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The weak localization correction for the linear absorption spectrum of the two-dimensional s-wave
superconductor is calculated at absolute zero. This correction term does not diverge even in a two-
dimensional system, and its dependence on frequency is similar to that of Mattis-Bardeen’s con-
ductivity. The effect of the Coulomb interaction coupled with superconducting fluctuations mainly
contributes to the correction term. The excitation energy of the collective mode due to this coupling
remains low in a two-dimensional system, and it is proportional to the square root of the wavenum-
ber. The dispersion of this excitation mode is related to the absolute value of the interaction vertex,
and therefore affects the magnitude of the weak localization correction terms.
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1. Introduction

The weak localization effect originates from a coherent backscattering by impurities and the
change of Coulomb interaction between electrons owing to a diffusive motion of electrons. This
effect has been studied especially in the normal state, and weak localization correction terms for con-
ductivity have been calculated [1–3]. Similar effects exist in the superconducting state, and there are
calculations of the superfluid density [4] and the thermal conductivity [5] with the effect of backscat-
tering by impurities included.

Recently, the weak localization correction term was calculated for the conductivity in the super-
conducting state owing to the change in Coulomb interaction between electrons in the presence of
impurity scatterings. The correction term owing to the Coulomb interaction combined with the su-
perconducting fluctuation is shown to be larger than that caused by the coherent backscattering. This
calculation provides a correction term for Mattis-Bardeen’s formula [6] for conductivity in the super-
conducting state, and reveals that the weak localization correction to thermal excitations is smaller
than that to excitations across the superconducting gap [7].

Since this calculation is performed in a three-dimensional system, the phase fluctuation is pushed
up to the plasma frequency [8]. On the other hand, the low-energy phase fluctuation has been consid-
ered as an interpretation [9] of the experimental results for the conductivity in dirty superconductors.
Therefore, in this study, we calculate the weak localization correction effect in a two-dimensional sys-
tem in which the phase fluctuation remains at low energy. In this case it is important to take account
of the fact that the dispersion of the phase fluctuation is related to the magnitude of the interaction
vertex.
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2. Correction Terms for Conductivity

The derivation of the weak localization correction terms for conductivity in the three-dimensional
system is given in Ref. [7]. The diagrams of these correction terms are shown in Fig. 1. These dia-
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Fig. 1. The diagrams for the weak localization correction terms. “MT”, “DOS”, “AL”, and “MC” mean
Maki-Thompson, density of states, Aslamazov-Larkin, and maximally crossed terms, respectively. “0” in
“MT0” and “DOS0” indicates that the ladder of impurity scattering (a double dashed line) is absent. The wavy
line means the fluctuation effect, which includes the superconducting fluctuation and the long-range Coulomb
interaction.

grams have been used to investigate the superconducting fluctuation phenomena [10–12]. The ab-
sorptive part of the conductivity (divided by a conductivity in the normal state σ0) is given by

Reσω/σ0 = (Reσ(0)
ω + Reσvc

ω )/σ0 (1)

with Reσ(0)
ω being usual Mattis-Bardeen term [6] and

Reσvc
ω = Re

(
σMT0
ω + σMT

ω + σDOS 0
ω + σDOS

ω + σAL
ω + σ

MC
ω

)
. (2)

The expressions for the weak localization correction terms in the two-dimensional system are
similar to those in the three-dimensional system which are given in Ref. [7]. Here, we mention dif-
ferent points only.

Reσxx
ω

σ0
=

1
4πωkF l

∫
dx

∫
dϵ


−

∫
dω′ImQMT0

ϵ,ω′,x(ω)/2π (xx = MT0)
−

∫
dω′ImQDOS 0

ϵ,ω′,x (ω)/8π (xx = DOS 0)
Re

∑
s=± sTr[τ̂0 + ĝ+ϵ+ωĝs

ϵ]/(x + ζ+ϵ+ω + ζ
s
ϵ )
∣∣∣−ω<ϵ<0 (xx = MC)

(3)
for MT0, DOS0, and MC. (We set ℏ = c = 1.) x = Dq2 with D = v2

Fτ/2 being the diffusion constant
(vF and τ are the Fermi velocity and the elastic relaxation time), and kF and l = vFτ are the Fermi
wave number and mean free path, respectively. ĝ+(−)

ϵ is the retarded (advanced) quasiclassical Green
function written in the Nambu representation (τ̂0 is the unit matrix), and ζ±ϵ = −isgn(ϵ)

√
ϵ2 − ∆2θ(|ϵ|−

∆) +
√
∆2 − ϵ2θ(∆ − |ϵ|) with ∆ being the superconducting gap.

