
Master’s Thesis

Empirical Study on Extracting Practical Code
Scenarios from Python Textbooks

Hathaichanok Damrongsiri
Program of Information Science and Engineering

Graduate School of Science and Technology
Nara Institute of Science and Technology

Supervisor Professor Kenichi Matsumoto
Software Engineering Lab. (Division of Information Science)

Submitted January 30, 2024

A Master’s Thesis
submitted to Graduate School of Science and Technology,

Nara Institute of Science and Technology
in partial fulfillment of the requirements for the degree of

Master of Engineering

Hathaichanok Damrongsiri

Thesis Committee:
Supervisor Kenichi Matsumoto

(Professor, Division of Information Science)
Shoji Kasahara
(Professor, Division of Information Science)
Takashi Ishio
(Professor, Department of Media Architecture, Future University Hakodate)
Raula Gaikovina Kula
(Associate Professor, Division of Information Science)
Kazumasa Shimari
(Assistant Professor, Division of Information Science)

Empirical Study on Extracting Practical Code
Scenarios from Python Textbooks∗

Hathaichanok Damrongsiri

Abstract

Python serves as a versatile programming language due to its diverse audience.
This versatility, however, has a double-edged nature as it implies a multitude
of learning scenarios, which can quickly become overwhelming for students. To
explore these scenarios in an educational context, the investigation focuses on
their usage in Python textbooks. The approach involves the manual curation of
1,017 chapter titles from 76 Python textbooks. The results indicate that coding
scenarios are prevalent, making up approximately 39.5% of the content compared
to other topics. The scenario content is classified into four types: Application
Programming Interfaces, Data and Processing, Graphical User Interfaces, and
others. Additionally, a list of 19 Python libraries used in these various scenarios
is identified. To assist educators and students, PyEdu, a Python Educational
Scenario Visualizer, is showcased, utilizing the results of the empirical study.

Keywords:

Python Programming, Educational Materials, Teaching Methods

∗Master’s Thesis, Graduate School of Science and Technology, Nara Institute of Science and
Technology, January 30, 2024.

i

Contents

List of Figures iv

List of Tables v

1 Introduction 1

2 Data Preparation 5
2.1 Extracting chapter titles from textbooks. 5
2.2 Characterizing Textbooks based on Audience 6

3 Findings 10
3.1 Matching Contents with Target Audience 10
3.2 (RQ1) To what extent are chapters that describe learning scenarios

prevalent in Python textbooks? 11
3.3 (RQ2) What are the characteristics of chapters that contain learn-

ing scenarios? . 13
3.4 (RQ3) What Python libraries are mentioned in chapters that are

identified as learning scenarios? 17

4 Python Educational Scenario Visualizer: PyEdu 19
4.1 Interface Design . 19
4.2 Interactive Walk through . 20

5 Lessons Learned 23
5.1 For Students of Python . 23
5.2 For Researchers and Practitioners 24
5.3 For Educators . 25

ii

6 Threats To Validity 26
6.1 External Threats . 26
6.2 Construct Threats . 27
6.3 Internal Threats . 27

7 Related Work 28
7.1 Python Education . 28
7.2 Pythonic Coding . 29
7.3 Analysis of Programming Textbooks 29

8 Conclusion and Future Outlook 31

Acknowledgement 32

Bibliography 34

iii

List of Figures

1.1 An excerpt from the Table of Contents extracted from A Beginners
Guide to Python 3 Programming [1] 2

3.1 The proportion of Scenario instances for each type of textbook . . 16

4.1 Screenshot of the PyEdu Interface 22

iv

List of Tables

1.1 Collected Dataset of Textbooks 4
1.2 Summary: Textbooks’ Target Audience and Title Count 4

2.1 Chapter Contents Distribution Summary by Textbook (Target Au-
dience) . 9

3.1 A Taxonomy of Scenario Instances 14
3.2 List of Python libraries Extracted from Chapter Titles of the Sce-

nario Categories . 17

v

1 Introduction

Python is regarded as one of the most popular and versatile programming lan-
guages, with much of its success being accredited to its easy-to-learn and flexible
features compared to C++ and Java [2]. It is commonly regarded as the most
suitable language for novice programmers to learn [3]. According to a 2021 Ana-
conda report∗, 63% of respondents stated that they used Python frequently or
always, while 71% of educators reported teaching machine learning and data sci-
ence with Python, which has gained popularity due to its ease of use and gentle
learning curve. Meanwhile, 88% of students reported being taught Python in
preparation for entering the data science and machine learning field.

The success of Python could be attributed to its vast usage by varying audi-
ences. Python plays a vital role in various engineering tasks such as data science,
machine learning, and cloud computing [4, 5]. For example, it is used for machine
learning, data science, statistics, and even web programming. This can also be
viewed as a double-edged sword, implying a multitude of learning scenarios for
a student. Prior work [6, 7] has shown that there is more than one way to write
Python, and there may even be a Pythonic way to write idiomatic code that is
faster and more efficient [8, 9, 10]. Complementing these studies, the goal of this
paper is to identify and extract different learning scenarios that may arise from
teaching Python in textbooks.

Additionally, prior works [11, 12, 13, 14] cite textbooks as a useful source from
which to extract practice examples. Building upon this foundation, the aim
extends beyond extracting mere code snippets, focusing instead on garnering a
more comprehensive range of examples. Hence, a learning scenario is defined as:

a collection of code snippets, libraries, and context presented in an
educational manner to understand a specific usage scenario.

∗https://www.anaconda.com/state-of-data-science-2021

1

Table of Contents Page

Introduction 1
Setting Up the Python Environment 13
A First Python Program 23
Python String 33
...
Iterables, Iterators, Generators and Coroutines 353
Collections, Tuples and Lists 363
TicTacToe Game 423

Figure 1.1: An excerpt from the Table of Contents extracted from A Beginners Guide
to Python 3 Programming [1]

It is assumed that authors of textbooks present their work in an educational
manner, distinctly different from the format of question-and-answer resources
like Stack Overflow. Likewise, in contrast to blogs and online tutorials, practical
scenarios in textbooks often contain much richer information, as they typically
encompass an entire chapter. This approach extends beyond merely pulling out
examples from a textbook. It proposes a methodology that uses the Table of
Contents (ToC) of a textbook to identify and extract learning scenarios. For
instance, Figure 1.1 displays the ToC of the Python textbook, A Beginners Guide
to Python 3 Programming Hunt [1].

By analyzing the chapter titles, one can infer the textbook’s content. The
book begins with an introduction, followed by fundamental topics in the subse-
quent chapters. As it progresses, the complexity increases, introducing advanced
concepts like iterables and complex data structures such as lists. Finally, the
textbook ends with a practical application: Implementing a TicTacToe game.
In this context, the TicTacToe game can be viewed as a learning scenario that
allows learners to apply various concepts acquired throughout the textbook.

In this paper, the focus of exploration is to understand how textbooks apply
Python concepts in practical scenarios, emphasizing the examination at the level
of entire chapters. The approach relies on utilizing the Table of Contents within
these textbooks to effectively locate and infer practical applications.

2

To guide this research, three research questions have been posed:

• (RQ1) To what extent are chapters that describe learning scenar-
ios prevalent in Python textbooks?
Motivation: The motivation is to identify the varied contents of a Python
textbook. Addressing RQ1 enables the isolation and analysis of diverse
learning scenarios employed in the books.
Results: From the analysis of the 76 textbooks, five categories were emerged:
Introduction, Fundamentals, Software process, Scenario, and Abstract ti-
tles. It was observed that chapters focusing on practical scenarios, catego-
rized as Scenario, are particularly prevalent, accounting for 39.5% of the
content. This trend is especially notable in textbooks focused on Machine
learning (ML), Web development (WD), and DevOps (DO).

• (RQ2) What are the characteristics of chapters that contain learn-
ing scenarios?
Motivation: The aim is to understand whether and how frequently teach-
ers use applications in a single textbook. Insights can be used to character-
ize the scenario itself and determine which scenarios are used to target the
audience for whom the textbook was written.
Results: The analysis reveals that Software development textbooks primar-
ily contain Generic scenarios. Textbooks that target Machine learning tend
to utilize data and processing scenarios (90.91%). Fittingly, textbooks that
target the Computer graphics audience employ such as GUI (66.67%) sce-
narios.

