
Master’s Thesis

A Study on Node Selection Algorithm Based on

Dueling Deep Q-Network Model in Unstable

P2P Network Environments

SHAN GAO

Program of Information Science and Engineering

Graduate School of Science and Technology

Nara Institute of Science and Technology

Supervisor: Prof. Professor Hajimu IIDA

(Division of Information Science)

Submitted on January 30, 2024

A Master’s Thesis

submitted to Graduate School of Science and Technology,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

MASTER of ENGINEERING

SHAN GAO

Thesis Committee:

Professor Hajimu IIDA

(Supervisor, Division of Information Science)

Professor Kazutoshi FUJIKAWA

(Co-supervisor, Division of Information Science)

Associate Professor Kohei ICHIKAWA

(Co-supervisor, Division of Information Science)

A Study on Node Selection Algorithm Based on

Dueling Deep Q-Network Model in Unstable

P2P Network Environments∗

SHAN GAO

Abstract

In recent years, Peer-to-Peer (P2P) file sharing has become a mainstream

method for file sharing and is widely used over Wide Area Networks (WAN),

with systems like BitTorrent being notable examples. However, rapid and unsta-

ble changes in WAN often result in underutilization of resource nodes. To address

this issue, this study proposed a modified node selection algorithm based on a

dueling Deep Q-Network (DQN) model, which considers real-time states of re-

source node utilization. The central server of the hybrid P2P file sharing system

maintains node information and collects real-time states such as CPU, memory

utilization, and network latency. The modified dueling DQN model ranks nodes

by estimated download time, and data is downloaded from the node with the

minimum download time. The results demonstrate that the proposed dueling

DQN model reduces the download time by 20% compared to the random selec-

tion algorithm, and achieves almost equal download time with Tit-for-Tat (TFT)

algorithm, while the proposed algorithm can adapt to the network environment

faster than the TFT algorithm when the network latency fluctuates significantly.

Keywords:

Peer-to-peer, Node selection, Reinforcement learning, Dueling-DQN

∗Master’s Thesis, Graduate School of Science and Technology, Nara Institute of Science and

Technology, January 30, 2024.

i

Contents

1. Introduction 1

2. Related work 4

2.1 Traditional Network Topology Research Methods 4

2.2 Novel AI Modeling Research Methods 7

2.3 Focus of the Proposed Method . 8

3. Method 9

3.1 Approach . 9

3.2 Model Design . 10

3.3 Training Process . 15

3.4 Implementation and Environment Setup 17

4. Evaluation 19

4.1 Metrics of Evaluation . 19

4.2 Evaluation on a network of 20 nodes 20

4.2.1 Evaluation with 10ms Latency Introduced 20

4.2.2 Evaluation with 50ms Latency Introduced 22

4.2.3 Evaluation with 100ms Latency Introduced 22

4.3 Evaluation on a network of 10 nodes 26

4.3.1 Evaluation with 10ms Latency Introduced 26

4.3.2 Evaluation with 50ms Latency Introduced 28

4.3.3 Evaluation with 100ms Latency Introduced 30

4.4 Adaptation of nodes when the network state changes 32

5. Discussion 36

5.1 Discussion on DQN Algorithm Performance Analysis in a 20-Node

Environment . 36

5.2 Discussion on DQN Algorithm Performance Analysis in a 10-Node

Environment . 37

5.3 Advantages of the proposed DQN algorithm 38

5.4 Discussion on the Limitations and Improvement Directions of the

DQN Algorithm . 39

ii

5.4.1 Performance Bottleneck in Large-Scale Requests 39

5.4.2 Adaptation to Changing Node Numbers 39

5.4.3 Enhancing Responsiveness to Network Variations 40

5.4.4 Incorporating Complex State Representations and Reward

Mechanisms . 40

5.4.5 Balancing Real-Time Response and Decision Accuracy . . 40

5.4.6 Challenges in Large-Scale Deployment 40

5.4.7 Importance of User Experience 41

5.5 Limitations of the proposed model and possible future improvements 41

5.5.1 Improvements to the Experimental Setup 41

5.5.2 Improvements to the Latency Measurement Between Nodes 42

6. Conclusion 44

Acknowledgements 46

References 48

iii

List of Figures

1 The proposed P2P system . 10

2 Structural differences between single stream Q-network (top) and

dueling Q-network (bottom) . 12

3 The proposed modified dueling-DQN structure 13

4 A sample input state matrix when using 3 P2P nodes 14

5 Results of three strategies for downloading a 256MB file with 20

nodes and half of the nodes with 10ms latency 21

6 Rate of selecting a low-latency node in each round of downloads

within a P2P environment of 20 nodes at 10ms latency for half of

the nodes under three different strategies 21

7 Results of three strategies for downloading a 256MB file with 20

nodes and half of the nodes with 50ms latency 23

8 Rate of selecting a low-latency node in each round of downloads

within a P2P environment of 20 nodes at 50ms latency for half of

the nodes under three different strategies 23

9 Results of three strategies for downloading a 256MB file with 20

nodes and half of the nodes with 100ms latency 25

10 Rate of selecting a low-latency node in each round of downloads

within a P2P environment of 20 nodes at 100ms latency for half of

the nodes under three different strategies 25

11 Results of three strategies for downloading a 256MB file with 10

nodes and half of the nodes with 10ms latency 26

12 Rate of selecting a low-latency node in each round of downloads

within a P2P environment of 10 nodes at 10ms latency for half of

the nodes under three different strategies 27

13 Results of three strategies for downloading a 256MB file with 10

nodes and half of the nodes with 50ms latency 28

14 Rate of selecting a low-latency node in each round of downloads

within a P2P environment of 10 nodes at 50ms latency for half of

the nodes under three different strategies 29

15 Results of three strategies for downloading a 256MB file with 10

nodes and half of the nodes with 100ms latency 30

iv

16 Rate of selecting a low-latency node in each round of downloads

within a P2P environment of 10 nodes at 100ms latency for half of

the nodes under three different strategies 31

17 The first 20 downloads starting from the 5,000th download 33

18 The first 20 downloads starting from the 6,000th download 33

19 The first 20 downloads starting from the 7,000th download 34

20 The first 20 downloads starting from the 8,000th download 34

21 The first 20 downloads starting from the 9,000th download 35

List of Tables

1 The symbols and notations used in the paper 13

2 Specifications of the Virtual Machine Cluster 18

3 VM Configuration . 18

4 Download time and low latency node selection rate (# of nodes:

20, latency: 10ms) . 22

5 Download time and low latency node selection rate (# of nodes:

20, latency: 50ms) . 24

6 Download time and low latency node selection rate (# of nodes:

20, latency: 100ms) . 24

7 Download time and low latency node selection rate (# of nodes:

10, latency: 10ms) . 27

8 Download time and low latency node selection rate (# of nodes:

10, latency: 50ms) . 29

9 Download time and low latency node selection rate (# of nodes:

10, latency: 100ms) . 31

v

1. Introduction

In today’s digital era, file sharing has become an important part of daily life. Peer-

to-Peer (P2P) [1] file sharing technology, recognized as an important method of

data exchange, has had a far-reaching impact on the development of the Inter-

net. This technology facilitates the sharing of files directly between individuals’

computers, bypassing traditional centralized servers. As a result, it has become a

backbone for a variety of Internet applications, ranging from media distribution

to software updates.

Originally, this technology was designed to mitigate the challenges of band-

width and storage limitations faced by centralized servers, particularly in handling

massive data volumes. The emergence of Napster [2], one of the earliest P2P file

sharing services, marked the birth of this technology. Subsequently, numerous

other platforms such as BitTorrent [3] have emerged, each contributing to the

ongoing evolution and enhancement of P2P technology.

The core of P2P file sharing technology lies in a decentralized network archi-

tecture. In this architecture, each participating network node (Peer) functions

both as a client and a server. This means that each node can exchange files

directly with other nodes without going through a central server. This approach

not only improves the efficiency of data transfer but also increases the scalabil-

ity and fault tolerance of the network, making it robust against various network

issues.

Over time, P2P technology has expanded from its initial use as a file sharing

service into a variety of domains. For example, it plays an important role in

areas such as digital currencies (e.g., Bitcoin [4]), online video streaming [5], and

distributed computing [6]. In the context of digital currencies, for instance, P2P

technology provides the backbone of the blockchain network, ensuring secure and

decentralized transaction logging. The decentralized nature of P2P networks pro-

vides greater security and operational efficiency across these diverse applications.

