
Doctoral Dissertation

Understanding Newcomer Activities Prior to
Onboarding Open Source Software (OSS) Projects

on GitHub

IFraz Rehman
Program of Information Science and Engineering

Graduate School of Science and Technology
Nara Institute of Science and Technology

Supervisor: Kenichi Matsumoto
Software Engineering Lab. (Division of Information Science)

Submitted on January 29, 2024



A Doctoral Dissertation
submitted to Graduate School of Science and Technology,

Nara Institute of Science and Technology
in partial fulfillment of the requirements for the degree of

Doctor of Engineering

IFraz Rehman

Thesis Committee:
Supervisor Kenichi Matsumoto

(Professor, Division of Information Science)
Shoji Kasahara
(Professor, Division of Information Science)
Takashi Ishio
(Professor, Future University Hakodate)
Raula Gaikovina Kula
(Associate Professor, Division of Information Science)



Understanding Newcomer Activities Prior to
Onboarding Open Source Software (OSS) Projects

on GitHub∗

IFraz Rehman

Abstract

Understanding newcomer activities prior onboarding Open Source Software
(OSS) Projects on GitHub holds significance for researchers and practitioners
seeking insights into their preparatory practices prior to onboarding. Firstly, I
map related work on onboarding of developers 102 studies. I present key topics of-
fering insights into current trends and gaps in developer onboarding, and motivate
this thesis. To fill the gap, I conduct an empirical study that is broken into three
parts: (i) identifying Newcomers through survey who are potential candidate to
OSS projects, I find 171 Newcomer OSS-candidates (i.e., 85%) with no prior ex-
perience contributing OSS, and have (i.e., 82%) intention to later onboard to
OSS projects. (ii) validate their pre-onboarding activities and characterize them
through mixed method approach, finding shows Newcomer OSS-candidates like to
target software-based repositories (i.e., 66%), their first contributions are mainly
associated with development (commits) and maintenance (PRs), and are less
likely to practice social coding. (iii) Finally, analyzing proportion of them who
are onboard to OSS projects in GitHub, I find that Newcomer OSS-candidates
eventually end up onboarding (i.e., 30% quantitative, 70% follow-up survey) an
OSS project. Furthermore, they cite finding a way to start as the most chal-
lenging barrier to contribute. Suggestions for Newcomers should not be afraid to
individually contribute to their own code, contribute adding new content or mak-
ing documentation to upstream software repositories, or fork OSS projects before

∗Doctoral Dissertation, Graduate School of Science and Technology, Nara Institute of Science
and Technology, January 29, 2024.

i



attempting to onboard. For OSS projects it might start with tasks to update the
documentation, formatting or cleaning up code. For Researchers the majority
of targeted repositories are software-based, this insight helps to understand the
role of software based experimental, documentation, and web-based-application-
libraries-and-frameworks repositories in platforms like GitHub, that should cater
for developers.

Keywords:

Open Source Software, Onboarding, GitHub, Newcomers, Human Aspect, Soft-
ware Engineering

ii



Acknowledgements

I wish to extend my profound appreciation to my thesis advisor, Professor Kenichi
Matsumoto, for affording me the privilege of conducting my doctoral research un-
der his esteemed guidance at NAIST. His unwavering support and encouragement
have been instrumental throughout my academic journey.

Furthermore, I am deeply grateful to Associate Professor Raula Gaikovina
Kula, whose valuable assistance, guidance in experimental challenges, and insights
into new research avenues have played a pivotal role in steering my research
endeavors from their inception. His patience and continuous support have been
indispensable since my very first day at NAIST.

I would also like to express my sincere gratitude to the members of my the-
sis committee, namely Professor Shoji Kasahara and Professor Takashi Ishio,
for their expert feedback and constructive suggestions, which have significantly
contributed to the enhancement of the quality of my thesis.

Special recognition is owed to my dear friends, Yusuf Sulistyo Nugroho, Syful
Islam, Wang Dong, and Bodin Chinthanet who have not only been trusted con-
fidants but also akin to brothers, providing me with their wealth of experiences
and valuable advice. Our shared moments at NAIST have been truly treasured.

I extend my appreciation to the camaraderie I have enjoyed with my fellow
students and labmates at the Software Engineering laboratory, making my PhD
studies a time of joy and intellectual growth. Additionally, I wish to express my
gratitude to my family and friends in Pakistan for their unwavering love, support,
and encouragement in my pursuit of a doctoral degree in Japan.

Lastly, I reserve my deepest gratitude for my devoted wife, whose unwavering
moral support has been the bedrock of my doctoral journey. Her encouragement
and unwavering understanding have provided the strength I needed. I count
myself fortunate to have her steadfastly by my side.

In closing, I extend my sincere appreciation to the Ministry of Education, Cul-
ture, Sports, Science and Technology (MEXT) and the dedicated staff at NAIST,
particularly the International Affairs Division, for their unwavering support in
various capacities.

iii



List of Publications

Journal paper

• Newcomer OSS-Candidates: Characterizing Contributions of Novice
Developers to GitHub
Ifraz Rehman, Dong Wang, Raula Gaikovina Kula, Takeshi Ishio, Kenichi
Matsumoto. Empirical Software Engineering (EMSE), 2022, Volume 27,
Pages 109.

List of International Presentations

• Newcomer Candidate: Characterizing Contributions of a Novice
Developer to GitHub
Ifraz Rehman, Dong Wang, Raula Gaikovina Kula, Takashi Ishio, Kenichi
Matsumoto. 2020 IEEE International Conference on Software Maintenance
and Evolution (ICSME), Adelaide, SA, Australia, 2020.

iv



Contents

Abstract ii

Acknowledgements iii

List of publications iv

Contents iv

List of Figures viii

List of Tables viii

1 Introduction 1
1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1 The Onboarding Problem . . . . . . . . . . . . . . . . . . 2
2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 7
1 The Evolution of Open Source Software (OSS) . . . . . . . . . . . 7
2 The Role of Newcomers in OSS . . . . . . . . . . . . . . . . . . . 8
3 The Impact of Social Coding Platform . . . . . . . . . . . . . . . 9
4 Research Gap and Thesis Focus . . . . . . . . . . . . . . . . . . . 10
5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 11

v



3 Systematically Map Related Work 12
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1 Chapter Organization . . . . . . . . . . . . . . . . . . . . . 13
2 The Systematic Mapping Process . . . . . . . . . . . . . . . . . . 14
3 Results: Maps of Onboarding Research . . . . . . . . . . . . . . . 25
4 Threats To Validity . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5 Related study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1 Studies on Human Aspect of Software Engineering . . . . . 30
5.2 How are project-specific forums utilized? A study of par-

ticipation, content, and sentiment in the Eclipse ecosystem 32
6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Newcomer OSS-Candidates: Characterizing Contributions of Novice
Developers to GitHub 36
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2 Identifying Newcomer OSS-Candidates through Survey . . . . . . 40
3 Validating Pre-Onboarding Activities and Characterize them through

Mixed Method Approach . . . . . . . . . . . . . . . . . . . . . . . 42
3.1 (RQ1) What kinds of repositories does a Newcomer OSS-

Candidate target? . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 (RQ2) What are the kinds of first Contributions that come

from Newcomer OSS-Candidates? . . . . . . . . . . . . . . 47
3.3 (RQ3) To what extent do Newcomer OSS-Candidates prac-

tice social coding with their first contributions?
* Social Coding: in Terms of Multiple Authorship . . . . . 50

4 Analyzing Proportion of Onboarding to OSS Projects in GitHub . 52
4.1 (RQ4) What is the proportion of Newcomer OSS-Candidates that

eventually onboard an OSS project? . . . . . . . . . . . . . 53
5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 Lessons learned . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2 Implications (Expectations vs. Actual Results) . . . . . . . 57

6 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.1 Studies on Onboarding Motivators: . . . . . . . . . . . . . 60

vi



7.2 Studies on Onboarding to Organizations . . . . . . . . . . 62
7.3 Studies on the Onboarding Process: . . . . . . . . . . . . . 63
7.4 Studies on Social Coding on GitHub . . . . . . . . . . . . 65
7.5 Studies on the barriers to Onboarding: . . . . . . . . . . . 66

8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Conclusion 69
1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

vii



List of Figures

1.1 An overview of the scope of the thesis. . . . . . . . . . . . . . . . 5

3.1 Mapping study process. . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Defined terms used in the search strings . . . . . . . . . . . . . . 16
3.3 Distribution of Paper Publication . . . . . . . . . . . . . . . . . . 21
3.4 Distribution of Research Types . . . . . . . . . . . . . . . . . . . 22
3.5 Example of a forum thread. . . . . . . . . . . . . . . . . . . . . . 31
3.6 Frequency of posts per user status. The maximum number of posts

for each type of users is used to define the threshold of post-based
membership. The threshold for Juniors and Members are 29 and
106, respectively. Although Seniors have posted more than 28
thousand posts, I limit up to 600 in the figure. . . . . . . . . . . . 33

4.1 Frequency for contributed repository kinds with Fork and Up-
stream. Experimental and Documentation are the most frequently
targeted software repository kinds, i.e., 24% and 21%, respectively. 46

4.2 An example of how I define developers practice social coding, where
more than one author contributes to the git.gemspec file. . . . . . 50

4.3 Identify social coding in terms of whether a contribution is modified
by a single author or multiple authors. . . . . . . . . . . . . . . . 51

4.4 Qualitative analysis using a follow-up survey to acquire the per-
ception of Newcomer OSS-Candidates. . . . . . . . . . . . . . . . 54

viii



List of Tables

3.1 Caption for LOF . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Papers statistics during the filtration and screening phases. . . . . 19
3.3 Exclusion and Inclusion Criteria. . . . . . . . . . . . . . . . . . . 19
3.4 Topics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Result of areas and topics. . . . . . . . . . . . . . . . . . . . . . . 26
3.6 Outputs of the pre-processing of the forum dataset . . . . . . . . 32

4.1 Survey Questions sent to potential respondents . . . . . . . . . . . 41
4.2 Two questions in survey . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Proportion of software and non-software repositories targeted by

Newcomer OSS-Candidates. Around 66% of Newcomer OSS-Candidates tar-
get Software repositories. . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Frequency for Contribution’s Kinds of Newcomer OSS-Candidates.
In the first commits, 43% of Newcomer OSS-Candidates are typi-
cally engaged in repository initializing activities, and 60% are en-
gaged in the management activities of the PRs. . . . . . . . . . . 49

4.5 Frequency of social and non-social contributions from Newcomer
OSS-Candidates in terms of single/multiple authorship. After join-
ing GitHub, 73% and 59% of Newcomer OSS-Candidates have non-
social based contributions in their first commits and PRs. . . . . . 52

4.6 Frequency of Newcomer OSS-Candidates that started the onboard-
ing process for OSS repositories. . . . . . . . . . . . . . . . . . . . 55

5.1 Guidelines for (N)Newcomers and (PM)Project Maintainers . . . 71

ix



1 | Introduction

Over the course of several years, software companies worldwide have actively
interacted with Open Source Software (OSS) projects and their corresponding
communities. The motivation for participating in, support, or even the initiation
of OSS projects often arises from the aim to curtail development expenditures
and foster heightened levels of innovation [44]. OSS development exhibits sub-
stantial parallels with the realm of Global Software Development (GSD), sharing
numerous characteristics. Typically, OSS projects operate in a highly decentral-
ized manner, encompassing participants hailing from diverse geographical regions
and cultural contexts.

Onboarding within the realm of Software Engineering (SE) is recognized as
a critical practice, significantly influencing both open source software (OSS) and
proprietary software projects. Over the past decade, advancements in onboarding
tools and methodologies have facilitated more efficient integration processes, gain-
ing widespread acceptance in both OSS [33, 91] and organizational sectors [8, 105].

On the other side, GitHub, renowned as the premier open-source version con-
trol platform, hosts a vast array of over 3 hundred million repositories and more
than a hundred million developers1. It functions as a social coding platform for
both software and non-software projects. The inclination of individuals to es-
tablish new teams or transition to existing ones is significantly enhanced by the
presence of technical standards and platforms. GitHub, in particular, serves as
a prevalent and widely embraced distributed platform for code sharing and ver-
sion control. Developers commonly possess a high level of familiarity with systems
like git, which is supported by GitHub, and the collaborative processes it enables,

1https://octoverse.github.com/

1

https://octoverse.github.com/


thereby streamlining the process of contributing to, initiating, or transitioning to
team projects on this platform. Nevertheless, GitHub extends its facilitative role
in team formation and migration beyond technical aspects, thanks to its incor-
poration of social coding features. These features enable developers to monitor
and assess each other’s activities, thereby forming comprehensive impressions of
their social and technical competencies and conduct2.

However, literature underscores the criticality of continually incorporating
newcomers into GitHub OSS projects and onboard them to the development
process for the success of these ventures. The thesis "Understanding newcomer
activities prior to onboarding Open Source Software (OSS) Projects on GitHub",
holds significance for researchers and practitioners seeking insights into newcom-
ers’ preparatory practices before onboarding. The initial part of the thesis em-
barks on a systematically map related work on onboarding of developers 102
studies. I present key topics offering insights into current trends and gaps in
developer onboarding and motivate this thesis. In the second part, to fill the gap,
I conduct the research adopting an empirical approach, that is broken into three
parts: (i) identifying Newcomers through survey who are a potential candidate
for OSS projects, (ii) validating their activities before onboarding and charac-
terize them through mixed method approach, and finally (iii) analyzing their
proportion who eventually onboard to OSS projects in GitHub. The collective
goal of these studies is to offer a comprehensive understanding of pre-onboarding
practices within OSS communities. This entails illuminating prevailing trends,
identifying research gaps, and shedding light on potential areas for future research
and enhancements in this vital domain.

1 Problem Statement

1.1 The Onboarding Problem

Incorporating newcomers into a new software development project often presents
them with various types of barriers, as detailed in previous research [4]. Technical
barriers newcomers frequently face issues arising from the high complexity of

2https://github.com/about

2

https://github.com/about


the systems under development [4, 94]. This complexity is exacerbated by their
lack of prior knowledge in the specific domain where the development activities
are taking place [94]. Process barriers in this category, newcomers encounter
difficulties in gaining a comprehensive understanding of the software they are
tasked with contributing to, as well as in determining where to initiate their
work [94, 107]. Interpersonal barriers, these barriers manifest as communication
challenges when newcomers are integrated into a diverse team, where individuals
with distinct objectives, varied cultural backgrounds, and differing interpersonal
skills collaborate [4].

These barriers exert a notable influence not only on newcomers but also on
various other stakeholders engaged in the software development process. New-
comers frequently contend with feelings of frustration [76, 89]. Senior developers,
in their newly assigned mentoring roles, often encounter difficulties and chal-
lenges [4]. Consequently, project managers must grapple with the ramifications
of reduced productivity and the allocation of senior developers’ time to mentor
newcomers, leading to significant trade-offs and resource allocation concerns [76].
Despite the above attempts, it remains unclear (i) to find the current trends
and gaps in key topics offering insights into developers’ onboarding, a systematic
thorough review of related work, and (ii) identifying newcomers OSS-candidates,
characterizing pre-onboarding activities, and analyzing onboarding proportion to
GitHub OSS projects. Therefore, I state this thesis as follows:

Thesis Statement: An effective onboarding for newcomers requires a
proper understanding of practice activities before onboarding OSS projects.
If the needed information is at hand, it will reduce newcomers’ and project
maintainers’ barriers and further improve onboarding efficiency. This thesis
presumes that Newcomer OSS-candidates practice before they onboard to
open-source software projects on GitHub.

2 Contributions

This thesis makes several significant contributions to the human aspect of Soft-
ware Engineering, particularly in the context of understanding newcomers’ prior

3



activities before join to Open Source Software (OSS) projects on GitHub. These
contributions are not only novel but also address critical gaps in the existing
literature, offering practical insights for both researchers and practitioners. The
key contributions are as follows:

• Literature Review. This thesis presents a comprehensive systematic re-
view of the existing literature on developers’ onboarding in Software Engi-
neering. This review is significant as it consolidates key topics and identifies
gaps in current research, providing a foundation for further studies in this
area.

• Empirical Study. An in-depth empirical study is conducted to character-
ize the contributions of novice developers to GitHub. This study is original
in its approach and offers a detailed analysis of the kinds of repositories
and activities by newcomers, which were previously unexplored. The re-
sults provide valuable insights into the practices and challenges faced by
new developers in OSS projects.

• Term Newcomer OSS-Candidate. This thesis introduces and defines
the term ’Newcomer OSS-Candidate’, a concept not previously defined in
academic literature. This term helps in precisely identifying and studying
a specific group of developers who are in the preliminary stages and have
the potential to contribute to OSS projects.

• Characterization of Newcomers’ Activities and Repository Kinds.
The research provides a novel characterization of activities and repositories
kinds by Newcomer OSS-Candidates. This contribution is significant as it
sheds light on the initial steps taken by newcomers and the nature of their
contributions, which can inform better onboarding strategies.

• Develpoment of Replication Package. To support and encourage fur-
ther research in this area, a replication package has been created and made
available. This package includes detailed data and methods used in the
empirical study of Newcomer OSS-candidates. It can be accessed at at:
https://github.com/NAIST-SE/NewcomerCandidate. This package not

4

https://github.com/NAIST-SE/NewcomerCandidate


only enhances the transparency and reproducibility of the current research
but also provides resources for future studies to build upon.

In summary, these contributions represent a substantial advancement in un-
derstanding the joining process of newcomers to OSS projects. They provide
a deeper insight into the pre-onboarding activities, motivations, and challenges
faced by newcomers, which is crucial for developing effective strategies for inte-
grating newcomers into OSS projects.

3 Thesis Structure

Figure 1.1. An overview of the scope of the thesis.

In this section, I describe an outline of this thesis. Figure 1.1 illustrates the
structure of the thesis. The details of the rest of this thesis are listed as follows:

• Chapter 2 presents the background of this thesis which comprises (i) The
Evolution of OSS, (ii) The Role of Newcomer in OSS, (iii) The impact of
Social coding Platform, and (iv) Research gap and thesis focus.

• Chapter 3 presents a related work on key topics addressed on Developers’
Onboarding in Software Engineering.

• Chapter 4 presents an empirical study about Newcomer OSS-candidates:
characterizing contributions of novice developer to GitHub which is divided
in three sections: (i) Identifying Newcomer OSS-Candidates (ii) Validating
and Characterizing their activities prior to onboarding, and (iii) analyzing
the proportion who onboard to GitHub OSS projects

5



• Chapter 5 finally, concludes the all studies in this thesis.

6



2 | Background

The purpose of this chapter is to describe the background of this thesis. Section
1 introduces the evolution of Open Source Software (OSS). Section 2 introduces
the role of newcomers in OSS. Section 3 introduces the impact of social coding
platforms. Section 4 introduces the research gap and thesis focus. Finally, Section
5 describes the summary of the background.