• (RQ3) What Python libraries are mentioned in chapters that are
identified as learning scenarios?
Motivation: Building upon results from RQ1, the goal is to deepen the
understanding of how writers practically apply concepts, including identi-
fying which Python libraries are employed for the scenario.
Results: A list of 19 commonly used Python libraries has been identi-
fied across various scenario instances. These libraries are predominantly
employed in textbooks targeting the general public (GE). In the dataset,
Django and NumPy emerge as the most frequently utilized ones.

3

Table 1.1: Collected Dataset of Textbooks
Collected Textbooks from Alexandru et al. [7]
published period 2001 - 2020
textbooks 83 textbooks
textbooks with ToC 76 textbooks
median # per book 11 chapter titles
min. # per book 4 chapter titles
max. # per book 41 chapter titles
total extracted chapters 1017 chapter titles

Table 1.2: Summary: Textbooks’ Target Audience and Title Count
Target Audience # Chapter Titles Referenced Textbooks

Generic (GE) 503 [15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42]

Educational purpose (ED) 152 [43, 44, 45, 46, 47, 48, 49, 50, 51, 52,
53, 54]

Web development (WD) 132 [55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65]
Data analysis (DA) 104 [66, 67, 68, 69, 70, 71, 72, 73, 74, 75]
Software testing (ST) 32 [76, 77]
Game development (GD) 24 [78, 79]
Others (OT) 21 [80, 81]
Software development (SD) 15 [82, 83]
Machine learning (ML) 13 [84]
Computer graphics (CG) 11 [85]
DevOps (DO) 10 [86]

Total # Chapter Titles 1,017

As a first step, this study demonstrates that traditional textbooks contain a
wealth of information, with learning scenarios being notably diverse. Python pro-
grammers can leverage these practical learning scenarios to familiarize themselves
with the Python libraries they wish to learn. Additionally, researchers have the
opportunity to develop tool support for the large-scale exploitation of this re-
source. For educators, the study highlights that textbooks offer a wide array of
learning scenarios and Python libraries to choose from. Educators can use these
scenarios when targeting their audience and creating courses, while adding these
scenarios to their existing toolbox of teaching resources.

4

2 Data Preparation

In this section, the dataset preparation process is described, encompassing the
studied textbooks, extraction of chapter titles from the Table of Contents (ToC),
and classification of the target audience for each textbook.

2.1 Extracting chapter titles from textbooks.
Table 1.1 provides a concise summary of the datasets collected for this study.
To gain insights into the contents of Python textbooks, a dataset obtained from
previous research [87] was employed. This dataset included 83 textbooks pub-
lished between 2001 and 2020. Contact was established with the authors of the
aforementioned work, resulting in the acquisition of PDF versions of all these
textbooks.

Given that the approach relies on the Table of Contents (ToC), textbooks with-
out a ToC were filtered out. As a result, 76 textbooks met the selection criteria.
To extract chapter titles from these textbooks, a semi-automatic approach was
employed. Initially, I used the pdfminer tool∗ for capturing and extracting the
chapter titles. However, to address potential issues related to font quality and
stylistic variations in textbooks, a manual validation process was subsequently
conducted. This validation involved a meticulous comparison of the extracted
chapter titles against the originals, as detailed in Table 1.1. The number of chap-
ters in each textbook ranged from 4 to 41, leading to the successful retrieval of
1,017 chapter titles from the 76 textbooks.

∗https://pypi.org/project/pdfminer/

5

2.2 Characterizing Textbooks based on
Audience

To illustrate the diversity of purposes and the distinct scenarios that may exist
for specific textbook audiences, the textbooks were classified based on the in-
tended target audience, as determined by the authors’ objectives in creating the
textbooks. The methodology for achieving this classification involved two steps:

1. Searches for reviews and descriptions of the textbooks were conducted
across various online bookshops, including Amazon reviews† and the O’Reilly
website‡.

2. A round-table discussion was adopted, which involved seeking insights from
various sources, including an experienced researcher with over ten years of
experience in teaching Python.

The information displayed in Table 1.2 provides a summary of eleven distinct
categories that represent the intended target audiences for the textbooks under
consideration. This table also lists the textbooks that serve as references for each
of these identified categories. An observation from the table is that a signifi-
cant portion of the textbooks were directed at a broad and general readership,
constituting a total of 503 chapter titles. In contrast, the category focused on
“DevOps” had the fewest number of chapter titles, amounting to 10 titles. The
eleven distinct target audience categories are described as follows:

1. Generic (GE): This category pertains to books with content designed for
general usage, serving a broad and all-encompassing purpose. For instance,
“A Beginner’s Guide to Python 3 Programming” [16] falls under this cate-
gory.

2. Educational purpose (ED): Targeting an audience involved in the realm of
education, this category focuses on content where Python is utilized as a
tool for both imparting and acquiring knowledge. An example of such a
textbook is “Introduction to Computer Science Using Python” [44].

†https://www.amazon.com/b?node=283155
‡https://www.oreilly.com

6

3. Web development (WD): This category is centered around Python web de-
velopment content. Textbooks falling under this category delve into the
intricacies of web development using Python. An example is “Django De-
sign Patterns and Best Practices” [58].

4. Data analysis (DA): Targeting tasks related to data analysis, data struc-
tures, and algorithms, this category emphasizes Python’s use in these do-
mains. An illustrative textbook is “Learning pandas” [70].

5. Software testing (ST): This category relates to testing within the context
of Python software development. Textbooks in this category explore the
principles of test-driven development with Python, as seen in “Test-Driven
Development with Python” [77].

6. Game development (GD): Focused on the field of game creation, this cate-
gory encompasses textbooks that guide readers through game development
using Python. An example is “Beginning Python Games Development, 2nd
Edition” [78].

7. Software development (SD): Tailored for software creation using Python,
this category covers various topics such as agile methodologies and build-
ing applications with the support of the Python community. An example
textbook is “Foundations of Agile Python Development” [82].

8. Machine learning (ML): Centered around machine learning, this category
includes textbooks that delve into Python’s role in the field of machine
learning. An example is “Python Machine Learning” [84].

9. Computer graphics (CG): Focusing on the development of graphical user
interfaces (GUIs) using Python, this category includes textbooks that guide
readers in creating graphical interfaces with Python. An example is “Python
GUI Programming Cookbook” [85].

10. DevOps (DO): This category is related to DevOpspractices and method-
ologies using Python. Textbooks in this category explore Python’s role in
practices like DevOps. An example is “Internet of Things with Python”
[86].

7

11. Others (OT): Referring to books that focus on technologies other than
Python, this category includes textbooks that may cover technology topics
tangential to Python. An example is “Raspberry Pi Cookbook for Python
Programmers” [81].

These categories provide a comprehensive framework for classifying textbooks
based on their intended target audience and the purpose they serve.

Note that the category names for classification were referenced from a profes-
sional Python survey§.

§https://lp.jetbrains.com/python-developers-survey-2021/

8

Ta
bl

e
2.

1:
C

ha
pt

er
C

on
te

nt
s

D
ist

rib
ut

io
n

Su
m

m
ar

y
by

Te
xt

bo
ok

(T
ar

ge
t

A
ud

ie
nc

e)
T

ar
ge

te
d

A
ud

ie
nc

e
In

tr
od

uc
ti

on
Fu

nd
am

en
ta

ls
So

ft
w

ar
e

pr
oc

es
s

Sc
en

ar
io

A
bs

tr
ac

t
ti

tl
es

G
en

er
ic

(G
E)

15
.5

%
32

.8
%

8.
6%

29
.0

%
14

.1
%

E
du

ca
ti

on
al

pu
rp

os
e

(E
D

)
26

.3
%

15
.8

%
8.

6%
40

.8
%

8.
6%

W
eb

de
ve

lo
pm

en
t

(W
D

)
9.

9%
12

.1
%

3.
0%

70
.5

%
4.

6%
D

at
a

an
al

ys
is

(D
A

)
23

.1
%

23
.1

%
3.

9%
49

.0
%

0.
1%

So
ft

w
ar

e
te

st
in

g
(S
T)

0.
0

6.
3%

53
.1

%
40

.6
%

0.
0

G
am

e
de

ve
lo

pm
en

t
(G

D
)

20
.8

%
16

.7
%

0.
0

12
.5

%
50

.0
%

O
th

er
s

(O
T)

19
.1

%
42

.9
%

0.
0

38
.1

%
0.

0
So

ft
w

ar
e

de
ve

lo
pm

en
t

(S
D

)
13

.3
%

26
.7

%
33

.3
%

13
.3

%
13

.3
%

M
ac

hi
ne

le
ar

ni
ng

(M
L)

15
.4

%
0.

0
0.