One critical consideration in all these various P2P applications is the data

sharing strategy, particularly in selecting which nodes to engage with for optimal

file sharing. For example, in BitTorrent technology, choosing which peers to share

files with is crucial. But how do we select nodes fairly while ensuring the highest

download efficiency and resource utilization [7]? A robust node selection algo-

1

rithm is essential. Imagine if we had something similar to AlphaGo [8], a powerful

intelligent system, to assist in choosing the optimal nodes. Such an advancement

could significantly enhance the performance of many P2P applications, not just

those limited to file sharing.

In order to address the above practical problems, this study focuses on opti-

mizing the node selection algorithm for hybrid P2P structure [9] file sharing sys-

tems, which is widely used in BitTorrent download technology. The hybrid P2P

architecture combines the advantages of both centralized and decentralized mod-

els, providing a flexible, high-speed, reliable, and secure solution for file sharing.

With its flexibility and scalability, it can handle large-scale file sharing demands.

In a hybrid P2P file sharing system, the node selection algorithm determines the

efficiency and performance of the file transfer process.

The most commonly used node selection algorithm in these systems is Tit-

for-Tat (TFT) [10], which selects nodes based on their past interactions. For

example, if a node has transmitted the most data to a client in the past 20

seconds, the client will prefer to share data with that node (neighbor node) in

the next interaction. However, TFT may not be effective when network conditions

change rapidly. If file upload efficiency from a node suddenly drops due to network

congestion before selecting that node for data sharing in the next selection, the

node should avoid being selected as a neighbor node for data sharing.

To address these limitations, this study proposes a neighbor selection algo-

rithm based on a modified dueling Deep Q-Network (DQN) model [11]. The

model is deployed on a central server of a hybrid P2P file sharing network and

continuously gathers data from the nodes in real-time, such as CPU status, mem-

ory usage, and network latency. It then evaluates and scores each node, guiding

the decision-making process for selecting neighbor nodes for file sharing. The

effectiveness of this proposed algorithm was evaluated against the traditional

random selection approach and the TFT algorithm.

The remainder of this paper is organized as follows: The related work stud-

ied by past scholars will be introduced in Chapter 2. Then, in Chapter 3, the

methods used in the study will be presented, including a detailed description of

the model used, the setup of the P2P environment, and how the reinforcement

learning model learns. Chapter 4 will present the evaluation and results of the ex-

2

periments, such as comparing the download times and low-latency node selection

rates between the TFT selection algorithm and a random selection algorithm.

Chapter 5 will discuss in detail the results presented in Chapter 4 and analyze

possible reasons. Chapter 6 will summarize the achievements of this experiment.

3

2. Related work

In recent years, a large number of researchers have conducted extensive studies to

improve the P2P file sharing experience. How to enhance node resource utilization

through efficient neighbor selection is a critical issue. The first section of this

chapter will primarily focus on research related to the topology of P2P network

nodes, employing traditional methods to improve resource utilization. The second

section will delve into studies that utilize cutting-edge AI models to investigate

the relationships between nodes and further improve resource utilization. The

final section will outline the main focus of this study.

2.1 Traditional Network Topology Research Methods

In 2004, Vivek and Paul [12] from Cornell University explore random graph con-

struction and node selection in P2P and overlay networks. They propose various

techniques, focusing on random walks, and assess them based on practical criteria

like simplicity, heterogeneity support, selection quality, efficiency, scalability, load

balance, and robustness. The paper concludes that no single method excels in all

criteria, but their novel approach generally performs best. Limitations include

potential ineffectiveness in specific scenarios, additional complexity in handling

network dynamics, and limited adaptability to different network environments.

Further practical testing and optimization are suggested.

In 2005, the study by Adler et al [13]. explores optimal peer selection in

P2P networks for downloading and streaming, introducing a pricing model where

server peers charge based on download specifics. For downloading, it optimizes to

minimize delay within a budget, also discussing Nash equilibrium for server pric-

ing. In streaming, the focus is on minimizing costs while considering potential

server failures. The methodologies developed are versatile for various P2P re-

source economy scenarios. However, the study assumes guaranteed delivery rates

and overlooks the practicalities of implementation in detailed network models. It

also simplifies streaming by assuming no initial client buffering, which may not

align with all real-world applications.

In 2006, Vivek and Paul explore random graph construction and node selection

in unstructured P2P networks, with a focus on accommodating node heterogene-

4

ity [14]. Their work introduces and evaluates various techniques, both novel and

modified existing ones, against practical deployment criteria like simplicity, het-

erogeneity support, and load balance. The study highlights SwapLinks, a new

graph construction method, for its practicality and simplicity, making it a stand-

out choice. Through simulations, the authors demonstrate the effectiveness of

their approaches, particularly SwapLinks, in creating efficient, scalable, and ro-

bust P2P networks. However, challenges remain in adapting these methods to

highly dynamic network conditions and in managing the overhead associated with

maintaining network structure amidst frequent node changes. This study offers

valuable insights into designing versatile and practical solutions for unstructured

P2P network applications.

Basing on 2-dimensional virtual network coordinates, Duan [15] proposed a

novel scheme to improve the proximity property of structured P2P network in

2006. The results showed the proposed scheme reduced the latency between

neighboring nodes and added only a modest additional search overhead. However,

Duan’s scheme performs well only when there are large scale nodes.

In 2008, Steele [16] present a novel load balancing mechanism for P2P net-

works, eliminating the need for global capacity knowledge by autonomously com-

puting selection parameters at each peer. This parameter-free approach efficiently

manages heterogeneous peer selection, crucial for maintaining balance in heavily

loaded networks. The method adaptively adjusts the number of request attempts

based on system load, ensuring high request-response rates even under heavy load.

Implemented over the Swaplinks algorithm, their solution demonstrates signifi-

cant improvements in load distribution and system utilization. While effective in

tested scenarios, the method’s performance may vary in different network con-

ditions, and its computational demands could be challenging in larger or more

dynamic networks. This research contributes significantly to the development

of more autonomous and resilient P2P systems, particularly in managing load

balance and resource allocation.

In 2009, Salhi [17], Sbai, and Barakat explore neighborhood selection in mobile

P2P networks, particularly examining BitTorrent’s performance in MANETs.

Their study reveals that node mobility inherently enhances piece diversity, making

it unnecessary to connect with distant nodes for this purpose. This contrasts with

5

fixed networks, where diversification efforts are essential. Conducted through

NS-2 simulations, the research shows that limiting neighborhood scope in mobile

networks leads to better performance, as mobility reduces the need for additional

diversification strategies. The findings indicate that in mobile environments,

focusing on nearby peers is more efficient, as mobility itself facilitates sufficient

piece diversity and sharing opportunities. This insight is crucial for optimizing

file sharing applications in mobile networks, suggesting a shift from traditional

approaches used in fixed networks. However, the study’s applicability might be

limited to specific network conditions and primarily to the BitTorrent protocol.

The Adaptive Gnutella Protocol (AGP) [18] proposed by Pogkas, Kriakov,

Chen, and Delis, targets two critical issues in P2P networks: efficient informa-

tion discovery and authentic data acquisition. AGP evaluates peers based on

their service contributions, clustering them by reputation and shared content.

This clustering forms a network topology centered around collaborative, rep-

utable nodes. The protocol effectively identifies and sidelines harmful peers and

free-riders, enhancing the speed and quality of information discovery and search

results. AGP integrates a reputation system, content exchange, and topology

adaptation modules, tested using PeerSim simulations. These tests showed no-

table improvements in network structure, query efficiency, and search quality.

However, the protocol’s complexity and the need for ongoing peer evaluation

might pose challenges in larger, more dynamic networks. AGP represents a sig-

nificant step in optimizing P2P file sharing by fostering a network of trusted,

cooperative participants.

In 2018, Gui [19] used greedy algorithm to translate the overall optimization

into multiple local optimal problems, and to quickly select service nodes. The fi-

nal simulation results show that the node selection strategy based on Gui’s greedy

algorithm can effectively improve the overall performance of P2P streaming me-

dia system. However, the decision factors of the node selection strategy of this

research are not comprehensive enough, for example, node bandwidth should also

be taken into account.

In 2024, a novel approach(MSLT) [20] for enhancing transaction performance

in blockchain P2P networks through multi-scale node management was proposed.

This method organizes nodes into different scales, reducing redundancy and op-

6

timizing traffic flow. MSLT employs a node updating mechanism based on trans-

mission speed, prioritizing faster nodes to improve overall data transmission rates.

