Master’s Thesis

An Empirical Study to Understand Pythonic

Lists and Dictionaries Usage in Textbooks

Ruksit Rojpaisarnkit

Program of Information Science and Engineering
Graduate School of Science and Technology

Nara Institute of Science and Technology

Supervisor Professor Kenichi Matsumoto

Software Engineering Lab. (Division of Information Science)

Submitted January 29, 2024

A Master’s Thesis
submitted to Graduate School of Science and Technology,
Nara Institute of Science and Technology
in partial fulfillment of the requirements for the degree of

Master of Engineering
Ruksit Rojpaisarnkit

Thesis Committee:
Supervisor Kenichi Matsumoto
(Professor, Division of Information Science)
Keiichi Yasumoto
(Professor, Division of Information Science)
Takashi Ishio
(Professor, Department of Media Architecture, Future University Hakodate)
Raula Gaikovina Kula
(Associate Professor, Division of Information Science)
Kazumasa Shimari

(Assistant Professor, Division of Information Science)

An Empirical Study to Understand Pythonic
Lists and Dictionaries Usage in Textbooks?|

Ruksit Rojpaisarnkit

Abstract

Coding in a ‘Pythonic Way’ involves writing code in a manner that is idiomatic
and natural for the Python language, aligning with its philosophy and commu-
nity conventions. Despite recent efforts to understand various aspects of Pythonic
coding, there is still a lack of knowledge regarding how educators transition from
non-idiomatic code to Pythonic equivalents. This study focuses on data struc-
tures and their introduction in textbooks. I analyze examples of traditional data
structures (such as lists and dictionaries) and search for their Pythonic represen-
tations. From a dataset of 1,624 examples extracted from 177 curated Python
textbooks, I address two research questions. Surprisingly, 69 out of the 177 text-
books lacked any examples of data structures, let alone Pythonic code. The
results provide insights into scenarios where using traditional non-Pythonic data
structures might still be preferred, considering specific topics (e.g., data science,
visualization, statistics), comparison scenarios (readability vs. performance), and
other reasons. This work highlights the limited prevalence of Pythonic education
and suggests the direction for constructing and maintaining the Zen of Python in
the next generation of Python programmers by raising the concern about the im-

portance of introducing the Pythonic code when teaching Python programming.

Keywords:

Pythonic, Educational Materials, Teaching

*Master’s Thesis, Graduate School of Science and Technology, Nara Institute of Science and

Technology, January 29, 2024.

Contents

[List of Figures|

[List of Tables|

(1 Introduction|

(1.2 Replication packagel.

(1.3 Organizationl

2

Background and Related work]|

2.1 Pythonic Coding|
[2.2 Mining Programming Textbooks|.

Methodology|

[3.1 Collecting Python Textbooks
[3.2 Extracting Code Examples|

Kinds of textbooks (RQ1)|

[4.1 Approach|

(5

Pythonic Data Structure Usage Scenarios (RQ2)|

.1 Approach|

Implications|

[6.1 Not all textbooks contain Pythonic examples|. . .

[6.2 Considerations tor Non-Pythonic Data Structures|

[6.3 Automation may not be triviall.

1

iv

S O O =

10
10
11

16
16
18

21
21
23

[6.4 Pythonic Coding Learning|

[7 Threats To Validity]

[Acknowledgement|

(Bibliography|

1ii

32
32
33
33

34

35

37

List of Figures

[1.1 Example of a traditional list to Pythonic list comprehension [1, p. 43]| 4
(1.2 Example of a traditional dictionary to Pythonic dict comprehen- |
sion [2, p. I51]]. 5

[3.1 Study Overview| 13

4.1 Answering RQ1, the proportion of textbooks that (a) contain Pythonic |

data structures (b) do not contain Pythonic data structures. Fur- |

thermore, for (b), identifying textbooks that do not use data struc- |
| tures (List and Dictionary) atall| 19

[>.1 Example of Scenarios that still use Traditional list and Traditional |

L ekl . . o 24
[b.2 Example of topic-scenarios|o 26
[>.3 kExample of comparison-scenarios| 27
[>.4 Example of other-scenarios| 28

v

List of Tables

3.1 Collected Dataset of Textbooksl 11
[3.2 Regular expressions used to identify instances in Python textbooks| 14
[3.3 Extracted Code Examples 15

1 Introduction

Like other programming language communities(e.g. Java, Ruby, JavaScript, etc),
the Python community has over time developed its own agreed consensus on
how to write Python [3]. From programmer blogs, mailing lists, to official docu-
mentation, the term “Pythonic” is used liberally by the Python community. As
a result, the community put together the Zen of Python, which is a set of 19
design principles [4] for writing computer programs that influence the design of
the Python programming language [5]. The principles include concepts such as
“Beautiful is better than ugly”, “Explicit is better than implicit”, and “Simple is
better than complex”. Intuitively, non-Pythonic code may appear imperfect to an
experienced Python developer. [3] showed that the scope of the term “Pythonic”
seems to go far beyond concrete source code, referring to a way of thinking about
problems and potential solutions.

In recent times, the Python language has grown in popularity due to its ease
of use and versatility to be used by professionals and academics outside of com-
puter science. Specifically, Python has been broadly utilized by researchers and
practitioners in various fields, including visualization, statistics, data science,
machine learning, and Al. Evidence of this popularity is the rise of the usage of
Jupyter notebooks [6] and data repositories such as Kaggle and the emergence
of libraries such as Scikit-learn[f] TensorFlow[f] and Kerasf| With the increase
of software artifacts available on platforms like GitHub, Pythonic programmers
need to address issues related to size, complexity, and memory limitation. A key
factor in Python’s popularity might be due to the flexibility that it offers, as
Python allows variables and data structures without any data type checking. Re-

*https://www.kaggle.com/
Thttps://scikit-learn.org
‘https://www.tensorflow.org
Shttps://keras.io

https://www.kaggle.com/
https://scikit-learn.org
https://www.tensorflow.org
https://keras.io

N

cent work now focuses on the various aspects of detecting and utilizing Pythonic
practices [7, 8, [9] 10, 11]. For example, [7] devised a catalog of 19 Pythonic id-
ioms and examined their performance and readability. [8] visually revealed that
tend to gradually transition over to Pythonic code over time, while [12] showed
that writing in Pythonic idioms may save memory and time, and was validated
by [13], who found that the impact of Python idioms on code performance varies
greatly across idioms. Although there exist works that have explored the usage
of Pythonic constructs, it is still unknown the extent to which Pythonic examples
appear in teaching resources such as textbooks.