Reσxx
ω

σ0
=

1
2π2ωkF l

∫
dx

∫
dω′


x
∫

dϵImQMT
ϵ,ω′,x(ω)/8 (xx = MT )

−x
∫

dϵImQDOS
ϵ,ω′,x(ω)/8 (xx = DOS )

xReQAL
ω′,x(ω)/π (xx = AL)

(4)
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for MT, DOS, and AL. There are two different points between the two- and three-dimensional sys-
tems. The correction term is proportional to 1/kF l in the former system, and there is a difference
in dependences of the integrand on x = Dq2 (q is wave number). Qxx

(ϵ,)ω′,x(ω) for xx = MT0, MT ,
DOS 0, DOS , and AL are the same as those given in Ref. [7], and we do not rewrite these quantities
here.

3. Goldstone Mode

The interaction vertices representing the superconducting phase fluctuation [Γ2(q)], the screened
Coulomb interaction [Γ3(q)], and the coupling of these effects [Γ4(q)] are given by the following
equations.  Γ3(q)

Γ2(q)
Γ4(q)

 ≃ 1
1/p + χ2 + cq[−χ3(1/p + χ2) + (2χ′)2]

 cq(1/p + χ2)/2
−(1 − cqχ3)/2
−cqχ

′

 . (5)

The subscripts 2 and 3 are related to those of Pauli matrices, which represent the phase of the order
parameter and the density of electrons, respectively. Goldstone mode in the two-dimensional system
is obtained by calculating the denominator of Γ3,2,4(q). Here, cq = (π/2)ρ0vC

q (ρ0 = m/π and m is the
mass of quasiparticles) with vC

q = 2πe2/q being the Fourier transform of the Coulomb interaction in
the two-dimensional system, and p is the dimensionless electron–phonon coupling constant with the
weak-coupling approximation. The definitions of χ2, χ3, and χ′ for the two-dimensional system are
the same as those for the three-dimensional system given in Ref. [7]. The denominator of Γ3,2,4(q) is
written as

1
p
+ χ2 + cq

[
−χ3

(
1
p
+ χ2

)
+

(
2χ′

)2
]
≃ −2
π

(
ω

2∆

)2
+

cqDq2

π∆
− isgn(ω)0+ (6)

for small ω and q. Then, the dispersion relation of Goldstone mode in dirty two-dimensional super-
conductors is given by

ωq =
√
π∆τ

√
2πe2ne

m
|q| (7)

(ne = k2
F/2π). The relationω ∝ q1/2 is similar to that for Goldstone mode in the clean case

√
2πe2ne|q|/m

[13,14]. In the dirty case, however, there is an extra factor
√
π∆τ which depends on impurity scatter-

ing. (In the three-dimensional system vC
q = 4πe2/q2 (ρ0 = mkF/π

2), and then
√

2∆cqDq2 becomes a
constant plasma frequency for small q as in Ref. [8].)

3.1 Fluctuations at finite temperatures
Here, we consider the case at finite temperatures. The dispersion of Goldstone mode in the neutral

system is given by 1/p + χ2 = 0, and its excitation energy is proportional to q as ωq = q
√
π∆D [15].

At finite temperatures (T , 0) the contribution from the superconducting fluctuation is written as∑
q
∫

dωcoth
(
ω
2T

)
ImΓ2(q). In the neutral system

ImΓ2(q) ≃ −π2∆2sgn(ω)δ(ω2 − π∆Dq2), (8)

and then ∫
qdq
2π

∫
dωcoth

(
ω

2T

)
ImΓ2(q) ≃

∫
dq
−T∆
Dq
, (9)

which results in an infrared logarithmic divergence [16, 17]. In the charged system

ImΓ2(q) ≃ −2π∆2cqsgn(ω)δ(ω2 − 2∆cqDq2) (10)
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from Eqs. (5) and (6), and∫
qdq
2π

∫
dωcoth

(
ω

2T

)
ImΓ2(q) ≃

∫
dq
−cqT∆
cqDq

. (11)

Therefore, cq cancels out from the integrand, and Eq. (11) diverges in the same way as Eq. (9) though
the q-dependence of Goldstone mode in the charged system (ωq ∝

√
q) is different from that in the

neutral system (ωq ∝ q). The numerical calculation in the next section is performed at T = 0 and the
above divergence does not occur.