0
84

.6
%

0.
0

C
om

pu
te

r
gr

ap
hi

cs
(C

G
)

9.
1%

27
.3

%
9.

1%
54

.6
%

0.
0

D
ev

O
ps

(D
O

)
10

.0
%

10
.0

%
0.

0
70

.0
%

10
.0

%

Su
m

#
ch

ap
te

r
ti

tl
es

16
.7

%
24

.8
%

8.
6%

39
.5

%
10

.4
%

N
ot

e:
Sc

en
ar

io
C

ha
pt

er
s

H
ig

hl
ig

ht
ed

in
B

lu
e.

9

3 Findings

In this section, the methodologies employed to answer the research questions are
described, along with a discussion of the corresponding results.

3.1 Matching Contents with Target Audience
To effectively understand how Python concepts are applied in textbooks, it was
essential to first examine the organizational structure of these textbooks. For
this purpose, a qualitative analysis of the contents of 76 Python textbooks was
conducted, which involved manually coding 1,017 chapter titles. Specifically, to
mitigate subjectivity in this coding, a systematic procedure was followed, drawing
on methodologies from previous work [88, 89]. The construction of a taxonomy
for Python content categories and the details of the coding process are outlined
below.

A random sample of 30% (305) of the 1,017 chapter titles was selected for the
pilot construction of the taxonomy, a process informed by the methodology of Wu
et al. [89]. The coding team consisted of four individuals: three master’s students
with over five years of Python programming experience and one professor with
more than ten years of experience in Python education and research. The tax-
onomy construction occurred in two stages. In the first stage, the three master’s
students engaged in a round-table discussion to familiarize themselves with the
content of Python textbooks. They read and re-read the chapter titles and their
brief descriptions, taking additional notes where necessary.

In the second stage, these three coders independently assigned initial codes
to the chapter titles, annotating them with important information. It was en-
sured that each title received only one most appropriate label. Subsequently,
the professor joined the process as a referee to address and resolve any coding

10

disagreements. This step was crucial in grouping the initial codes into coher-
ent high-level categories. The team then iteratively reviewed and adjusted these
categories, refining the taxonomy through continuous dialogue until unanimous
agreement on all categories was reached among the coders and the referee.

3.2 (RQ1) To what extent are chapters that
describe learning scenarios prevalent in
Python textbooks?

To evaluate and refine the content categories that emerged from the pilot con-
struction, and to ensure a comprehensive understanding, an iterative categoriza-
tion process was undertaken. This involved categorizing several rounds of random
samples, 30 samples per round, until the Kappa agreement score reached a level
of 0.80 or higher, indicating almost perfect agreement. In each round where the
score fell below 0.80, a thorough review was conducted to resolve any discrepan-
cies.

After three rounds, which included a total of 90 samples, the iterative process
concluded successfully with the Kappa score reaching 0.86 in the third itera-
tion. Encouraged by these results, the remaining samples were then classified
independently. Through this rigorous process, five distinct types of content were
identified:

(a) Introduction The introduction should include any new ideas that the au-
thor would like to rely upon the reader. In this example, the book “Python Data
Analysis” [72], targets a Generic audience. Specifically, it introduces new special-
ized topics that are pivotal for beginners, such as Retrieving, Progressing, and
Storing Data, and Introduction to the Python’s World.

(b) Fundamentals A significant portion of the chapters in the examined text-
books fell into the Fundamentals category. This category is distinct from the
Introduction category in that chapter titles typically include terms such as Fun-
damental, concepts, principles, and basics, reflecting a focus on the essential struc-

11

tures, functions, or foundational facts of Python programming. Such chapters of-
ten cover concrete programming examples, including topics like loops, conditional
statements (if), and general data structures.

For instance, “A Whirlwind Tour of Python” [17] features chapters with ti-
tles such as Iteration/Looping and Python Classes, which are indicative of the
Fundamentals category. Note that fundamentals do not contain explicit Python
libraries in their chapter titles.

(c) Software process The Software process category contains any chapter
that describes any software development process like software testing, inspec-
tions, and version control. In this example, the book “Becoming a Better Pro-
grammer” [90], contains a Generic audience, and includes chapter titles such as
Testing Times, Effective Version Control, and Test-Driven Developers.

(d) Scenario Building upon the definition given in the Introduction section,
the Scenario category was identified as encompassing chapters that demonstrate
practical applications of Python in specific situations. This category is distinct
from Fundamentalsin that it focuses more directly on the use of Python in real-
world scenarios, rather than on fundamental concepts.

Chapters in this category typically do not discuss software development pro-
cesses but rather concentrate on actual Python applications. For example, “Data
Wrangling with Python” [91] includes chapters on practical tasks like working
with Excel files, PDFs, and web scraping. This category also includes more spe-
cific functions or libraries in the chapter titles.

(e) Abstract titles The final category encompasses chapter titles that did not
align with any of the other established categories. This includes chapter titles that
are vague, overly colloquial, or consist of catchy phrases, making it challenging
to infer their content. Due to their non-specific nature, these are grouped under
this category, which turned out to be one of the most prevalent.

Examples of such chapter titles are ‘Divide, Combine, and Conquer,’ ‘Greed
is Good? Prove it,’ and ‘Hard Problems and (Limited) Sloppiness.’ A notewor-
thy observation is that during a second round of categorization, which involved

12

a thorough review of the content of each related chapter, it was found that ap-
proximately 30.8% of chapters in the Abstract titles category actually aligned
more closely with the content of the Scenario category and thus were reclassified
accordingly. Despite this, a significant portion, 17.3%, remained uncategorized.

Results Table 2.1 presents an overview of the content distribution within each
target audience category in the textbook. The results reveal that scenario con-
tent constitutes the largest proportion of chapter content across all the books,
accounting for 39.5% of the total chapter content. In contrast, the software pro-
cess content represents the smallest fraction, making up only 8.6% of the overall
content.

A closer examination of the findings indicates that the Machine learning (ML),
Web development (WD), and DevOps (DO) books exhibit the highest prevalence
of scenario content within their chapters, with percentages of 84.6%, 70.5%, and
70%, respectively. Conversely, the Game development (GD) and Software devel-
opment (SD) textbooks feature the lowest proportion of scenario content, com-
prising only 12.5% and 13.3%, respectively.

RQ1 Summary: From the analysis of the 76 textbooks, five categories
were emerged: Introduction, Fundamentals, Software process, Scenario,
and Abstract titles. It was observed that chapters focusing on practical
scenarios, categorized as Scenario, are particularly prevalent, accounting for
39.5% of the content. This trend is especially notable in textbooks focused
on Machine learning (ML), Web development (WD), and DevOps (DO).

3.3 (RQ2) What are the characteristics of
chapters that contain learning scenarios?

In this section, the focus will be on presenting the approach and results for ad-
dressing RQ2.

Approach To answer RQ2, a manual round-table discussion was conducted
to classify different scenarios. This approach closely mirrored the methodology

13

Table 3.1: A Taxonomy of Scenario Instances
Scenario Instances Rationale Example of Chapter Titles

Application Program-
ming Interfaces (API)

Focuses on integration and data processing,
including web service integration
and software communication.

Web APIs with hug,
PyMySQL Module,
Multiprocessing

Data and Processing
(DP)

Focuses on data manipulation,
calculation, and modeling.

Curried Functions,
Built-In Data Structures,
Tracking User Actions

Graphical User Inter-
face (GUI)

Focuses on visual representation
and provides visualization tools for data.

Graphical User Interfaces,
Computer Generated Art,
Graphing with Matplotlib pyplot,

Others/Generic (GE)
Covers scenarios not fitting
into the above categories,
often for specialized or unique tasks.

Easier Python Packaging with flit,
Command-Line Applications,
Dates and Times

and classification method that were successfully employed in RQ1, ensuring a
consistent and rigorous analysis.

Additionally, the scenarios were categorized based on the specific developer
roles identified from the developer survey∗. The main focus was on how Python
is used by developers. By looking at the developer roles identified in the survey,
the analysis aimed to reveal the different ways Python is applied in real-world
situations. This thorough approach provided a deeper understanding of Python’s
roles in various developer communities and made the exploration of RQ2 more
insightful.

Results Table 3.1 illustrates the taxonomy of scenario instances. Four distinct
types of scenarios have been identified, comprising Application Programming
Interfaces (API), Graphical User Interface (GUI), Data and Processing (DP), as
well as Others/Generic (GE).

• Application Programming Interfaces (API) represents the scenario that per-
tains to the integration or processing of applications. This includes process-
ing tasks such as integrating web services and facilitating data exchange
between different software components.