1 The Evolution of Open Source Software (OSS)

The development model of Open Source Software (OSS) is not a recent innovation
but has historical roots dating back to the 1990s. During this period, notable
software endeavors, including The Linux Project, embraced the practice of en-
gaging users to identify and rectify software defects, as well as contribute to code
improvement. This approach emerged as a pragmatic means of identifying and
addressing software issues efficiently. The early emergence of OSS aligns with the
advent of ARPAnet, one of the earliest computer networks, where source code was
informally exchanged within the hacker community. A prominent advocate for
the concept of open software during this era was Richard Stallman, the founder
of the Free Software Foundation. Stallman passionately argued for the "moral"
imperative of open software, advocating against the prevailing proprietary own-
ership of code [29, 79]. Throughout the 1990s, the evolution of OSS involved the
dissemination of code through a mechanism known as a "tarball," which was es-
sentially a compressed .tar file used for code distribution. This method of sharing
code was commonly facilitated through email communication [30].

Other side, Lehman and his research team have established a substantial and

7



widely recognized body of research concerning the evolutionary dynamics of large,
enduring software systems, as evidenced by their notable contributions in publica-
tions such as [52, 53, 54], and [103]. Central to Lehman’s work are the principles
encapsulated within Lehman’s laws of software evolution [53], which have been de-
rived from empirical investigations into various extensive software systems. These
laws posit that as software systems expand in scope and complexity, the task of
introducing new code into these systems becomes progressively challenging, ne-
cessitating deliberate efforts to restructure the overall design. Furthermore, the
empirical findings of Turski, who conducted statistical analyses based on these
case studies, have shed light on the growth patterns exhibited by such software
systems [53, 103]. According to Turski’s analyses, the growth of these systems, as
measured by indicators such as the number of source modules and the frequency of
module modifications, typically follows a sub-linear trajectory. In simpler terms,
as software systems increase in size and complexity, the pace of growth tends to
decelerate, reflecting the diminishing rate of change and adaptation as the system
matures.

2 The Role of Newcomers in OSS

In the context of Open Source Software (OSS) development, a "newcomer" refers
to a developer who is attempting to make their initial code contributions to a
particular OSS project [92]. The process of onboarding newcomers into OSS
projects can often present challenges characterized by unfamiliar and potentially
unwelcoming environments. As posited by Fogel [36], the initial experience a
newcomer encounters within an OSS project significantly influences their deci-
sion to continue engaging with it; unfavorable first impressions may deter them
from further involvement. This situation holds particular relevance for individu-
als enrolled in software engineering courses, particularly students who are at the
nascent stages of their development and skill acquisition in the field. Newcom-
ers require effective orientation and guidance to navigate the intricacies of the
project and to successfully make meaningful contributions [96]. The process of
motivating, engaging, and retaining new developers within an OSS project holds
pivotal importance in maintaining a vibrant and sustainable OSS community [78].

8



Drawing an analogy, Dagenais et al. [25] liken newcomers to explorers embarking
on a journey through a potentially challenging and unfamiliar terrain, where they
must rely on self-guidance to navigate the tasks and obstacles inherent in the OSS
environment.

On the other side, the involvement of newcomers in Open Source Software
(OSS) projects is typically marked by enthusiastic participation; nevertheless,
their integration into these communities is impeded by a range of social and
technical obstacles, as documented in [41, 63, 93], and [95]. Notably, newcomer
onboarding within OSS communities is often perceived as challenging primarily
due to the substantial technical prerequisites that must be met. However, re-
search findings indicate that social impediments to onboarding are not only more
prevalent but also more severe than their technical counterparts [95]. In con-
trast to conventional software development practices, effective communication
emerges as a critical social obstacle for newcomers in OSS communities. This
challenge arises from the limited opportunities for team members to engage in
face-to-face interactions, compounded by differences in time zones and cultural
backgrounds [70, 100].

3 The Impact of Social Coding Platform

GitHub, functioning as a prominent social coding platform, occupies a central
role within the domain of Open Source Software (OSS). It serves as a widely
adopted version control platform that functions as a repository for hosting soft-
ware projects, encompassing features such as pull request management, issue
tracking, and workflow facilitation, as documented in [57, 77]. At the juncture
of this study, GitHub boasted an impressive user base, hosting in excess of 330
million repositories while catering to the needs of over 100 million developers1.
GitHub’s significance extends beyond its technical utility, as it incorporates so-
cial coding features that play a pivotal role in fostering team dynamics and fa-
cilitating project migration. These social coding features empower developers to
engage in the monitoring and evaluation of each other’s actions, thereby enabling
the formation of comprehensive assessments concerning both their technical profi-

1https://github.com/about

9

https://github.com/about


ciencies and their interpersonal conduct. Notably, GitHub preserves and exposes
the actions undertaken by developers, including activities such as bug report-
ing, pull request submissions, and commenting. These activities are not merely
archived but can be readily tracked by fellow users, and accessible through user-
designated "home" pages. Consequently, these records serve as valuable sources
of information that not only allow for the evaluation of an individual’s technical
expertise but also offer insights into their social acumen and inclinations. It is
worth noting that one of the chief advantages of a social coding platform like
GitHub lies in its capacity to aggregate contributions to software projects from
within the community, as elucidated in [21]. The continuous influx of newcomers
into these projects, along with their active participation in the development pro-
cess, emerges as a pivotal factor underpinning the success of these endeavors, as
underscored by [71].

4 Research Gap and Thesis Focus

Research Gap and Motivation: Despite the known increase in the num-
ber of potential OSS contributors at social coding platforms like GitHub, there
is a notable lack of understanding regarding the activities and experiences of
these individuals before they join OSS projects. This gap is crucial because pre-
onboarding experiences can significantly shape a newcomer’s ability to contribute
effectively to OSS projects. Filling this research gap is essential for the sustained
success and growth of OSS projects. Understanding the pre-onboarding activities
of potential contributors is key to developing more effective onboarding processes
and retention strategies, ultimately contributing to the health and longevity of
OSS communities.

Relevance to OSS Success:

• Skills and Knowledge Assessment: Understanding the prior experiences of
new OSS contributors could help in assessing the skills and knowledge they
bring, which is vital for effective integration into projects.

10



• Tailored Onboarding Processes: Knowledge of pre-onboarding activities
could inform the development of more personalized and efficient onboarding
processes, catering to the varied backgrounds of new developers.

• Retention Strategies: Insights into the motivations and prior engagements
of newcomers can aid in devising strategies to not only attract but also
retain these contributors in OSS projects.

5 Chapter Summary

The chapter provides a comprehensive background concludes by emphasizing the
significance of research in understanding newcomer activities before onboarding
to Open Source Software (OSS) projects on GitHub. This study is crucial for
practitioners and researchers as it provides insights into the preparatory prac-
tices of newcomers. It involves a systematic mapping of related work and an
empirical study divided into three parts: identifying newcomers, validating and
charaterizing their pre-onboarding activities, and analyzing the proportion who
onboard to GitHub OSS projects. This comprehensive approach illuminates pre-
onboarding practices within OSS communities, identifies research gaps, and offers
insights for future research and improvements in the onboarding process. The goal
is to enhance the understanding of OSS communities and inform more effective
onboarding and retention strategies.

11



3 | Systematically Map Related
Work

The proliferation of onboarding tools has led to increased data availability and has
catalyzed a substantial body of research in the field of onboarding over the past
decade. This chapter initiates a systematic mapping study aimed at scrutinizing
the aspects of key topics addressed in research pertaining to developers’ onboarding
in Software Engineering (SE). The primary objective of this mapping study is to
provide valuable insights for both researchers and practitioners, facilitating their
comprehension of the challenges inherent in onboarding while enabling them to
stay abreast of the latest practices and state-of-the-art developments in the field.

1 Introduction

Onboarding refers to the process by which developers and employees become part
of an Open Source Project (OSS) or an organization. This subject has a rich his-
tory in organizational studies, dating back to the 1970s [8, 105], and has garnered
substantial attention in the context of OSS development projects [33, 91]. In the
context of onboarding to OSS projects, community-based OSS initiatives rely
heavily on a steady stream of new developers for sustainability and growth [37].
Consequently, researchers have extensively studied the motivations [83, 109] and
barriers [4, 96] faced by newcomers to enhance their recruitment and ease on-
boarding challenges. This has led to a comprehensive body of research inves-
tigating the motivations [62, 82] of OSS developers and the factors that make
projects appealing by overcoming the barriers [95, 111] for developers.

12



On the other side, in the field of software development organizations, the
literature generally does not differentiate between development methodologies,
such as agile or non-agile [25, 84]. However, some research focuses specifically
on onboarding within agile software development teams: For instance, Buchan
et al. [15] include investigations into effective onboarding techniques for agile
teams, Britto et al. [14] analysis of onboarding in globally distributed legacy
projects without emphasizing agile peculiarities, Dagenais et al. [25] identification
of orientation aids for newcomer integration in agile projects, and Barroca et al.
[6] observations that effective integration of newcomers is crucial for the long-term
sustainability of agile practices.

This paper collects topics addressed for onboarding studies, with the end
goal to emphasizes the significant evolution of onboarding practices in Software
Engineering (SE), particularly in open source software projects and software de-
velopment organizations. It outlines the advancements in onboarding tools and
methodologies over the past decade and their role in streamlining the integration
process. The scope of the systematic study revolves around a research ques-
tion: aims to provide insights to cover the (RQ1) topics addressed in SE, by
analyzing 102 premium studies. It seeks to offer insights into current trends,
gaps, challenges, and validity threats in these studies, contributing to a deeper
understanding of current trends and gaps practices in developer’s onboarding.

Throughout the collection of 459 papers from the high-impact SE veneus, I
generate statistics for the 102 collected papers including 46 conferences and 56
journals. Results, concerning about topics addressed, I identify that the majority
of studies have leveraged data on contributions to gain a deeper understanding
of people (38 studies) and systems (21 studies) within the comprehension of the
software engineering process. Conversely, the characterization of contribution as-
sessments has been less frequently addressed, with an emphasis on the evaluation
of team or developer performance when such characterization occurs.

1.1 Chapter Organization

The remainder of this chapter is organized as follows. Section 2 presents the
systematic mapping process, including the research question, search conduction,
and screening process. Section 3 shows the results of the systematic mapping

13



study. Section 4 explains the threats to the validity of the research. Finally, I
draw our conclusion from this related work in Section 5.

2 The Systematic Mapping Process

The methodology employed in this study draws inspiration from the work of
Hamer et al. [40] and bears resemblance to the systematic mapping study con-
ducted by Petersen et al. [74]. In essence, the systematic mapping study comprises
a series of procedural steps, including the formulation of research inquiries, the
systematic retrieval of relevant academic papers, the screening process, keyword
assignment for mapping purposes, and the extraction of pertinent data.

In shaping the aim of this research, I have also integrated the Goal Question
Metric (GQM) model introduced by Caldiera and Rombach [17]. The purpose
of this study is to examine the topics of research, the potential validity threats,
and the challenges encountered, all from the perspective of researchers within the
realm of software engineering studies. This investigation was carried out through
a systematic mapping study, adhering to established guidelines in software engi-
neering [74, 75]. An overview of this mapping study’s process is depicted in 3.1,
documentation of each stage, encompassing the preliminary selected papers and
the results from each phase of the screening process. This methodology is di-
vided into three primary stages: formulating the research questions, executing
the search conduct, and evaluating the screening of papers.

Research Questions

To define the scope of the mapping study in the respect of topics addressed, I
formulate the research question:

1. (RQ1): What topics have been addressed in SE onboarding studies? The
motivation for this research question is to uncover the fields where research
on developer contributions has been conducted, with the goal of compre-
hending the topics explored by these studies. This knowledge can provide
context to the researched areas and serve as a motivation for future work.

14



RQ1. Topics

Defining Research
Questions

Conduct Search

Search
Query

Duplicate
Removal

Title, abstract
and keyword

screening

Full text 
Screening

Screen Papers

Databases

459 search
result

239 candidate
papers

95 

papers

62
 

pa
pe

rs

82 
papers

236 
papers

236 
papers

Inclusion &
exclusion

criteria

102
relevant
papers

Figure 3.1. Mapping study process.15



Figure 3.2. Defined terms used in the search strings

Table 3.1. Corpus of venues (conferences and journals) studied in this paper.
Note that ICSM now is called ICSME; and WCRE and CSMR are fused into
SANER.

Journal Name Impact factor Established

TSE IEEE Transactions on Software Engineering 7.4 1991
EMSE Empirical Software Engineering 4.1 1996
IST Information and Software Technology 3.9 1992
TOSEM Transactions on Software Engineering and Methodology 3.6 1992
S/A IEEE Access 3.5 1983
JSS The Journal of Systems and Software 3.5 1991
SPE Software: Practice and Experience 3.5 1991
ASEJ Automated Software Engineering 3.4 1994
S/W IEEE Software 3.3 1991
SOSYM Software and System Modeling 2.0 2002

Conference Name h5-index Established

ICSE International Conference on Software Engineering 85 1994
FSE ACM SIGSOFT Symposium on the Foundations of Software Engineering 60 1993
PL Proceedings of the ACM on Programming Languages 56 2017
ASE IEEE/ACM International Conference on Automated Software Engineering 50 1994
PLDI ACM SIGPLAN Conference on Programming Language Design and Implementation 50 1979
MSR Mining Software Repositories 46 2004
ISSTA International Symposium on Software Testing and Analysis 40 1989
SANER IEEE International Conference on Software Analysis, Evolution and Re-engineering 39 2014
ICSME IEEE International Conference on Software Maintenance and Evolution 35 1994
TACAS International Conference on Tools and Algorithms for the Constructions and Analysis of Systems 34 1998
PPOPP ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming 33 1988
COMPSAC IEEE Annual Computer Software and Applications Conference 32 1977

16



Conduct Search

In formulating our search string, I adhere to the stringent criteria outlined by
A. Kitchenham [1], which include: (i) employing a defined search strategy, (ii)
using a specified search string created from a list of synonyms connected by ANDs,
(iii) utilizing a wide range of search sources, (iv) meticulously documenting the
search process, and (v) ensuring that at least two researchers verify the selection
of papers. This approach is exemplified in 3.2, which displays our specific search
string. For the first term of the search string, as illustrated in 3.2, I incorporate
widely recognized terms related to Onboarding, such as ’onboarding’, ’newcomer’,
and ’software engineering’. This is to ensure the search yields results pertinent
to the onboarding process within the domain of software engineering.

In alignment with the research question and to ascertain papers of excep-
tional quality while comprehending the cutting-edge advancements in the field,
the search was deliberately focused on literature published in prestigious journals
and conferences within the software engineering discipline, spanning the period
from 2013 to 2023. Drawing inspiration from Hamer et al. [40] findings, I choose
2013 as the initial point for selection. This decision is based on Hamer et al.’s
observation of a consistent increase in the volume of research pertaining to studies
on developers’ onboarding, a trend that has been evident since 1989.

In the selection of publication venues, the approach mirrored the mapping
study by Mathew et al. [60]. I sourced papers from 12 conferences known for their
significant h5-index and 10 journals recognized for their high impact factors. The
h5-index, derived from Google Scholar, represents the h-index for articles pub-
lished over the past 10 complete years. The collection included works from promi-
nent conferences such as the International Conference on Software Engineering
(ICSE), Mining Software Repositories (MSR), Symposium on the Foundations
of Software Engineering (ESEC/FSE), and the International Conference on Soft-
ware Analysis, Evolution and Re-engineering (SANER). In terms of journals with
high impact factors, the selection encompassed publications like Transactions on
Software Engineering (TSE), Empirical Software Engineering (EMSE), Informa-
tion and Software Technology (IST), and Transactions on Software Engineering
and Methodology (TOSEM). The methodology for obtaining the h5-index uti-

17



lizes Guide2Research1 as the primary resource. The Impact Factor, a numerical
index, is employed to assess the influence of scientific journals, with data sourced
from Clarivate Analytics2. Conferences boasting higher h5-indexes, along with
journals possessing elevated impact factors, are considered to hold greater inher-
ent prestige within their respective academic fields. A comprehensive summary
of these paper collection sources is presented in Table 3.1.

In an effort to mitigate selection bias, the initial selection encompassed an ex-
tensive array of digital repositories, including IEEE Xplore, Science Direct, ACM
Digital Library, and SpringerLink databases. These databases are frequently uti-
lized in secondary studies within the field of software engineering [2]. I conducted
the main search in October 2023. The search query retrieved 459 search results
over the past decade from 2013 to 2023 (66 from IEEExplore, 104 from ACM
Digital Library, 39 from SpringerLink, 12 from Science Direct, and 15 from other
digital sources) from the mentioned main four sources.

The evaluation of the primary papers’ quality serves as an additional criterion
for exclusion in the study [46]. In the quality assessment process, I selectively in-
cluded papers from esteemed venues, under the presumption of their high quality
and notable recognition within the software engineering (SE) community. Fur-
thermore, to focus solely on technical contributions, the subsequent data process-
ing excluded shorter papers, workshop contributions, books, theses, editorials,
tutorials, panels, poster sessions, prefaces, and opinion pieces (specifically those
4 pages or fewer in length). It is acknowledged that inclusion and exclusion cri-
teria to this approach exist which is addressed in greater detail in next Section.
Following the search conduct process, I identified an initial set of 236 papers, as
detailed in Table 3.2.

Screen Process

The selected studies were meticulously screened to ascertain their relevance, em-
ploying a defined set of criteria for both exclusion and inclusion. This process
involved a manual review of each paper’s title and abstract. The exclusion cri-
teria established were as follows: E1 : the Paper is not written in English, E2 :

1https://www.guide2research.com/
2https://clarivate.com/webofsciencegroup/essays/impact-factor/

18

https://www.guide2research.com/
https://clarivate.com/webofsciencegroup/essays/impact-factor/


Table 3.2. Papers statistics during the filtration and screening phases.
# of Papers

Conduct Search
Search String Result 459

All Papers 236
Screening of Papers

Conference paper 46
Journal paper 56

Total Papers 102

Table 3.3. Exclusion and Inclusion Criteria.
ID Type Criteria
E1 Exclusion Not written in english
E2 Exclusion Unrelated to onboarding software engineering
E3 Exclusion Are not primary study
E4 Exclusion Outside of time-frame
I1 Inclusion Study developers’ onboarding in software engineering
I2 Inclusion Peer- reviewed Studies
I3 Inclusion Written in english with full text available.

the paper is unrelated to onboarding in software engineering, E3 : Non-primary
research paper, E4 : the Paper is outside of the designated study period. Con-
currently, the inclusion criteria were outlined to encompass the scope, objectives,
and assessments of the studies. The following papers are included that met these
Criteria: I1 : the Paper should be focused on onboarding, software engineering,
and developers, I2 : the Paper must be peer-reviewed, I3 : the Paper needs to
be in English and have the full text accessible. The criteria array, as presented
in Table 3.3, was developed through a collaborative and iterative process. The
evaluation formula applied for these criteria is expressed as: NOT (E1 OR E2 OR
E3 OR E4) AND (I1 AND I2 AND I3). The sequence in which these criteria are
applied is first E1, followed by E2, E3, E4, and then I1, I2, and I3. Should any
criterion not be satisfied, the evaluation of subsequent criteria is discontinued.