Figure|l.1jand Figure|l.2|are excerpts that show how a textbook introduces the
Pythonic method in comparison to the traditional list and dictionary [Il, p. 43] and
[2, p. 151]. In both examples, I see that the author first presents the traditional
data structure, and then proceeds to introduce the Pythonic counterpart. In
both cases, the author explicitly states a preference for the Pythonic code over
the non-Pythonic approach (traditional list and dictionary).

In this work, I aim to investigate how Pythonic code is taught in a teaching en-
vironment. Specifically, I focus on data structures and how they are introduced
in textbooks. Before proceeding, I first explain each Pythonic list idiom and

demonstrate how each Pythonic code is preferred over the traditional methods /]

1. List comprehension is a concise and expressive technique used to generate

new lists by applying a predefined operation to each item within an existing
iterable (e.g., a list, tuple, or range), enhancing code readability and minimizing

the necessity for explicit looping constructs.

Note: n is integer

result_list = [el for el in range(n)]

2. Dict comprehension is an efficient approach to creating dictionaries by spec-

ifying key-value pairs. Dict comprehension provides an elegant and Pythonic way

to accomplish such tasks with efficiency.

Note: n is integer

dict_compr = {k: kx2 for k in range(n)}

YThese examples were taken from [12]

N

3. collections.defaultdict. is a specialized type of dictionary in Python that

enables you to set a default value for keys that do not exist in the dictionary. It

not only adjusts the code but also enhances the readability.

Note: n is integer
n_list is list of n integer elements
from collections import defaultdict
def add_new_value_in_dict_pythonic(n_list):
num_ dict = defaultdict (int)
for key in n_ list:
num_ dict [key] —= key
return num_dict

4. collections.deque as an abbreviation for “double-ended queue.” This data

structure is versatile and can be used as a queue, stack, or for manipulating
sequences effectively. Its flexibility makes it a valuable choice for implementing

algorithms that require both stack and queue functionalities. Additionally, it

offers advantages in terms of memory efficiency and execution speed.

from collections import deque
def add_new_value_in_queue_pythonic(n):
num_ queue = deque ([])
for num in range(n):
if num % 4 = 0:
num__queue. append (num)
elif num % 4 = 1:
num_ queue. appendleft (num)
elif num % 4 = 2:
num__queue. pop ()
else:
num_ queue. popleft ()
return num_ queue

As a concrete example, a list of the squares of the numbers
from 1 to n, that is [1,4,9,16,25,...,n%, can be created by

traditional means as follows:

squares = []
for k in range(1,n+1):

squares . append (k * k)

With list comprehension, this logic is expressed as follows:

squares = [k * k for k in range(1,n+1)]

Figure 1.1: Example of a traditional list to Pythonic list comprehension [II, p. 43|

Similarly, given a dictionary d, you could create a shallow

copy named d1 by coding out a loop:

>>>dl1={}
>>> for somekey in d:
d1[somekey] = d[somekey]
or more concisely by
>>>dl=9{}; dl.update(d).
However, again, such coding is a waste of time and effort

and produces nothing but obfuscated fatter, and slower code.
Use

>>> dil=dict(d)

Figure 1.2: Example of a traditional dictionary to Pythonic dict comprehension
[2, p. 151]

1.1 Research Statement

« (RQ1) What are the kinds of textbooks introduce Pythonic data
structures?
Motivation: To explore which textbooks are more likely to teach the Pythonic
one-liners to initialize and populate lists and dictionaries. Answering this
research question will identify which target audience makes use of this

Pythonic coding style.

« (RQ2) What are the case-scenarios where a textbook prefers to
use traditional data structures?
Motivation: There may be cases where using the traditional data structure
is preferred over the Pythonic counterparts. Hence, answering this research
question will allow us to understand why the knowledge of traditional data

structures and algorithms is important for programmers.

1.2 Replication package

To facilitate replication and future work in the area, I have prepared a replication
package, which includes raw data, the manually labeled dataset, and the scripts
for reproducing my analysis. The package is available online at https://zenodo.
org/doi/10.5281/zenodo.10053630.

1.3 Organization

The remainder of the thesis is organized as follows. Section [2 illustrates the
background and related work of this study. Section |3| describes how I collected
textbooks and extracted code examples. Sections [4and [5|show the experiments
that I conducted to address RQ1-2, respectively. Section [6] discusses the rec-
ommendations for practitioners, researchers, and educators based on my study
results. Section[7]discusses the threats to validity. Section[§draws the conclusions

of my study and highlights opportunities for future work.

https://zenodo.org/doi/10.5281/zenodo.10053630
https://zenodo.org/doi/10.5281/zenodo.10053630

2 Background and Related work

In this section, I describe the detail about background and related work of this

research including Pythonic coding and Mining Programming textbooks.

2.1 Pythonic Coding

Python is well-known for its Pythonic idioms, which represent notable program-
ming styles and features of a language [I0]. Several studies have explored the
patterns of Python idioms by searching for Python textbooks or online resources.
For example, Alexandru et al. [7] devised a catalog of 19 Pythonic idioms collected
from several textbooks and manually examined the performance and readability
of the identified idioms. Farooq and Zaytsev [3] further reinforced the statements
made in the original paper of Alexandru et al. by generalizing them to a wider
collection of idioms. Meanwhile, some works investigated the role of Pythonic id-
ioms in open-source projects and their performance. Sakulniwat et al. [8] visually
revealed that developers tend to adopt the open idiom over time. The preliminary
experiments by Leelaprute et al. [12] showed that writing in Pythonic idioms may
save memory and time. Zhang et al. [13] studied 24,126 pairs of nonidiomatic
and functionally-equivalent idiomatic code for the nine unique Python idioms
and found that the impact of Python idioms on code performance varies greatly
across idioms.

Some automated tools have been developed to support Pythonic coding. Zhang
et al. [I4] designed and implemented an automatic refactoring tool to make
Python code idiomatic with nine idiom types, demonstrating its practicality and
usefulness. Phan-Udom et al. [9] introduced an automated tool named Teddy to
assist in checking idiom usage. Evaluation results suggested that Teddy has a

high precision in detecting idiomatic and non-idiomatic Python code.

The implication of these related works shows the importance of Pythonic idioms
in terms of various benefits. For instance, using Pythonic idioms improves the
code and execution performance, saving memory usage, etc. Moreover, there
is an effort to develop the tool to support Pythonic coding by refactoring and

converting the traditional code to Pythonic code.

2.2 Mining Programming Textbooks

Various approaches are employed to gain insights in software engineering research,
such as conducting surveys, interviewing relevant individuals, and mining code
or useful information from software repositories. Despite these methods, there
has been limited exploration of mining textbooks in the context of software en-
gineering research.