∗https://lp.jetbrains.com/python-developers-survey-2021/

14

• Data and Processing (DP) represents the scenario related to the manipula-
tion, calculation, and modeling of data. This also includes tasks like data
cleaning, transformation, statistical analysis, and data concurrency.

• Graphical User Interface (GUI) represents the scenario that focuses on the
illustration of components or outputs, such as providing visualization tools
for data representation and integrating libraries like Matplotlib for graphical
displays.

• Others/Generic (GE) represents the category of scenarios that don’t neatly
fit into the aforementioned classifications, including generic scenarios that
encompass a broader scope of content. Through this comprehensive ap-
proach, insights are sought into how different scenarios are applied within
the various target audiences of the book.

Figure 3.1 presents the distribution of the different scenario categories that
are targeted by different types of audiences using a heatmap visualization. The
result shows the correlation between the various scenario instances and the target
audience of the textbook. The findings reveal that in the context of the Software
Development textbook, all scenario instances (100%) are categorized as generic
scenarios, which inherently suggests that they encompass broad subject matter.

For example, the chapter ‘The IDE: Eclipsing the Command Line’ from ‘Foun-
dations of Agile Python Development’ textbook [82]. Conversely, in the Machine
Learning book, the majority of scenarios (90.91%) are focused on data and pro-
cessing. Another example is the chapter ‘Working with Unlabeled Data - Clus-
tering Analysis’ from the ‘Python Machine Learning’ textbook[84].

In the Computer Graphics book, 66.67% of the scenarios pertain to graphic
user interface-related content such as the ’Creating the GUI Form and Adding
Widgets’ from the ’Python GUI Programming Cookbook’ textbook [85].

RQ2 Summary: Software development textbooks contain only
Generic scenarios. Textbooks that target Machine learning tend to utilize
data and processing scenarios (90.91%). Fittingly, textbooks that target
the Computer graphics audience employ such as GUI (66.67%) scenarios.

15

Figure 3.1: The proportion of Scenario instances for each type of textbook
(based on target audience)

16

Table 3.2: List of Python libraries Extracted from Chapter Titles of the Scenario Cat-
egories

Target Audience Scenario Instance Library

Generic (GE) API PyMySQL [93], RxPy [94]
GUI Matplotlib [95], PyDraw [96], wxPython[97]
DP Pygame[98]
GE wxPython [97], Flit [99], IronPython [100],

PyBoxes[101], Tkinter [102]

Educational purpose (ED) API Matplotlib [95], Scikit-learn [103]
GE NumPy[92], Cython[104]

Web development (WD) API Django [105]
GE Django [105]

Data analysis (DA) API Scikit-learn [103]
DP NumPy [92], MapReduce [106], Pandas[107]

Software testing (ST) DP Selenium [108]

Computer graphics (CG) GUI PyOpenGL [109], PyGLet [110]

3.4 (RQ3) What Python libraries are mentioned
in chapters that are identified as learning
scenarios?

In this section, the focus is on discussing the results for addressing RQ3.

Approach To answer RQ3, an exploration was conducted concerning the uti-
lization of Python libraries as reference points across various scenario instances
to differentiate target audiences. This involved a manual round-table discussion
process, similar to what was employed in RQ2. Specifically, the Scenario con-
tent classification from RQ1 was analyzed. Subsequently, for each title, specific
Python libraries were extracted.

For instance, NumPy[92] was extracted for the title ‘Exploratory and Predictive
Data Analysis with NumPy’ from the book “NumPy Cookbook, 2nd Edition”[47].
The goal is to understand whether or not certain libraries are more prevalent in
different textbooks.

17

Results Table 3.2 displays the introduction of Python libraries in each textbook
for specific target audiences and scenarios. Two key observations can be made
from these findings.

First, it was possible to identify 19 distinct Python libraries , as presented in
the table. Secondly, the results indicate that the majority of Python libraries were
utilized in generic books, totaling 13 libraries. For example, in scenario in-
stances targeting the Generic (GE) audience within the Graphical User Interface
(GUI) category, three libraries were introduced: Matplotlib [95], PyDraw [96],
and wxPython [97].

It is noteworthy that in the context of the web development book, the only
library introduced was Django [105]. The most frequently introduced library
across all books was NumPy [92], which serves as a foundational package for sci-
entific computing in Python, offering an array of mathematical functions, ran-
dom number generators, and more with accessible high-level syntax. Specifically,
NumPy appeared in textbooks targeting both the Generic (GE) and Educational
(ED) audiences.

A more detailed examination of educational purpose books and generic sce-
narios revealed that Cython[104], a compiler library simplifying the creation of
C extensions for Python, and NumPy played essential roles. These two libraries
are of particular interest because they are not part of the standard Python li-
braries (i.e., they are PyPI libraries). Their status as third-party libraries suggests
the Python community’s involvement with other programming languages (e.g.,
Cython from C programming) and paradigms (e.g., statistical analysis). This
further emphasizes the diversity of the Python community and its connections to
various programming domains.

In summary, these two Python libraries serve as foundational tools that ed-
ucators can employ in their subsequent studies. Interestingly, no Python li-
braries were reported as being used across different target audiences.

RQ3 Summary: A list of 19 commonly used Python libraries has been
identified across various scenario instances. These libraries are predomi-
nantly employed in textbooks targeting the general public (GE). In the
dataset, Django and NumPy emerge as the most frequently utilized ones.

18

4 Python Educational Scenario
Visualizer: PyEdu

To demonstrate the practical applications of the findings, an interactive applica-
tion prototype has been developed to showcase knowledge extracted from text-
books.

This prototype, detailed in Figure 4.1, includes a comprehensive overview,
features interactive elements, and provides output tools for enhanced user en-
gagement and deeper insight into the subject matter. At its core is a Streamlit-
based application∗, designed for Scenario Analysis, which connects to the finding
database and offers an interactive user interface.

The prototype is accessible at https://github.com/ploychanok/python-scenario.
Note that this prototype utilizes only a subset of six textbooks, as referenced

in [15], [17], [19], [68], [79], and [111].

4.1 Interface Design
1⃝ Sidebar In this section, a radio button is utilized, offering two options: ‘By

Audience’ and ‘By Library’. These options are followed by two select boxes.
When the user selects the ‘By Audience’ option, the two select boxes allow for
data filtering based on the Target Audience and Chapter selection. Conversely, if
the user chooses ‘By Library’, the select boxes enable filtering based on Python
libraries and Chapter selection.

∗https://streamlit.io

19

2⃝ Visualisation of Taxonomy For this section, the utilization of Plotly†

for data visualization is discussed. A Sankey diagram has been chosen for its
effective representation of various entities and their interrelationships. When the
‘By Audience’ option is selected, the graph displays the Target Audience on
the left, Scenario Instances in the middle, and Libraries on the right. Conversely,
when ‘By Library’ is chosen, the graph presents the Library on the left, Scenario
Instances in the middle, and Target Audiences on the right.

3⃝ Scenario Contents This section will contain several of components which
includes:

• Metadata: Textbook title, Chapter title, and Related library or Libraries.

• Chapter Summary: Provides a summary of the selected chapter.

• Code Snippet: Includes code snippets found in the selected chapter.

The chapter summaries, code snippets, and their explanations are extracted
using pdfgear‡ and ChatGPT-4§, with correctness manually verified by the au-
thor.

4.2 Interactive Walk through
Select the viewpoint As illustrated in Figure 4.1, the sidebar (1⃝) incorpo-
rates two primary functionalities to assist users in navigating through scenario
viewpoints. These are: Firstly, it offers the option to select a viewpoint based on
various audience groups, denoted as ‘By Audience’, and secondly, it provides
the option to select a viewpoint tailored specifically to libraries, indicated as ‘By
Library’. Following the selection, the main content area dynamically updates
to display pertinent information, which includes the 2⃝ graph and the 3⃝ scenario
referenced in Figure 4.1.

†https://plotly.com/python/
‡https://www.pdfgear.com
§http://chat.openai.com/

20

Searching ‘By Audience’ This option presents users with a list of target au-
diences, as detailed in Table 2.1. Upon selecting a target audience, the second
select box dynamically filters the chapters relevant to the selected audience. The
filtered results are then displayed in the Graph (2⃝) and Scenario (3⃝) sections.

Searching ‘By Library’ This option operates similarly to Searching ‘By Audience’ but
focuses on Python libraries. Users are provided with a list of Python libraries,
similar to the examples in Table 3.2. Selecting a Python library prompts the
system to filter chapters associated with the selected library, with the outcomes
displayed in the Graph (2⃝) and Scenario (3⃝) sections.