19



To reduce bias, this manual paper selection was conducted by the first and
the second authors. In the initial phase of screening, a prevalent cause for the
exclusion of works was the use of the term "contribution" in contexts unrelated
to software contribution. Specifically, this pertained to instances where studies
claimed contributions to the broader literature. Additionally, research focusing
on the development of software products not pertinent to software engineering
and onboarding practices was also frequently eliminated. For instance, studies
introducing or employing software tools for applications in the medical or simula-
tion domains were deemed outside the scope of this review. Furthermore, during
the preliminary selection process, a significant number of papers were excluded
for being secondary or tertiary sources rather than primary research works. How-
ever, any study deemed potentially relevant by either of the authors was carried
forward to the subsequent stage of evaluation. In this latter phase, the primary
reason for the disqualification of studies was their focus on evaluating contribu-
tions rather than investigating software engineering projects in depth.

The screening procedure culminated in the selection of 102 papers from an
initial pool of 236. This curated collection comprises 46 papers from leading
conferences and 56 from high-impact journals, as detailed in Table 3.2. The dis-
tribution of these papers, differentiated by conference and journal sources over the
period under study, is illustrated in Figure 3.3. The data illustrated in the figure
indicates a progressive increase in research publications related to Onboarding
in Software Engineering (SE) over the most recent three-year period. This up-
ward trajectory is evidenced by the publication of three papers in 2019, four in
2020, and a notable surge to nine papers in 2021. Concurrently, there has been a
discernible rise in the number of papers submitted to journals in this field, partic-
ularly from 2020 onwards. This is exemplified by the submission of eight papers
to various journals in the year 2021 and 2022, suggesting a growing academic
interest and research activity in onboarding within the SE domain.

In an effort to more comprehensively understand the nature of research within
the field, I conducted a manual classification of the types of research papers, align-
ing with the methodology outlined by Bernard [11]. This classification system
segmented the papers into four distinct categories: Mixed-Method, Qualitative,
Quantitative, and Survey or Interviews. The Mixed-Method category encapsu-

20



Year

0

2

4

6

8

10

12

201
3

201
4

201
5

201
6

201
7

201
8

201
9

202
0

202
1

202
2

202
3

Journal Conference

Figure 3.3. Distribution of Paper Publication

21



year

0

5

10

15

20

2013
2014

2015
2016

2017
2018

2019
2020

2021
2022

2023

Others Survey or Interviews Quantitative Qualitative Mixed-Method

Figure 3.4. Distribution of Research Types

22



lates papers employing both quantitative and qualitative/survey methodologies.
The Survey or Interviews category comprises studies utilizing surveys, interviews,
and user/control studies. Papers that did not conform to these specified types
were categorized under Others. The process of classifying the research paper
types was executed in two stages. Initially, two authors undertook the first round
of classification. Subsequently, in the second round, a third author with extensive
research experience joined the effort to validate the categorization of each paper.
The distribution of these research types across 102 papers, within the timeframe
of the study, is depicted in Figure 3.4. Notably, there has been a recent surge
in the popularity of Survey or Interviews based papers, with ten papers being
published in the year 2021, indicating a shifting trend in research methodologies.

Keywording of Relevant Papers

The classification process of relevant studies entailed an in-depth examination of
each paper, which involved not only a detailed analysis of the abstract but, in
certain instances, necessitated a thorough review of the entire paper.

Analysis Aproach for Topics Addressed (RQ1). In order to ascertain the
scope of research topics addressed, I categorized the topics of the studies un-
der investigation. This categorization was influenced by the framework proposed
by [40], allowing for each paper to be classified into multiple topic categories. Ta-
ble 3.4 delineates the 25 distinct sub-areas identified, which are further organized
into four primary areas: Comprehend, Train, Construct, and Characterize. The
methodology for this classification relies on the title, keywords, and abstract of
the studies for initial categorization. This task was performed by two co-authors,
who collaborated in the first round of classification, convening around a round
table to assign each study to the predefined main areas. Subsequently, in the
second round, a more granular classification was conducted, identifying further
sub-areas within these main categories to enhance the depth of understanding.

23



Table 3.4. Topics.
Main-area &
Sub-area

Topic

-Comprehend —-Understanding Software Engineering Phenomena
People Organizational management

Newcomers
Collaboration or teamwork
Communication
Community management
Personality
Expertise or experience
Roles
Motivation
Contribution inequality
Disengagement

Artifacts Contribution Patterns
Communication

Systems Project health
Project success
Ecosystem and project characterization
Project diversity
Migrations

-Train —-Teaching and training students
Education assessment
Teaching courses

-Construct —-Creating models and artifacts
Models Recommendations systems

Prediction Models
Artifacts Tools

Bots
-Characterize —-Describing contributions assessments

Team or developer performance

24



3 Results: Maps of Onboarding Research

The results will answer the research question, with the table of the categories of
the papers.

(RQ1): What topics have been addressed in SE onboarding
studies?

In order to delineate the nature of topics addressed in the studies, I engaged in
a classification of these elements. Table 3.5 provides a statistical overview, in-
cluding the number of studies for each category (indicated within parentheses),
and outlines potential opportunities for advancement in the field. The main cat-
egories in this classification are highlighted in bold, while the sub-categories are
distinguished in italics. In the process of identifying each study, the designa-
tion ’CXXX’ was employed, wherein ’C’ signifies a contribution work and ’XXX’
represents a unique three-digit identifier. The comprehensive list of the selected
works can be found in Appendix A 1.

To ascertain the research domains explored, this study employed a systematic
categorization of the topics under investigation. The categorization was derived
from a careful examination of the titles, keywords, and abstracts of the papers.
This approach allowed for the classification of each paper into one or more topic
areas. As delineated in Table 3.5, a total of 25 distinct topics were identified and
subsequently grouped into four principal areas of interest: comprehend, train,
construct, and characterize. The table depicted in the provided categorizes
studies within the domain of Software Engineering into main areas and sub-areas,
each linked to specific research topics and associated studies.

The topic most frequently addressed in the literature, as reflected by 102
papers, was utilizing the information of the contribution assessment to compre-
hend to gain insights into software engineering phenomena. Within this area,
a compilation of 18 distinct topics emerged, which were further classified into
three subcategories: the comprehension of people, artifacts, and systems. The
comprehend main area, with a total of 68 studies, primarily focuses on Under-
standing Software Engineering Phenomena. Within this, the first most studied

25



Table 3.5. Result of areas and topics.
Main-area &
Subarea

Topic Studies

-Comprehend(68)
—-Understanding Software
Engineering Phenomena

People(38) Organizational management(4) [C004, C048, C054, C064]

Newcomers(14)
[C006, C007, C008, C010, C030, C047, C053,
C058, C060, C071, C072, C077, C083, C099]

Collaboration or teamwork(3) [C015, C055, C074]
Communication(1) [C019]
Community management(1) [C022]
Personality(3) [C024, C089, C092]
Expertise or experience(2) [C032, C049]
Roles(2) [C037, C070]
Motivation(4) [C038, C059, C084, C096]
Contribution inequality(3) [C045, C046, C081]
Disengagement(1) [C082]

Artifacts(9) Contribution Patterns(5) [C009, C018, C020, C034, C102]
Communication(4) [C016, C026, C040, C043]

Systems(21) Project health(14)
[C017, C033, C035, C036, C039, C041, C042,
C051, C052, C056, C065, C091, C095, C097]

Project success(3) [C021, C057, C101]
Ecosystem and
project characterization(1)

[C029]

Project diversity(2) [C086, C088]
Migrations(1) [C093]

-Train(4)
—-Teaching and
training students
Education assessment(3) [C062, C068, C085]
Teaching courses(1) [C005]

-Construct(29)
—-Creating models and
artifacts

Models(13) Recommendations systems(3) [C011, C067, C078]

Prediction Models(10)
[C001, C002, C012, C013, C014, C028, C031,
C079, C087, C098]

Artifacts(16) Tools(11)
[C023, C044, C050, C061, C063, C069, C073,
C075, C076, C090, C100]

Bots(5) [C025, C027, C066, C080, C094]

-Characterize(1)
—-Describing contributions
assessments
Team or developer performance(1) [C003]

26



subarea is People with the most substantial sub-area, comprising 38 studies and
covering topics from Organizational management to disengagement. The most
mentioned topic in the subarea is how to assist newcomers with onboarding (14
studies). Aspects considered within this category include mentoring, barriers, and
guidelines for onboarding. Noteworthy concentrations within this sub-area also
include organizational management (4 studies) and motivation (4 studies) of de-
velopers to contribute to the project. Another studied topic was the collaboration
or teamwork, personality, and contribution inequality of developers in projects (3
studies of each). Other less-mentioned topics include the developers’ expertise or
experience (2 studies), their roles dynamics (2 studies), communication (1 study),
disengagement (1 study), and community management (1 study).

The second most studied subarea with 21 studies and 5 topics, is comprehend-
ing software systems or projects. Within this subarea, the most mentioned
topic is the study of readme files of projects, onboarding programs, or sustain-
ability factors of project health (14 studies). Other less-mentioned topics are
project success (3 studies), project diversity (2 studies), project characterization
(1 study), and project migrations (1 study).

The least studied subarea, with 9 studies and 2 topics, is comprehending
artifacts. The most studied topics were contribution patterns (5 studies) and
communication (4 studies). contribution patterns studied the developer’s activ-
ities in the open-source such as pull request contributions, commit, and target
projects. Meanwhile, communication analyzed participating in meetings, creating
comments, replying to threads, interacting, and answering emails.

The second most mentioned main topic, found in 29 papers and 2 topics, is
the utilization of contribution data to construct models, tools, recommendation
systems, and bots. This category has two main subthemes: artifacts (16 studies)
and models (13 studies). The most mentioned topic was constructing tools or
programming environments (11 studies). These tools to capture toxicity capture,
issue labeling, task assignment in OSS. Thus, this topic is within the artifact
subtheme. The second most mentioned topic was prediction models to help the
project handlers with long-time contributors identification (10 studies). Other
mentioned topics within this category include the creation of bots (5 studies),
and the construction of a recommendations system (3 studies).

27



The tertiary focus in the corpus of research, encompassing 4 studies across 2
topics, centered on the pedagogical strategies for training and teaching stu-
dents in the field of software engineering. The predominant topic within this
domain involved the evaluation and assessment of educational projects in soft-
ware engineering, as documented in 3 studies. These investigations proposed,
examined, and compared various methodologies for assessing the contributions of
students and teams within Open Source Software (OSS) projects, with method-
ologies ranging from summer code programs to educational strategies and train-
ing tools. The secondary topic within this educational arena, featured in a single
study is teaching course, including the adoption of novel technologies and men-
toring processes. This particular study provided insights into the enhancement
of student engagement and the facilitation of their integration into OSS projects.

Finally, the least mention area of study, with only 1 study is the Character-
ize main area consists of a single study that discusses describing contributions
assessments in terms of (1 study) Team or developer performance.

Answering RQ1: Four principal thematic areas have been identified
within the realm of software engineering research: the comprehension of
software engineering phenomena, the training of students, the construction
of models or artifacts, and the characterization of contribution assessments.
The majority of studies have leveraged data on contributions to gain a
deeper understanding of people and systems within the comprehension of
software engineering phenomena, and to develop artifacts, with particular
attention to the integration of newcomers, the evaluation of project health,
and the creation of tools. Conversely, the characterization of contribution
assessments has been less frequently addressed, with an emphasis on the
evaluation of team or developer performance when such characterization
occurs.

4 Threats To Validity

I now discuss threats to the validity of the mapping study.

28



External validity. External validity pertains to the generalizability of find-
ings. This mapping study’s outcomes are interpreted within the context of the
Software Engineering (SE) domain, and the legitimacy of the derived conclusions
is confined exclusively to the SE sphere. The external validity threats are thus
not applicable.

Construct validity. Construct validity addresses the extent to which the mea-
surement techniques accurately represent the subject of the study. The risk of
misclassification in areas such as contribution, methodology, and topic identi-
fication arises from the subjective nature inherent in the coding methodology
during the qualitative analysis. To reduce this risk, a collaborative approach
was employed where two co-authors engaged in a round-table discussion for the
classification process. In instances of disagreement, a thorough review and dis-
cussion of the complete content of the papers were conducted until a consensus
was achieved.

Internal validity. Internal validity concerns the credibility of inferences about
cause-and-effect relationships. In this study, I identify three potential threats to
internal validity. The primary threat pertains to the selection of papers during
the screening phase. The substantial volume of results generated by the search
string necessitated an initial filtering stage, where the first author screened and
excluded papers based solely on their titles and abstracts. This approach intro-
duces a potential bias in the selection process. However, I maintain confidence
in mitigating this threat, considering the first author’s background as an expe-
rienced researcher in software engineering, equipped with domain-specific knowl-
edge. The second threat stems from the selection of venues. The mapping study
included 22 leading venues, selected based on their online citation indices, feed-
back from the software engineering community and google scholar ranking, in
alignment with the approach used by Mathew et al. [60]. It is acknowledged that
some venues may inevitably be omitted from this study. Nevertheless, it is the
contention that these 22 top venues adequately encapsulate the best practices in
SE research. The third potential internal threat concerns the terms employed in
the search string. There is a possibility that the search string may not encompass
all relevant terms. To mitigate this risk, an initial round of manual examination

29



was conducted on eleven papers related to Software Engineering (SE). This pro-
cess was aimed at grouping potential term candidates. Following this preliminary
assessment, I have gained confidence in the adequacy of the current search terms
used in the study.

Conclusion validity. Conclusion validity refers to the extent to which the in-
ferences drawn about correlations within the data are justifiable. In the datasets,
there exists a concern regarding the accuracy of the groupings. The absence of
comparable studies with analogous results precludes the possibility of corroborat-
ing the findings. To address this issue, I have adhered to systematic guidelines to
underpin the validity of the outcomes. Since the scope of the results is confined to
developer contributions within the field of software engineering, concerns about
generalizability are not relevant, as the conclusions are specific to the domain
studied. Additionally, there were a constraints on the time frame of the studies
included in the research.

5 Related study

5.1 Studies on Human Aspect of Software Engineering

Contributors. Software development could not be separated from users’ par-
ticipation in a forum. Their contributions are not always related to writing code.
A number of studies on the contributors in communication channels, has shown
that experienced contributors and newcomers play an important role in develop-
ing software.

Senior contributors. Recent studies show that every individual has an oppor-
tunity to become a valuable contributor. Mockus [65] built a model to analyze
the users’ chances of becoming a senior contributor depend on her competence,
passion, and first-time contribution opportunity. Zhou and Mockus [110] found
that the participation of new members in the issue tracking system environment
might impact their status of becoming a long-term contributor.

30



Figure 3.5. Example of a forum thread.

Junior contributors. Despite most of the valuable information for improve-
ment to software quality comes from the experienced members in a software
project [55], software developers should not underestimate the newcomers’ con-
tributions in a discussion forum. Steinmacher et al. [93] identified that the lack of
social interaction with the community, having unanswered questions or receiving
delayed answers, and their technical experience backgrounds are some difficulties
that new members faced when they make contributions to an open source soft-
ware project. Middleton et al. [64] also studied the contribution characteristics
of new members in OSS projects. The authors identified that the participation
forms of the new members, such as pull requests and how they comment in the
discussion influence the decision to join OSS teams.

31



Table 3.6. Outputs of the pre-processing of the forum dataset
Step # Threads
Step 1: Raw extraction 1,097,174
Step 2: Remove duplication 832,058
Step 3: Separation:

(i) Threads by webmaster 542,997
(ii) Threads by non-webmaster users 289,061

5.2 How are project-specific forums utilized? A study of
participation, content, and sentiment in the Eclipse
ecosystem

Membership Classification. In this study, I describe the techniques to clas-
sify the membership of users for each posted message. Unlike the other question
and answer online forums such as Stack Overflow, in the Eclipse community fo-
rum, all registered users are assigned into three statuses of membership, that
are, (1) Junior, (2) Member, and (3) Senior. These user statuses are included in
the collected data resulting from Step 3 in Table 3.6 which can be seen in every
post of a user, as shown in Fig. 3.5. The status of each user may change from
the lowest level (i.e. Junior) into the highest one (i.e. Senior) depending on the
contributions of the user in the community. However, in the forum, I could not
differentiate which posts were posted by users when they were a Junior, Member
or Senior. This is because once the status of a user has changed, it will replace
the old status in all posts of a user with the latest status, including their first
posts. Furthermore, I also did not find any information about the time when the
status of a user changed.

To define the member status of each registered user, I attempted to calculate
the total number of posts of every user. From this amount of posts, I summarized
the quantity of posts per author based on the user identity number. The total
number of posts per author varies, from less than ten to more than one thousand
posts. In this step, I found the maximum number of posts of each user if I consider
the latest status of users as collected in the dataset, as shown in Fig. 3.6. The
maximum number of posts by Juniors and Members are 29 and 106 respectively,

32



Figure 3.6. Frequency of posts per user status. The maximum number of posts
for each type of users is used to define the threshold of post-based membership.
The threshold for Juniors and Members are 29 and 106, respectively. Although
Seniors have posted more than 28 thousand posts, I limit up to 600 in the figure.

while the maximum number of posts by Seniors is 28,476. Based on this finding,
I used these maximum numbers as the thresholds to differentiate the user status
for each post based on the sequence number of a post. The sequence number of
a post depends on its creation date in order. The earliest post is assigned as the
first post, then followed by the other posts ordered by date of creation.

6 Conclusion

Onboarding within the realm of Software Engineering (SE) is recognized as a
critical practice, significantly influencing both open source software (OSS) and
proprietary software projects. Over the past decade, advancements in onboard-
ing tools and methodologies have facilitated more efficient integration processes,
gaining widespread acceptance in both OSS and non-OSS sectors. This work
presents what I believe to be the inaugural systematic mapping study in this
area, aimed at delineating the landscape of topics addressed across 102 software

33



engineering studies that are published in premium conferences and journals. The
investigation encompasses a comprehensive analysis of research topics, contexts
examined, potential validity threats, and evaluation challenges encountered in
these studies. The visualization comprises concerning topics addressed, I iden-
tify that the majority of studies have leveraged data on contributions to gain a
deeper understanding of people (38 studies) and systems (21 studies) within com-
prehension of the software engineering process. Conversely, the characterization
of contribution assessments has been less frequently addressed, with an emphasis
on the evaluation of team or developer performance when such characterization
occurs. The study reveals that the domain of developer onboarding is extensive
and characterized by a diversity of studies. However, there remains ample scope
for further research to conduct studies on the following gaps:

• Limited Understanding of Newcomer pre-onboarding activities.
While there is substantial literature on newcomers after onboarding OSS
but there is a notable gap in understanding how to retain newcomers on
the social coding platform by analyzing and characterizing their activities
before onboarding. This is crucial for the sustained success and vibrancy of
potential OSS communities.