The model’s hierarchical structure facilitates efficient data propagation across the

network, with transactions and blocks transmitted to neighbor nodes at suitable

scales. Comparative analysis indicates that MSLT outperforms existing models

in terms of transmission efficiency, network utilization, and transaction through-

put. However, the complexity of the model and the need for dynamic node man-

agement pose challenges for network maintenance and scalability. Further, the

model’s reliance on multi-scale management necessitates robust security measures

to ensure network stability and protect against potential disruptions or attacks.

2.2 Novel AI Modeling Research Methods

Koo [21] proposed a GA-based neighbor-selection strategy for hybrid P2P system

suitable for large content delivery in 2006, and they have shown through computer

simulations that their proposed strategy can increase the content availability from

immediate neighbors and thus improve system throughput significantly without

sacrificing delivery efficiency. However, the experiment assumes that all nodes

honestly return the amount of data they receive. Therefore, it may not perform

as expected in a real-world environment.

In 2007, Robert [22] employ machine learning feature selection in a novel

manner: to reduce communication cost thereby providing the basis of an efficient

neighbor selection scheme for P2P overlays. However, the experiment only used

open source datasets for training and testing and there is no confirmation of the

performance of this strategy under real environment operation.

In 2012, Izhak-Ratzin [23] proposed a BitTorrent-like protocol based on an

online learning (reinforcement learning) mechanism, which can replace the peer

selection mechanisms in the regular BitTorrent protocol. The results show that

the proposed protocol provides several improvements in terms of the stability of

the peer selection mechanism, collaboration among high capacity peers, system

fairness, the robustness of the network against noncooperative behaviors, and

downloading rates. However, the research did not investigate the robustness of

the reinforcement learning strategy-based system.

Naito [24] proposed a method to acquire a nearly optimal peer selection strat-

7

egy from long-term observations through Deep Q-Network which is a variant of

the Q-learning enhanced by deep neural networks. The result indicates that it

realize a short download time compared with strategies adopted in BitTorrent.

But the environment of this experiment is not realistic enough, for example, the

bandwidth of nodes should be different and the delay between nodes should exist.

2.3 Focus of the Proposed Method

Studies based on traditional network topology methods have overly focused on

the impact of network structure on node utilization, neglecting the actual states

of nodes, such as network latency, CPU, and memory utilization. This oversight

leads to resource underutilization in constantly changing networks.

Studies employing AI modeling methods aim to predict node behavior, poten-

tially maximizing resource utilization in most scenarios. However, most of these

studies rely on simulations and have not been tested in real-world scenarios. Ad-

ditionally, some experiments fail to consider the latency between nodes in real

environments.

This study is based on a hybrid P2P network structure and involves real-time

collection of data such as network latency, CPU, and memory usage from each

node. Using AI models, it predicts the current state of each node to maximize

the selection rate of low-latency nodes, ultimately achieving maximal resource

utilization of nodes.

8

3. Method

This chapter describes the methodology adopted in this research, which is orga-

nized into four sections. First, an overview of the proposed approach is intro-

duced. Then, the design of the model, including its architectural choices and

underlying rationale, is elaborated. Subsequently, the training process of the

model is described. Finally, the implementation details and experimental envi-

ronment are provided, explaining the hardware and software configurations and

tools used.

3.1 Approach

Figure 1 presents an overview of the proposed system. The proposed dueling-

DQN model operates on a central server, which compiles real-time data regarding

the status of peer-to-peer (P2P) nodes, including CPU utilization, memory usage,

and network latency. When a node initiates a download request, the server feeds

the model real-time data from all nodes and outputs the ID of the optimal node

for resource sharing to the requesting node. The requesting node receives this ID

and directly exchanges data with the selected node in a peer-to-peer manner.

This research modifies the original dueling-DQN model to develop a system

that identifies the optimal node for data exchange, utilizing information aggre-

gated by the central server upon the request of any node. By incorporating

dynamic parameters, such as CPU utilization, memory usage, and network la-

tency, into the decision-making process, the proposed model aims to optimize

resource distribution and improve the efficiency of P2P file sharing.

To generate a dataset for training the model, a virtual environment was con-

structed to simulate P2P file sharing scenarios. Within this controlled setting,

a dataset reflecting various network conditions and node states was generated.

This dataset was subsequently used to train the modified dueling-DQN model.

Utilizing the virtual environment and the generated dataset allows for a com-

prehensive assessment of the model’s effectiveness in selecting the optimal node

for data transfer. Such an approach ensures efficient resource utilization and

minimizes latency within the network.

9

Figure 1. The proposed P2P system

3.2 Model Design

To introduce the proposed model, it is necessary to first understand Reinforce-

ment Learning(RL) [25]. RL is a type of machine learning where an agent learns

to make decisions by performing actions in an environment to achieve some goal.

The agent receives feedback in the form of rewards or penalties as it interacts

with the environment. The objective of the agent is to learn a strategy, or policy,

that maximizes the cumulative reward over time.

DQN [26] is one of the foundational methods of RL and it combines tradi-

tional Q-Learning, a popular RL algorithm, with deep neural networks. Dueling-

10

DQN is an extension of the DQN algorithm and the main differences between

dueling-DQN and traditional DQN lie in their network structures and methods

of estimating the value function, as shown in Figure 2 [11]. Dueling-DQN archi-

tecture splits the network into two branches, one estimating the state value and

the other estimating the advantage function of actions to indirectly estimate the

Q-value of each action.

Both branches, the value network and the advantage network, share the initial

layers, which extract features from the input states. However, they diverge in later

layers to estimate the state value and the advantage for each action separately.

The value network is responsible for predicting a value function, which represents

the expected reward from a given state. This facilitates an understanding of the

intrinsic value of being in a particular state, independent of the actions taken.

The advantage network, on the other hand, estimates the relative benefit of each

action by computing the difference between the predicted values and the state

values. It enables the users or clients to evaluate the importance of each action

in a given state. The output of the state value and the advantage value of the

action are combined to obtain the Q-values for each action.

This architecture enables dueling-DQN to often learn more efficiently and with

greater stability across various environments compared to traditional DQN, and

it performs better in scenarios where state evaluation is more critical than action

selection.

The proposed modified dueling-DQN borrows ideas from the original dueling-

DQN in terms of state value and action advantage value structure, as shown

in Figure 3. However, while the original dueling-DQN was primarily used for

gaming applications, utilizing three channels for better game screen recognition,

the proposed P2P node selection scenario requires only one input matrix; thus, a

single channel was used. At the same time, we adjusted the input and output of

the model to the corresponding size for our experimental use case.

The states of all nodes for the last 20 seconds are fed into the proposed model

in real time, and the proposed model outputs a score for each node to measure

the current state of each node. When only 3 P2P nodes are present, the input

state matrix is shown in Fig 4. The first row of each node’s data is the time-series

data of the node’s network latency, the second row is the time-series data of the

11

Figure 2. Structural differences between single stream Q-network (top) and du-

eling Q-network (bottom)

node’s CPU utilization, and the third row is the time-series data of the node’s

memory utilization. The number of columns in the input matrix is 10, indicating

that the proposed model takes the state of these nodes for the last 10 seconds. In

other words, when 20 nodes are present and take the state of the last 10 seconds,

the data has 20 x 3 rows and 10 columns. Then the size of the input state matrix

is 60 × 10.

In the proposed model, first layer uses a 3×3 kernel to move 1 unit in the

column direction and 3 units in the row direction to reduce the input state matrix

from 60×10 to 20×8. The second layer uses only a 1×3 kernel to move 1 unit in

both the row and column directions to reduce the matrix size to 20×6. It then

expands into a fully-connected layer, which immediately splits into two parts: the

first, colored green, representing the state values, and the second, colored blue,

12

60 x 10

20 x 8
20 x 6

120

1

20

20

Conv

Conv

Linear

Action value

State value

Q value

Figure 3. The proposed modified dueling-DQN structure

representing the action advantage values. Finally, we output the Q-value based

on the combination of the state value and the action advantage value in the last

layer, which can also be termed as the reward.

In order to explain the calculation of the Q-value, the notation used through-

out this study will be introduced. The symbols shown in Table 1 represent the

variables involved in the Q-value calculation. The action represents which node

has been selected. The state denotes the current state of the P2P environment.