21

Figure 4.1: Screenshot of the PyEdu Interface
Demo available at: https://github.com/ploychanok/python-scenario

22

5 Lessons Learned

In this section, lessons learned and implications derived from the results are pre-
sented. These insights are intended to benefit practitioners, researchers, and
educators, not only in the field of Python but also in the broader field of pro-
gramming.

5.1 For Students of Python
Textbooks contain a wealth of information ready to be exploited.

The results presented in this study are encouraging for programmers, as they
indicate that textbooks do include chapters focused on practical applications,
specifically real-world cases. As demonstrated in RQ1, the evidence illustrates
that through the analysis of chapter titles, successful identification of those chap-
ters primarily designed for scenario-based practice was achieved. This reaffirms
the continued value of Python textbooks as a learning resource. Furthermore, as
demonstrated in RQ2, it has been shown that the scope of scenarios covered in
these textbooks is indeed broad, catering to a wide range of scenarios in generic
Python textbooks.

It is better to go for the generic textbooks, unless you are trying to
find the right learning scenario.

For RQ3, a compilation of Python libraries has been prepared, offering insights
into where developers might want to focus their learning efforts. The next step
involves tailoring scenarios to align specifically with the requirements and inter-
ests of the audience or students who wish to gain a deeper understanding of the
tasks they can accomplish using Python.

23

Textbooks contain abstract titles, with authors personal opinions

An interesting observation is that textbooks featuring Advanced-Level titles often
include personal advice from the author to the reader, a feature not commonly
found in other formats, such as online resources or courses. Consequently, an
important avenue for future research involves conducting a comparative study
that examines chapter titles in textbooks alongside other educational materials,
including content created by both educators and software practitioners, as well
as software documentation.

5.2 For Researchers and Practitioners
Opportunities for tool support and comparison against other software
documentation resources.

Currently, the results presented in this paper (RQ1, RQ2, RQ3) have been ob-
tained through manual analysis. While manual analysis ensures higher quality,
it is time-consuming, susceptible to human error, and not scalable for larger
datasets. Therefore, the next step involves providing tool support. As such, fu-
ture work may include the automatic extraction of chapter titles. Such methods
could encompass the use of image processing of the Table of Contents. However,
it’s important to note that this task won’t be straightforward, as the Table of
Contents can vary in both font size and style. Anticipated challenges in this
regard will be addressed as part of future work.

Future work of digging deeper into the contents of each textbook chap-
ters.

All the results obtained in this study (RQ1, RQ2, RQ3) provide only a superficial
overview of the contents found within these textbooks. Due to the exclusive
focus on analyzing chapter titles, a limitation of this work is the inability to
gain a comprehensive understanding of the actual contents of the textbooks.
For future research, the aim is to delve deeper and achieve a more qualitative
understanding of the actual chapters. This would involve extracting the textual
and code example contents to gain insight into how scenarios are organized for the

24

learners. Particularly in the case of RQ3, it would be interesting to investigate
how these code examples differ from or resemble other sources, such as various
forms of software documentation, content on Stack Overflow, blogs, and online
tutorials.

5.3 For Educators
There exists a wide array of learning scenarios and Python libraries from
which to choose.

Apart from illustrating the diverse range of learning scenarios, educators can
leverage the findings from RQ1 and RQ2 to identify which textbook scenarios are
suitable for teaching Python. The results from RQ3 can also assist educators in
integrating the listed Python libraries and examples into their curriculum. As a
stepping stone, this extraction of learning scenarios could be helpful for educators,
especially if they are teaching a specific target audience. Additionally, it helps
them understand that Python indeed caters to a diverse set of programmers.

Identifying essential Python libraries used in multiple scenarios.

The results in RQ3 reveal a set of 19 Python libraries explicitly mentioned in
the textbook chapter titles. Among these findings, it becomes apparent that
Matplotlib and NumPy have been identified in multiple textbooks targeting dif-
ferent audiences. The next step involves extracting code examples from these
scenario chapters to understand the concepts taught within these scenarios and
to gain insight into the motivations of the authors of Python textbooks.

25

6 Threats To Validity

Threats to the validity of this study have been categorized into three distinct
categories: external threats, construct threats, and internal threats.

6.1 External Threats
External threats to the validity of the study center around the ability to general-
ize the results, particularly due to the use of a curated list of Python textbooks.
Two potential threats are summarized. The first threat arises from the fact that
the experiment is evaluated solely within the context of the Python language.
Therefore, the observations may vary across different programming languages
(e.g., Java and C). Nevertheless, it is important to note that Python has gained
widespread prominence, emerging as a dominant language in various fields, in-
cluding education and software development. The significance of Python as a
representative language justifies this exploration.

The second potential threat is related to the selection of textbooks. In this
study, a total of 76 textbooks were analyzed, which may raise concerns about the
generalizability of the findings to all textbooks. However, it’s important to note
that the sample size, including 1,017 chapter titles across a wide range of topics,
provides confidence that the studied textbooks are broadly utilized by educators.
Furthermore, all the textbooks have been made open and accessible for readers
and for replicating the dataset. In future work, there are plans to extend the
framework to encompass additional programming languages. Additionally, the
aim is to include a more diverse range of textbooks covering various fields and
topics related to Python programming. As an initial study, these insights are
considered crucial, laying the foundation for further research into the systematic
utilization of information in textbooks to support educators and learners.

26

6.2 Construct Threats
Construct threats refer to the degree to which measurements accurately capture
the intended aspects of the study. A potential threat could arise when extracting
the tables of contents from the studied textbooks, as automated methods may
not always retrieve them accurately.

To migrate this threat, the author manually inspected all retrieved tables of
contents by comparing them against the original textbooks. Therefore, we believe
that the dataset we have constructed is valuable for mining and yielding insightful
results. In order to create a much larger scale study, an automated method might
be required with a larger accuracy. This is seen as potential future work.

6.3 Internal Threats
Internal threats denotes the approximate truth about inferences regarding cause-
effect or causal relationships. To address the research questions posed in this
study, a series of qualitative analyses were conducted to gain insight into the
contents and sequences of textbooks. One potential internal threat arises from
the approach employed, which solely involves manual analysis of chapter titles.
This presents a threat as chapter titles may not always perfectly capture the
content of the chapters. Hence, instances are likely to be mislabeled due to the
subjective nature.

To mitigate this threat, the manual coding was systematically conducted with
the involvement of multiple individuals, including experienced educators. Addi-
tionally, Kappa agreement scores were calculated to ensure coding quality. Once
the scores indicated nearly perfect or substantial agreement, coding was indepen-
dently carried out. For example, in RQ1, the Kappa scores ultimately reached
0.86, indicating strong inter-rater reliability.

27

7 Related Work

In this section, relevant literature pertaining to Python education, Pythonic id-
ioms, and the study of programming textbooks will be discussed.

7.1 Python Education
To facilitate more efficient learning of Python for novice programmers, several
researches have been conducted to propose learning strategies and tools. For
example, Wiese et al. [112] conducted research that established a link between
code readability, structure, and comprehension among Python novices. They
suggested that novices may benefit from lightweight tools that identify common
patterns and offer “expert” solution. Hosseini et al. [113] explored the value of en-
gaging features in learning Python programming examples and introduced a tool
named PCEX. Their results indicated a positive impact on students’ engagement,
problem-solving performance, and overall learning experience.

Comparative studies comparing the learning of Python to other programming
languages have also been conducted [2, 114]. For instance, Koulouri et al. [115]
found that using a syntactically simple language like Python facilitated students’
understanding of programming concepts more effectively compared to more com-
plex languages like Java.

Although the result of this research shares the overarching aim of of-
fering insights into learning strategies, the approach is distinctive in
its exclusive focus on the Python programming language, with no con-
sideration of other languages such as Java.

28

7.2 Pythonic Coding
Python is renowned for its pythonic idioms, representing notable programming
styles and features [6]. Previous studies on Python idioms have primarily ex-
plored them through books or online resources. For example, Alexandru et al. [7]
compiled a catalog of 19 pythonic idioms from various books and assessed their
performance and readability. Farooq and Zaytsev [8] extended these findings to
a broader collection of idioms, reinforcing the observations made by Alexandru
et al. Sakulniwat et al. [9] conducted a case study to visualize the usage of open
idioms in open-source projects over time, demonstrating that developers tend to
adopt idiomatic code. Preliminary experiments by Leelaprute et al. [10] suggested
that writing in pythonic idioms could result in memory and time savings.