• Impact of Newcomer Social Dynamics. The role of social dynamics
and collaborative nature relationships among newcomers towards OSS join-
ing process is underexplored. Understanding how social factors influence a
newcomer’s integration into OSS projects could provide valuable insights.

• Comparative Studies Across Different OSS Platforms. Comparative
studies between different OSS platforms (e.g., GitHub vs. GitLab) in the
context of onboarding OSS are scarce. Such comparative analysis could
reveal unique challenges and opportunities inherent to different platforms.

• Longitudinal Studies. There is a need for more longitudinal studies to
understand how onboarding processes evolve over time and how changes in
OSS communities impact these processes.

By addressing these gaps, future research can contribute significantly to the
body of knowledge in OSS onboarding and help in developing more effective and

34



inclusive strategies for integrating newcomers into OSS projects.

35



4 | Newcomer OSS-Candidates:
Characterizing Contributions
of Novice Developers to GitHub

In the previous chapter, through the mapping study, the literature reviews reveal
the key topics offering insights into current trends and gaps in developer onboard-
ing and motivate this thesis. Hence, regarding filling out the gaps concerning the
limited understanding of newcomer pre-onboarding activities and the impact of
their social dynamics, in this chapter, I endeavor to conduct an empirical study
that is broken into three parts to gain a deeper understanding of (i) identifying
Newcomer-OSS Candidates, (ii) validating their pre-onboarding activities, and
characterizing them through mixed methods approach, and finally (iii) analyzing
the proportion of them who are eventually onboard to OSS projects in GitHub.

1 Introduction

The success of Open Source Software (OSS) has always been based on the con-
tinuous influx of newcomers and their active involvement [72]. Previous studies
have shown evidence that many contemporary projects are at risk of failure, with
one of the reasons being the inability to attract and retain newcomers [34, 104].
For example, Coelho and Valente [20] proposed two strategies that include new-
comers which aim to transfer the project to new maintainers and to accept new
core developers. In another study, Steinmacher et al. [92] presented a model that

36



analyzes the influential forces to newcomers being drawn or pushed away from a
project.

In contrast, the rise of social coding platforms has led to an explosion of
potential developers. GitHub reported1 around 10 million-plus new users in 2020
and allows over 40 million developers to showcase their skills to the world’s largest
community (44 million upstream repositories). With this upsurge in user activity,
However, the extent to which these developers’ activities prior to onboarding to
OSS projects is unknown. Despite the known increase in the number of potential
OSS contributors, there is a notable lack of understanding regarding the activities
and experiences of these individuals before they join OSS projects. This gap is
crucial because pre-onboarding experiences can significantly shape a newcomer’s
ability to contribute effectively to OSS projects.

There are several motivations need to understanding the activities of novice
developers before they join OSS projects. For instance, skills and knowledge
assessment: understanding the prior experiences of new OSS contributors could
help in assessing the skills and knowledge they bring, which is vital for effective in-
tegration into projects. Another reason tailored onboarding processes: knowledge
of pre-onboarding activities could inform the development of more personalized
and efficient onboarding processes, catering to the varied backgrounds of new de-
velopers. Other motivation is retention strategies: insights into the motivations
and prior engagements of newcomers can aid in devising strategies to not only
attract but also retain these contributors in OSS projects.

The term newcomer has usually been used in a loose way in literature [92].
Inspired by the incubation of OSS projects on GitHub, I coin the term “Newcomer
OSS-Candidate”, who is not yet a newcomer, but has potential to become one.
Concretely, I define a Newcomer OSS-Candidate as a developer that satisfies
these three criteria: 1) is a developer that does not have any prior experience
contributing to an OSS project, 2) is a new user to a social coding platform,
and 3) has the intention to onboard an OSS project hosted on a social coding
platform. Although there is a complete body of work that has studied the barriers
and struggles of newcomers [90, 92], none has explored the activities prior to
onboarding to OSS projects of Newcomer OSS-Candidates. Most of the work

1Statistics from https://octoverse.github.com accessed January 2020

37

https://octoverse.github.com


revolves around newcomers who have already onboarded to OSS projects.
Hence, this empirical study which is broken into three parts using GitHub

as a case platform to gain a deeper understanding of (i) identifying Newcomer-
OSS Candidates, (ii) validating their pre-onboarding activities and characterizing
them through a mixed method approach, and finally (iii) analyzing the proportion
of them who are eventually onboard to OSS projects in GitHub. I studied 171
Newcomer OSS-Candidates and their GitHub repositories, first commits and Pull
Requests (PRs) guided by four research questions:

• (RQ1.) What kinds of repositories does a Newcomer OSS-Candidate
target?

Motivation: Kalliamvakou et al. [45] showed that most repositories hosted
on GitHub are non-software. However, since Newcomer OSS-Candidates
have the intention to later onboard a software project, I would like to test
the assumption that (H1) Newcomer OSS-Candidates are more likely to
target software repositories. Since GitHub users can either create their own
upstream repositories or fork existing repositories, I compare these two
kinds of repositories.

Result: I observe that 66% of Newcomer OSS-Candidates target software
based repositories. The statistical test indicates that hypothesis H1 is es-
tablished. Furthermore, Experimental and Documentation are the most
frequently targeted software repository kinds for fork and upstream repos-
itories, i.e., 24% and 21%, respectively.

• (RQ2.) What are the kinds of first contributions that come from
Newcomer OSS-Candidates?

Motivation: Hattori and Lanza [42] showed that OSS projects constantly
add new content to software (i.e., development) more frequently than main-
taining existing code. Hence, for this RQ, my motivation is to understand
whether or not Newcomer OSS-Candidates are more likely to add new con-
tent or maintain the repository. Hence, by studying these two types of con-

38



tributions, I test the hypothesis that (H2) Contributions to GitHub repos-
itories from Newcomer OSS-Candidates are more likely to do development
activities. I analyze two kinds of GitHub contributions, either a direct con-
tribution through a commit, or a submitted Pull Request (PR).

Result: For the first commit contributions, I find that 74% of contribu-
tions from Newcomer OSS-Candidates are related to development activities.
For the first PR contributions, results show that 60% of contributions are
associated with management activities. The statistical tests confirm that
hypothesis H2 is established in first commit contributions, while is not es-
tablished in first PR contributions.

• (RQ3.) To what extent do Newcomer OSS-Candidates practice
social coding with their first contributions?

Motivation: Since GitHub is a social coding platform, I would like to
explore the extent to which a Newcomer OSS-Candidate is likely to make a
social contribution as their first contribution. Specifically, I analyze whether
or not a Newcomer OSS-Candidate shares code, which is measured by sin-
gle or multiple authorship on a file. Hence, similar to RQ3, I explore the
commit and PR contributions to test the hypothesis (H3) Newcomer OSS-
Candidates are more likely to contribute to a file with multiple authorship.

Result: Results show that after joining GitHub, a majority of Newcomer
OSS-Candidates (i.e., 73% of first commits and 59% of PRs) do not share
code with other authors. Moreover, the statistical tests validate that hy-
pothesis H3 is not established for both first commit and first PR contribu-
tions.

• (RQ4.) What is the proportion of Newcomer OSS-Candidates that
eventually onboard an OSS project?

Motivation: In accordance with my definition, I explore the extent to
which these Newcomer OSS-Candidates eventually onboard an OSS project.

39



I would like to explore the proportion of Newcomer OSS-Candidates who
eventually onboard an OSS project. Additionally, I validate what kinds of
barriers that Newcomer OSS-Candidates face when onboarding OSS repos-
itories.

Result: Quantitative analysis shows that 30% of Newcomer OSS-Candidates
eventually onboarded engineered OSS repositories. Complementary, a follow-
up user survey shows that 70% of studied participants ended up making
contributions to an OSS repository. Newcomer OSS-Candidates strongly
agreed that they face the barrier of finding a way to start, while social
interaction received the most mixed responses as a barrier.

The remainder of this paper is organized as follows: Section 2 describes the
identification procedure for Newcomer OSS-Candidates through survey. Section 3
reports the validating pre-onboarding activities and characterizes them through
the mixed method approach of my empirical study, while Section 4 analyzes
the proportion of onboarding to OSS projects in GitHub, Section 5 discusses
the lessons learned and study implications. Section 6 discloses the threats to
validity, Section 7 presents related work and finally, I conclude the paper in
Section 8. To facilitate replication and future work in the area, I have prepared
a replication package, which includes the studied 171 Newcomer OSS candidates’
repositories, manually labeled datasets, the scripts for the quantitative analyses,
and the survey materials. The package is available online at https://github.c
om/NAIST-SE/NewcomerCandidate.

2 Identifying Newcomer OSS-Candidates through
Survey

Approach. In this section, I describe the process of identifying Newcomer OSS-
Candidates. I used the first-contribution community2 in GitHub as data source for
collecting Newcomer OSS-Candidates. The community is an initiative established

2https://github.com/firstcontributions/first-contributions/blob/master/Cont
ributors.md

40

https://github.com/NAIST-SE/NewcomerCandidate
https://github.com/NAIST-SE/NewcomerCandidate
https://github.com/firstcontributions/first-contributions/blob/master/Contributors.md
https://github.com/firstcontributions/first-contributions/blob/master/Contributors.md


Table 4.1. Survey Questions sent to potential respondents

Survey Questions for Newcomer OSS-Candidate

Q1) What is your motivation to make a contribution to GitHub?
(a) Learning to Code.
(b) Assignment or Experiment Project.
(c) Intend to contribute to an Open Source.
(d) Use to showcase my programming skills.
(e) Others.
Q2) Did you have prior experience contributing to an OSS before GitHub?
(Yes/No)

to help beginners make their first contributions on GitHub and currently has
over 5,000 plus contributors, over 39.7 thousand forks, and over 21 thousand
stars as of October 2021. To extract the survey respondent candidates, I used
command "git log –pretty=format:%ae"3 on Contributors.md file provided
by the community and were able to get 17,507 respondent candidates. I sent
an online survey invitation4 to reach up to 4,000 respondent candidates through
email and a slack channel.5 Survey was open from March 3, 2020 to March 31,
2020 (around a four-week period). I received 208 responses, allowing us to mine
their repositories and contributions by providing their GitHub IDs. In the survey,
I validate the definition of Newcomer OSS-Candidate by asking two questions.
The two questions are presented in Table 4.1. Besides, respondents were also
asked about their interests, and their perception rank of their programming skills.

171 Identified Newcomer OSS-Candidates. Table 4.2 presents the sur-
vey answers that are related to prior OSS experience of respondents and their
motivations to contribute. Table 4.2b shows that 82% of respondents (i.e., 171
responses) intend to contribute to an OSS project. Furthermore, these respon-
dents claim that they have not had any prior OSS experience. Henceforth, I
define a Newcomer OSS-Candidate as a developer that does not have any prior

3https://git-scm.com/docs/pretty-formats
4https://tinyurl.com/r7acxvn
5https://firstcontributions.slack.com/

41

https://git-scm.com/docs/pretty-formats
https://tinyurl.com/r7acxvn
https://firstcontributions.slack.com/


Table 4.2. Two questions in survey

Have you had any prior OSS experience? Percent

No 85%
Yes 15%

(a) Answers to Q1 of the survey

What is the motivation to contribute? Percent

(a) Learning to Code. 58%
(b) Assignment or Experiment Project. 21%
(c) Intend to contribute to an Open Source. 82%
(d) Use to showcase my programming skills. 42%
(e) Others 5%

(b) Answers to Q2 of the survey

experience contributing to an OSS project, is a new user to a social coding plat-
form, and has the intention to onboard an OSS project hosted on a social coding
platform. According to the definition of Newcomer OSS-Candidate, I used these
171 participants to further track their repositories and contributions for subse-
quent analyses.

3 Validating Pre-Onboarding Activities and Char-
acterize them through Mixed Method Approach

To answer research questions, each research question comprises the approach and
their results.

3.1 (RQ1) What kinds of repositories does a Newcomer
OSS-Candidate target?

Approach. To answer RQ1, I first construct the (D1) Newcomer OSS-Candidate Repos-
itory Dataset, which is a mapping of selected Newcomer OSS-Candidate infor-

42



mation (as described in Section 2) with their GitHub repository contributions.
Using the GitHub REST API (GitHub, 2020) and the credentials of the 171 sur-
vey participants, I retrieved 2,392 unique contributed repositories, consisting of
936 fork6 and 1,456 upstream7 repositories. Under the guidance of Borges et al.
[12], Kalliamvakou et al. [45], I classify the repositories into software and non-
software. The definitions of software and non-software repositories are described
below:

• (Software) Application Software: systems that provide functionalities to
end-users, like browsers and text editors.

• (Software) System Software: systems that provide services and infrastruc-
ture to other systems, like operating systems, middleware, servers, and
databases.

• (Software) Web libraries and frameworks.

• (Software) Non-web libraries and frameworks.

• (Software) Software tools: systems that support software development tasks,
like IDEs, package managers, and compilers.

• (Software) Documentation: repositories with documentation, tutorials, source
code examples.

• (Software) Experimental: repositories include demos, samples, test code,
and tutorial examples.

• (Non-Software) Storage: category includes repositories documents and files
for personal use, such as presentation slides, resumes, e-books, music files
etc.

• (Non-Software) Academic: class and university research projects come un-
der this category.

• (Non-Software) Web: under this category I classify websites and blogs.
6https://docs.github.com/en/get-started/quickstart/fork-a-repo
7https://docs.github.com/en/get-started/quickstart/github-glossary#upstream

43

https://docs.github.com/en/get-started/quickstart/fork-a-repo
https://docs.github.com/en/get-started/quickstart/github-glossary#upstream


Table 4.3. Proportion of software and non-software repositories targeted by New-
comer OSS-Candidates. Around 66% of Newcomer OSS-Candidates target Soft-
ware repositories.

Category Percent (%) Fork & Upstream (%)

Software 66
Upstream (52)

Fork (48)

Non-Software 24
Upstream (55)

Fork (45)

Others 10
-
-

• (Others) No longer accessible/Empty: repositories that gave 404 error, con-
taining only a license file, a gitignore file, a README file, or no files at all
were placed under this category.

I use a qualitative method to manually classify the different kinds of repos-
itories. Following the protocol, with a confidence level of 95% and a confidence
interval of 58, I draw a statistically representative sample from (D1) to end up
with 273 fork repositories and 304 upstream repositories. To evaluate the validity
of manual coding, I randomly selected 30 repositories from the representative sam-
ple, and then the first three authors independently coded these repositories. The
three authors then measured the inter-rater agreement using Cohen’s Kappa [106]
as the measure of agreement. In the end, the Kappa agreement for fork reposito-
ries was nearly perfect (i.e., 0.91), while the score for upstream repositories was
substantial (i.e., 0.76). Based on this encouraging result, the first author then
completed the manual coding for the rest of the representative sample.

For significance testing, I validate hypothesis (H1) Newcomer OSS-Candidates are
more likely to target software repositories, using the one proportion Z-test [73] as
it compares an observed proportion to a theoretical one when the categories are
binary.

Proportion of Software and Non-Software Repositories. Table 4.3
shows the proportion of software and non-software based repositories that New-

8https://www.surveysystem.com/sscalc.htm

44



comer OSS-Candidates target. I see that 66% of Newcomer OSS-Candidates tar-
get repositories are software based and follow sound software engineering practices
in each dimensions. Furthermore, Newcomer OSS-Candidates are less likely to
target non-software based repositories, accounting for 24%. Specifically, I observe
that 10% of repositories are classified as Others. Through the manual analysis,
these repositories are either “No longer accessible” or “Empty”. Upon in-depth
analysis of repositories (i.e., Fork and Upstream), I observe that the dominant
repositories for software and non-software are upstream i.e., 52% and 55%.

Frequency of Contributed Repository Kinds. Figure 4.1 shows that
Documentation (21%), Experimental (15%), Web-based-applications, libraries
and frameworks (15%) are the most frequently targeted upstream software repos-
itories kinds. The other kinds of repositories that Newcomer OSS-Candidates fre-
quently target are Academic (12%), Web (11%), and Application Software (9%).
On the other side, I find that Experimental (24%) and Web-based-application, li-
braries, and frameworks (17%) are the most commonly targeted fork repositories
kinds. The other kinds of fork repositories commonly targeted are Documentation
(13%) and Academic (12%).

The statistical test validates a significant difference between the proportion
of software and non-software repositories that Newcomer OSS-Candidates target,
with a p-value < 0.001. The result indicates that my proposed hypothesis, i.e.,
(H1) Newcomer OSS-Candidates are more likely to target software repositories,
is established.

RQ1 Summary: Results show that 66% of Newcomer OSS-
Candidates target software based repositories. The proposed hypothesis
that (H1) Newcomer OSS-Candidates are more likely to target software
repositories is established. Furthermore, Experimental and Documenta-
tion are the most frequently targeted software repository kinds for both
fork and upstream repositories with 24% and 21%, respectively.

45



Fork

0 5 10 15 20 25 0 5 10 15 20 25
Percent (%)

Non−Software Software

      Application Software

      Documentation

      Experimental

      Non−web libraries and frameworks

      Software tools

      System Software

      Web−based−application, etc

         Academic

         Storage

         Web

Upstream

Figure 4.1. Frequency for contributed repository kinds with Fork and Upstream.
Experimental and Documentation are the most frequently targeted software
repository kinds, i.e., 24% and 21%, respectively.

46



3.2 (RQ2) What are the kinds of first Contributions that
come from Newcomer OSS-Candidates?

Approach. To answer RQ2, I analyze the first contributions with two types, i.e.,
first commit and first PR. As such, I constructed a new dataset from RQ1, which
is (D2) First Contribution Dataset. To do so, I first obtain the earliest GitHub
repositories each of the 171 Newcomer OSS-Candidates. For the quality pur-
pose, I ignore any test and not meaningful commits by filtering out experimental
repositories that have been identified in RQ1. Furthermore, from the initial list of
171 participants, I remove another five participants. Three participants had not
made any contributions to their fork or upstream repositories, and another two
participants had become inactive since the initial survey. Hence, I ended up with
a total of 166 first commits and 97 PRs from 166 Newcomer OSS-Candidates. I
then classify the contributions according to Hattori and Lanza [42]:

• Development (forward engineering and non-software): based on the forward-
engineering type proposed by Hattori and Lanza (2008), the development
activities relate to incorporation of new features and implementation of new
requirements for both software and non-software. Examples of development
for non-software repositories include adding new content for websites or doc-
umentation.

• Repository Initializing (sub-category of development): derived from the
forward-engineering category, I identify any first commits as the initializing
commits to a new repository.

• Re-engineering: maintenance activities are related to refactoring, redesign
and other actions to enhance the quality of the code without properly adding
new features.

• Corrective Engineering: maintenance activities handle defects, errors and
bugs in the software.

• Management: maintenance activities are those unrelated to codification,
such as formatting code, cleaning up, and updating documentation.