Textbooks are widely recognized as a valuable resource for teaching introduc-
tory programming languages [I5] [16]. They not only provide a wealth of example
programs but also serve as a reference for solving specific problems [I7]. Numer-
ous studies have examined the role of textbooks in education, specifically focusing
on various programming languages. Borstler et al. [I8] studied in which expe-
rienced educators evaluated the quality of object-oriented example programs for
novices from popular Java textbooks and they suggested that educators should
be careful when taking examples straight out of a textbook. Mazumder et al. [19)]
reported that none of the 15 commonly used introductory Java textbooks pro-
vide explanative diagrams for variables, arrays, and objects. Almansoori et al.
[20] analyzed the discussion of security topics and the use of unsafe functions in
the thirteen textbooks used in the top 30 R1 universities in the US. Their results
indicate that many textbooks fail to provide warnings about the use of unsafe
functions or teach students how to use them safely.

At the same time, several attempts have been made to utilize external compo-
nents in order to enhance the effectiveness of textbooks. For example, Alpizar-
Chacon et al. [2I] introduced an ontology-based approach that integrates text-
books with smart interactive content (such as worked examples and code anima-
tions) for learning programming. Huang et al. [22] proposed a framework called

EMRCM, which constructs multiple relationship knowledge graphs of concepts

from multiple sources, including textbooks. Wu et al. [23] presented a program-
ming language learning service that utilizes Stack Overflow posts as pragmatic
knowledge of programming languages, addressing the lack of pragmatic knowledge
in textbooks.

Briefly, while various methodologies such as surveys, interviews, and code min-
ing are commonly employed in software engineering research, there has been
a notable gap in exploring the rich resources of textbooks within this domain.
Despite textbooks being widely acknowledged for their value in teaching pro-
gramming languages, existing studies highlight shortcomings in the quality and
coverage of example programs, as well as the inadequate treatment of crucial
topics like security. Notably, the focus on textbooks has been fragmented, with
specific attention given to individual programming languages. On another hand,
efforts to augment traditional textbooks with external components, such as smart
interactive content and knowledge graphs, showcase endeavors to enhance their
educational efficacy. Moving forward, a more comprehensive exploration of text-
books, coupled with innovative approaches to supplement their content, could
significantly contribute to the advancement of software engineering research and

education.

3 Methodology

In this section, I describe the overview and how the data was collected for the
empirical study, including the collection of Python textbooks and the extraction

of code examples. Figurd3.I] shows the overview of this study.

3.1 Collecting Python Textbooks

In order to collect the dataset for the experiment, I sourced Python textbooks

from three different sources in order to mitigate the risk of insufficient data.

From Related Work The first is from the dataset made available by Robles
et al. [24], consisting of 80 textbooks. They collect Python-related textbooks
from their university library. This set of textbooks was also used by Alexandru
et al. [7].

From GitHub Repositories The second dataset was constructed from free
Python books that were made available via GitHub repositories. To search for
these, I utilized the GitHub topics that used the tag python-book[] I successfully
parsed through the 20 repositories and collected a list of 76 distinct textbooks.

From Amazon Reviews The final data source is from Amazon reviews. To
compile the list, I searched on Amazon.co.jpﬂ using the keyword ‘python book’
and sorted the books by customer review rating. I collected the top 100 Python
textbooks based on the review ratings in ascending order. Afterward, I performed

*https://github.com/topics/python-book
"https://www.amazon.co. jp/s?k=python+book

10

https://github.com/topics/python-book
https://www.amazon.co.jp/s?k=python+book

Table 3.1: Collected Dataset of Textbooks

Collected Textbooks

from Related Work 80 textbooks
from GitHub Repositories 76 textbooks
from Amazon Reviews 100 textbooks
Python Books downloaded 21 textbooks

— Python Books not downloadable 79 textbooks

Total 177 textbooks

a Google search to determine if there were any free or open versions of these text-

books available for download. As a result, 21 of them could be downloaded.

As shown in Table 3.1} I collected a total of 177 textbooks that were published
between 2001 and 2023 for the following analysis, which combined the data from
different sources and removed any duplicate textbooks. Note that each textbook
is written in English, and I converted all of the different formats of textbooks

consistently into PDF format by using the PDF library.

3.2 Extracting Code Examples

To extract the code examples from textbooks, I applied regular expressions to
identify and extract the different Pythonic and non-Pythonic code examples from
the 177 textbooks. I use the PDFmineif] library to extract texts from textbooks
and regular expression to extract the code examples from texts. I construct a total
of six regular expressions for the extracting process. The first two expressions are

to identify the traditional data structures:

1. Traditional list (TradLists) - the search string includes initializing a list

(x = []), and then appends elements to the list using the append function.

"https://pypi.org/project/pdfminer/

11

https://pypi.org/project/pdfminer/

2. Traditional dict (TradDicts) - the search string includes initializing a dic-

tionary (x = {}), followed by assigning a value to each key (e.g. x[key|] =

value).

Next, I introduce the four regular expressions to identify Pythonic data struc-

tures as follows:

1. List comprehension (ListComp) - the search string includes initializing a

list using a one-line for loop to append elements into the list.

2. Dict comprehension (DictComp) - the search string includes initializing a

dictionary using a one-line for loop to assign the value to the key.

3. Collections.deque (Deque) - the search string includes the initialization of

the collections.deque(), which is a list-like data structure.

4. Collections.defaultdict (Defaultdict) - the search string includes the initial-

ization of the collections.defaultdict(), which is a dictionary-like object.

Table [3.2] shows the syntax of the regular expression used for extracting the
code example from textbooks. Table (3.3 shows the statistical summary of the
extracted code examples. As a result of regular expression extraction, a total of
1,624 examples were identified, with 1,231 classified as Pythonic and 393 classified
as non-Pythonic. For example, out of the Pythonic examples, 849 are related to

List comprehension and 157 are related to Dict comprehension.