Unlike those studies, the focus of this research extends beyond pythonic
styles and encompasses all programming scenarios in Python.

To support the learning of pythonic idioms, tools like Teddy, developed by Phan-
Udom et al. [116], have been introduced for checking idiom usage, demonstrating
high precision in detecting idiomatic and non-idiomatic Python code. Zhang
et al. [117] designed an automatic refactoring tool to make Python code idiomatic,
highlighting its practicality and usefulness.

The exploratory study, while conducted manually, lays the groundwork
for future efforts to develop tools aimed at assisting learners in various
scenarios. This expansion may potentially include a broader range of
textbooks and other learning materials, such as online tutorials, blogs,
and teaching curricula.

7.3 Analysis of Programming Textbooks
Textbooks are a crucial component of teaching introductory programming, serv-
ing as major sources of example programs and references for solving specific
problems [11, 12, 13]. Studies have examined their role in education, focusing
on various programming languages. For example, Börstler et al. [14] evaluated
the quality of object-oriented example programs from popular Java textbooks,

29

advising caution in using textbook examples directly. Mazumder et al. [118] re-
ported a lack of explanatory diagrams for variables, arrays, and objects in 15
commonly used introductory Java textbooks. Almansoori et al. [119] analyzed
security topics and unsafe function usage in textbooks used in top US universi-
ties, finding many did not adequately warn about or teach safe usage of these
functions.

Efforts like those by Alpizar-Chacon et al. [120], who integrated textbooks with
smart interactive content, and Huang et al. [121], who proposed a framework to
construct knowledge graphs from textbooks, are enhancing textbook effective-
ness. Wu et al. [122] introduced a programming language learning service, com-
plementing textbook knowledge with Stack Overflow posts. They demonstrated
the effectiveness of their weakly supervised link approach in matching posts with
textbook chapters.

This work extracts valuable information from Python textbooks, with
a specific focus on analyzing the Table of Contents and characterizing
the learning scenarios in a novel way.

30

8 Conclusion and Future Outlook

The approach of this study involved extracting learning scenarios based on the
Table of Contents (ToC) from various Python textbooks. By categorizing these
textbooks into distinct target audiences, valuable insights into the versatility of
Python were provided, encompassing scenarios ranging from education and Web
development to Data analysis and Software testing.

The results are promising, indicating that learning scenarios (i.e., Scenario)
are prevalent, comprising approximately 39.5% when compared to other title
contents. Furthermore, the scenario contents were characterized into four types,
including Application Programming Interfaces (API), Data and Processing (DP),
Graphical User Interfaces (GUI), and others. Additionally, a list of 19 Python
libraries used in these diverse scenarios was identified.

This study represents just the beginning and offers significant potential for
Python programmers, researchers, and educators, enabling them to explore prac-
tical applications and harness the full capabilities of Python. Future work includes
delving deeper into the contents of chapter titles, automating the extraction pro-
cess, and evaluating the usage of learning scenarios, among other potential av-
enues for research.

31

Acknowledgement

I’m truly grateful to some amazing people who’ve been with me throughout my
journey in achieving my Master’s degree.

First and foremost, I extend my heartfelt thanks to Professor Kenichi Mat-
sumoto, my thesis advisor. His support has been nothing short of exceptional.
Not only did he graciously welcome me into the Software Engineering Laboratory,
but he also provided unwavering guidance and encouragement every step of the
way throughout my Master’s program. His mentorship has been invaluable, and
I am deeply appreciative of the opportunities he has opened up for me.

I also want to express my sincere appreciation to my co-supervisor, Associate
Professor Raula Gaikovina Kula. His influence on my research journey cannot
be overstated. With great patience and expertise, he guided me through the
intricacies of conducting research and writing scholarly papers. I am particularly
grateful for the incredible opportunity he facilitated, allowing me to participate in
the enriching exchange program at the University of Melbourne. This experience
truly broadened my perspective and enhanced my academic and personal growth.

A special mention and heartfelt gratitude go to Assistant Professor Dong Wang,
whose contributions and guidance during my research were indispensable. He
provided much-needed clarity and direction precisely when I needed it most. His
insights and expertise significantly elevated the quality of my work, and I am
deeply thankful for his unwavering support.

Beyond my advisors, I am profoundly grateful to the members of my thesis
committee: Professor Shoji Kasahara, Professor Takashi Ishio, and Assistant
Professor Kazumasa Shimari. Their insightful comments and constructive sug-
gestions have been a tremendous help in refining the depth and quality of my
thesis. Their collective wisdom has been instrumental in shaping my research
journey.

32

I consider myself exceptionally fortunate to have had the opportunity to work
with Associate Professor Christoph Treude during my time at the University
of Melbourne. His profound expertise in the field was a major boost to my
research endeavors, and I am grateful for the invaluable lessons I learned under
his mentorship.

I can’t forget to mention my wonderful friends and lab mates, who have been an
incredible support system throughout this journey. Together, we’ve shared count-
less laughs, overcome challenges, and celebrated successes. Their camaraderie and
encouragement have made this journey all the more enjoyable and memorable. I
couldn’t have asked for better companions on this academic adventure.

Last but most certainly not least, I’m forever indebted to my family. Their
unwavering support and belief in my dreams, especially in allowing me to study
abroad, have been nothing short of incredible. I owe them a debt of gratitude that
words can hardly express. Their constant encouragement has been my driving
force, and I am deeply thankful for the love and faith they have bestowed upon
me.

33

Bibliography

[1] J. Hunt, A Beginners Guide to Python 3 Programming, 1st ed. Springer,
2019.

[2] S. Khoirom, M. Sonia, B. Laikhuram, J. Laishram, and T. D. Singh, “Com-
parative analysis of python and java for beginners,” Int. Res. J. Eng. Tech-
nol, vol. 7, no. 8, pp. 4384–4407, 2020.

[3] A. Bogdanchikov, M. Zhaparov, and R. Suliyev, “Python to learn program-
ming,” in Journal of Physics: Conference Series, vol. 423, no. 1. IOP
Publishing, 2013, p. 012027.

[4] K. Srinath, “Python–the fastest growing programming language,” Interna-
tional Research Journal of Engineering and Technology, vol. 4, no. 12, pp.
354–357, 2017.

[5] A. Nagpal and G. Gabrani, “Python for data analytics, scientific and tech-
nical applications,” in 2019 Amity international conference on artificial in-
telligence (AICAI). IEEE, 2019, pp. 140–145.

[6] J. J. Merchante and G. Robles, “From python to pythonic: Searching for
python idioms in github,” in Seminar Series on Advanced Techniques and
Tools for Software Evolution (SATToSE), 2017.

[7] C. V. Alexandru, J. J. Merchante, S. Panichella, S. Proksch, H. C. Gall, and
G. Robles, “On the usage of pythonic idioms,” in Proceedings of the 2018
ACM SIGPLAN international symposium on new ideas, new paradigms,
and reflections on programming and software, 2018, pp. 1–11.

34

[8] A. Farooq and V. Zaytsev, “There is more than one way to zen your
python,” in Proceedings of the 14th ACM SIGPLAN International Con-
ference on Software Language Engineering, 2021, pp. 68–82.

[9] T. Sakulniwat, R. G. Kula, C. Ragkhitwetsagul, M. Choetkiertikul,
T. Sunetnanta, D. Wang, T. Ishio, and K. Matsumoto, “Visualizing the
usage of pythonic idioms over time: A case study of the with open idiom,”
in 2019 10th International Workshop on Empirical Software Engineering in
Practice (IWESEP). IEEE, 2019, pp. 43–435.

[10] P. Leelaprute, B. Chinthanet, S. Wattanakriengkrai, R. G. Kula, P. Jaisri,
and T. Ishio, “Does coding in pythonic zen peak performance? preliminary
experiments of nine pythonic idioms at scale,” in Proceedings of the 30th
IEEE/ACM International Conference on Program Comprehension, 2022,
pp. 575–579.

[11] J. Börstler, M. S. Hall, M. Nordström, J. H. Paterson, K. Sanders,
C. Schulte, and L. Thomas, “An evaluation of object oriented example pro-
grams in introductory programming textbooks,” ACM SIGCSE Bulletin,
vol. 41, no. 4, pp. 126–143, 2010.

[12] M. de Raadt, R. Watson, and M. Toleman, “Textbooks: under inspection,”
University of Southern Queensland, Tech. Rep., 2005.