The value function is used to evaluate the current P2P environment. The ac-

Table 1. The symbols and notations used in the paper

Symbols Description

a Action

s State

V Value function

A Action advantage function

Q Q-value function

ϵ Epsilon

13

node2

node1

node3

node1-latency

node1-CPU-usage

node1-memory-usage

10s

Figure 4. A sample input state matrix when using 3 P2P nodes

tion advantage function is used to assess the expected reward from selecting each

node. The Q-value function is used to combine the value function and action

advantage function and give the estimated Q-value. Epsilon is used to determine

whether the selection strategy follows the model’s decision or a random strategy.

For example, when epsilon is set to 0.9, nine out of ten experiments will select

nodes based on the decision of the reinforcement learning model. One out of ten

experiments will select a node at random.

The formula for calculating the Q-value of the dueling-DQN neural network

is given in Equation 1 below. In this equation, V (s) is a function that calculates

the value of state s and represents the expected reward in state s. A(s, a) is

the action advantage value function of the state-action (node selection) pair s, a

and represents the value of action a in state s. 1
N

∑
a′ A(s, a′) is the average

value of all possible actions and is used to reduce the bias of overestimating or

14

underestimating the value of the action. Q(s, a) denotes the Q-value for action a

in state s by combines calculated V (s) and A(s, a) and 1
N

∑
a′ A(s, a′).

Q(s, a) = V (s) + A(s, a) − 1

N

∑
a′

A(s, a′) (1)

3.3 Training Process

The model is trained in a P2P network scenario consisting of 20 nodes, partially

subjected to a latency of 50ms. The selection of a 50ms delay as the evaluation

condition is rooted in its representation of typical average latency within a single

continent, providing a realistic benchmark for network performance. Although

the network size of 20 nodes might seem modest compared to real-world networks,

it was intentionally chosen to enable simulations within the constraints of lim-

ited computational resources. The chosen network size is considered optimal for

initial evaluations, offering a practical compromise between manageability and

the complexity needed to explore the dynamics and interactions characteristic of

P2P networks. This allows for a detailed analysis and comparison of the pro-

posed model with baseline algorithms, such as the random selection and TFT

algorithms, without the extensive computational demand of large-scale network

simulations.

The model training process is described below, as shown in Process 1. A file

of 256MB size is first placed at each node. These files are manually assigned to

avoid resource overlap. Then, the reinforcement learning server and all the P2P

nodes are launched. The P2P nodes form their own network and inform the rein-

forcement learning server of their real-time state, while each node spontaneously

requests to download these files, deletes the downloaded files after download, and

repeats the request. Delays of 50ms are randomly added to half of the nodes using

the tc command, and then the number of times the file has been downloaded after

this delay is added is counted. After every 1,000 downloads, the added delays are

removed, and delays of 50ms are randomly added again to half of the nodes.

Five trials of the experiment was conducted, in which the node repeatedly

downloads the file 10,000 times. For each download, the current state of all nodes

in the P2P environment and the node ID selected for the current download, as

15

Process 1 Model Training Process
1: Start RL server

2: loop

3: Measure the latency of each node with ping protocol

4: if Receive a download record from a node then

5: Store the download record

6: Update the download count of the file

7: if Download count reaches 101 then

8: Use the last 100 records to train the model

9: end if

10: if Download count reaches 1000 then

11: Reallocate network latency to half of the nodes

12: end if

13: if Download count reaches 5000 then

14: Update epsilon from 0.5 to 0.9

15: end if

16: else

17: Receive and store the CPU and memory usage from a node

18: end if

19: end loop

Process 2 Node Request Process

1: Start all nodes

2: Wait for 11 seconds

3: loop

4: Continuously send CPU and memory usage data to the RL server

5: Request to download a file from the RL server

6: Receive a node ID from the RL server

7: Connect to the node with the received ID and start downloading the file

8: After downloaded, send the selected node ID and download time to the

RL server

9: end loop

16

well as the time spent downloading the file and the state of all nodes in the

P2P environment after the download were recorded. It is important to note that

the CPU and memory usage of these nodes as well as the download records are

uploaded by the nodes themselves, as shown in Process 2.

The epsilon parameter of the reinforcement learning model is set to 0.5 for the

first 5,000 file downloads, and then adjust the epsilon to 0.9 for the next 5,000

downloads. The epsilon represents the probability that the model’s decision will

be followed. Epsilon should not be set too high in the early training stage when

the model has not yet converged, as this will make it more difficult for the model

to converge.

The proposed model is trained with 100 data inputs after every 101 file down-

loads. This means that the model was trained 99 times when the file was down-

loaded 10,000 times, each time using 100 real-time data for training. The RM-

Sprop [27] optimizer was used to update the neural network, and the learning rate

was set to 0.01. The collected real-time data are assembled into a state matrix

to train the model at each training session.

3.4 Implementation and Environment Setup

To realize the proposed system, the dueling-DQN model was developed using the

PyTorch framework, an advanced open-source machine learning library, incorpo-

rating open-source resources from labml.ai [28], which is renowned for offering

tools and libraries that facilitate research and development in artificial intelli-

gence and machine learning. The central server was constructed utilizing the

flask framework [29], which is distinguished by its lightweight architecture and

its facilitation of seamless integration with web applications. P2P nodes were de-

veloped by employing the go-libp2p [30], an open-source library highly regarded

for its comprehensive suite of networking and data transfer capabilities essential

for the development of P2P-based decentralized applications. Additionally, a cus-

tom plugin was developed utilizing the gopsutil library [31] for the P2P nodes,

enabling these nodes to monitor and report their real-time memory and CPU

usage to the reinforcement learning server.

In this study, an experimental environment was constructed on a virtual ma-

chine cluster, and two experiments, which are described in later chapters, were

17

Table 2. Specifications of the Virtual Machine Cluster

Component Specification

Virtualization Platform VMware ESXi 6.7.0

Number of Nodes 5

CPU per Node 2 x Intel Xeon Silver 4208

Memory per Node 96GB

Network Interface Card Intel Ethernet Controller 10G X550

Table 3. VM Configuration

Role CPU cores Memory Amount

P2P node 2 Cores 4 GB 10 VMs

Reinforcement learning node 8 Cores 32 GB 1 VM

conducted. In the first experimental environment, two nodes were run under each

VM, totaling 20 nodes, and in the second, a single node was run under each VM,

totaling 10 nodes. Additionally, one VM was run to act as the central server.

The hardware specifications of the virtual machine cluster and the configurations

of VMs used in the experiments are shown in Table 2 and 3. The reinforcement

learning service runs on an 8-core, 32GB VM.

18

4. Evaluation

In this chapter, the proposed model is evaluated in both 10-P2P-node and 20-

P2P-node environments, with added partial delays of 10ms, 50ms, and 100ms.

The model’s performance in identifying low-latency nodes is compared with the

random selection algorithm and the TFT algorithm in each scenario. The varia-

tion in the number of P2P nodes across these environments is designed to explore

whether the model can accurately identify low-latency nodes when there are few

candidate nodes. Additionally, introducing different delays aims to test whether

the proposed model can maintain consistent performance under various network

latency conditions.

4.1 Metrics of Evaluation

In the evaluation, each algorithm, including the proposed method, is evaluated

based on two metrics. The first metric is the average download time, calculated

by averaging the download times of all files in the evaluation scenarios. The

second metric is the low-latency node selection rate, which measures the rate of

low-latency nodes preferentially selected within the network environment. Since

the evaluation environment introduces random delays to some network nodes, this

metric evaluates how effectively each algorithm avoids nodes with large delays.

These metrics facilitate the evaluation of the performance of each node selection

algorithm.

The average download time (lower is better) is calculated as follows:

t̄ =
1

N

N∑
i=1

ti, (2)

where N represents the total number of files and ti represents the time taken to

download the ith file. This formula sums up the download time for each round

of file downloading to calculate the average download time.

The low-latency node selection rate for each round of file downloading is cal-

culated as follows:

ratei =
of selected low-latency nodes

of all selected nodes
. (3)

19

The denominator represents the number of times each node is selected as a file

sharing object, while the numerator represents the number of low-latency nodes

selected up to the current round. Subsequently, the average selection rate of

low-latency nodes (higher is better) is calculated with:

rate =
1

N

N∑
i=1

ratei, (4)

where N represents the total number of files.

4.2 Evaluation on a network of 20 nodes

The experiments in this section were conducted in a 20-node environment, and file

download times and the selection rates of low-latency nodes were collected under

conditions where half of the nodes had latency of 10ms, 50ms, and 100ms, which

represent low, medium, and high latency network environments respectively. This

allows testing the proposed model’s ability to correctly identify low-latency nodes

and increase resource utilization under various network latency conditions.