12

€202-T00¢ Usamjag paysiiqnd

solieuads agesn o1uoyihd :zdy | $)00G3X33 JO SPUI) :LOY ! ; | - ~ ;
' ; S)00Q1X81 T
" e L (e202/0T/60 erep sseooy) P “
' w w w w ' ' uozZewy Woudj sisi] yo0g ,
! D\D/H_ " ' _ / .
m 5 R ——
O OOt SEOLpIpIp I S $H00GIX3} 9/, "
' (s¥00q-uoy3Ad :A1enb) c

i NHID WoJy S1SI7 400 '

......................... — | L qnHHIO 4 SISl oog Y "

m m m 4 ~N m

: m : $100Q1Xe1 08 SNy ;

" sejdwex3 apo) 10el1x3 @ 8 10 59]qOY WOy S3SI 400g (Y |

m m.w.u.c.m.ymm_.mmm.._u._.mwmh _ " m SYO0QIX3} LLT 18101 m

Co_um_mn_wk_n_ eleq U0I129]|0D S92JNn0S eleq

Figure 3.1: Study Overview
13

((\éx")\30IPIMEIOP) JoIPYMEIOP'SUOLR[O) 9

((\éx')\onbop) onbop-suora[O) G

(N s\ 1078\ 5\ 8\ S\ i) uorsuapIdwon 101(] 4

([AT\ a0\ 51078\ S\ S\ =) wosmorpadtmon ST g

G\ LA\ LS\ =S\ NN\ G s VT G 1 T 2018\ i\ S\ { i P8\ =58\) PP [FUORIPRLL, €
() \puadde\ -\ s\ry ury 107, 8\, W\ S\ [\ [\ g8\ =48\ +m) 18I [BUORIPeLL, I

uoIssoIdxr] IRNSOY oINJONI)G ®Ie([UOYILJ ON

S}00()xX0) UOYIAJ Ul SoOURISUL AJIIUOPI 0) pasn suolssordxo IeN3oYy :g°¢ o[qe],

14

Table 3.3: Extracted Code Examples

Extracted code examples

Pythonic

List comprehension 849 examples
Dict comprehension 157 examples
Collections.defaultdict 85 examples
Collections.deque 140 examples
Total 1,231 examples
non-Pythonic

Traditional list 220 examples
Traditional dict 173 examples
Total 393 examples
Total 1,624 examples

15

4 Kinds of textbooks (RQ1)

In this research question, I focus on the characteristics of textbooks that introduce
Pythonic data structure and how textbooks present Pythonic data structures.
Understanding data structures is essential for coding, but there is no evidence
that it needs to be included in every type of programming book. For example,
in what kinds of textbooks do they teach concepts like Dict comprehension and
List comprehension. Furthermore, a crucial aspect of the investigation involves
identifying textbooks that refrain from introducing Pythonic data structures and

clarifying the reasons behind it in the next research question.

4.1 Approach

To address the first research question, I analyzed each textbook based on its
different characteristics. In this work, I make the assumption that the title of
a book is the strongest indicator is whether a textbook will be attractive to its
audience, hence I investigated the textbooks according to their titles. To do so, I
performed the card sorting approach similar to related work from Zimmermann
[25] to manually analyze the titles of textbooks. Card sorting is a commonly used
technique in software engineering useful to derive taxonomies from data. The card
sorting was performed by myself and my colleague starting with analyzing the
textbook title for the first iteration using open card sorting where the character-
istics were not predefined and adapted during the sorting process. Then I used
the initialized taxonomy from the first iteration to employ closed card sorting. 1
sorted the characteristics of each iteration according to the previous one until the
closed card sorting succeeded. Afterward, the generated taxonomy was validated
by another colleague, who possesses extensive research experience in the field of

software engineering, as well as ten years of teaching experience in Python. In

16

the end, I classified the 177 textbooks into the following four groupings:

1. A reference, guide or cookbook (Reference). The first grouping is based on

identifying textbooks that are reference textbooks that might also be useful
for advanced readers who already have experience in programming. Exam-
ples include textbooks that either have a terms guide, reference, or cookbook
in the title. I assume that these textbooks should contain most Pythonic

elements as references.

2. Focused on a particular topic or theme (Topical). The second grouping is

related to textbooks that target a particular topic. For instance, the topic
might be data science, machine learning, or finance. Our assumption is that
these

3. Focused on a particular Python technology (Library). The third grouping in-

cludes any textbook that explicitly mentions Python technology in the title.
Examples include the libraries Pandas, Numpy, or the frameworks such as

Django.

4. Generic textbook on Python (Generic). The final grouping consists of generic

titles that do not fit into any of the other categories. Examples include in-

troduction and beginner textbooks on Python.

During the analysis, I found that there were some textbooks that could fit
into multiple groupings. To mitigate this threat, I intentionally performed the
classification in a specific order of classification (Reference— Topical— Library—
Generic).

After classifying the kinds of textbooks, I took 1,624 extracted code examples
from Section II to determine whether a given textbook includes Pythonic data
structure or not. This further leads to the segregation of the textbooks into three

distinct categories of Pythonic usage, as follows:

o Contain Pythonic - refer to the textbook that contains at least one Pythonic

code example in their content.

e No Pythonic - refer to the textbook that does not contain any Pythonic

data structure

17

o No Python data structure - refer to the textbook that does not contain any

Python data structure.

Based on this classification, I calculate the relative proportions of each type of

Pythonic usage within each grouping of textbooks.

4.2 Results

Figure [4.1] presents the result of the RQ1 analysis. There are four observations

from the result as follows:

Observation 1: 108 out of 177 textbooks (61.01%) contain Pythonic data struc-
tures. The results indicate that out of the 108 textbooks analyzed, all of them
incorporate Pythonic practices into their content, suggesting a strong tendency
within this category. However, there are 25 textbooks that do not include any
Pythonic practices. This means that while these textbooks introduce the con-

cepts of data structure, they do not teach the Pythonic version of data structure.

Observation 2: The majority of the textbooks that include Pythonic data struc-
tures are from Topical. Among the 108 textbooks that contain Pythonic data
structures, the majority, 45 textbooks, were classified into category Topical, fol-
lowed by 33 textbooks classified into Library, 16 textbooks classified into Generic,
and 14 textbooks classified into Reference. On the other hand, among the text-
books that do not contain Pythonic data structures, the largest proportion was
found in category Library, with 10 textbooks, followed by category Topical, with
8 textbooks.

Observation 3: There are 44 textbooks (24.86% of all textbooks) that do not in-
troduce any data structure in textbook From another point of view, in Figure [4.]
- b, there are 44 textbooks remaining do not introduce any Python data struc-
ture. This means that these textbooks do not cover any concepts related to data
structures. This finding prompted me to conduct a more in-depth analysis to
determine the reasons behind the absence of Python data structure in these text-
books.

18

Traditional
No Traditional

19

:
1
1
1
1
1
1
1
1
1
1
1
]
1
1
1
1
1
i
0
of textbooks

(b) Traditional vs. No Traditional

Reference -
Generic
Topical 1
Library-

Pythonic
Non-pythonic
40

T
20

:
1
1
1
7)
1
:
1
1
1
]
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
i
0

of textbooks

16
20

33

45

(a) Pythonic vs. non-Pythonic

Reference -
Generic
Topical 4
Library

Figure 4.1: Answering RQ1, the proportion of textbooks that (a) contain
Pythonic data structures (b) do not contain Pythonic data struc-
tures. Furthermore, for (b), identifying textbooks that do not use

data structures (List and Dictionary) at all.