47



To validate the understanding of the taxonomy of contribution kinds, I ran-
domly selected 30 contributions of first commits and PRs, and then the first three
authors independently coded these contributions, similar to RQ1. Since Hattori
and Lanza [42] used a set of keywords, I applied the keywords as an initial guide.
However, when deciding the classification, I consider the commit and PR at-
tributes (i.e., title, message, and description) to have a better understanding of
the context. Similar to RQ1, I use Cohen’s Kappa. The Kappa agreement scores
for classifying contribution kinds of first commits and PRs were both substantial
(i.e., 0.72 and 0.79, respectively). After the agreement measurement, the first
author then completed the remaining sample.

To validate the hypothesis (H2) Contributions to GitHub repositories from
Newcomer OSS-Candidates are more likely to do development activities, similar to
RQ1, I use the one proportion Z-test [73]. To fit the formula of the statistical test,
I merge Development and Repository Initializing into the Development category,
and I merge Re-engineering, Corrective Engineering, and Management into the
Maintenance category.

Frequency of Contribution’s Kinds. Table 4.4 depicts the distribution for
kinds of contributions made by Newcomer OSS-Candidates. For the first com-
mit contributions, as shown in the table, 31% and 43% of Newcomer OSS-
Candidates engage in development activities and repository initializing activities
in the first commits. The result suggests that Newcomer OSS-Candidates are
more likely to engage in development activities (i.e., 31% + 43% = 74%) when
submitting first commits. Upon closer inspection, I find that 98% and 77% of
development activities and repository initializing activities involve code related
changes. For the first PR contributions, the manual classification shows that 60%
of Newcomer OSS-Candidates engage in management activities when submitting
their PRs, indicating that Newcomer OSS-Candidates are more likely to target
maintenance activities. Furthermore, I find that 45% of management activities
are related to formatting code, and 55% are associated with cleaning up and
updating documentation. More specifically, 4% of their first commits and 4% of
first PRs contributions are classified as Others. Through the manual analysis, I
find that these contributions are inaccessible (i.e., 404 errors), not be classified

48



Table 4.4. Frequency for Contribution’s Kinds of Newcomer OSS-Candidates. In
the first commits, 43% of Newcomer OSS-Candidates are typically engaged in
repository initializing activities, and 60% are engaged in the management activ-
ities of the PRs.

First
Contributions

Kinds
Percent

(%)
Code
(%)

Doc
(%)

First Commit : Development 31 98 2
Repository Initializing 43 77 23
Re-engineering 7 100 0
Corrective Engineering 2 100 0
Management 13 5 95
Others 4 100 0

sum 100

Pull Request : Development 9 89 11
Repository Initializing 3 33 67
Re-engineering 17 76 24
Corrective Engineering 6 100 0
Management 60 45 55
Others 4 100 0

sum 100

into any category based on the taxonomy, or not written in English.
The statistical tests confirm statistically significant differences between the

proportion of development and maintenance activities for both types of contribu-
tions (first commit and PR), with a p-value < 0.001. For the type of first commit
contributions, the test result validates that Newcomer OSS-Candidates are more
likely to engage in development activities. However, for the type of first PR contri-
butions, the test result confirms that Newcomer OSS-Candidates are more likely
to be involved in maintenance activities. To conclude, the raised hypothesis, (H2)
Contributions to GitHub repositories from Newcomer OSS-Candidates are more
likely to do development activities, is established in first commit contributions,

49



Figure 4.2. An example of how I define developers practice social coding, where
more than one author contributes to the git.gemspec file.

while it is not established in first PR contributions.

RQ2 Summary: For the first commit contributions, I find that 74% of
contributions from Newcomer OSS-Candidates are related to development
activities. For the first PR contributions, the results show that 60% of the
contributions are associated with management activities. Furthermore, sta-
tistical tests confirm that (H2) Contributions to GitHub repositories from
Newcomer OSS-Candidates are more likely to do development activities is
established in first commit contributions, but it is not established in first
PR contributions.

3.3 (RQ3) To what extent do Newcomer OSS-Candidates prac-
tice social coding with their first contributions?
* Social Coding: in Terms of Multiple Authorship

Approach. Social coding is a very loose term Dabbish et al. [23] used to describe
the ability for developers to advertise (openly share and allow modification) their
code on social platforms such as GitHub. In the paper, as shown in Figure 4.2,
I select one social coding practice in terms of multiple authorship to analyze
where a contributor modifies either someone else’s codes or others may modify
this contributor’s codes in the future. In the example, there are two authors (i.e.,
author A for lines 1–3 and author B for line 4) that contribute to a single file
(i.e., git.gemspec) in a repository (i.e., ruby-git). To do so, I use the D2 dataset
from RQ2, which contains first commit and first PR contributions. I identify

50



Figure 4.3. Identify social coding in terms of whether a contribution is modified
by a single author or multiple authors.

social coding using Algorithm 1 and the git-blame9 command on each contained
file in the commit to check whether the files receive changes from more than one
author (lines 3–4 in Algorithm 1). Considering that one PR may include multiple
commits, I analyze all commits inside each PR with Algorithm 1. Specifically, I
found that 21 out of 97 PRs (22%) have multiple commits.

To validate the hypothesis (H3) Newcomer OSS-Candidates are more likely
to contribute to a file with multiple authorship. Similar to RQ1, I use the one
proportion Z-test [73].

Social coding (Multiple Authorship). Table 4.5 presents the frequency
of social and non-social contributions in terms of authorship done by Newcomer
OSS-Candidates. As shown in the table, the majority of Newcomer OSS-Candidates do
not practice social coding after joining GitHub. For instance, I find that 73% of
the first commits and 59% of the first PRs are contributed by a single author.
Such results suggest that Newcomer OSS-Candidates are less likely to practice
social coding in terms of sharing multiple authorship, when placing their first
GitHub contributions.

The statistical test validates that for the first commits, there is a statistically
significant difference between the proportion of social and non-social contribu-

9https://www.atlassian.com/git/tutorials/inspecting-a-repository/git-blame

51

https://www.atlassian.com/git/tutorials/inspecting-a-repository/git-blame


Table 4.5. Frequency of social and non-social contributions from Newcomer OSS-
Candidates in terms of single/multiple authorship. After joining GitHub, 73%
and 59% of Newcomer OSS-Candidates have non-social based contributions in
their first commits and PRs.

Social coding practice (First Commit) Percent (%)

multiple 27
single 73

Social coding practice (Pull Request) Percent (%)

multiple 41
single 59

tions, with a p-value < 0.001, where Newcomer OSS-Candidates are likely to
practice non-social coding. For the first PRs, there are no statistically significant
difference, with a p-value > 0.05. To conclude, the proposed hypothesis (H3)
Newcomer OSS-Candidates are more likely to contribute to a file with multiple
authorship, is not established in both first commits and PRs.

RQ3 Summary: The results show that after joining GitHub, a majority of
Newcomer OSS-Candidates (i.e., 73% of first commits and 59% of PRs) do
not share code with other authors. Furthermore, statistical tests validate
that (H3) Newcomer OSS-Candidates are more likely to contribute to a file
with multiple authorship, is not established in both first commit and PR
contributions.

4 Analyzing Proportion of Onboarding to OSS Projects
in GitHub

To answer the research question, it comprises the approach and results.

52



4.1 (RQ4) What is the proportion of Newcomer OSS-Candidates that
eventually onboard an OSS project?

Approach. To answer RQ4, I perform both quantitative and qualitative analy-
ses. I find that making contributions to an OSS project is not trivial, and involves
a process that follows two steps:

• Fork an OSS repository. The first step for any Newcomer OSS-Candidate is
to fork an OSS repository. Hence, I extracted 936 fork repositories out
of a total of 2,392 repositories from the D1 dataset. Then, to identify
whether this repository is an engineered software project, I matched each
fork repository against a curated dataset by Munaiah et al. [67].

• Identify contributions. During step one, I found that many participants
who only fork the repository, without contributing back to either the fork or
upstream repository. Hence, I performed an in-depth analysis through two
particular ways of onboarding i.e., either the fork or upstream repositories.

For the qualitative analysis, I conducted a follow-up survey10 to acquire the
perception of the participants. I sent an online survey invitation to Newcomer
OSS-Candidates through emails and ended up receiving 27 responses. The survey
is split into two questions, confirming whether participants had contributed to
an OSS repository. The first question is related to whether the participant had
onboarded an OSS project (i.e., Since joining GitHub, did you successfully make
a contribution to any Open Source Software project?). In the second question, I
explore the barriers faced by OSS newcomers [92]. Hence, I asked participants to
rate each barrier (i.e., Social Interaction, Newcomer Previous Knowledge, Finding
a Way to Start, Technical Hurdles, and Documentation) on a five-point Likert
scale.

Onboarding Process in GitHub. Table 4.6 presents the distribution of
how Newcomer OSS-Candidates onboard OSS projects in terms of the quan-
titative analysis. I show that 49% of Newcomer OSS-Candidates onboard OSS
projects, while 51% do not. Furthermore, 51% of Newcomer OSS-Candidates only

10Survey details are available at https://forms.gle/JQiVamovUXdJiy8z5

53

https://forms.gle/JQiVamovUXdJiy8z5


Figure 4.4. Qualitative analysis using a follow-up survey to acquire the perception
of Newcomer OSS-Candidates.

Response to “Since joining GitHub, did you successfully

make a contribution to any OSS project?”

Count

(#)

Percent

(%)

Has made a contribution to an OSS project. 19 70%

Has never made a contribution to an OSS project. 8 30%

sum 27 100

(a) Answers to Q1 in the follow-up survey.

Count

Documentation

Technical Hurdles

Finding a Way to Start

Newcomer Previous Knowledge

Social Interaction

10 0 10 20

Strongly Disagree Partially Disagree Neutral Partially Agree Strongly Agree

(b) Barriers faced by Newcomer OSS-Candidates. Most Newcomer OSS-Candidates (i.e., 22
out of 27 responses) strongly agree that finding a way to start is a barrier.

54



Table 4.6. Frequency of Newcomer OSS-Candidates that started the onboarding
process for OSS repositories.

Match to the
Munaiah(2016) dataset

Onboarding Steps
Count
(#)

Percent
(%)

Started Onboarding
Process : 81 49

Fork an OSS repository (51%)
Contribute to fork OSS repository (22%)

Eventually Onboarded: Contribute to original OSS repository (30%)

Not Onboard: 85 51

Sum 166 100

fork the OSS repositories not making any contributions (Fork an OSS repository),
and 22% have contributed in the form of making commits to their own fork OSS
repositories (Contributed to fork OSS repository). Meanwhile, 30% of Newcomer
OSS-Candidates eventually onboard by submitting PRs directly to the original
OSS repositories (Contributed to original OSS repository). On the other hand, for
the qualitative analysis, the survey results show that 19 out of 27 Newcomer OSS-
Candidates (70%) claim that they have made contributions to OSS repositories.
Figure 4.4 (a) shows the distribution of Newcomer OSS-Candidates onboarding
OSS projects by means of qualitative analysis.

Barriers faced by Newcomer OSS-Candidates. Figure 4.4 (b) shows
the results of the Likert-scale question related to barriers. The figure shows that
finding a way to start is the most crucial barrier, with 22 responses being positive
(i.e., 12 agree and 10 strongly agree responses). The second most crucial barrier
is technical hurdles, receiving 18 positive responses (i.e., 15 agree and 3 strongly
agree responses) which is related to "Technical Barrier" explained by [4, 94],
which usually involves issues related to the complexity of the systems, lack of
domain-specific knowledge, or other technological challenges. This aligns with
findings where Newcomer OSS-Candidates faced difficulties in making technical

55



contributions or understanding the technological aspects of OSS projects. New-
comer previous knowledge is considered the third most crucial barrier with 16
responses (i.e., 10 agree and 6 strongly agree responses). On the other hand,
the respondents are more likely to disagree with the statement that social in-
teraction and documentation can be barriers for them to onboard OSS projects
(i.e., 7 negative responses for each barrier). Although social interaction chal-
lenges, aligns with "Interpersonal barrier" explained by Balali et al. [4] where
communication challenges occurs when newcomers are integrated into a diverse
team, where individuals with distinct objectives, varied cultural backgrounds,
and differing interpersonal skills collaborate.

RQ4 Summary: The quantitative analysis shows that 30% of Newcomer
OSS-Candidates eventually onboarded OSS projects. The follow-up user
survey also shows that 19 out of the 27 participants (70%) claim that they
have made contributions to OSS repositories. I find that finding a way to
start is the most agreed barrier for Newcomer OSS-Candidates.

5 Discussions

In this section, I discuss lessons learned and then revisit the expected implications
against the actual results.

5.1 Lessons learned

This paper discusses two lessons learned that would be useful for future replication
or improvements of the study. In the first lesson, I acknowledge that extracting
the first contribution is not as trivial as I first envisioned. This is because the
actual first commit might be just an ad-hoc test for the user, and not an actual
meaningful contribution to a repository. In this research, I manually filtered out
such contributions, but future work should consider a more systematic approach.

The second lesson to acknowledge is the process of onboarding may take a long
time as it may be tied with the process of making a contribution to GitHub. As
shown in the results for RQ4, different Newcomer OSS-Candidates are at different

56



stages of the onboarding process and may take time before they decide to submit
the PR. Thus, I need to take into consideration a long enough time-window to
evaluate whether or not a Newcomer OSS-Candidate will end up onboarding
an OSS project. This lesson aligns with the "Process barriers" explained by the
works [94, 107] where newcomers encounter difficulties in gaining a comprehensive
understanding of the software they are tasked with contributing to, as well as in
determining where to initiate their work.

5.2 Implications (Expectations vs. Actual Results)

Based on the results, I revisit the expected implications against the actual results
of the study.

Suggestions for Newcomers. I speculated that the research would help
Newcomer OSS-Candidates understand the kinds of contributions they target
before onboarding a real OSS project. Actually, I found in Table 4.4 that New-
comer OSS-Candidates are not only engaged in adding new content, but 60%
of them are also interested in management activities related to formatting code,
cleaning up, and updating documentation through the submission of PRs. One
example of this can be seen in the AEOL’s repository11, where a PR is submit-
ted to add a new function to the project. Furthermore, RQ2 also reveals that
after joining GitHub, 43% of Newcomer OSS-Candidates prefer to add new con-
tent in order to initialize or start a repository in their first commit. I found a
common pattern is an initial commit that is uploading a website to the GitHub
repository.12 Finally, based on the RQ3 quantitative analysis, the majority of
Newcomer OSS-Candidates have non-social based contributions in their contri-
butions. As shown in Table 4.5 from RQ3 that after joining GitHub, Newcomer
OSS-Candidates contributes in terms of single authorship are 73% of their first
commits and 59% of their PRs, respectively. On the basis of evidence, I con-
clude that it is unlikely that Newcomer OSS-Candidates will be onboard to OSS
projects immediately after joining GitHub.

11https://github.com/AE0L/round-robin/pull/1
12https://github.com/maanizfar/vanilla-js-web-projects/commit/e208d861b80762

be8aa545567a300a7fad6aacf7

57

https://github.com/AE0L/round-robin/pull/1
https://github.com/maanizfar/vanilla-js-web-projects/commit/e208d861b80762be8aa545567a300a7fad6aacf7
https://github.com/maanizfar/vanilla-js-web-projects/commit/e208d861b80762be8aa545567a300a7fad6aacf7


I also speculated that I would reveal barriers on why some Newcomer OSS-
Candidates never end up contributing to an OSS projects. According to the
survey responses in RQ4, finding a way to start is one of the most challeng-
ing barriers, with 22 responses being positive (i.e., 12 agree and 10 strongly
agree responses). Hence, inspired by these examples and combining all results,
I recommend that Newcomer OSS-Candidates should not be afraid to individu-
ally contribute to their own code, contribute to upstream software repositories,
or fork OSS projects before attempting to onboard. Last, regarding the most
challenging barrier (i.e., finding a way to start), to this end, Newcomer OSS-
Candidates should leverage suggestions provided by Subramanian et al. [98], in-
cluding minor feature additions (a change of around 36 lines of code), minor
documentation changes, selecting bug fixes, and changing catering to revised de-
pendencies as first-timer friendly, which may relieve this problem. In addition,
there are online resources13 that help Newcomer OSS-Candidates choose easy
issues or opportunities to find ways to start contributing.

Suggestions for OSS Projects. It was speculated that the findings would
reveal insights into what contributions may attract a Newcomer OSS-Candidate.
Through the qualitative analysis of RQ2, Table 4.4 shows that in the first com-
mits, 43% of Newcomer OSS-Candidates are typically engaged in adding new
content to initialize the repositories, and 60% are involved in management ac-
tivities in their PRs. Hence, I suggest that Newcomer OSS-Candidates may not
have required skills to make immediate contributions. Instead, they may start
with software based upstream experimental repositories. Hence, for OSS project,
it might start with tasks to update the documentation, formatting or cleaning up
code. One example of this can be seen in Bviveksingh’s upstream repository14,
where a PR is submitted to update a software version.

I also speculated that OSS projects may benefit from the study, by identify-
ing and offering the right contributions for the right Newcomer OSS-Candidates.
Based on the results, I could not be able to provide concrete examples of con-
tributions that match a specific Newcomer OSS-Candidate as the majority is a
mixture of management and development activities. A potential future venue

13https://hacktoberfest.digitalocean.com/
14https://github.com/Bviveksingh/angular-starter/pull/1

58

https://hacktoberfest.digitalocean.com/
https://github.com/Bviveksingh/angular-starter/pull/1


for research could be to explore the kinds of OSS projects that these Newcomer
OSS-Candidates end up onboarding. This would provide insights into matching
the contributions to the onboarded OSS projects.

Suggestions for Researchers. It was speculated that non-software reposi-
tories that are personal have always been regarded as a challenge and are often
filtered out from the dataset. I find that the majority of targeted repositories are
software based repositories. Results include experimental (24%), documentation
(21%), and web-based-application-libraries-and-frameworks (17%).

For researchers, this insight helps to understand the role of software based ex-
perimental, documentation, and web-based-application-libraries-and-frameworks
repositories in platforms like GitHub, that should cater for developers. A poten-
tial avenue for research is to perform a finer-grain of analysis to understand the
nature of these repositories.

6 Threats to Validity

In this section, I now discuss threats to the validity of the study.

External Validity. Two external threats are identified. I performed an em-
pirical study on Newcomer OSS-Candidates that use GitHub the platform, and
my observations may not be generalized to other platforms. Hence, I use GitHub
as a case study. Another external threat is whether or not the 171 participants are
representative of all Newcomer OSS-Candidates of the GitHub platform. Hence,
I rely on the first contribution community. To represents the global population,
future work should be conducted with other communities.