[13] W. J. Fitzgerald, J. Elmore, M. Kung, and A. J. Stenner, “The concep-
tual complexity of vocabulary in elementary-grades core science program
textbooks,” Reading Research Quarterly, vol. 52, no. 4, pp. 417–442, 2017.

[14] J. Börstler, M. Nordström, and J. H. Paterson, “On the quality of examples
in introductory java textbooks,” ACM Trans. Comput. Educ., vol. 11, no. 1,
feb 2011.

[15] C. Hattingh, 20 Python Libraries You Aren’t Using (But Should). O’Reilly
Media, Inc., 2016.

[16] J. Hunt, 2019 Book A Beginner’s Guide To Python 3 Program. Springer
Cham, 2019.

35

[17] J. VanderPlas, A Whirlwind Tour of Python. O’Reilly Media, Inc., 2016.

[18] P. Goodliffe, Becoming a Better Programmer: A Handbook for People Who
Care About Code, 1st ed. O’Reilly Media, 2014.

[19] M. Pilgrim, Dive Into Python 3. Apress Berkeley, CA, 2010.

[20] B. Slatkin, Effective Python: 59 Specific Ways to Write Better Python.
Addison-Wesley Professional, 2015.

[21] M. Jaworski and T. Ziade, Expert Python Programming. Packt Publishing,
2016, 536 pages.

[22] L. Ramalho, Fluent Python: Clear, Concise, and Effective Programming.
O’Reilly Media, 2015.

[23] D. Mertz, Picking a Python Version: A Manifesto. O’Reilly Media, Inc.,
2015.

[24] P. Barry, Head First Python: A Brain-Friendly Guide. O’Reilly Media,
1st edition, 2010.

[25] M. Pirnat, How to Make Mistakes in Python. O’Reilly Media, Inc., 2015.

[26] B. Lubanovic, Introducing Python: Modern Computing in Simple Packages.
O’Reilly Media, 1st edition, 2014.

[27] M. Lutz, Learning Python, 5th Edition. O’Reilly Media, 5th edition, 2013.

[28] R. Gupta, Making Use of Python 1st. Wiley, 1st edition, 2002.

[29] R. van Hattem, Mastering Python: Master the art of writing beautiful and
powerful Python by using all of the features that Python 3.5 offers. Packt
Publishing, 2016.

[30] M. Alchin and J. B. Browning, Pro Python. Apress, 2nd edition, 2014.

[31] A. Harris, Pro IronPython (Expert’s Voice in .NET) 1st ed. Edition.
Apress, 1st ed. edition, 2009.

36

[32] M. Alchin, Pro Python (Expert’s Voice in Open Source) 1st ed. Edition.
Apress, 1st ed. edition, 2010.

[33] L. Sneeringer, Professional Python 1st Edition. Wrox, 1st edition, 2015.

[34] A. Martelli, A. Ravenscroft, and D. Ascher, Python Cookbook Second Edi-
tion. O’Reilly Media, Second edition, 2005.

[35] E. Matthes, Python Crash Course: A Hands-On, Project-Based Introduc-
tion to Programming 1st Edition. No Starch Press, 1st edition, 2015.

[36] J. R. Briggs, Python for Kids: A Playful Introduction To Programming.
No Starch Press, 1st edition, 2012.

[37] M. Venkitachalam, Python Playground: Geeky Projects for the Curious
Programmer 1st Edition. No Starch Press, 1st edition, 2015.

[38] M. Lutz, Python Pocket Reference: Python In Your Pocket 5th Edition.
O’Reilly Media, 5th edition, 2014.

[39] J. Ingrassellino, Python Projects for Kids. Packt Publishing, 2016.

[40] A. Tigeraniya, Python Unlocked. Packt Publishing, 2015.

[41] T. Hall and J.-P. Stacey, Python 3 for Absolute Beginners (Expert’s Voice
in Open Source) 1st ed. Edition. Apress, 1st ed. edition, 2009.

[42] A. B. Downey, Think Python: How to Think Like a Computer Scientist 2nd
Edition. O’Reilly Media, 2nd edition, 2015.

[43] T. Antao, Bioinformatics with Python Cookbook First Published Edition.
Packt Publishing; First Published edition, 2015.

[44] C. Dierbach, Introduction to Computer Science Using Python: A Compu-
tational Problem-Solving Focus 1st Edition. Wiley; 1st edition, 2012.

[45] L. F. Martins, IPython Notebook Essentials. Packt Publishing, 2014.

37

[46] R. Johansson, Numerical Python: Scientific Computing and Data Science
Applications with Numpy, SciPy and Matplotlib 2nd ed. Edition. Apress;
2nd ed. edition, 2018.

[47] I. Idris, NumPy Cookbook, 2nd Edition. Packt Publishing, 2015.

[48] ——, NumPy Cookbook. Packt Publishing, 2012.

[49] M. L. Hetland, Python Algorithms: Mastering Basic Algorithms in the
Python Language 2nd ed. Edition. Apress; 2nd ed. edition, 2014.

[50] G. Zaccone, Python Parallel Programming Cookbook. Packt Publishing,
2015.

[51] M. L. Hetland, Python Algorithms: Mastering Basic Algorithms in the
Python Language (Expert’s Voice in Open Source) 1st ed. Edition. Apress;
1st ed. edition, 2010.

[52] N. H. Tollervey, Python in Education. O’Reilly Media, Inc., 2015.

[53] E. Bressert, SciPy and NumPy 1st Edition. O’Reilly Media; 1st edition,
2012.

[54] H. P. Langtangen, Python Scripting for Computational Science (Texts in
Computational Science and Engineering, 3) 3rd Edition. Springer; 3rd
edition, 2007.

[55] N. George, Beginning Django CMS 1st ed. Edition. Apress; 1st ed. edition,
2015.

[56] S. Newman, Django 1.0 Template Development. Packt Publishing, 2008.

[57] A. Mele, Django By Example. Packt Publishing, 2015.

[58] A. Ravindran, Django Design Patterns and Best Practices. Packt Pub-
lishing, 2015.

[59] J. Solorzano and M. Lavin, Lightweight Django: Using REST, WebSockets,
and Backbone 1st Edition. O’Reilly Media; 1st edition, 2014.

38

[60] M. A. Russell, Mining the Social Web. O’Reilly Media; First Edition, 2011.

[61] ——, Mining the Social Web: Data Mining Facebook, Twitter, LinkedIn,
Google+, GitHub, and More Second Edition. O’Reilly Media; Second edi-
tion, 2013.

[62] M. Alchin, Pro Django (Expert’s Voice in Web Development) 2nd Edition.
Apress; 2nd edition, 2013.

[63] M. Pippi, Python for Google App Engine. Packt Publishing, 2015.

[64] C. A. Jones, F. L. Drake, and L. Lewin, Python & XML: XML Processing
with Python 1st Edition. O’Reilly Media; 1st edition, 2002.

[65] R. Lawson, Web Scraping with Python: Successfully scrape data from any
website with the power of Python (Community Experience Distilled). Packt
Publishing, 2015.

[66] M. T. Goodrich, M. H. Goldwasser, and R. Tamassia, Data Structures and
Algorithms in Python 1st Edition. Wiley; 1st edition, 2013.

[67] K. D. Lee and S. Hubbard, Data Structures and Algorithms with Python
(Undergraduate Topics in Computer Science). Springer International Pub-
lishing, 2015.

[68] J. Kazil and K. Jarmul, Data Wrangling with Python: Tips and Tools to
Make Your Life Easier 1st Edition. O’Reilly Media; 1st edition, 2016.

[69] Z. Radtka and D. Miner, Hadoop with Python. O’Reilly Media, Inc., 2015.

[70] M. Heydt, Learning pandas. Packt Publishing, 2015.

[71] D. McCreary and A. Kelly, Making Sense of NoSQL: A guide for managers
and the rest of us First Edition. Manning; First Edition, 2013.

[72] I. Idris, Python Data Analysis. Packt Publishing, 2014.

[73] F. Nelli, Python Data Analytics: Data Analysis and Science using pandas,
matplotlib and the Python Programming Language 1st Edition. Apress; 1st
edition, 2015.

39

[74] W. McKinney, Python for Data Analysis: Data Wrangling with Pandas,
NumPy, and IPython 1st Edition. O’Reilly Media; 1st edition, 2012.

[75] A. Nandi, Spark for Python Developers. Packt Publishing Limited, 2015.

[76] U. Gundecha, Learning Selenium Testing Tools with Python. Packt Pub-
lishing, 2014.

[77] H. Percival, Test-Driven Development with Python: Obey the Testing Goat:
Using Django, Selenium, and JavaScript 1st Edition. O’Reilly Media; 1st
edition, 2014.