19

Observation 4: Most of the textbooks that lack Pythonic data structures are
from Generic In addition to the previous observation, the results show that the
majority of textbooks that do not introduce any data structures in their content
are generic textbooks. This leads us to examine examples of textbooks that do
not cover the concept of data structures, which is a common concept in pro-
gramming. Some examples of such textbooks include “Beginning Django CMS”,
“Python for Google App Engine”, and “Python XML”".

RQ1 Summary:

the result of RQ1 sheds light on the varied landscape of Python data struc-
ture coverage in textbooks, highlighting both the widespread adoption of
Pythonic practices and the existence of significant gaps in certain categories
and generic textbooks. This information lays the groundwork for further

investigations and improvements in Python education resources.

20

5 Pythonic Data Structure
Usage Scenarios (RQ2)

In this research question, I focus on a detailed exploration of when textbooks
choose to introduce Pythonic data structures versus sticking with traditional ones.
Despite the acknowledged advantages of Pythonic idioms highlighted in Section
wherein the Pythonic idioms construct similarly to traditional construct, there
remains a crucial question: why do some textbooks still opt for traditional data
structures instead of embracing the Pythonic versions? This research question
seeks to clarify the rationale behind such cases, aiming to provide a comprehensive

understanding of the factors influencing instructional choices in this context.

5.1 Approach

In addition to the exploration in RQ1, which focused on uncovering the types of
textbooks that did and did not introduce the Pythonic data structure, it is worth
noting that 48 textbooks (representing 27.12%) with 167 examples continued to
use the traditional version even after introducing the concept of the Pythonic
data structure. This led to the formulation of the following research question,
where I aimed to determine the reasons behind this persistent preference for the
traditional data structure format.

Similar to the previous work by Cruzes and Dyba [26], T applied the thematic
analysis to identify and select textbooks wherein the sequence indicated a per-
sistent use of traditional data structures even after the introduction of Pythonic
alternatives. Specifically, the thematic analysis involved the four following se-

quential steps:

21

1. Manual inspection of textbook pages: 1 began by scrutinizing the pages in
these textbooks where examples of traditional data structure usage were

found.

2. Case scenario initialization: Next, I initiated individual cases for each code

example discovered during the inspection.

3. Labeling of each case and classification: 1 then systematically each case
to identify opportunities for merging them based on common themes or

patterns.

4. Finalization and Taxonomy Definition: Finally, I arrived at a conclusive set

of themes and patterns and defined a clear taxonomy based on our findings.

These steps were carried out collaboratively by myself and my colleague dur-
ing the initial round of analysis. Following that, a second round of review was
conducted by another colleague, who has over ten years of research and teaching
experience.

As a result of our analysis, I have refined the taxonomy into four distinct

groups, as outlined below:

e topic-scenario - pertains to examples where the author employs the tradi-
tional version of code in specific scenarios that involve particular modules
or libraries. For example, it may involve the use of non-Pythonic lists in
the context of Natural Language Processing, Plot Visualization (using li-
braries such as Matplotlib), or Regression Models. For example, in the
book “Python Data Analytics” |27, p. 283], the author utilizes Traditional
list with NumPy library to calculate the distribution of wind speed. Also
in Figure [5.2) showed the example of use cases of the sub scenario called
Data science from the book [28] p. 207].

o comparision-scenario - typically involves evaluating the performance and

readability between the traditional code and a refactored version. Encom-
passing situations where the author references traditional code as a point
of reference to introduce more advanced code or other related libraries and

functions, such as filter() and map(). For instance, in the book “Fluent

22

Python” [29, p. 21], the author demonstrates a comparison between the
readability of Traditional list and List comprehension. Additionally, on
page 38 [29, p. 38] of the same book, an example of code snippet compar-
ison is shown, showcasing a comparison between List comprehension code

and Pythonic coding style.

o other-scenarios - refer to cases where the author provides code examples

or exercises but employs traditional code without offering an explanation
or any specific references to other concepts or technologies. For example,
in “Python Playground” book [30, p. 113], the Traditional list function is
mentioned as part of a code example in a function, but the specific context

of its usage is not detailed.

5.2 Results

As a result of a qualitative analysis, Figure shows the use case themes for
which traditional data structures are still necessary, even after the introduction
of Pythonic data structures. Figures[5.2] 5.3 and illustrate the relevant ex-
amples in terms of three use cases. There are three observations from the result

as follows:

Observation 1: The majority of the scenario where Traditional list were used
are topic-scenario. Based on our thematic analysis, I found a total of 88 Tra-
ditional list code examples that appear after the introduction of Pythonic data
structures. There are 39 code examples within topic-scenario, making up 44.32%
of the total. 36 code examples are categorized under comparision-scenario, ac-
counting for 40.9% of the total. The remaining 13 code examples fall into the
other-scenarios, representing 14.77% of the total. These findings suggest that
there is a continued need for Traditional lists within specific scenarios, particu-

larly in the topic-scenario even after the introduction of Pythonic data structures.

23

Scenarios
©

compari§on - topic - scenarios
scenarios

Readability @) Application Data Science from Scratch (p.144)

Bioinformatics with Python
Fluent Python (p.21) Cookbook (p.53) v

=-» Performance @ ---» Data science

Learning Python (p.232) S;xi:ginal(::%g?ence i

---> Data structure

Python code for Artificial
Intelligence (p.212)

other - scenarios

---» Data visualization {5)

Python Scripting for
Computational Science (p.719)

- GUI (2>

Python Cookbook, 2nd
Edition (p.449)

--» Programming @ = # of List examples

Python Cookbook, 2nd

Edition (p.449) = # of Dict examples

@ = # of examples

---» Statistic

!

Mastering Python (p.101)

> Web (2>

Pro Django, 2nd Edition
(p.170)

Figure 5.1: Example of Scenarios that still use Traditional list and Traditional
dict.

DO

4

Observation 2: The majority of the scenario where Traditional dict were used
are also topic-scenario. Similar to previous observations regarding Traditional
list, the result reveals that there are 65 Traditional dict code examples that ap-
pear after the introduction of Pythonic data structure. There are 42 code exam-
ples within topic-scenario, making up 64.62% of the total. 11 code examples are
categorized under comparision-scenario, accounting for 16.92% of the total. The
remaining 12 code examples fall into the other-scenarios, representing 18.46% of
the total. Consistent with the findings related to Traditional list, these results
also suggest that there is an ongoing need for Traditional dictwithin specific sce-
narios, particularly in the topic-scenario even after the introduction of Pythonic

data structures.