4.2.1 Evaluation with 10ms Latency Introduced

Figure 5 shows the time taken to transfer a single 256MB file in a P2P envi-

ronment with 20 nodes, under a 10ms latency for half of the nodes, using three

different strategies. The horizontal axis represents the number of downloads, and

the vertical axis shows the time taken to download (less is better). The ran-

dom selection strategy takes the longest time, but the proposed algorithm nearly

achieves the same download time as TFT, although there is still a gap on average.

Figure 6 displays the rate of selecting low-latency nodes during the transfer of

a single 256MB file in a P2P environment with 20 nodes, where half of the nodes

have a 10ms latency, under three different strategies. The x-axis represents the

number of rounds downloaded and the y-axis shows the cumulative percentage

of the selection rate of the low latency node selection at that point. Since half

of the nodes are low-latency, the random selection algorithm still hovers around

0.5. TFT can reach up to nearly 0.7 in its selection rate of selecting low-latency

nodes, while the proposed model fluctuates between 0.6 and 0.7. The average

20

Figure 5. Results of three strategies for downloading a 256MB file with 20 nodes

and half of the nodes with 10ms latency

Figure 6. Rate of selecting a low-latency node in each round of downloads within

a P2P environment of 20 nodes at 10ms latency for half of the nodes under three

different strategies

21

Table 4. Download time and low latency node selection rate (# of nodes: 20,

latency: 10ms)

Algorithm Avg download time Avg selection rate

TFT 5.74s 57%

DQN 6.09s 55%

RANDOM 6.74s 48%

download time and the average selection rate of low latency nodes are shown in

Table 4.

4.2.2 Evaluation with 50ms Latency Introduced

The comparison of the download time of a 256MB file under a 50ms latency for

half of the nodes is shown in Fig 7. The results demonstrate that our proposed

DQN model reduces the download time by 20% compared to the random selection

algorithm, is slightly slower than the TFT algorithm by 10% between 5,000 and

7,000 downloads, but achieves almost equal download time after 7,000 downloads.

A comparison of the three selection algorithms in terms of their ability to

choose low-latency nodes in each round of download is also conducted. The

results are shown in Fig 8. Since we set half of the nodes to have a delay of

50ms in our experiments, the selection rate of the random selection algorithm

fluctuates around 0.5. And the average selection rate of low latency nodes of

the TFT algorithm is around 0.8, while the average selection rate of low latency

nodes of our proposed DQN model is around 0.7, as shown in Table 5. Since

we set epsilon to 0.5 for the first 5,000 downloads, the performance of our DQN

method is almost the same as random, with occasional fluctuations. However,

when we adjusted the epsilon to 0.9 after the first 5,000 downloads, the selection

rate of the selected low-latency nodes in our model showed an increasing trend.

4.2.3 Evaluation with 100ms Latency Introduced

Figure 9 shows the time taken to transfer a single 256MB file in a P2P environ-

ment with 20 nodes, where half of the nodes have a 100ms latency, under three

22

Figure 7. Results of three strategies for downloading a 256MB file with 20 nodes

and half of the nodes with 50ms latency

Figure 8. Rate of selecting a low-latency node in each round of downloads within

a P2P environment of 20 nodes at 50ms latency for half of the nodes under three

different strategies

23

Table 5. Download time and low latency node selection rate (# of nodes: 20,

latency: 50ms)

Algorithm Avg download time Avg selection rate

TFT 6.65s 80%

DQN 7.78s 70%

RANDOM 9.16s 49%

Table 6. Download time and low latency node selection rate (# of nodes: 20,

latency: 100ms)

Algorithm Avg download time Avg selection rate

TFT 11.46s 74%

DQN 12.53s 64%

RANDOM 14.66s 47%

different strategies. Although the random strategy takes the longest time, our

proposed algorithm nearly achieves the same download time as TFT.

Figure 10 illustrates the selection rate of selecting low-latency nodes during

the transfer of a single 256MB file in a P2P environment with 20 nodes, where

half of the nodes have a 100ms latency, under three different strategies. Since half

of the nodes are low-latency, the random selection algorithm still hovers around

0.5. TFT performs very well under high latency, almost reaching a selection rate

of 0.8 for low-latency nodes. The proposed model also performs well under high

latency, achieving a selection rate of 0.6-0.7 for low-latency nodes. Although it

still falls short of TFT, it is better than the random selection algorithm. The

average download time and the average selection rate of low latency nodes are

shown in Table 6.

24

Figure 9. Results of three strategies for downloading a 256MB file with 20 nodes

and half of the nodes with 100ms latency

Figure 10. Rate of selecting a low-latency node in each round of downloads within

a P2P environment of 20 nodes at 100ms latency for half of the nodes under three

different strategies

25

Figure 11. Results of three strategies for downloading a 256MB file with 10 nodes

and half of the nodes with 10ms latency

4.3 Evaluation on a network of 10 nodes

The experiments in this section were conducted in a 10-node environment, and

file download times and the selection rates of low-latency nodes were collected

under conditions where half of the nodes had delays of 10ms, 50ms, and 100ms,

respectively.

4.3.1 Evaluation with 10ms Latency Introduced

Figure 11 shows the time taken to transfer a single 256MB file in a P2P envi-

ronment with 10 nodes, under a 10ms latency for half of the nodes, using three

different strategies. Although the random strategy takes the longest time, the

download times for nearly all three strategies hover around 5-6 seconds. This

might be because the 10ms latency between nodes has almost no impact on the

network.

Figure 12 shows the selection rate of selecting a low latency node for each

round of downloads. the TFT algorithm has the highest selection rate of low

latency nodes, the random selection algorithms and proposed model fluctuate

26

Figure 12. Rate of selecting a low-latency node in each round of downloads within

a P2P environment of 10 nodes at 10ms latency for half of the nodes under three

different strategies

Table 7. Download time and low latency node selection rate (# of nodes: 10,

latency: 10ms)

Algorithm Avg download time Avg selection rate

TFT 5.24s 57%

DQN 5.59s 49%

RANDOM 5.84s 48%

27

Figure 13. Results of three strategies for downloading a 256MB file with 10 nodes

and half of the nodes with 50ms latency

around 0.5. The average download time and the average selection rate of low

latency nodes are shown in Table 7.

4.3.2 Evaluation with 50ms Latency Introduced

Figure 13 illustrates the time taken to transfer a single 256MB file in a P2P

environment with 10 nodes, under a 50ms latency for half of the nodes, using three

different strategies. The random strategy takes the longest time, but under a 50ms

delay, our proposed algorithm performs only slightly worse than the mainstream

TFT.

Figure 14 shows the rate of selecting low-latency nodes in the transfer of a

single 256MB file within a P2P environment of 10 nodes, where half of the nodes

have a 50ms latency, under three different strategies. Since half of the nodes

are low-latency nodes, the selection rate for the random selection algorithm still

hovers around 0.5. The TFT algorithm still selects more low-latency nodes, and

while the proposed model outperforms the random selection algorithm, it still

falls short of TFT. The average download time and the average selection rate of

low latency nodes are shown in Table 8.

28

Figure 14. Rate of selecting a low-latency node in each round of downloads within

a P2P environment of 10 nodes at 50ms latency for half of the nodes under three

different strategies

Table 8. Download time and low latency node selection rate (# of nodes: 10,

latency: 50ms)

Algorithm Avg download time Avg selection rate

TFT 6.65s 56%

DQN 7.28s 54%

RANDOM 8.26s 48%

29

Figure 15. Results of three strategies for downloading a 256MB file with 10 nodes

and half of the nodes with 100ms latency

4.3.3 Evaluation with 100ms Latency Introduced

Figure 15 shows the time taken to transfer a single 256MB file in a P2P environ-

ment with 10 nodes, where half of the nodes have a 100ms latency, under three

different strategies. We can see that due to the significant network latency, the

fluctuation in download times also becomes quite large. However, the download

time with the TFT algorithm is still less than that of the proposed model and the

random selection algorithm. At the same time, the proposed model manages to

outperform the random selection algorithm most of the time and achieves almost

the same download time as TFT.