Construct Validity. I summarize three threats regarding construct validity.
First, the qualitative analysis of manually classifying repositories and contribution
kinds (RQ1, RQ2) are prone to error. To mitigate this threat, I took a systematic
approach to first test the comprehension with 30 samples using Kappa agreement
scores with three separate individuals. The second threat is to identified first
contributions in RQ2 may not be actual contributions. To mitigate this, I per-
form a manual inspection to ignore any test, not meaningful contributions (i.e.,

59



commits or PRs) from any experimental repositories. The third potential threat
exists in the quantitative analysis of matching engineered software projects using
the curated database provided by Munaiah et al. [67]. I did contact the authors
for assistance to help run the latest scripts, but were unsuccessful. Although the
curated database might be outdated, I am confident that with the dataset, I was
able to match 936 repositories.

Internal Validity. I identify three internal threats. The first threat is the
first contributions by Newcomer OSS-Candidates may not be meaningful; they
just want to get into the GitHub way of doing things. To mitigate this, I applied
the first filter. The second internal threat to validity is related to results obtained
from the quantitative analysis of RQ3 adapted to data visualization. As per the
result, 27% and 41% of social coding is done by Newcomer OSS-Candidates in
their first commits and PRs. The final threat is regarding errors in the tracking
of repositories, due to repositories being deleted or a user changing user ids, as
studied by

7 Related Work

A steady of influx of new developers to an OSS project is crucial for its sustain-
ability. In this section, I compare and contrast the work to the prior studies
in three parts: first, I introduce the studies that are related to motivation for
newcomers and OSS projects; second, I consider the studies regarding onboard-
ing OSS projects; third, I discuss the studies with respect to the barriers that
newcomers face.

7.1 Studies on Onboarding Motivators:

The sustainability and ongoing success of many community-based Open Source
Software (OSS) projects hinge critically on the steady arrival of newcomers [37].
To facilitate the attraction of these newcomers and to alleviate the challenges
they face during the onboarding process, there has been significant research fo-
cused on understanding the motivations of contributors. Studies have delved into
understanding the motivations of contributors in Open Source Software (OSS)

60



from the perspective of distinct communities and roles. For instance, initial re-
search primarily focused on well-established OSS communities like Linux [43] and
Apache [80]. More recently, attention has shifted to newer communities, such as
those involved in blockchain technology [13]. In an extensive review by Von Krogh
et al. [108], which examined literature up to 2009, the researchers identified ten
categories of motivations for newcomers. These motivations were classified into
three groups: intrinsic, internalized-extrinsic, and extrinsic. Intrinsic motivation
is characterized by the impetus behind an action being derived from the inherent
interest or personal enjoyment associated with its execution. This form of moti-
vation encompasses a range of factors such as ideology, altruism, kinship, and the
simple pleasure derived from the activity itself [81]. Conversely, extrinsic motiva-
tion pertains to actions driven by the pursuit of distinct, external outcomes. Such
motivations are often centered around obtaining tangible rewards or benefits, such
as career advancements and financial compensation [38]. Developers have the ca-
pacity to internalize certain extrinsically motivated behaviors, thus transforming
them into internalized-extrinsic motivations. These internalized-extrinsic moti-
vations encompass factors such as reputation, reciprocity, the pursuit of knowl-
edge, and the intrinsic value derived from one’s own use of the acquired skills or
products [26, 39]. Within the literature, there is also notable attention directed
towards the motivating forces and elements of attraction that guide new partici-
pants toward engagement in projects. As an illustration, Lakhani and Wolf [51]
conducted research indicating that newcomers are primarily driven by external
incentives, such as improved employment prospects and career progression. Ad-
ditionally, these novices are motivated by intrinsic factors rooted in enjoyment,
code-related challenges, and the enhancement of their programming capabilities.
Moreover, Silva et al. [88], through the utilization of a combined methodology
involving surveys and interviews, have discerned that the primary impetus driv-
ing students to participate in the Google Summer of Code (GSoC) program is
the pursuit of an enriching experience, rather than an immediate commitment
to becoming regular contributors. Although the monetary stipends offered hold
significance as a motivating factor, the primary focus of student participation
in open-source software (OSS) projects lies in the acquisition of valuable work
experience and the cultivation of their careers. Besides, there is a complete body

61



of work that explored OSS developer’s motivation and project’s attractiveness
Meirelles et al. [62], Santos et al. [82], Shah [83], Ye and Kishida [109]. Studies
have also investigated the progression from newcomer to a core project mem-
ber Ducheneaut [28], Fang and Neufeld [34], Krogh et al. [48], Marlow et al.
[58], Nakakoji et al. [69]. On the other hand, Choi et al. [19] identified the seven
most frequently used socialization tactics which have impact on newcomers’ com-
mitment to online groups. Other parts of the literature focus on the forces of
motivation and attractiveness that drive newcomers towards projects. For exam-
ple, Lakhani and Wolf [51] have found that external benefits (e.g., better jobs,
career advancement) motivate primarily new contributors, along enjoyment-based
intrinsic, code-based challenges, and improving programming skills. Compared
to these, my study investigates how Newcomer OSS-Candidates contribute to
both software (e.g., experimental, documentation, and web-based-application-
libraries-and-frameworks ) and non-software (e.g., academic, Web, and storage)
repositories. Different to prior work, the goal is to study potential Newcomer
OSS-Candidates that have the intention to onboard an OSS project.

7.2 Studies on Onboarding to Organizations

Organizational socialization, often referred to as onboarding, denotes a system-
atic progression by which new employees transition from their initial status as
external entities to attain the status of integral constituents within an organiza-
tion. The term "onboarding" encapsulates the comprehensive process aimed at
facilitating the acquisition of essential knowledge, competencies, and behaviors
requisite for achieving success within the context of their newly affiliated orga-
nizations. [8, 105]. Similarly, within the context of onboarding organizations, a
pivotal concept revolves around that of the "newcomer," signifying an individ-
ual who is freshly joining an organization’s workforce. It is worth noting that
newcomers can also encompass individuals who are transitioning within the or-
ganization, such as those moving from one department to another or from one
team to another. In contrast, two contrasting terms come to the fore: "outsiders"
and "insiders." An "outsider" denotes an individual who is unfamiliar with the
organization or team, while an "insider" denotes a seasoned staff member. It is

62



important to underscore that the transformation from an outsider to an insider
is a gradual process that unfolds over time, with onboarding constituting the ini-
tial phase of this progression. “To cross inclusionary boundaries means that [an
outsider] becomes an insider with all the rights and privileges that go with such a
position.” [105]. Besides, existing scholarly investigations on onboarding can be
categorized into four discrete viewpoints, as outlined by references [47]. These
include the stages of progression for newcomers as outlined by BUCHANAN II
[16], Feldman [35], the roles of actors involved with the onboarding of newcomers
by Ashforth [3], Morrison [66], the strategies and practices employed by organi-
zations for the onboarding of newcomers as elucidated by Bauer [7], Van Maanen
and Schein [105], and finally, the content that newcomers are required to learned
during the onboarding process, a topic explored by Chao et al. [18], Feldman
[35]. Moreover, Dagenais et al. [25] identified three key factors that facilitate the
integration of newcomer developers into software projects. These factors encom-
pass early experimentation, the internalization of various project structures and
cultures, and the regular validation of progress. Their investigation, grounded
in qualitative research methods, involved interviews with 18 developers who had
recently become part of ongoing software projects. It is noteworthy that the ma-
jority of the interviewees possessed prior experience in software development, and
all were operating within agile teams, although the primary focus of the study did
not center on agility. The sole agile practice emphasized as particularly beneficial
and effective for newcomer orientation was the daily Scrum meeting. Compared
to the literature, my study of systematic mapping highlights trends, identifies
gaps, and provides insights into the evolution of onboarding tools and methods.
It aims to deepen the understanding of onboarding challenges, practices, and the
impact on software development communities and professional environments.

7.3 Studies on the Onboarding Process:

Numerous studies within the field of software engineering have delved into the on-
boarding procedures associated with open-source software (OSS) projects. Fager-
holm et al. [31] provided initial insights and ongoing research findings pertaining
to the onboarding process within virtual OSS teams. Furthermore, the impact of
newcomers’ onboarding into OSS projects extends beyond the realm of OSS itself,

63



as demonstrated by the work of Dagenais et al. [24] and Begel and Simon [9] in the
context of commercial software development environments. Additionally, Duche-
neaut [28] took a sociological perspective when investigating onboarding, focusing
on the viewpoints and experiences of individual developers. In addition to the
aforementioned online theories and strategies, it is noteworthy that mentoring has
traditionally served as a widely embraced approach within open-source software
(OSS) communities. Mentoring is acknowledged as a pivotal element in facili-
tating the successful onboarding of newcomers into OSS projects, a perspective
supported by the research of Fagerholm et al. [32] and Musicant et al. [68]. In their
study, [99] characterized mentoring as a fundamental mechanism for the transfer
of essential knowledge within enterprise contexts. Formal mentoring programs
for newcomers in open-source software (OSS) projects are infrequently imple-
mented, primarily because mentoring students takes alot of time and energy, and
experienced individuals are often preoccupied with their own commitments [28].
Nonetheless, an increasing number of OSS communities have come to recognize
the significance of both attracting and mentoring newcomers, primarily driven by
the imperative of sustaining project longevity [32]. In order to facilitate effective
mentorship, researchers have undertaken investigations within OSS communities,
with a predominant focus on assessing the impact [86, 87] and devising strate-
gies for the mentoring process [5, 85, 97]. In contrast, another study conducted
by Krogh et al. [48] introduces a joining script designed to guide developers inter-
ested in participating in open-source software (OSS) projects. Nakakoji et al. [69]
have also examined OSS projects and proposed a classification of eight potential
joining roles organized into concentric layers, referred to as "the onion patch."
Furthermore, Zhou and Mockus [110] have identified a connection between an
individual’s willingness and the overall climate of a project, influencing the like-
lihood of an individual transitioning into a long-term contributor. Beside, there
have been several studies that investigated the onboarding process. Fagerholm
et al. [31] presented preliminary observations and results of in-progress research
that studied the process of onboarding into virtual OSS teams. Commercial soft-
ware development settings are also affected by newcomers onboarding towards
OSS projects, as described by Begel and Simon [9], Dagenais et al. [24]. Duche-
neaut [28] approached onboarding from a sociological point of view by considering

64



the perspective of individual developers. Previously, mentorship activity is rec-
ognized as an important factor for effective onboarding of newcomers towards
OSS projects Fagerholm et al. [31, 32], Musicant et al. [68]. Swap et al. [99]
described mentoring in their study as a basic knowledge transfer mechanism in
the enterprise. A joining script is proposed in another study by Krogh et al. [48]
for developers who want to take participate in OSS project. Nakakoji et al. [69]
also studied the OSS project and proposed eight possible joining roles comprise
of concentric layers called “the onion patch”. Zhou and Mockus [110] found that
the willingness of individual and project’s climate were associated with odds that
an individual would become a long-term contributor. Different from previous
research, my study looks at the activities of potential newcomers before they
onboard to Open Source Software on GitHub projects.

7.4 Studies on Social Coding on GitHub

GitHub, as a prominent social coding platform, stands out as the most widely
adopted open-source version control platform. It functions as a repository for
hosting various software and non-software projects, providing essential features
such as pull request management, issue tracking, and workflow management [57,
77]. As of the time of this study, GitHub hosted an impressive count of over three
hundred million repositories and served as a platform for more than a hundred
million developers15. The inclination of individuals to establish new teams or
transition to existing ones is significantly enhanced by the presence of technical
standards and platforms. GitHub, in particular, serves as a prevalent and widely
embraced distributed platform for code sharing and version control. Develop-
ers commonly possess a high level of familiarity with systems like git, which is
supported by GitHub, and the collaborative processes it enables, thereby stream-
lining the process of contributing to, initiating, or transitioning to team projects
on this platform. Nevertheless, GitHub extends its facilitative role in team for-
mation and migration beyond technical aspects, thanks to its incorporation of
social coding features. These features enable developers to monitor and assess
each other’s activities, thereby forming comprehensive impressions of their social
and technical competencies and conduct. The actions undertaken by developers

15https://octoverse.github.com/

65

https://octoverse.github.com/


on GitHub, such as bug reporting, pull request submissions, and commenting,
are not solely archived but can also be tracked by fellow users and conveniently
accessed through user-designated "home" pages. These records furnish a valu-
able vantage point not only for assessing an individual’s technical competencies
but also for gauging their social aptitudes and inclinations16. Lima et al. [56] con-
structed networks delineating the relationships among individuals who follow and
collaborate with each other on GitHub, using push events related to code com-
mits as a basis. Their findings reveal that following relationships on the platform
tend to be unidirectional, and small teams frequently consist of members who are
geographically proximate to one another. In a related study, Marlow et al. [59]
emphasizes the pivotal role played by GitHub records in shaping developers’ per-
ceptions of one another, primarily through assessments of the work contributions
made by their peers. In an interview conducted by Begel et al. [10], Brain Doll
underscores that, in the current job landscape, “the number one way of getting a
job...right now” is to showcase one’s work on GitHub. His endorsement of GitHub
is substantiated by an article featured in D.Terdiman [27]. Dabbish et al. [23] cor-
roborate that developers indeed utilize these records, not only to form judgments
about their peers but also to manage and enhance their own online reputations.
Other notable advantage offered by a social coding platform is its capacity to
solicit contributions to software projects from members of the community [21].
The continuous influx of newcomers into these projects, actively engaging in the
development process, stands as a critical determinant of project success [71]. To
enhance the prospects of project success, it is imperative to devise strategies that
facilitate the onboarding of new developers and encourage their active partici-
pation in the project’s development activities. Different from these studies, my
study is conducted to specifically characterize the contributions patterns, social
coding activities, and onboarding proportion of novice developers to GitHub, a
key OSS platform.

7.5 Studies on the barriers to Onboarding:

Newcomers play a vital role in ensuring the viability, sustained success, and perpe-
tuity of open-source software (OSS) projects, as highlighted by Kula and Robles

16https://github.com/about

66

https://github.com/about


[49] in their 2019 study. Despite their eagerness to engage in OSS endeavors,
the onboarding of newcomers is often impeded by a range of social and technical
obstacles, as documented in previous research [41, 63, 93, 95]. These barriers be-
come apparent when newcomers endeavor to make contributions to OSS projects,
encompassing a multifaceted array of challenges. In a comprehensive systematic
literature review, Steinmacher et al. [93] have identified six primary categories
of barriers encountered during the onboarding of newcomers, which encompass
aspects related to newcomers’ attributes, orientation, reception, documentation,
technical complexities, and cultural disparities. Contrarily, research indicates
that the impediments posed by social factors during the onboarding process are
not only more prevalent but also more profound than technical obstacles [95].
In an additional study conducted by Mendez et al. [63], it was observed that
tool and infrastructure-related challenges are prevalent within the spectrum of
newcomer onboarding barriers, and these issues often encompass embedded so-
cial and cultural elements, such as gender biases. In contrast to conventional
software development practices, communication emerges as a particularly piv-
otal social hurdle for newcomers in the realm of software development. This
heightened significance is attributed to factors such as limited opportunities for
team members to convene in person, disparities in time zones, and variations in
cultural backgrounds [70, 100]. Facilitating the integration of newcomers into
open-source software (OSS) projects necessitates measures aimed at mitigating
the various barriers they encounter. To this end, a range of methodologies, guide-
lines, and tools have been put forth to assist newcomers in surmounting these ob-
stacles. A common approach to address technical impediments involves the pro-
vision of technical training, as indicated by several studies [4, 61]. This training
serves the purpose of equipping newcomers with the essential skills and knowl-
edge, thereby expediting their onboarding process [14, 22]. Additionally, in the
context of supporting newcomers’ onboarding, numerous research initiatives have
recommended the implementation of mentoring systems [5, 102], the assignment
of easily manageable bug resolution tasks [50, 101], and the establishment of a
dedicated portal site designed specifically for newcomers. Furthermore, my work
takes a first look at potential Newcomer OSS-Candidates before they onboard.
Hence, insights show that learning the social platform contribution process (i.e.,

67



PR process) may co-inside with onboarding.

8 Conclusion

In this work, I studied the activities of a particular category of potential contrib-
utors (i.e., Newcomer OSS-Candidates) towards OSS projects on GitHub. To do
that, I (i) analyze what kinds of repositories they target, (ii) investigate what
kinds of contributions come from them, (iii) analyze to what extent they practice
social coding with their contributions, and (iv) explore what proportion of them
eventually onboard an OSS project.

I observe that (i) 66% of Newcomer OSS-Candidates target software based
repositories; (ii) the majority of their contributions are related to development
activities and maintenance activities, respectively, for commits and PRs; (iii)
Newcomer OSS-Candidates are less likely to practice social coding in their con-
tributions in terms of multiple authorship; and (iv) 70% of them eventually on-
boarded OSS projects in a follow-up survey and cited that finding a way to start
is the most crucial barrier. As GitHub continues to grow, so does the possibility
to attract potential contributors to OSS projects. My work presents the first
step towards understanding these potential contributors and reveals insights to
provide a guidance for them to sustain themselves and join an OSS project.

68



5 | Conclusion

Onboarding within the realm of Software Engineering (SE) is recognized as a
critical practice, significantly influencing both open source software (OSS) and
proprietary software projects. Over the past decade, advancements in onboard-
ing tools and methodologies have facilitated more efficient integration processes,
gaining widespread acceptance in both OSS and organizational sectors. GitHub,
renowned as the premier Open Source version control platform, hosts a vast array
of over 3 hundred million repositories. It functions as a social coding platform
for both software and non-software projects. The literature underscores the crit-
icality of continually incorporating newcomers into GitHub OSS projects and
onboard them to the development process for the success of these ventures.

The dissertation titled "Understanding Newcomer Activities Prior to On-
boarding Open Source Software (OSS) Projects on GitHub" comprises the stud-
ies. The initial segment, titled "Systematic Map related Work" about the key
topics addressed of Developers’ Onboarding in Software Engineering", conducts a
systematic review of related work pertaining to developers’ onboarding in the field
of software engineering. The objective is to delineate the diversity and progression
of covering key topics addressed in both open-source software (OSS) and non-OSS
contexts. The subsequent segment, "Newcomer OSS-Candidates, characterizing
contributions, and analyzing onboarding proportion to GitHub OSS projects,"
delves into empirical investigations broken into three parts: (i) identifying New-
comers OSS-candidates (ii) validation and characterizing their pre-onboarding
contributions, and finally (iv) investigate their onboarding proportion to GitHub
OSS projects, a renowned OSS platform. The overarching goal of the disserta-
tion is to amalgamate insights garnered from a comprehensive and wide-ranging

69



systematic mapping study with focused empirical observations. This holistic ap-
proach aims to provide a thorough comprehension of developer onboarding within
the OSS landscape, with a particular emphasis on pre-onboarding strategies for
integration and the potential contributions of novice developers.

1 Contributions

The findings derived from this thesis have the potential to offer advantages to
a broad spectrum of stakeholders, including developers, researchers, and prac-
titioners. In the following sections, I summarize the contributions and provide
recommendations for each part as follows:

Part I Map for future Onboarding Research

• Concerning topics addressed in onboarding stuides, I identify that the ma-
jority of studies have leveraged data on contributions to gain a deeper un-
derstanding of people (38 studies) and systems (21 studies) within the com-
prehension of the software engineering process. Conversely, the characteri-
zation of contribution assessments has been less frequently addressed, with
an emphasis on the evaluation of team or developer performance when such
characterization occurs.