Observation 3: The example scenarios of topic-scenario are Data Science, Data
Visualization, and GUI. As a combination of Traditional list scenarios and Tradi-
tional dict scenarios, the topic-scenario is the most popular scenario. Our result
reveals that the topic-scenario consists of 8 sub scenarios including Application,
Data Science, Data Structure, Data Visualization, GUI, Programming, Statis-
tics, and Web. For example, programming, in the book “Python Cookbook, 2nd
Edition”

RQ2 Summary: The result suggests that, despite the introduction of
Pythonic data structures, Traditional list and Traditional dict remain es-
sential in specific scenarios, particularly within the topic-scenario. The
examples provided offer context and present instances where the use of
traditional data structures is still prevalent, contributing to a nuanced un-
derstanding of their ongoing relevance in certain Python programming con-

texts.

25

topic-scenario

The _grid is created using a list comprehension inside a list comprehension.
Using list replication such as [[char]*columns]*rows will not work because
the inner list will be shared (shallow-copied). I could have used nested for

in loops instead:

.

_grid = []
for row in range(_max rows): % Note: corrected "For' to '

n

for

3 _grid . append ([])
for column in range(_max_ columns): % Note: corrected

n

n

~mas_columns" to " max columns"

5 _grid[—1].append (__background_ char)

This code is arguably trickier to understand than the list comprehension

and is much longer.

Figure 5.2: Example of topic-scenarios

26

comparison-scenario

I will write a small piece of code that collects the results of divmod(a, b)

for a certain set of integer pairs (a, b).

1 for a in range(l, mx):
for b in range(a, mx):
3 dmloop . append (divmod (a, b))
print (’for loop: {:.4f} s’.format(time() — t)) # elapsed
time
5 t = time() # start time for the list comprehension
dmlist = |
7 divmod(a, b) for a in range(l, mx) for b in range(a, mx
)]

print (’list comprehension: {:.4f} s’.format(time() — t))

As you can see, we are creating three lists: dmloop, dmlist, dmgen (divmod-
for loop, divmod-list comprehension). We start with the slowest option, the
for loops.

Figure 5.3: Example of comparison-scenarios

27

other-scenario

The simplest way to do this is to split your data set, so that (for example)
two-thirds of it is used to train the model, after which we measure the

model’s performance on the remaining third.

def split_data(data, prob):

2 """split data into fractions [prob, 1 — prob]"""
results = [], []
4 for row in data:

results [0 if random.random() < prob else 1].append(
row)

6 return results

Often, we will have a matrix x of input variables and a vector y of output

variables.

Figure 5.4: Example of other-scenarios

28

6 Implications

In this section, I list how the results have implications for practitioners, re-

searchers, and educators of not only Python but programming in general.

6.1 Not all textbooks contain Pythonic

examples

Especially for students who wish to learn Python, the results (RQ1) show that
Pythonic code is not always taught in textbooks. I do understand that the size
of the dataset might also cause some concern and the quality of the textbooks.
However, this in itself also brings the question of what is the characteristic of a
good Python textbook. And should fundamental concepts like lists and dictio-
naries be mandatory. These are interesting research directions and would open
up opportunities for researchers and students alike.

Another reason why textbooks might not contain Pythonic code is that the
textbook is not targeted toward an audience that would not necessarily be re-
quired to learn how to code. This also brings up an interesting topic of whether
or not fundamental programming concepts are required when learning a program-
ming language, especially with respect to its future evolution and maintenance.
This should open up new research avenues. Another interesting future direction
would be to survey members of the Python community on their thoughts on how
Pythonic data structures are not taught in textbooks. Whether or not this is a
requirement only for the Open Source Python community, or whether it should

be implemented for all Python programmers.

29

6.2 Considerations for Non-Pythonic Data

Structures

The key results from RQ2 indicate that the traditional way to initialize and use
lists and dictionaries is still valid. There are cases where using a non-Pythonic
data structure is still feasible, and there are cases where Pythonic cannot be
implemented. Although there is recent work that indicates automated means to
refactor for more Pythonic code, and its performance benefits are valid, there is a
need to take into account the situation where the Traditional list and Traditional
dict are being integrated since in some situations, the List comprehension and

Dict comprehension cannot be used.

6.3 Automation may not be trivial

Related to Implication 2, due to the different contexts by which Pythonic code
cannot be applied, tool support is not as trivial. Therefore, researchers and
practitioners will need to understand the different contexts in which Pythonic
refactoring can occur.

For instance, results from RQ2 show that there are several scenarios where it
might be preferred to still use the traditional way to use lists and dictionaries.
Specifically, the technology limitations, like the usage of a specific library might
dictate why a Pythonic code cannot be used. Understanding these cases, is useful,
and might spark future tool support on how to overcome these barriers, like fixing

these libraries.

30

6.4 Pythonic Coding Learning

RQ2 results suggest that Pythonic coding does not consistently follow a pre-
defined sequence. While textbooks may not always cover the complete set of
Pythonic idioms for creating lists and dictionaries, an interesting observation is
that authors tend to align with Pythonic styles when utilizing comprehensions.
This lack of a clear progression in Pythonic learning sequences raises questions
about how educators should approach teaching Pythonic coding, prompting fur-
ther exploration into effective pedagogical methods and sequencing for imparting

Pythonic practices.

31

7 Threats To Validity

In this section, I discuss the threats to the validity of this study, which are the

external, construct, and internal threats to validity.

7.1 External Threats

External threats are with regard to the ability to generalize based on the results,
especially since I use a curated list of Python textbooks. Two potential threats
are summarized. The first threat arises from the fact that the experiment is
evaluated based on Python language. Therefore, the observations may vary across
different programming languages (e.g., Java and C). However, Python is now
widely regarded as the dominant language in various fields, including education
and software development. I believe its significance as a representative language
is worth exploring. Since the research is specific to Python Idiomatic code, it is
only natural to focus on Python language. The future work would also explore
other idiomatic codes.

The second threat would occur during the selection of the textbooks. Ana-
lyzing a total of 177 textbooks might not capture the breadth and diversity of
the entire collection. Nevertheless, I detected 1,624 examples of Pythonic List
usage. Having substantiated the results from the studied textbooks, I believe
the findings have significant implications for practitioners, researchers, and edu-
cators. Furthermore, I open and present all the textbooks for the reader and also
for replication of the dataset. Future work may include expanding the datasets,
as well as exploring other teaching materials such as online blogs, tutorials, and
teaching curriculums.