Figure 16 illustrates the probability of selecting low-latency nodes in the trans-

fer of a single 256MB chunk within a P2P environment of 10 nodes, where half

of the nodes have a 100ms latency, under three different strategies. Since half

of the nodes are low-latency, the random selection algorithm still hovers around

0.5. However, TFT is more sensitive to nodes with higher latency, as nodes with

fewer data transferred in a given time can be quickly identified as high-latency

nodes. Meanwhile, the proposed model also manages to select low-latency nodes

with a rate of 0.6, compared to the random selection algorithm which remains

30

Figure 16. Rate of selecting a low-latency node in each round of downloads within

a P2P environment of 10 nodes at 100ms latency for half of the nodes under three

different strategies

Table 9. Download time and low latency node selection rate (# of nodes: 10,

latency: 100ms)

Algorithm Avg download time Avg selection rate

TFT 9.76s 62%

DQN 10.53s 56%

RANDOM 11.66s 48%

31

at 0.5. The average download time and the average selection rate of low latency

nodes are shown in Table 9.

It should also be noted that when a node requests to download a file, it first

needs to send a request to our central server to obtain the ID of the optimal

node under the current environment. Upon receiving the request, the central

server inputs the current environmental states(like CPU, and memory usage)

into the model, and the average time taken to produce the required output is

approximately 0.0005 seconds. However, TFT and random selection algorithms

do not need this computational time to obtain the optimal node. Their decision

making is done at the node itself.

4.4 Adaptation of nodes when the network state changes

To examine how the proposed method and the TFT algorithm react to dynamic

changes in network conditions, we separately analyze the hit rates of low-latency

nodes in the first 20 rounds after every 1,000 rounds of delay redistribution. For

example, Fig 17 shows the hit rate of low latency nodes from rounds 5001 to

5020. We observe that the DQN model shows a small upward trend after we

redistribute the network delay between nodes, whereas the TFT algorithm shows

a downward trend of varying degrees although it does not last long. The short-

term downward trend is especially noticeable in the results of the TFT algorithm

shown in Fig 18 and Fig 20 and there is also a minor downward trend in Fig 19

and Fig 21.

32

Figure 17. The first 20 downloads starting from the 5,000th download

Figure 18. The first 20 downloads starting from the 6,000th download

33

Figure 19. The first 20 downloads starting from the 7,000th download

Figure 20. The first 20 downloads starting from the 8,000th download

34

Figure 21. The first 20 downloads starting from the 9,000th download

35

5. Discussion

This chapter will discuss the results obtained under different scenarios, including

those with 10 nodes and 20 nodes, as well as various latency conditions. This

chapter will then also delve into the advantages of the proposed algorithm and

its limitations, along with areas where improvements can be made.

5.1 Discussion on DQN Algorithm Performance Analysis

in a 20-Node Environment

In this low-latency (10ms) scenario, the negligible differences between nodes due

to the very low delay result in similar performances for the DQN algorithm (55%

selection rate), TFT (57% selection rate), and random selection (48% selection

rate). This similarity suggests that in extremely low-latency network environ-

ments, the advantages of the DQN algorithm are not pronounced. Regarding

download speeds, the DQN algorithm (6.09 seconds), TFT (5.74 seconds), and

random selection (6.74 seconds) also show close performances. This further in-

dicates that in a low-latency environment, the impact of latency differences on

download speed is minimal. It raises an important consideration: in such en-

vironments, the complexity and sophistication of the DQN algorithm might not

translate into significant performance gains, as the latency factor becomes less

critical compared to other network attributes.

At a 50ms medium latency, the DQN algorithm achieves a 70% selection

rate, significantly better than the random selection algorithm’s 49%, but slightly

inferior to TFT’s 80%. This indicates that the DQN algorithm can to some extent

discern and select low-latency nodes, yet there is room for improvement. The

gap between DQN and TFT suggests that while DQN is effective in identifying

lower-latency nodes compared to random selection, it may not be as adept at

consistently pinpointing the optimal nodes as TFT. In terms of download speed,

the average time for the DQN algorithm is 7.78 seconds, faster than the random

selection’s 9.16 seconds but slower than TFT’s 6.65 seconds. This performance

gap could be attributed to the slightly lower accuracy of the DQN algorithm in

selecting low-latency nodes. It highlights a potential area for enhancement in the

DQN algorithm, particularly in its ability to make more precise selections under

36

varying network latencies.

In a high-latency environment of 100ms, the DQN algorithm’s selection rate

stands at 64%, still outperforming the random selection’s 47% but falling short

of TFT’s 74%. This disparity might be due to the more pronounced differences

in node latency at higher levels, where TFT’s method of identifying low-latency

nodes becomes increasingly effective. The average download time for the DQN

algorithm is 12.53 seconds, quicker than random selection’s 14.66 seconds but not

as fast as TFT’s 11.46 seconds. This underscores the importance of accurate node

selection in high-latency environments to improve download efficiency. The DQN

algorithm, while better than random selection, shows a notable gap compared

to TFT, suggesting that its method of node selection, although effective, might

require further refinement to handle higher latency variations more efficiently.

5.2 Discussion on DQN Algorithm Performance Analysis

in a 10-Node Environment

In a smaller network of 10 nodes, the minimal impact of a 10ms delay on node

selection results in nearly identical performance across the DQN algorithm (49%

selection rate), TFT (57% selection rate), and random selection (48% selection

rate). This uniformity in performance across different algorithms suggests that

in such low-latency conditions, the latency factor is not a significant determi-

nant in node selection efficiency. The download speeds, with the DQN algorithm

at 5.59 seconds, TFT at 5.24 seconds, and random selection at 5.84 seconds,

are also closely matched. This further reinforces the notion that in environments

where latency is minimal, its impact on overall network performance, particularly

download speed, is limited. It implies that in such scenarios, the advanced capa-

bilities of the DQN algorithm might not provide a substantial edge over simpler

algorithms like random selection or TFT.

At a 50ms delay, the DQN algorithm’s selection rate improves to 54%, surpass-

ing random selection’s 48% but still trailing behind TFT’s 56%. This performance

in a smaller network environment suggests that the DQN algorithm’s effectiveness

in distinguishing between low and high-latency nodes is somewhat constrained

by the reduced number of nodes. The smaller pool of nodes might limit the

37

algorithm’s ability to leverage its full potential in identifying the most optimal

nodes for each task. The average download time for the DQN algorithm in this

scenario is 7.28 seconds, slightly slower than TFT’s 6.65 seconds but faster than

random selection’s 8.26 seconds. This indicates that while the DQN algorithm

does improve download efficiency compared to random selection, its performance

gap with TFT highlights the need for further refinement in environments where

the choice of nodes becomes more critical due to increased latency.

In a high-latency setting of 100ms, the DQN algorithm’s selection rate is 56%,

better than random selection’s 48% but not as high as TFT’s 62%. This suggests

that in environments with significant latency, the ability of the DQN algorithm to

consistently choose the lowest latency nodes is somewhat less effective compared

to TFT. The higher latency environment amplifies the importance of accurate

node selection, where TFT seems to have an edge. The DQN algorithm’s average

download time in this context is 10.53 seconds, quicker than random selection’s

11.66 seconds but lagging behind TFT’s 9.76 seconds. This disparity in download

speed underlines the critical role of precise node selection in high-latency envi-

ronments and points to potential areas for improvement in the DQN algorithm’s

decision-making process.

5.3 Advantages of the proposed DQN algorithm

Through a detailed analysis of the DQN algorithm’s performance in different net-

work environments, it is evident that the DQN algorithm has a clear advantage

over random selection in medium and high-latency environments, particularly

when there is a larger number of nodes. However, compared to the TFT al-

gorithm, there is room for improvement in the DQN algorithm’s accuracy in

selecting low-latency nodes. These findings suggest that in future research, fur-

ther optimization of the DQN algorithm is possible, especially in high-latency

environments, to enhance its accuracy in selecting low-latency nodes. Addition-

ally, considering the performance differences in various network environments,

the adjustments and optimizations of the DQN algorithm should be tailored to

specific network conditions and the number of nodes. With these improvements,

the DQN algorithm is expected to achieve better performance in a wider range

of application scenarios.

38

5.4 Discussion on the Limitations and Improvement Direc-

tions of the DQN Algorithm

5.4.1 Performance Bottleneck in Large-Scale Requests

The DQN algorithm requires additional computation time for decision-making,

which can become a significant bottleneck in scenarios with large-scale requests.

This computational overhead is particularly noticeable when the algorithm needs

to process a vast number of nodes or complex network states, leading to delays

that can impact the overall efficiency of the system.

To mitigate this issue, adopting more efficient model architectures that stream-

line the decision-making process can be beneficial. These architectures could in-

clude more advanced neural network designs that require fewer computational

resources for the same level of decision-making.

