 4.5: Absolute Velocity Error and Improvement [m/s (%)] on EuRoC test

sequences.

No. Raw MSE DUET

1 11.66 11.26 (3%) 0.76 (93%)

2 6.85 2.85 (58%) 0.99 (86%)

3 4.88 0.62 (87%) 1.02 (79%)

4 7.20 3.52 (51%) 3.51 (51%)

Table 4.6: Absolute Translation Error (m) on EuRoC Test Sequences.

No. Zhang et al. [19] Buchanan et al. [21] Raw DUET

1 0.15 0.13 0.084 0.072 (14%)

2 0.14 0.25 0.131 0.113 (14%)

3 0.15 0.17 0.194 0.165 (15%)

4 0.10 0.10 0.159 0.095 (40%)

Table 4.7: Absolute Translation Error (m) on TUMVI Test Sequences.

No. Raw1 DUET No. Raw DUET

5 - 0.244 8 0.053 0.122 (-130%)

6 - 0.211 9 0.024 0.084 (-250%)

7 - 0.156 10 0.064 0.063 (2%)

1 Vins-mono with raw IMU data failed in test sequence 5, 6, and 7.
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Figure 4.9: VIO 3D (top) and horizontal (bottom) trajectories of TUM-VI Uncali

Room 2 sequence. VIO with raw IMU failed when visual information

was unstable. Our data-driven calibrated IMU data helped VIO over-

come the unstable period and ensured continued odometry.
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Table 4.8: Errors and Improvement (AOE: [deg (%)], AVE: [m/s (%)]) on EuRoC

test sequences.

Test seq. AOE (Madgwick et al./DUET) AVE (Raw/DUET)

V1 02 medium 76.81/1.91 (98%) 2.56/1.64 (36%)

V1 03 difficult 85.25/1.34 (98%) 4.88/0.63 (87%)

V2 01 easy 111.92/8.73 (92%) 9.25/5.32 (42%)

V2 02 medium 110.74/5.34 (95%) 7.20/3.33 (54%)

V2 03 difficult 92.92/4.59 (95%) 5.89/7.15 (-21%)
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Figure 4.10: Biases of acceleration (left) and angular velocity (right) for each se-

quence of EuRoC. The ground truth biases were estimated by fusing

IMU measurements and high-precision tracking data. We take the

mean bias of each sequence and each axis.
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(a) Error trend with respect to T .

training time per epoch

accel loss ℒ1

gyro loss ℒ2

T is not  
a power of 2

T is  
a power of 2 polynomial fit

(b) Running time trend with respect to T .

Figure 4.11: The effect of T on (a) model performance; and (b) training time. As

T increases, RTE and AVE decrease and stabilize until T reaches 64.

AOE is lower when T lies between 64 and 128. The running time

increases with T , which is mainly caused by the increased computa-

tion time of L2.
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5 Conclusion

We present a deep data-driven IMU calibration method for learning and compen-

sating for sensor errors. The learning model is designed by fully considering the

sensor error and kinematic motion models. This allows our method to learn the

sensor error solely from high-precision positions and orientations. Compared with

similar learning-based methods, our proposed method is more generally practi-

cal and straightforward because it does not require additional sensors and data

processing techniques for the captured data to learn the calibration model. By

compensating for run-time sensor errors, our method reduces the IO error accu-

mulation rate, which we demonstrated with comprehensive experiments on two

public VIO datasets. We show that our method reduces the absolute translation

error of the baseline VIO method by 20% on average in scenarios with good visual

information and ensures consistent odometry in unstable visual conditions.
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6 Limitations

Though learning-based methods have been shown to outperform traditional meth-

ods in some cases, there are still challenges in their deployment in real-world

scenarios. For example, performance degradation in real-world applications may

occur due to significant data gaps and sudden outliers. Traditional methods, on

the contrary, still possess unique advantages in these situations. Future work

should address how a profound integration of the strengths of both approaches

would push the state of the art even further.

According to the analysis of the evaluations, improving the generalizability of

the data-driven calibration method is also an interesting venue. For example,

expanding the dataset and building a more robust model to better adapt to

various scenarios. Considering a closer integration with inertial-based odometry,

enabling the current method to estimate calibration uncertainty and to self-evolve

online based on the results of other sensors are also promising directions.
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