In future work, I plan to extend the framework to support additional program-

ming languages. I also aim to include a diverse range of Pythonic codes. In

32

this study, I only investigate four Pythonic codes that are only related to data
structures. However, as the initial study, I believe that these insights are crucial
and serve as a foundation for further research on the systematic utilization of

information in textbooks to support educators and learners.

7.2 Construct Threats

Construct threats refer to the degree to which the measurements capture what
I aim to study. A potential threat may arise in the accuracy of extracting the
code examples. There are obvious limitations to the automated approach. To
migrate this threat, I manually inspected all extracted examples of the examples,
especially for RQ2. Therefore, I believe that the constructed dataset is sufficiently
valuable to be mined and provide insightful results. In order to create a much
larger scale study, an automated method might be required with a larger accuracy.

This is seen as potential future work.

7.3 Internal Threats

Internal threats denote the approximate truth about inferences regarding cause-
effect or causal relationships with the results. To address the proposed research
questions, I performed a series of qualitative analyses and grouping of the titles.
This classification was derived during the study, hence, there is a threat that
the title of the textbooks might be misleading, or that there are biases in the
classification, especially due to the subjective nature of the classification.

To relieve such a threat, I carefully conducted the manual coding in a systematic
manner with multiple authors including experienced educators. I performed a
round-table iteration with multiple rounds. I am confident that due to the large

sample size, the groupings are valid.

33

8 Conclusion and Future Outlook

In this work, I focus on Pythonic usage of data structures (i.e., lists and dictio-
naries) and investigate how they are introduced in textbooks. I mined 1,624 code
examples from 177 Python textbooks. Specifically, I examined two aspects: (i)
the kinds of textbooks that introduce Pythonic data structures, and (ii) the sce-
narios in which a textbook prefers to use traditional data structures. Results show
that 69 out of the 177 textbooks did not include any example of data structures,
let alone the Pythonic code to write this. This work clearly shows that Pythonic
education is not as prevalent, and opens up new directions on how to maintain
this Zen of Python for the next generation of Python programmers. The poten-
tial future directions include (i) surveying members of the Python community on
their perceptions of how Pythonic data structures are not taught in textbooks,
(ii) exploring the characteristics of other Pythonic idioms, and (iii) investigating

strategies for writing an better Python textbook.

34

Acknowledgement

I am profoundly grateful to the following individuals, whose unwavering support
and encouragement have been instrumental in the successful completion of my
Master’s degree and this thesis.

Foremost, my heartfelt thanks go to my thesis advisor, Professor Kenichi Mat-
sumoto. His invaluable guidance and the opportunity to join the Software En-
gineering Laboratory have been pivotal to my academic journey. Professor Mat-
sumoto’s continuous support and encouragement throughout my master’s pro-
gram have been a source of inspiration.

I extend deep appreciation to my esteemed co-supervisor, Professor Raula
Gaikovina Kula. His expertise and guidance have significantly shaped my re-
search journey. Profound gratitude is owed for sharing his extensive knowledge
and offering invaluable lessons on research conduct and precise paper writing.
The thoughtful feedback provided by Professor Raula Gaikovina Kula has played
a crucial role in advancing my research.

Special acknowledgment is due to the members of my thesis committee, Pro-
fessor Keiichi Yasumoto, Professor Takashi Ishio, and Professor Kazumasa Shi-
mari. Their insightful comments and thoughtful suggestions have significantly
contributed to refining the quality and depth of my thesis.

[am indebted to Professors Kenichi Matsumoto and Raula Gaikovina Kula for
the remarkable opportunity they provided during my Master’s degree. Participat-
ing in an international conference and engaging in an enriching exchange program
at King Juan Carlos University, Spain broadened my horizons significantly.

My gratitude extends to Professor Gregorio Robles for his invaluable support
and guidance during my lab stay at King Juan Carlos University, Spain. His

dedication and expertise greatly contributed to the success of my research.

35

Moreover, I also want to express my appreciation to my friends and lab mates,
whose camaraderie and support made this journey more enjoyable. Overcoming
research challenges together has been a testament to the strength of our collab-
orative spirit.

Lastly, I am deeply thankful to my family for providing me with the opportunity
to study abroad. Their unwavering support and hope have been my pillars of

strength throughout this academic endeavor.

36

Bibliography

[1] M. T. Goodrich, M. H. Goldwasser, and R. Tamassia, Data Structures and
Algorithms in Python 1st Edition. Wiley; 1st edition, 2013.

[2] A. Martelli, A. Ravenscroft, and D. Ascher, Python Cookbook Second Edition.
O’Reilly Media, Second edition, 2005.

[3] A. Farooq and V. Zaytsev, “There is more than one way to zen your python,”
in Proceedings of the 14th ACM SIGPLAN International Conference on Soft-
ware Language Engineering, 2021, pp. 68-82.

[4] T. Peters, “PEP 20 — The Zen of Python | Python.org,” https://www.
python.org/dev/peps/pep-0020/, aug 2004, (Accessed on 11/16/2021).

[5] “Glossary ,Ai python 3.10.0 documentation,” https://docs.python.org/3/
glossary.html#Pythonic, Nov. 2021, (Accessed on 11/17/2021).

[6] L. Quaranta, F. Calefato, and F. Lanubile, “Kgtorrent: A dataset of
python jupyter notebooks from kaggle,” feb 2021. [Online]. Available:
https://doi.org/10.5281/zenodo.4468523

[7] C. V. Alexandru, J. J. Merchante, S. Panichella, S. Proksch, H. C. Gall,
and G. Robles, “On the usage of pythonic idioms,” in ACM SIGPLAN In-
ternational Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software, ser. Onward! 2018, 2018, p. 1,Ai11.

[8] T.Sakulniwat, R. G. Kula, C. Ragkhitwetsagul, M. Choetkiertikul, T. Sunet-
nanta, D. Wang, T. Ishio, and K. Matsumoto, “Visualizing the usage of
pythonic idioms over time: A case study of the with open idiom,” in 2019

10th International Workshop on Empirical Software Engineering in Practice
(IWESEP). 1EEE, 2019, pp. 43-435.

37

https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://docs.python.org/3/glossary.html#Pythonic
https://docs.python.org/3/glossary.html#Pythonic
https://doi.org/10.5281/zenodo.4468523

9] P. Phan-Udom, N. Wattanakul, T. Sakulniwat, C. Ragkhitwetsagul,
T. Sunetnanta, M. Choetkiertikul, and R. G. Kula, “Teddy: automatic rec-
ommendation of pythonic idiom usage for pull-based software projects,” in

2020 IEEE International Conference on Software Maintenance and Evolu-
tion (ICSME). TEEE, 2020, pp. 806-809.

[10] J. J. Merchante and G. Robles, “From python to pythonic: Searching for
python idioms in github,” in Seminar Series on Advanced Techniques and
Tools for Software Evolution (SATToSE), 2017.