Suggestion. The study uncovers a wide range of topics, with a notable
concentration on understanding software engineering phenomena and con-
structing models and tools. The implication here is that there is an op-
portunity for future research to explore less addressed areas, such as the
characterization of contribution assessments and the training aspect of on-
boarding.

These overall findings of the systematic literature review collectively highlight
the dynamic and evolving nature of SE onboarding research, pointing toward
potential areas for future investigations to enrich the field.

Part II Newcomer OSS-Candidates: Characterizing Contributions of
Novice Developers

70



Table 5.1. Guidelines for (N)Newcomers and (PM)Project Maintainers

Guidelines

N) Encouraged to start with manageable tasks to overcome initial barriers
like finding a way to start.
N) Take a start with forking experimental software-based repositories.
N) Create upstream software-based documentation repositories.
N) Initially focusing on adding new content by making the first commit.
N) For PR, focus on formatting code, cleaning up, and updating documentation.
N) Engage in individual contributions in the beginning at social coding platform.

PM) Start with tasks to update documentation, formatting or cleaning up code.
PM) finding a way to start is notable barrier, suggesting need for clearer
pathways for engagement in OSS projects.
PM) OSS projects will benefit by offering right tasks for a suitable newcomer.

• For target repositories, I observe that 66% of Newcomer OSS-Candidates
target software based repositories. Furthermore, Experimental and Doc-
umentation are the most frequently targeted software repository kinds for
fork and upstream repositories, i.e., 24% and 21%, and web-based-application-
librariesand-frameworks (17%). respectively.

Suggestion. The study finds that Newcomer OSS-Candidates primarily
target software-based repositories. This indicates a potential interest in soft-
ware development activities among newcomers to GitHub. For researchers,
this insight helps to understand the role of software based experimental,
documentation, and web-based-applicationlibraries-and-frameworks reposi-
tories in platforms like GitHub, that should cater for developers. A potential
avenue for research is to perform a finer-grain of analysis to understand the
nature of these repositories.

• For the first commit contributions, I find that 74% of contributions from
Newcomer OSS-Candidates are related to development activities. For the
first PR contributions, the results show that 60% of contributions are asso-
ciated with management activities.

71



Suggestion. Newcomers tend to focus more on development activities
in their initial contributions, suggesting that initial engagements are often
about adding new content or doing management changes. Hence, I suggest
that Newcomer OSS-Candidates may not have the required skills to make
immediate contributions. Instead, they may start with software-based up-
stream experimental repositories. Hence, for OSS project, it might start
with tasks to update the documentation, formatting or cleaning up code.

• Third, concerning social coding, the results show that after joining GitHub,
a majority of Newcomer OSS-Candidates (i.e., 73% of first commits and
59% of PRs) do not share code with other authors.

Suggestion. The majority of Newcomer OSS-Candidates do not practice
social coding with their first contributions, indicating a tendency towards
individual work in the initial stages. I also conclude that it is unlikely that
Newcomer OSS-Candidates will be onboard to OSS projects immediately
after joining GitHub.

• Fourth, concerning onboarding proportion, results shows that 30% of New-
comer OSS-candidates eventually onboarded engineered OSS repositories.
Complementary, a follow-up user survey shows that 70% of the studied par-
ticipants ended up making contributions to an OSS repository. Newcomer
OSSCandidates strongly agreed that they face the barrier of finding a way
to start, while social interaction received the most mixed responses as a
barrier.

Suggestion. A significant proportion of Newcomer OSS-Candidates even-
tually contribute to OSS projects. However, finding a way to start is a
notable barrier, suggesting the need for clearer pathways for engagement in
OSS projects.

Combining all results, I recommend that Newcomer OSS-Candidates should
not be afraid to individually contribute to their own code, contribute to up-
stream software repositories, or fork OSS projects before attempting to onboard.
Table 5.1 presents more clearer and concrete guidelines for Newcomer OSS-
Candidates and project maintainers to follow.

72



Appendix A. Selected studies

• C001. Sharma, G.G. and Stol, K.J., 2020. Exploring onboarding success,
organizational fit, and turnover intention of software professionals. Journal
of Systems and Software, 159, p.110442.

• C002. Gregory, P., Strode, D.E., Sharp, H. and Barroca, L., 2022. An
onboarding model for integrating newcomers into agile project teams. In-
formation and Software Technology, 143, p.106792.

• C003. Yates, R., Power, N. and Buckley, J., 2020. Characterizing the
transfer of program comprehension in onboarding: an information-push
perspective. Empirical Software Engineering, 25, pp.940-995.

• C004. Britto, R., Smite, D., Damm, L.O. and Börstler, J., 2020. Eval-
uating and strategizing the onboarding of software developers in large-
scale globally distributed projects. Journal of Systems and Software, 169,
p.110699.

• C005. Tan, X., Zhou, M. and Zhang, L., 2023. Understanding Men-
tors’ Engagement in OSS Communities via Google Summer of Code. IEEE
Transactions on Software Engineering.

• C006. Steinmacher, I., Silva, M.A.G., Gerosa, M.A. and Redmiles, D.F.,
2015. A systematic literature review on the barriers faced by newcomers to
open source software projects. Information and Software Technology, 59,
pp.67-85.

• C007. Padala, H.S., Mendez, C., Fronchetti, F., Steinmacher, I., Steine-
Hanson, Z., Hilderbrand, C., Horvath, A., Hill, C., Simpson, L., Burnett, M.
and Gerosa, M., 2020. How gender-biased tools shape newcomer experiences
in oss projects. IEEE Transactions on Software Engineering, 48(1), pp.241-
259.

• C008. Steinmacher, I., Treude, C. and Gerosa, M.A., 2018. Let me
in: Guidelines for the successful onboarding of newcomers to open source
projects. IEEE Software, 36(4), pp.41-49.

73



• C009. Yue, Y., Wang, Y. and Redmiles, D., 2022. Off to a Good Start:
Dynamic Contribution Patterns and Technical Success in an OSS New-
comer’s Early Career. IEEE Transactions on Software Engineering, 49(2),
pp.529-548.

• C010. Fagerholm, F., Guinea, A.S., Borenstein, J. and Münch, J., 2014.
Onboarding in open source projects. IEEE Software, 31(6), pp.54-61.

• C011. Liu, C., Yang, D., Zhang, X., Ray, B. and Rahman, M.M., 2018.
Recommending github projects for developer onboarding. IEEE Access, 6,
pp.52082-52094.

• C012. Bao, L., Xia, X., Lo, D. and Murphy, G.C., 2019. A large scale study
of long-time contributor prediction for GitHub projects. IEEE Transactions
on Software Engineering, 47(6), pp.1277-1298.

• C013. Assavakamhaenghan, N., Wattanakriengkrai, S., Shimada, N., Kula,
R.G., Ishio, T. and Matsumoto, K., 2023. Does the first response matter
for future contributions? A study of first contributions. Empirical Software
Engineering, 28(3), p.75.

• C014. Gharehyazie, M., Posnett, D., Vasilescu, B. and Filkov, V., 2015.
Developer initiation and social interactions in OSS: A case study of the
Apache Software Foundation. Empirical Software Engineering, 20, pp.1318-
1353.

• C015. Foundjem, A., Constantinou, E., Mens, T. and Adams, B., 2022.
A mixed-methods analysis of micro-collaborative coding practices in Open-
Stack. Empirical Software Engineering, 27(5), p.120.

• C016. Wang, D., Kondo, M., Kamei, Y., Kula, R.G. and Ubayashi, N.,
2023. When conversations turn into work: a taxonomy of converted discus-
sions and issues in GitHub. Empirical Software Engineering, 28(6), p.138.

• C017. Pinto, G., Steinmacher, I., Dias, L.F. and Gerosa, M., 2018. On
the challenges of open-sourcing proprietary software projects. Empirical
Software Engineering, 23, pp.3221-3247.

74



• C018. Calefato, F., Gerosa, M.A., Iaffaldano, G., Lanubile, F. and Stein-
macher, I., 2022. Will you come back to contribute? Investigating the
inactivity of OSS core developers in GitHub. Empirical Software Engineer-
ing, 27(3), p.76.

• C019. Wang, Y. and Redmiles, D., 2021. IIAG: a data-driven and theory-
inspired approach for advising how to interact with new remote collabora-
tors in OSS teams. Automated Software Engineering, 28(2), p.5.

• C020. Li, Z., Yu, Y., Wang, T., Yin, G., Li, S. and Wang, H., 2021. Are
you still working on this? An empirical study on pull request abandonment.
IEEE Transactions on Software Engineering, 48(6), pp.2173-2188.

• C021. Trinkenreich, B., Guizani, M., Wiese, I., Conte, T., Gerosa, M.,
Sarma, A. and Steinmacher, I., 2021. Pots of Gold at the End of the Rain-
bow: What is Success for Open Source Contributors?. IEEE Transactions
on Software Engineering, 48(10), pp.3940-3953.

• C022. Barcomb, A., Stol, K.J., Fitzgerald, B. and Riehle, D., 2020. Man-
aging episodic volunteers in free/libre/open source software communities.
IEEE Transactions on Software Engineering, 48(1), pp.260-277.

• C023. Sarker, J., Turzo, A.K., Dong, M. and Bosu, A., 2023. Automated
Identification of Toxic Code Reviews Using ToxiCR. ACM Transactions on
Software Engineering and Methodology.

• C024. Calefato, F., Lanubile, F. and Vasilescu, B., 2019. A large-scale,
in-depth analysis of developers’ personalities in the apache ecosystem. In-
formation and Software Technology, 114, pp.1-20.

• C025. Wessel, M., De Souza, B.M., Steinmacher, I., Wiese, I.S., Polato, I.,
Chaves, A.P. and Gerosa, M.A., 2018. The power of bots: Characterizing
and understanding bots in oss projects. Proceedings of the ACM on Human-
Computer Interaction, 2(CSCW), pp.1-19.

• C026. Wang, Y., Kadiyala, H. and Rubin, J., 2021. Promises and chal-
lenges of microservices: an exploratory study. Empirical Software Engi-
neering, 26(4), p.63.

75



• C027. Wessel, M., Serebrenik, A., Wiese, I., Steinmacher, I. and Gerosa,
M.A., 2022. Quality gatekeepers: investigating the effects of code review
bots on pull request activities. Empirical Software Engineering, 27(5),
p.108.

• C028. Kavaler, D., Devanbu, P. and Filkov, V., 2019. Whom are you
going to call? determinants of@-mentions in github discussions. Empirical
Software Engineering, 24, pp.3904-3932.

• C029. Maeprasart, V., Wattanakriengkrai, S., Kula, R.G., Treude, C. and
Matsumoto, K., 2023. Understanding the role of external pull requests in
the NPM ecosystem. Empirical Software Engineering, 28(4), pp.1-23.

• C030. Warncke-Wang, M., Ho, R., Miller, M. and Johnson, I., 2023. In-
creasing Participation in Peer Production Communities with the Newcomer
Homepage. Proceedings of the ACM on Human-Computer Interaction,
7(CSCW2), pp.1-26.

• C031. Fritz, T., Murphy, G.C., Murphy-Hill, E., Ou, J. and Hill, E., 2014.
Degree-of-knowledge: Modeling a developer’s knowledge of code. ACM
Transactions on Software Engineering and Methodology (TOSEM), 23(2),
pp.1-42.

• C032. Wang, Z., Feng, Y., Wang, Y., Jones, J.A. and Redmiles, D., 2020.
Unveiling elite developers’ activities in open source projects. ACM Transac-
tions on Software Engineering and Methodology (TOSEM), 29(3), pp.1-35.

• C033. Lee, S., Wu, R., Cheung, S.C. and Kang, S., 2019. Automatic
detection and update suggestion for outdated api names in documentation.
IEEE Transactions on Software Engineering, 47(4), pp.653-675.

• C034. Barcomb, A., Kaufmann, A., Riehle, D., Stol, K.J. and Fitzger-
ald, B., 2018. Uncovering the periphery: A qualitative survey of episodic
volunteering in free/libre and open source software communities. IEEE
Transactions on Software Engineering, 46(9), pp.962-980.

76



• C035. Zhang, Y., Liu, H., Tan, X., Zhou, M., Jin, Z. and Zhu, J., 2022.
Turnover of companies in OpenStack: Prevalence and rationale. ACM
Transactions on Software Engineering and Methodology (TOSEM), 31(4),
pp.1-24.

• C036. Chinthanet, B., Reid, B., Treude, C., Wagner, M., Kula, R.G.,
Ishio, T. and Matsumoto, K., 2021. What makes a good Node. js pack-
age? Investigating Users, Contributors, and Runnability. arXiv preprint
arXiv:2106.12239.

• C037. Trinkenreich, B., Guizani, M., Wiese, I., Sarma, A. and Stein-
macher, I., 2020. Hidden figures: Roles and pathways of successful oss
contributors. Proceedings of the ACM on human-computer interaction,
4(CSCW2), pp.1-22.

• C038. Guizani, M., Chatterjee, A., Trinkenreich, B., May, M.E., Noa-
Guevara, G.J., Russell, L.J., Cuevas Zambrano, G.G., Izquierdo-Cortazar,
D., Steinmacher, I., Gerosa, M.A. and Sarma, A., 2021. The long road
ahead: Ongoing challenges in contributing to large oss organizations and
what to do. Proceedings of the ACM on Human-Computer Interaction,
5(CSCW2), pp.1-30.

• C039. Liu, Y., Noei, E. and Lyons, K., 2022. How ReadMe files are struc-
tured in open source Java projects. Information and Software Technology,
148, p.106924.

• C040. Wessel, M., Wiese, I., Steinmacher, I. and Gerosa, M.A., 2021.
Don’t disturb me: Challenges of interacting with software bots on open
source software projects. Proceedings of the ACM on Human-Computer
Interaction, 5(CSCW2), pp.1-21.

• C041. Kapitsaki, G.M., Tselikas, N.D., Kyriakou, K.I.D. and Papout-
soglou, M., 2022. Help me with this: A categorization of open source
software problems. Information and Software Technology, 152, p.107034.

• C042. Wang, T., Wang, S. and Chen, T.H.P., 2023. Study the correlation
between the readme file of GitHub projects and their popularity. Journal

77



of Systems and Software, 205, p.111806.

• C043. Li, R., Pandurangan, P., Frluckaj, H. and Dabbish, L., 2021. Code
of conduct conversations in open source software projects on github. Pro-
ceedings of the ACM on Human-computer Interaction, 5(CSCW1), pp.1-31.

• C044. Santos, F., Vargovich, J., Trinkenreich, B., Santos, I., Penney, J.,
Britto, R., Pimentel, J.F., Wiese, I., Steinmacher, I., Sarma, A. and Gerosa,
M.A., 2023. Tag that issue: Applying API-domain labels in issue tracking
systems. arXiv preprint arXiv:2304.02877.

• C045. Frluckaj, H., Dabbish, L., Widder, D.G., Qiu, H.S. and Herbsleb,
J.D., 2022. Gender and participation in open source software development.
Proceedings of the ACM on Human-Computer Interaction, 6(CSCW2),
pp.1-31.

• C046. Mueller, D. and Izquierdo-Cortazar, D., 2019. From art to science:
The evolution of community development. IEEE Software, 36(6), pp.23-28.

• C047. Steinmacher, I., Gerosa, M.A. and Redmiles, D., 2014, Febru-
ary. Attracting, onboarding, and retaining newcomer developers in open
source software projects. In Workshop on Global Software Development in
a CSCW Perspective (Vol. 16, p. 20).

• C048. Azanza, M., Irastorza, A., Medeiros, R. and Díaz, O., 2021, May.
Onboarding in software product lines: Concept maps as welcome guides. In
2021 IEEE/ACM 43rd International Conference on Software Engineering:
Software Engineering Education and Training (ICSE-SEET) (pp. 122-133).
IEEE.

• C049. Ju, A., Sajnani, H., Kelly, S. and Herzig, K., 2021, May. A case
study of onboarding in software teams: Tasks and strategies. In 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE)
(pp. 613-623). IEEE.

• C050. Medeiros, R., 2021, May. Unburdening onboarding in software prod-
uct lines. In 2021 IEEE/ACM 43rd International Conference on Software

78



Engineering: Companion Proceedings (ICSE-Companion) (pp. 260-262).
IEEE.

• C051. Horiguchi, H., Omori, I. and Ohira, M., 2021, March. Onboarding
to open source projects with good first issues: A preliminary analysis. In
2021 IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER) (pp. 501-505). IEEE.

• C052. Labuschagne, A. and Holmes, R., 2015, May. Do onboarding pro-
grams work?. In 2015 IEEE/ACM 12th Working Conference on Mining
Software Repositories (pp. 381-385). IEEE.

• C053. Pham, R., 2014, November. Improving the software testing skills
of novices during onboarding through social transparency. In Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering (pp. 803-806).

• C054. Hilton, M. and Begel, A., 2018, May. A study of the organizational
dynamics of software teams. In Proceedings of the 40th International Con-
ference on Software Engineering: Software Engineering in Practice (pp.
191-200).

• C055. Casalnuovo, C., Vasilescu, B., Devanbu, P. and Filkov, V., 2015,
August. Developer onboarding in GitHub: the role of prior social links
and language experience. In Proceedings of the 2015 10th joint meeting on
foundations of software engineering (pp. 817-828).

• C056. Tan, X., Zhou, M. and Sun, Z., 2020, November. A first look
at good first issues on GitHub. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (pp. 398-409).

• C057. Fronchetti, F., Shepherd, D.C., Wiese, I., Treude, C., Gerosa, M.A.
and Steinmacher, I., 2023. Do CONTRIBUTING Files Provide Information
about OSS Newcomers’ Onboarding Barriers?.

79



• C058. Santos, I., Wiese, I., Steinmacher, I., Sarma, A. and Gerosa, M.A.,
2022, March. Hits and Misses: Newcomers’ ability to identify Skills needed
for OSS tasks. In 2022 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER) (pp. 174-183). IEEE.

• C059. Rodeghero, P., Zimmermann, T., Houck, B. and Ford, D., 2021,
May. Please turn your cameras on: Remote onboarding of software develop-
ers during a pandemic. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering: Software Engineering in Practice (ICSE-SEIP)
(pp. 41-50). IEEE.

• C060. Rehman, I., Wang, D., Kula, R.G., Ishio, T. and Matsumoto, K.,
2020, September. Newcomer candidate: Characterizing contributions of
a novice developer to github. In 2020 IEEE international conference on
software maintenance and evolution (ICSME) (pp. 855-855). IEEE.

• C061. Stanik, C., Montgomery, L., Martens, D., Fucci, D. and Maalej,
W., 2018, September. A simple nlp-based approach to support onboarding
and retention in open source communities. In 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME) (pp. 172-
182). IEEE.