4. Numerical Calculations

The numerical calculation can be performed as in Ref. [7], but in the two-dimensional case the
assumption

∣∣∣cq[−χ3(1/p + χ2) + (2χ′)2]
∣∣∣ ≫ ∆ cannot be used because the quantity on the left-hand

side is proportional to |q| for small q. Thus, in addition to kF l, a material-dependent dimensionless
parameter,

sg :=
π

2

√
kFξ0

nea2
B

(12)

(ξ0 = vF/π∆ is the coherence length and aB = 1/me2), is introduced in numerical calculations. With
use of this quantity Eq. (7) is rewritten as ωq =

(
2sg∆

√
xkF l∆

)1/2
, and cq = sg

√
kF l∆/x.

The real and imaginary parts of Eq. (5) are shown in Fig. 2. In the case of sg = 5.0 a peak
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Fig. 2. Dependences of Γ3,2,4(q) on ω at x = Dq2 = 0.0625. (a) Imaginary parts of Γ3,2,4(q). (The inset shows
the same results for the range 0 < ω/∆ < 2.) (b) Real parts of Γ3,2,4(q). The values of nm on the left of lines
mean that Γm(q) with sg = n. kF l = 6.0.

originated from the Goldstone mode is visible around ω ≃ 2∆ for x = Dq2 = 0.0625. In the case of
sg = 100.0 the value of x should be smaller than 0.00016 for the appearance of the Goldstone mode
around ω ≃ 2∆. Then, the observation of Goldstone mode is difficult in the case of the weak-coupling
superconductors (sg ∝

√
kFξ0 ≫ 1).

The calculated results of the optical conductivity are shown in Fig. 3. The vertex corrections sup-
press the optical conductivity regardless of the values of sg and kF l as in Ref. [7]. As compared to the
three-dimensional system [7], the suppression by vertex corrections is large in the two-dimensional
system, because of the coefficient 1/kF l in Eqs. (3) and (4). The difference between calculated results
for sg = 5.0 and sg = 100.0 originates from a difference in the effective interactions Γ3,2,4(q). This
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Fig. 3. Dependences of optical conductivity on ω for sg = 5.0 and sg = 100.0. “(0)+vc”, “vc”, and “(0)”
indicate that σxx

ω = σ
(0)
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vc
ω , σvc

ω , and σ(0)
ω , respectively. (a) kF l = 10.0. (b) kF l = 6.0.
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Fig. 4. Dependences of vertex correction terms on ω for kF l = 10.0. “MT”, “DOS”, “AL”, “MC”, “MT0”,
and “DOS0” indicate that σxx

ω = σ
MT
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ω , σAL
ω , σMC

ω , σMT0
ω , and σDOS 0

ω , respectively. (a) sg = 5.0. (b)
sg = 100.0.

difference is shown in Fig. 4. ReσMC
ω does not depend on sg and takes same values in Figs. 4(a)

and 4(b). The vertex correction terms take the same signs and similar relative magnitudes between
them as those in the three-dimensional system [7]. (“MC” and “DOS0+DOS” terms decrease the
absorption spectrum due to the coherent backscattering and the suppression of the density of states,
respectively. On the other hand, the signs of “MT0+MT” and “AL” terms indicate that the supercon-
ducting fluctuation increases the absorptive part of conductivity.) A comparison between sg = 5.0
and sg = 100.0 indicates that the dependences of Γ3,2,4(q) on sg result in a difference of the weak
localization corrections between strong- and weak-coupling superconductors.

5. Discussion

In the two-dimensional system there exists Goldstone mode and the imaginary parts of vertices
ImΓ3,2,4(q) take finite values for ω < 2∆ in contrast to the three-dimensional system [18]. This low-
energy mode, however, does not induce the finite absorption below 2∆ as numerically shown in the
previous section (Reσω<2∆ = 0). This can be confirmed also by considering the analytical expression
Eqs. (3) and (4). This consequence is different from that in the case of inhomogeneous (granular)
superconductors in which Reσω<2∆ , 0 [9].
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The contribution of the Goldstone mode to the weak localization correction is small except for
the case of strong-coupling superconductors. This is because the effective range of Goldstone mode
is very narrow (in terms of its frequency and wave number) as compared to the range of integra-
tions ∼ 1/τ (≫ ∆) in Eqs. (3) and (4). When the Goldstone mode is effective in the wide range
of frequencies and wave numbers, the vertices |Γ3,2,4(q)| take small values. Thus, in strong-coupling
superconductors, the weak localization correction to the linear absorption is small as compared to
weak-coupling superconductors. The Goldstone mode seemingly enhances the absorption spectrum,
and keeps the system away from the localization transition.

The numerical computation in this work was carried out at the Yukawa Institute Computer Facil-
ity.
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