[78] W. McGugan and H. Kinsley, Beginning Python Games Development, Sec-
ond Edition: With PyGame 2nd ed. Edition. Apress; 2nd ed. edition,
2015.

[79] W. McGugan, Beginning Game Development with Python and Pygame:
From Novice to Professional (Beginning From Novice to Professional) 1st
ed. Edition. Apress; 1st ed. edition, 2007.

[80] wrobstory, PythonToScala. GitBook, 2014.

[81] T. Cox, Raspberry Pi cookbook for Python programmers. Birmingham,
UK: Packt Pub., 2014.

[82] J. Younker, Foundations of Agile Python Development, 1st ed. Berkeley,
CA: Apress, Jun 2008.

[83] D. Mertz, Functional Programming in Python, first edition ed. Shrof-
f/O‚ÄôReilly, Jun 2019.

[84] S. Raschka and R. S. Olson, Python Machine Learning: Unlock Deeper
Insights into Machine Learning with This Vital Guide to Cutting-Edge Pre-
dictive Analytics. Birmingham, UK: Packt Publishing, 2015.

[85] B. A. Meier, Python GUI Programming Cookbook - Second Edition. Birm-
ingham: Packt Publishing, 2017.

40

[86] G. C. Hillar, Internet of Things with Python: Interact with the World and
Rapidly Prototype IoT Applications Using Python. Birmingham (U.K.):
Packt Publishing, 2016.

[87] G. Robles, R. G. Kula, C. Ragkhitwetsagul, T. Sakulniwat, K. Matsumoto,
and J. M. Gonzalez-Barahona, “Pycefr: Python competency level through
code analysis,” in Proceedings of the 30th IEEE/ACM International
Conference on Program Comprehension, ser. ICPC ’22. New York, NY,
USA: Association for Computing Machinery, 2022, p. 173‚Äì177. [Online].
Available: https://doi.org/10.1145/3524610.3527878

[88] H. Hata, C. Treude, R. G. Kula, and T. Ishio, “9.6 million links in source
code comments: Purpose, evolution, and decay,” in Proceedings of the In-
ternational Conference on Software Engineering (ICSE), 2019.

[89] J. Wu, H. He, W. Xiao, K. Gao, and M. Zhou, “Demystifying software
release note issues on github,” arXiv preprint arXiv:2203.15592, 2022.

[90] P. Goodliffe, Becoming a better programmer, first edition ed. O’Reilly
Media Inc, 2015.

[91] J. Kazil and K. Jarmul, Data Wrangling with Python: Tips and Tools to
Make Your Life Easier, 1st ed. O’Reilly Media, 2016.

[92] (2023) Numpy. Accessed on October 13, 2023. [Online]. Available:
https://numpy.org/

[93] (2023) Pymysql. Accessed on October 13, 2023. [Online]. Available:
https://github.com/PyMySQL/PyMySQL

[94] (2023) Rxpy. Accessed on October 13, 2023. [Online]. Available:
https://github.com/ReactiveX/RxPY

[95] (2023) Matplotlib. Accessed on October 13, 2023. [Online]. Available:
https://matplotlib.org/

[96] (2023) Pydraw. Accessed on October 13, 2023. [Online]. Available:
https://pypi.org/project/pydraw/

41

[97] (2023) wxpython. Accessed on October 13, 2023. [Online]. Available:
https://wxpython.org/index.html

[98] (2023) Pygame. Accessed on October 13, 2023. [Online]. Available:
https://www.pygame.org/news

[99] (2023) Flit. Accessed on October 13, 2023. [Online]. Available:
https://pypi.org/project/flit/

[100] (2023) Ironpython. Accessed on October 13, 2023. [Online]. Available:
https://ironpython.net/

[101] (2023) Pyboxes. Accessed on October 13, 2023. [Online]. Available:
https://pypi.org/project/pyboxes/

[102] (2023) Tkinter. Accessed on October 13, 2023. [Online]. Available:
https://docs.python.org/3/library/tkinter.html

[103] (2023) Scikit-learn. Accessed on October 13, 2023. [Online]. Available:
https://scikit-learn.org/stable/

[104] (2023) Cython. Accessed on October 13, 2023. [Online]. Available:
https://cython.org/

[105] (2023) Django. Accessed on October 13, 2023. [Online]. Available:
https://www.djangoproject.com/

[106] (2023) Mapreduce. Accessed on October 13, 2023. [Online]. Available:
https://www.talend.com/resources/what-is-mapreduce/

[107] (2023) Pandas. Accessed on October 13, 2023. [Online]. Available:
https://pandas.pydata.org/

[108] (2023) Selenium. Accessed on October 13, 2023. [Online]. Available:
https://selenium-python.readthedocs.io/

[109] (2023) Pyopengl. Accessed on October 13, 2023. [Online]. Available:
https://pyopengl.sourceforge.net/

42

[110] (2023) Pyglet. Accessed on October 13, 2023. [Online]. Available:
https://pyglet.org/

[111] T. Antao, Bioinformatics with Python Cookbook. Packt Publishing, 2015.

[112] E. S. Wiese, A. N. Rafferty, and A. Fox, “Linking code readability, structure,
and comprehension among novices: it’s complicated,” in 2019 IEEE/ACM
41st International Conference on Software Engineering: Software Engineer-
ing Education and Training (ICSE-SEET). IEEE, 2019, pp. 84–94.

[113] R. Hosseini, K. Akhuseyinoglu, P. Brusilovsky, L. Malmi, K. Pollari-Malmi,
C. Schunn, and T. Sirkiä, “Improving engagement in program construction
examples for learning python programming,” International Journal of Ar-
tificial Intelligence in Education, vol. 30, no. 2, pp. 299–336, 2020.

[114] K. McMaster, S. Sambasivam, B. W. Rague, and S. Wolthuis, “Java vs.
python coverage of introductory programming concepts: A textbook anal-
ysis,” Information Systems Education Journal, vol. 15, pp. 4–13, 2017.

[115] T. Koulouri, S. Lauria, and R. D. Macredie, “Teaching introductory pro-
gramming: A quantitative evaluation of different approaches,” ACM Trans-
actions on Computing Education (TOCE), vol. 14, no. 4, pp. 1–28, 2014.

[116] P. Phan-Udom, N. Wattanakul, T. Sakulniwat, C. Ragkhitwetsagul,
T. Sunetnanta, M. Choetkiertikul, and R. G. Kula, “Teddy: automatic
recommendation of pythonic idiom usage for pull-based software projects,”
in 2020 IEEE International Conference on Software Maintenance and Evo-
lution (ICSME). IEEE, 2020, pp. 806–809.

[117] Z. Zhang, Z. Xing, X. Xia, X. Xu, and L. Zhu, “Making python code id-
iomatic by automatic refactoring non-idiomatic python code with pythonic
idioms,” in Proceedings of the 30th ACM Joint European Software Engi-
neering Conference and Symposium on the Foundations of Software Engi-
neering, 2022, pp. 696–708.

[118] S. F. Mazumder, C. Latulipe, and M. A. Pérez-Quiñones, “Are variable,
array and object diagrams in java textbooks explanative?” in Proceedings

43

of the 2020 ACM conference on innovation and technology in computer
science education, 2020, pp. 425–431.

[119] M. Almansoori, J. Lam, E. Fang, A. G. Soosai Raj, and R. Chatterjee,
“Textbook underflow: Insufficient security discussions in textbooks used
for computer systems courses,” in Proceedings of the 52nd ACM technical
symposium on computer science education, 2021, pp. 1212–1218.

[120] I. Alpizar-Chacon, J. Barria-Pineda, K. Akhuseyinoglu, S. Sosnovsky,
P. Brusilovsky et al., “Integrating textbooks with smart interactive con-
tent for learning programming,” in CEUR Workshop Proceedings, vol. 2895.
CEUR WS, 2021, pp. 4–18.

[121] X. Huang, Q. Liu, C. Wang, H. Han, J. Ma, E. Chen, Y. Su, and S. Wang,
“Constructing educational concept maps with multiple relationships from
multi-source data,” in 2019 IEEE International Conference on Data Mining
(ICDM). IEEE, 2019, pp. 1108–1113.

[122] J. Wu, Y. Sun, J. Zhang, Y. Zhou, and G. Huang, “A programming lan-
guage learning service by linking stack overflow with textbooks,” in 2023
IEEE International Conference on Web Services (ICWS). IEEE, 2023, pp.
234–245.

44