Implementing distributed computing systems can also play a crucial role. By

distributing the computational load across multiple servers or nodes, the decision-

making process can be parallelized, significantly reducing the time taken for each

decision. This approach not only speeds up the processing time but also scales

better with increasing network size and complexity.

5.4.2 Adaptation to Changing Node Numbers

The DQN model currently needs structural adjustments when the number of

nodes in the environment changes, which limits its flexibility. This rigidity means

that the model might not perform optimally when the network topology changes,

such as when nodes are added or removed during operation.

Future research could explore more adaptable model designs. One promising

direction is the use of Graph Neural Networks (GNNs), which inherently possess

the ability to handle varying sizes and structures of networks. GNNs can dynam-

ically adjust to different network topologies, making them ideal for environments

where node numbers fluctuate.

Another approach could be the development of modular DQN models that

can dynamically reconfigure themselves based on the current network state. This

would allow the model to maintain high performance even as the network changes.

39

5.4.3 Enhancing Responsiveness to Network Variations

While the DQN algorithm performs well in certain environments, its adaptability

to different network states needs improvement. In dynamic networks, where

conditions such as latency and node availability can change rapidly, the algorithm

must quickly adjust its strategies to maintain efficiency.

5.4.4 Incorporating Complex State Representations and Reward Mech-

anisms

Introducing more complex state representations can provide the algorithm with

a deeper understanding of the network, enabling more informed decision-making.

This could involve integrating additional network metrics or real-time data into

the algorithm’s input.

Advanced reward mechanisms can be designed to better capture the nuances

of different network states, guiding the algorithm towards more optimal decisions.

These mechanisms could be tailored to prioritize certain aspects of network per-

formance, such as latency, throughput, or reliability.

5.4.5 Balancing Real-Time Response and Decision Accuracy

In real-world applications, finding a balance between the algorithm’s real-time

responsiveness and decision accuracy is crucial. This involves optimizing the

algorithm to make quick decisions without significantly compromising on the

quality of these decisions.

Enhancing real-time performance might involve optimizing the algorithm’s

code for faster execution or utilizing more powerful hardware. Improving deci-

sion accuracy could be achieved through more precise data collection and process-

ing, ensuring that the algorithm has access to the most relevant and up-to-date

information.

5.4.6 Challenges in Large-Scale Deployment

Deploying the DQN algorithm in large-scale network environments poses chal-

lenges in terms of computing resource allocation and management. In such scenar-

40

ios, the algorithm must efficiently handle a vast number of nodes and potentially

complex network dynamics without overloading the computational resources.

Exploring the use of cloud computing resources or edge computing technolo-

gies can help distribute the computational load. Cloud computing can offer scal-

able resources as needed, while edge computing can bring computation closer to

where data is generated, reducing latency and improving response times.

5.4.7 Importance of User Experience

In P2P networks, the end-user experience is a critical metric for the success of

any algorithm. It’s essential to regularly collect user feedback to understand how

the algorithm impacts the user experience.

Based on this feedback, algorithm parameters can be adjusted to ensure higher

user satisfaction. This might involve tweaking the balance between different per-

formance metrics or introducing new features to better align with user preferences

and requirements.

5.5 Limitations of the proposed model and possible future

improvements

While the DQN algorithm shows promise in certain network environments, its

limitations in computational efficiency, model flexibility, and adaptability to vary-

ing network states present areas for improvement. Addressing these challenges

through advanced model architectures, distributed computing, and enhanced

learning mechanisms can lead to a more robust and efficient algorithm. By con-

tinually refining the algorithm and tailoring it to the specific needs of different

network environments, the DQN algorithm can achieve broader applicability and

improved performance, ultimately enhancing the user experience in P2P net-

works.

5.5.1 Improvements to the Experimental Setup

The current experimental setup may not reflect a realistic environment, which

suggests that enhancing this aspect could potentially improve the algorithm’s

performance. Although the current model includes CPU and memory usage in

41

its inputs, the experiments only control latency, without considering scenarios

where each node is under high load. Designing experiments that account for these

situations could lead to improved performance under conditions where node load

impacts data exchange performance. Furthermore, the file size being exchanged is

fixed at 256MB in the experiment, indicating room for improvement. By adjusting

the file sizes used in model training to reflect the distribution found in realistic

P2P networks, the model might be able to develop more advanced strategies

suitable for real-world environments. For example, it could learn to fetch smaller

files from distant nodes despite higher latency, considering load balancing. To

achieve a more realistic experimental setup, it would be beneficial to simulate the

frequency of requests from each node and the latency between nodes based on

a realistic network model. Incorporating simulations that reflect actual network

behavior would enable the experiments to better represent and adapt to real-

world conditions.

Additionally, the current experimental setup has limitations because it relies

on a fixed single scenario for training. In this scenario, the model is trained using

the records of the past 100 downloads every 100 downloads, with latency being

reassigned every 1000 downloads, and the epsilon parameter being changed after

5000 downloads. However, considering that these parameters can impact the

accuracy of the trained model, it is believed that tuning, such as experimenting

with various combinations of parameters, is necessary. This approach would

help in identifying optimal settings that enhance model performance and would

illustrate the need for a more flexible and adaptive experimental framework.

5.5.2 Improvements to the Latency Measurement Between Nodes

The current methods for measuring and collecting latency face scalability issues.

As the number of nodes in a network increases, it becomes impractical to measure

the latency between all pairs of nodes due to the exponential growth in the number

of measurements needed. One potential solution to this problem is to divide the

network into several smaller regions and then measure the latency only between

representative nodes within each region. This approach, however, raises several

important considerations. It necessitates decisions about how to categorize nodes

into groups, determining the optimal size and number of these groups to ensure

42

that the measured latencies accurately reflect the network’s performance.

43

6. Conclusion

In this study, we introduce an innovative approach to optimizing peer-to-peer

(P2P) file sharing networks through a modified dueling-Deep Q-Network (DQN)

model. This model is specifically designed to enable nodes within a P2P network

to make more efficient decisions when selecting peers for downloading files. The

core of this approach lies in its ability to dynamically adapt to the ever-changing

conditions of the network, a significant advancement over traditional methods.

The proposed method has been rigorously compared with two conventional

algorithms: the random selection algorithm and the Tit-for-Tat (TFT) algorithm.

The random selection algorithm, as its name suggests, chooses nodes randomly

without considering their current or past performance. This approach, while

simple, often leads to suboptimal download speeds and inefficiencies, especially

in a network where node performance can vary widely.

The TFT algorithm, on the other hand, represents a more strategic approach.

It selects nodes based on historical performance data from a defined previous

time period, such as the past 20 seconds. This method allows for a more in-

formed selection process compared to random selection. However, its reliance on

historical data can be a drawback. If a node’s state changes significantly during

the considered time window, the TFT algorithm’s decision may no longer be opti-

mal. Despite this limitation, TFT has a mechanism to quickly adjust its strategy

once it detects a significant slowdown in the node’s performance, showcasing its

adaptive nature.

The proposed dueling-DQN model takes this adaptability a step further. Un-

like TFT, which relies on historical data, the dueling-DQN model bases its deci-

sions on the real-time state of the nodes. This real-time analysis allows for rapid

adaptation to the current conditions of the network, ensuring that the node se-

lection for file downloads is as efficient as possible at any given moment. This

immediacy in decision-making is particularly advantageous in a P2P environment

where node states can fluctuate rapidly due to varying bandwidths, user activity,

or network conditions.

Moreover, the integration of AI into the selection process, as demonstrated

by the dueling-DQN model, opens up new avenues for future development in

P2P networks. This approach moves beyond traditional selection algorithms,

44

leveraging the power of artificial intelligence to enhance network performance. By

continuously learning and adapting to the network’s state, AI-driven models like

the dueling-DQN can potentially revolutionize how file sharing networks operate,

leading to faster download speeds, more efficient network utilization, and an

overall better user experience.

In conclusion, the modified dueling-DQN model presents a significant ad-

vancement in P2P file sharing technology. Its ability to make real-time, informed

decisions about node selection stands in contrast to the limitations of traditional

algorithms. While it still has some gaps to bridge when compared to the TFT al-

gorithm, this model represents a novel attempt in the field, offering fresh perspec-

tives and laying the groundwork for future research. As P2P networks continue

to evolve, the incorporation of AI and machine learning models like the dueling-

DQN offers a promising direction for enhancing the efficiency and effectiveness of

these networks. This innovative approach not only addresses current challenges

but also opens up new possibilities for the continued evolution and improvement

of P2P file sharing systems.