[11] D. Orlov, “Finding Idioms in Source Code Using Subtree Counting Tech-
niques,” in Leveraging Applications of Formal Methods, Verification and Val-
idation: Engineering Principles, 2020, pp. 44-54.

[12] P. Leelaprute, B. Chinthanet, S. Wattanakriengkrai, R. G. Kula, P. Jaisri,
and T. Ishio, “Does coding in pythonic zen peak performance? preliminary
experiments of nine pythonic idioms at scale,” in Proceedings of the 30th

IEEE/ACM International Conference on Program Comprehension, 2022, pp.
575-579.

[13] Z. Zhang, Z. Xing, X. Xia, X. Xu, L. Zhu, and Q. Lu, “Faster or slower?
performance mystery of python idioms unveiled with empirical evidence,”
arXiv preprint arXiv:2301.12633, 2023.

[14] Z. Zhang, Z. Xing, X. Xia, X. Xu, and L. Zhu, “Making python code id-
iomatic by automatic refactoring non-idiomatic python code with pythonic
idioms,” in Proceedings of the 30th ACM Joint European Software Engineer-

ing Conference and Symposium on the Foundations of Software Engineering,
2022, pp. 696-708.

[15] J. Borstler, M. S. Hall, M. Nordstrom, J. H. Paterson, K. Sanders, C. Schulte,
and L. Thomas, “An evaluation of object oriented example programs in in-
troductory programming textbooks,” ACM SIGCSE Bulletin, vol. 41, no. 4,
pp. 126-143, 2010.

[16] M. de Raadt, R. Watson, and M. Toleman, “Textbooks: under inspection,”
University of Southern Queensland, Tech. Rep., 2005.

38

[17]

[18]

[19]

[20]

[21]

[23]

W. J. Fitzgerald, J. Elmore, M. Kung, and A. J. Stenner, “The conceptual
complexity of vocabulary in elementary-grades core science program text-
books,” Reading Research Quarterly, vol. 52, no. 4, pp. 417-442, 2017.

J. Borstler, M. Nordstrom, and J. H. Paterson, “On the quality of examples
in introductory java textbooks,” ACM Trans. Comput. Educ., vol. 11, no. 1,
feb 2011.

S. F. Mazumder, C. Latulipe, and M. A. Pérez-Quinones, “Are variable,
array and object diagrams in java textbooks explanative?” in Proceedings of

the 2020 ACM conference on innovation and technology in computer science
education, 2020, pp. 425-431.

M. Almansoori, J. Lam, E. Fang, A. G. Soosai Raj, and R. Chatterjee,
“Textbook underflow: Insufficient security discussions in textbooks used for
computer systems courses,” in Proceedings of the 52nd ACM technical sym-

positum on computer science education, 2021, pp. 1212-1218.

I. Alpizar-Chacon, J. Barria-Pineda, K. Akhuseyinoglu, S. Sosnovsky,
P. Brusilovsky et al., “Integrating textbooks with smart interactive con-
tent for learning programming,” in CEUR Workshop Proceedings, vol. 2895.
CEUR WS, 2021, pp. 4-18.

X. Huang, Q. Liu, C. Wang, H. Han, J. Ma, E. Chen, Y. Su, and S. Wang,
“Constructing educational concept maps with multiple relationships from

multi-source data,” in 2019 IEEE International Conference on Data Mining
(ICDM). 1EEE, 2019, pp. 1108-1113.

J. Wu, Y. Sun, J. Zhang, Y. Zhou, and G. Huang, “A programming language
learning service by linking stack overflow with textbooks,” in 2023 IEEE
International Conference on Web Services (ICWS). 1EEE, 2023, pp. 234-
245.

G. Robles, R. G. Kula, C. Ragkhitwetsagul, T. Sakulniwat, K. Matsumoto,
and J. M. Gonzalez-Barahona, “Pycefr: Python competency level through
code analysis,” in Proceedings of the 30th IEEE/ACM International
Conference on Program Comprehension, ser. ICPC ’22. New York, NY,

39

[26]

[27]

USA: Association for Computing Machinery, 2022, p. 173,Ai177. [Online].
Available: https://doi.org/10.1145/3524610.3527878

T. Zimmermann, “Card-sorting: From text to themes,” in Perspectives
on Data Science for Software Engineering, T. Menzies, L. Williams, and
T. Zimmermann, Eds. Boston: Morgan Kaufmann, 2016, pp. 137-
141. [Online]. Available: |https://www.sciencedirect.com/science/article/
pii/B9780128042069000271

D. S. Cruzes and T. Dyba, “Recommended steps for thematic synthesis in

J

software engineering,” in 2011 International Symposium on Empirical Soft-

ware Engineering and Measurement, 2011, pp. 275-284.

F. Nelli, Python Data Analytics: Data Analysis and Science using pandas,
matplotlib and the Python Programming Language 1st Edition. Apress; 1st
edition, 2015.

M. Summerfield, Programming in Python & : a complete introduction to the

Python language. Upper Saddle River, New Jersey: Addison-Wesley, 2010.

L. Ramalho, Fluent Python: Clear, Concise, and Effective Programming.
O’Reilly Media, 1st edition, 2015.

M. Venkitachalam, Python Playground: Geeky Projects for the Curious Pro-
grammer 1st Edition. No Starch Press, 1st edition, 2015.

40

https://doi.org/10.1145/3524610.3527878
https://www.sciencedirect.com/science/article/pii/B9780128042069000271
https://www.sciencedirect.com/science/article/pii/B9780128042069000271

	List of Figures
	List of Tables
	Introduction
	Research Statement
	Replication package
	Organization

	Background and Related work
	Pythonic Coding
	Mining Programming Textbooks

	Methodology
	Collecting Python Textbooks
	Extracting Code Examples

	Kinds of textbooks (RQ1)
	Approach
	Results

	Pythonic Data Structure Usage Scenarios (RQ2)
	Approach
	Results

	Implications
	Not all textbooks contain Pythonic examples
	Considerations for Non-Pythonic Data Structures
	Automation may not be trivial
	Pythonic Coding Learning

	Threats To Validity
	External Threats
	Construct Threats
	Internal Threats

	Conclusion and Future Outlook
	Acknowledgement
	Bibliography