45

Acknowledgements

Completing this thesis would not have been possible without the collective sup-

port and encouragement of the entire NAIST. I am deeply grateful for the nur-

turing academic environment provided by the university, which has been instru-

mental in my personal and professional development.

I would like to express my deepest gratitude to Professor Hajimu Iida for not

only providing me with the opportunity to conduct this research but also for his

continual concern about my adaptation to life in Japan. His invaluable support

and recommendations played a crucial role in securing my internship at Toshiba,

an experience that has been both enriching and instrumental in my professional

growth.

I would also express my sincere gratitude to Professor Fujikawa Kazutoshi

for his invaluable insights during the intermediate presentation of my research,

particularly his suggestion to test the model in various node environments. This

advice not only enhanced the robustness of my work but also helped me identify

potential issues and weaknesses in the methodology I proposed. His guidance has

been instrumental in refining my approach and advancing my understanding of

the subject.

Special thanks are also due to Professor Kohei Ichikawa. In the early stages

of my research, Professor Ichikawa attentively listened to my project ideas and

offered insightful advice on how to refine and advance my research. I am particu-

larly grateful for his guidance when my project encountered significant challenges;

his suggestion to incorporate delays into the P2P environment was a turning

point, leading to markedly improved results. Furthermore, his valuable feedback

on my presentation for the IPSJ-IoT conference in July 2023 was instrumental

in my successful participation in this prestigious academic forum. His practical

advice upon my arrival in Japan, such as recommending the Ahamo plan, greatly

facilitated my daily life.

I extend my heartfelt appreciation to the teaching assistants, especially Kashiwa-

sensei, and the secretary, Ogawa-san, of our laboratory. Their assistance and

support have been pivotal in making my life at NAIST not only easier but also

more enjoyable.

I am also immensely thankful to my fellow lab mates. Their camaraderie,

46

collaborative spirit, and shared insights have greatly enriched my research expe-

rience. The stimulating discussions, mutual encouragement, and the collective

brainstorming sessions have not only enhanced my academic journey but also

contributed to some of the breakthroughs in my research.

Lastly, I would like to acknowledge the financial support from my family,

which enabled me to fully focus on my research. This journey has been a blend

of academic rigor and personal growth, and I am profoundly grateful to everyone

who has been a part of it.

47

References

[1] Geoffrey Fox. Peer-to-peer networks. Computing In Science & Engineering,

3:75–77, 2001.

[2] Anthony J Howe. Napster and gnutella: a comparison of two popular peer-

to-peer protocols. Universidade de Victoria, 11, 2000.

[3] Johan Pouwelse, Pawe l Garbacki, Dick Epema, and Henk Sips. The bittor-

rent p2p file-sharing system: Measurements and analysis. In Peer-to-Peer

Systems IV: 4th International Workshop, IPTPS 2005, Ithaca, NY, USA,

February 24-25, 2005. Revised Selected Papers 4, pages 205–216. Springer,

2005.

[4] Joan Antoni Donet Donet, Cristina Pérez-Sola, and Jordi Herrera-

Joancomart́ı. The bitcoin p2p network. In International conference on fi-

nancial cryptography and data security, pages 87–102. Springer, 2014.

[5] Naeem Ramzan, Hyunggon Park, and Ebroul Izquierdo. Video streaming

over p2p networks: Challenges and opportunities. Signal Processing: Image

Communication, 27(5):401–411, 2012.

[6] Dr Brijender Kahanwal and Dr TP Singh. The distributed comput-

ing paradigms: P2p, grid, cluster, cloud, and jungle. arXiv preprint

arXiv:1311.3070, 2013.

[7] Ashwin R Bharambe, Cormac Herley, and Venkata N Padmanabhan. Ana-

lyzing and improving bittorrent performance. Microsoft Research, Microsoft

Corporation One Microsoft Way Redmond, WA, 98052:2005–03, 2005.

[8] Jim X Chen. The evolution of computing: Alphago. Computing in Science

& Engineering, 18(4):4–7, 2016.

[9] Zhi Peng, Zhihong Duan, Jianbin Qi, Yujia Cao, and En Lv. Hp2p: A hybrid

hierarchical p2p network. In First International Conference On The Digital

Society (ICDS’07), pages 18–18, 2007.

48

[10] Bram Cohen. Incentives build robustness in bittorrent. In Workshop On

Economics Of Peer-to-Peer Systems, volume 6, pages 68–72, 2003.

[11] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and

Nando Freitas. Dueling network architectures for deep reinforcement learn-

ing. In International Conference On Machine Learning, pages 1995–2003,

2016.

[12] Vivek Vishnumurthy and Paul Francis. On random node selection

in p2p and overlay networks. Manuscript, http://www. cs. cornell.

edu/People/francis/RandSelection19. pdf, 4, 2004.

[13] Micah Adler, Rakesh Kumar, Keith Ross, Dan Rubenstein, Torsten Suel, and

David D Yao. Optimal peer selection for p2p downloading and streaming.

In Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer

and Communications Societies., volume 3, pages 1538–1549. IEEE, 2005.

[14] Vivek Vishnumurthy and Paul Francis. On heterogeneous overlay construc-

tion and random node selection in unstructured p2p networks. In Proceedings

IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer

Communications, pages 1–12. IEEE, 2006.

[15] Haixin Duan, Xiaoxia Lu, Hong Tang, Xiaoyan Zhou, and Zheng Zhao. Prox-

imity neighbor selection in structured p2p network. In The Sixth IEEE In-

ternational Conference On Computer And Information Technology (CIT’06),

pages 52–52, 2006.

[16] Tyler Steele, Vivek Vishnumurthy, and Paul Francis. A parameter-free load

balancing mechanism for p2p networks. In IPTPS, page 21, 2008.

[17] Emna Salhi, Mohamed Karim Sbai, and Chadi Barakat. Neighborhood se-

lection in mobile p2p networks. In Algotel, 2009.

[18] Ioannis Pogkas, Vassil Kriakov, Zhongqiang Chen, and Alex Delis. Adaptive

neighborhood selection in peer-to-peer networks based on content similarity

and reputation. Peer-to-peer networking and applications, 2:37–59, 2009.

49

[19] Yanbo Gui, Shiwen Ju, and Hongseok Choi. P2p streaming media node

selection strategy based on greedy algorithm. In IKEEE, volume 22, pages

570–577, 2018.

[20] Longle Cheng, Xiaofeng Li, Haibo Tan, He Zhao, and Bin Yu. Mslt: A

scalable solution for blockchain network transport layer based on multi-scale

node management. IEICE Transactions on Communications, 107(1):185–

196, 2024.

[21] Seong-Moo Koo, Krishna Kannan, and Choong Seon Lee. On neighbor-

selection strategy in hybrid peer-to-peer networks. Future Generation Com-

puter Systems, 22:732–741, 2006.

[22] Robert Beverly and Mark Afergan. Machine learning for efficient neighbor

selection in unstructured p2p networks. In SysML, volume 7, pages 1–6,

2007.

[23] Raz Izhak-Ratzin, Hyojin Park, and Mihaela Van Der Schaar. Online learn-

ing in bittorrent systems. IEEE Transactions On Parallel And Distributed

Systems, 23:2280–2288, 2012.

[24] Tomoyuki Naito and Satoshi Fujita. Acquiring nearly optimal peer selection

strategy through deep q-network. In 2018 Sixth International Symposium

On Computing And Networking (CANDAR), pages 120–125, 2018.

[25] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforce-

ment learning: A survey. Journal of artificial intelligence research, 4:237–

285, 1996.

[26] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel

Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fid-

jeland, Georg Ostrovski, et al. Human-level control through deep reinforce-

ment learning. nature, 518(7540):529–533, 2015.

[27] Fuzheng Zou, Li Shen, Zhang Jie, Weike Zhang, and Wei Liu. A suffi-

cient condition for convergences of adam and rmsprop. In Proceedings Of

The IEEE/CVF Conference On Computer Vision And Pattern Recognition,

pages 11127–11135, 2019.

50

[28] Nipun Wijerathne Varuna Jayasiri. labml.ai annotated paper implementa-

tions, 2020.

[29] Pallets. flask, https://github.com/pallets/flask.

[30] Libp2p. go-libp2p, https://github.com/libp2p/go-libp2p.

[31] Shirou. gopsutil, https://github.com/shirou/gopsutil.

51