• C062. He, H., Zhou, M., Wang, Q. and Li, J., 2023, May. Open Source
Software Onboarding as a University Course: An Experience Report. In
2023 IEEE/ACM 45th International Conference on Software Engineering:
Software Engineering Education and Training (ICSE-SEET) (pp. 324-336).
IEEE.

• C063. Steinmacher, I., Conte, T.U., Treude, C. and Gerosa, M.A., 2016,
May. Overcoming open source project entry barriers with a portal for new-
comers. In Proceedings of the 38th International Conference on Software
Engineering (pp. 273-284).

• C064. Kumar, S., Wallace, C. and Young, M., 2016, May. Mentoring
trajectories in an evolving agile workplace. In Proceedings of the 38th
International Conference on Software Engineering Companion (pp. 142-
151).

80



• C065. Mendez, C., Padala, H.S., Steine-Hanson, Z., Hilderbrand, C., Hor-
vath, A., Hill, C., Simpson, L., Patil, N., Sarma, A. and Burnett, M., 2018,
May. Open source barriers to entry, revisited: A sociotechnical perspective.
In Proceedings of the 40th International conference on software engineering
(pp. 1004-1015).

• C066. He, H., Su, H., Xiao, W., He, R. and Zhou, M., 2022, Novem-
ber. GFI-bot: automated good first issue recommendation on GitHub. In
Proceedings of the 30th ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering (pp.
1751-1755).

• C067. Xiao, W., He, H., Xu, W., Tan, X., Dong, J. and Zhou, M., 2022,
May. Recommending good first issues in GitHub OSS projects. In Pro-
ceedings of the 44th International Conference on Software Engineering (pp.
1830-1842).

• C068. Silva, J., Wiese, I., German, D.M., Treude, C., Gerosa, M.A. and
Steinmacher, I., 2020, November. A theory of the engagement in open
source projects via summer of code programs. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (pp. 421-431).

• C069. Guizani, M., Zimmermann, T., Sarma, A. and Ford, D., 2022, May.
Attracting and retaining oss contributors with a maintainer dashboard. In
Proceedings of the 2022 ACM/IEEE 44th International Conference on Soft-
ware Engineering: Software Engineering in Society (pp. 36-40).

• C070. Lee, A., 2018. One-time contributors to FLOSS: surveys and data
analysis. ACM SIGSOFT Software Engineering Notes, 43(1), pp.1-6.

• C071. Sarma, A., Gerosa, M.A., Steinmacher, I. and Leano, R., 2016,
November. Training the future workforce through task curation in an OSS
ecosystem. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (pp. 932-935).

81



• C072. Bayati, S., 2018, May. Understanding newcomers success in open
source community. In Proceedings of the 40th International Conference on
Software Engineering: Companion Proceeedings (pp. 224-225).

• C073. Pham, R., Stoliar, Y. and Schneider, K., 2015, August. Auto-
matically recommending test code examples to inexperienced developers.
In Proceedings of the 2015 10th joint meeting on foundations of software
engineering (pp. 890-893).

• C074. Feng, Z., Chatterjee, A., Sarma, A. and Ahmed, I., 2022, November.
A case study of implicit mentoring, its prevalence, and impact in apache. In
Proceedings of the 30th ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering (pp.
797-809).

• C075. Santos, F., 2023. Supporting the Task-driven Skill Identification
in Open Source Project Issue Tracking Systems. ACM SIGSOFT Software
Engineering Notes, 48(1), pp.54-58.

• C076. Panichella, S., 2015, September. Supporting newcomers in software
development projects. In 2015 IEEE international conference on software
maintenance and evolution (ICSME) (pp. 586-589). IEEE.

• C077. Santos, I., Pimentel, J.F., Wiese, I., Steinmacher, I., Sarma, A.
and Gerosa, M.A., 2023. Designing for Cognitive Diversity: Improving the
GitHub Experience for Newcomers. arXiv preprint arXiv:2301.10912.

• C078. Xiao, W., Li, J., He, H., Qiu, R. and Zhou, M., 2023. Personalized
First Issue Recommender for Newcomers in Open Source Projects. arXiv
preprint arXiv:2308.09038.

• C079. Santos, F., 2023, May. Skill Recommendation for New Contributors
in Open-Source Software. In 2023 IEEE/ACM 45th International Confer-
ence on Software Engineering: Companion Proceedings (ICSE-Companion)
(pp. 311-313). IEEE.

82



• C080. Wessel, M., Gerosa, M.A. and Shihab, E., 2022, May. Software bots
in software engineering: benefits and challenges. In Proceedings of the 19th
International Conference on Mining Software Repositories (pp. 724-725).

• C081. Trinkenreich, B., 2021, May. Please Don’t Go—A Comprehensive
Approach to Increase Women’s Participation in Open Source Software. In
2021 IEEE/ACM 43rd International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion) (pp. 293-298). IEEE.

• C082. Steinmacher, I., Pinto, G., Wiese, I.S. and Gerosa, M.A., 2018,
May. Almost there: A study on quasi-contributors in open source software
projects. In Proceedings of the 40th International Conference on Software
Engineering (pp. 256-266).

• C083. Tan, X., Chen, Y., Wu, H., Zhou, M. and Zhang, L., 2023. Is It
Enough to Recommend Tasks to Newcomers? Understanding Mentoring on
Good First Issues. arXiv preprint arXiv:2302.05058.

• C084. Gerosa, M., Wiese, I., Trinkenreich, B., Link, G., Robles, G.,
Treude, C., Steinmacher, I. and Sarma, A., 2021, May. The shifting sands
of motivation: Revisiting what drives contributors in open source. In 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE)
(pp. 1046-1058). IEEE.

• C085. Pinto, G., Ferreira, C., Souza, C., Steinmacher, I. and Meirelles,
P., 2019, May. Training software engineers using open-source software: the
students’ perspective. In 2019 IEEE/ACM 41st International Conference
on Software Engineering: Software Engineering Education and Training
(ICSE-SEET) (pp. 147-157). IEEE.

• C086. Anderson, J., Steinmacher, I. and Rodeghero, P., 2020, September.
Assessing the Characteristics of FOSS Contributions in Network Automa-
tion Projects. In 2020 IEEE International Conference on Software Mainte-
nance and Evolution (ICSME) (pp. 324-335). IEEE.

• C087. Barcomb, A., Stol, K.J., Riehle, D. and Fitzgerald, B., 2019,
May. Why do episodic volunteers stay in FLOSS communities?. In 2019

83



IEEE/ACM 41st International Conference on Software Engineering (ICSE)
(pp. 948-959). IEEE.

• C088. Huang, Y., Ford, D. and Zimmermann, T., 2021, May. Leaving
my fingerprints: Motivations and challenges of contributing to OSS for
social good. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE) (pp. 1020-1032). IEEE.

• C089. Dutta, R., Costa, D.E., Shihab, E. and Tajmel, T., 2023. Diversity
Awareness in Software Engineering Participant Research. arXiv preprint
arXiv:2302.00042.

• C090. Tómasdóttir, K.F., Aniche, M. and Van Deursen, A., 2017, October.
Why and how JavaScript developers use linters. In 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE) (pp.
578-589). IEEE.

• C091. Xiao, W., He, H., Xu, W., Zhang, Y. and Zhou, M., 2023. How
Early Participation Determines Long-Term Sustained Activity in GitHub
Projects?. arXiv preprint arXiv:2308.06005.

• C092. Pinto, G., Steinmacher, I. and Gerosa, M.A., 2016, March. More
common than you think: An in-depth study of casual contributors. In 2016
IEEE 23rd international conference on software analysis, evolution, and
reengineering (SANER) (Vol. 1, pp. 112-123). IEEE.

• C093. Dias, L.F., Steinmacher, I., Pinto, G., Da Costa, D.A. and Gerosa,
M., 2016, October. How does the shift to GitHub impact project collabora-
tion?. In 2016 IEEE international conference on software maintenance and
evolution (ICSME) (pp. 473-477). IEEE.

• C094. Rahman, A., Bhuiyan, F.A., Hassan, M.M., Shahriar, H. and Wu,
F., 2022, June. Towards Automation for MLOps: An Exploratory Study of
Bot Usage in Deep Learning Libraries. In 2022 IEEE 46th Annual Comput-
ers, Software, and Applications Conference (COMPSAC) (pp. 1093-1097).
IEEE.

84



• C095. Fang, H., Lamba, H., Herbsleb, J. and Vasilescu, B., 2022, May. "
This is damn slick!" estimating the impact of tweets on open source project
popularity and new contributors. In Proceedings of the 44th International
Conference on Software Engineering (pp. 2116-2129).

• C096. Qiu, H.S., Li, Y.L., Padala, S., Sarma, A. and Vasilescu, B.,
2019. The signals that potential contributors look for when choosing open-
source projects. Proceedings of the ACM on Human-Computer Interaction,
3(CSCW), pp.1-29.

• C097. Santos, F., Penney, J., Pimentel, J.F., Wiese, I., Steinmacher, I.
and Gerosa, M.A., 2023. Tell Me Who Are You Talking to and I Will Tell
You What Issues Need Your Skills.

• C098. Santos, F., Wiese, I., Trinkenreich, B., Steinmacher, I., Sarma, A.
and Gerosa, M.A., 2021, May. Can i solve it? identifying apis required to
complete oss tasks. In 2021 IEEE/ACM 18th International Conference on
Mining Software Repositories (MSR) (pp. 346-257). IEEE.

• C099. Silva, J.D.O., Wiese, I.S., German, D.M., Steinmacher, I.F. and
Gerosa, M.A., 2017, September. How long and how much: What to expect
from summer of code participants?. In 2017 IEEE International Conference
on Software Maintenance and Evolution (ICSME) (pp. 69-79). IEEE.

• C100. Vargovich, J., Santos, F., Penney, J., Gerosa, M.A. and Stein-
macher, I., 2023. Givemelabeledissues: An open source issue recommenda-
tion system. arXiv preprint arXiv:2303.13418.

• C101. Gautam, A., Vishwasrao, S. and Servant, F., 2017, May. An empir-
ical study of activity, popularity, size, testing, and stability in continuous
integration. In 2017 IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR) (pp. 495-498). IEEE.

• C102. Middleton, J., Murphy-Hill, E., Green, D., Meade, A., Mayer, R.,
White, D. and McDonald, S., 2018, May. Which contributions predict
whether developers are accepted into github teams. In Proceedings of the

85



15th International Conference on Mining Software Repositories (pp. 403-
413).

86



References

[1] B A. Kitchenham. Guidelines for performing systematic literature reviews in
software engineering. Technical Report EBSE 2007-001, Keele University and
Durham University Joint Report, 2007.

[2] Apostolos Ampatzoglou, Stamatia Bibi, Paris Avgeriou, Marijn Verbeek, and
Alexander Chatzigeorgiou. Identifying, categorizing and mitigating threats to
validity in software engineering secondary studies. Information and Software
Technology, 106:201–230, 2019.

[3] Blake Ashforth. Role transitions in organizational life: An identity-based
perspective. Routledge, 2000.

[4] Sogol Balali, Igor Steinmacher, Umayal Annamalai, Anita Sarma, and Marco Au-
relio Gerosa. Newcomers’ barriers. . . is that all? an analysis of mentors’ and new-
comers’ barriers in oss projects. Comput. Supported Coop. Work, page 679–714,
2018.

[5] Sogol Balali, Umayal Annamalai, Hema Susmita Padala, Bianca Trinkenreich,
Marco A Gerosa, Igor Steinmacher, and Anita Sarma. Recommending tasks to
newcomers in oss projects: How do mentors handle it? In Proceedings of the 16th
International Symposium on Open Collaboration, pages 1–14, 2020.

[6] Leonor Barroca, Peggy Gregory, Kati Kuusinen, Helen Sharp, and Raid AlQaisi.
Sustaining agile beyond adoption. In 2018 44th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), pages 22–25. IEEE, 2018.

[7] Talya N Bauer. Maximizing success. SHRM Foundation’s Effective practice
guidelines series, 2010.

87



[8] Talya N Bauer and Berrin Erdogan. Organizational socialization: The effective
onboarding of new employees. 2011.

[9] Andrew Begel and Beth Simon. Novice software developers, all over again.
ICER’08 - Proceedings of the ACM Workshop on International Computing
Education Research, 09 2008.

[10] Andrew Begel, Jan Bosch, and Margaret-Anne Storey. Social networking meets
software development: Perspectives from github, msdn, stack exchange, and top-
coder. IEEE software, 30(1):52–66, 2013.

[11] H. Bernard. Research Methods in Anthropology: Qualitative and Quantitative
Approaches. Rowman & Littlefield, 2011.

[12] H. Borges, A. Hora, and M. T. Valente. Understanding the factors that impact
the popularity of GitHub repositories. In ICSME, 2016.

[13] Amiangshu Bosu, Anindya Iqbal, Rifat Shahriyar, and Partha Chakraborty. Un-
derstanding the motivations, challenges and needs of blockchain software devel-
opers: A survey. Empirical Software Engineering, 24(4):2636–2673, 2019.

[14] Ricardo Britto, Daniela S Cruzes, Darja Smite, and Aivars Sablis. Onboarding
software developers and teams in three globally distributed legacy projects: A
multi-case study. Journal of Software: Evolution and Process, 30(4):e1921, 2018.

[15] Jim Buchan, Stephen G MacDonell, and Jennifer Yang. Effective team onboard-
ing in agile software development: techniques and goals. In 2019 ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement
(ESEM), pages 1–11. IEEE, 2019.

[16] BRUCE BUCHANAN II. Building organizational commitment: The socialization
of managers in work organizations. Yale University, 1972.

[17] Victor R Basili1 Gianluigi Caldiera and H Dieter Rombach. The goal question
metric approach. Encyclopedia of software engineering, pages 528–532, 1994.

[18] Georgia T Chao, Anne M O’Leary-Kelly, Samantha Wolf, Howard J Klein, and
Philip D Gardner. Organizational socialization: Its content and consequences.
Journal of Applied psychology, 79(5):730, 1994.

88



[19] Boreum Choi, Kira Alexander, Robert E Kraut, and John M Levine. Socialization
tactics in wikipedia and their effects. In Proceedings of the 2010 ACM conference
on Computer supported cooperative work, pages 107–116, 2010.

[20] Jailton Coelho and Marco Tulio Valente. Why modern open source projects fail.
In FSE, 2017.

[21] Valerio Cosentino, Javier L. Cánovas Izquierdo, and Jordi Cabot. A systematic
mapping study of software development with github. IEEE Access, 5:7173–7192,
2017. doi: 10.1109/ACCESS.2017.2682323.

[22] Simone da Silva Amorim, John D McGregor, Eduardo Santana de Almeida, and
Christina von Flach G. Chavez. Educating to achieve healthy open source ecosys-
tems. In Proceedings of the 12th European Conference on Software Architecture:
Companion Proceedings, pages 1–7, 2018.

[23] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. Social coding
in github: transparency and collaboration in an open software repository. In
Proceedings of the ACM 2012 conference on computer supported cooperative
work, pages 1277–1286, 2012.

[24] Barthélémy Dagenais, Harold Ossher, Rachel K. E. Bellamy, Martin P. Robillard,
and Jacqueline P. de Vries. Moving into a New Software Project Landscape, page
275–284. Association for Computing Machinery, 2010.

[25] Barthélémy Dagenais, Harold Ossher, Rachel KE Bellamy, Martin P Robillard,
and Jacqueline P De Vries. Moving into a new software project landscape.
In Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 1, pages 275–284, 2010.

[26] Edward L Deci and Richard M Ryan. The support of autonomy and the control
of behavior. Journal of personality and social psychology, 53(6):1024, 1987.

[27] D.Terdiman. Forget linkedin: Companies turn to github to find tech talent.
http://www.cnet.com/news/forget-linkedin-companiesturn-to-github-to-find-tech-talent/,
2012.

[28] Nicolas Ducheneaut. Socialization in an open source software community: A
socio-technical analysis. Computer Supported Cooperative Work (CSCW), 14:
323–368, 2005.

89



[29] Nadia Eghbal. Roads and bridges: The unseen labor behind our digital
infrastructure. Ford Foundation, 2016.

[30] Nadia Eghbal. Working in public: the making and maintenance of open source
software. Stripe Press, 2020.

[31] Fabian Fagerholm, Patrik Johnson, Alejandro Guinea, Jay Borenstein, and Jür-
gen Münch. Onboarding in open source software projects: A preliminary analy-
sis. In 2013 IEEE 8th International Conference on Global Software Engineering
Workshops, 08 2013.

[32] Fabian Fagerholm, Alejandro S Guinea, Jürgen Münch, and Jay Borenstein. The
role of mentoring and project characteristics for onboarding in open source soft-
ware projects. In Proceedings of the 8th ACM/IEEE international symposium on
empirical software engineering and measurement, pages 1–10, 2014.

[33] Fabian Fagerholm, Alejandro Sanchez Guinea, Jay Borenstein, and Jürgen
Münch. Onboarding in open source projects. IEEE Software, 31(6):54–61, 2014.

[34] Yulin Fang and Derrick Neufeld. Understanding sustained participation in open
source software projects. J. Manage. Inf. Syst., 2009.

[35] Daniel Charles Feldman. A contingency theory of socialization. Yale University,
1976.

[36] Karl Fogel. Producing open source software: How to run a successful free software
project. " O’Reilly Media, Inc.", 2005.

[37] Matthieu Foucault, Marc Palyart, Xavier Blanc, Gail C Murphy, and Jean-Rémy
Falleri. Impact of developer turnover on quality in open-source software. In
Proceedings of the 2015 10th joint meeting on foundations of software engineering,
pages 829–841, 2015.

[38] Bruno S Frey et al. On the relationship between intrinsic and extrinsic work
motivation. International journal of industrial organization, 15(4):427–439, 1997.

[39] Marylène Gagné and Edward L Deci. Self-determination theory and work moti-
vation. Journal of Organizational behavior, 26(4):331–362, 2005.

90



[40] Sivana Hamer, Christian Quesada-López, and Marcelo Jenkins. How have we re-
searched developers’ contributions in software engineering? a systematic mapping
study. A Systematic Mapping Study.

[41] Christoph Hannebauer, Matthias Book, and Volker Gruhn. An exploratory
study of contribution barriers experienced by newcomers to open source software
projects. In Proceedings of the 1st International Workshop on CrowdSourcing in
Software Engineering, pages 11–14, 2014.

[42] Lile P. Hattori and Michele Lanza. On the nature of commits. In ASE, 2008.

[43] Guido Hertel, Sven Niedner, and Stefanie Herrmann. Motivation of software
developers in open source projects: an internet-based survey of contributors to
the linux kernel. Research policy, 32(7):1159–1177, 2003.

[44] Eric von Hippel and Georg von Krogh. Open source software and the “private-
collective” innovation model: Issues for organization science. Organization science,
14(2):209–223, 2003.

[45] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M.
German, and Daniela Damian. The promises and perils of mining GitHub. In
MSR, 2014.

[46] Barbara Kitchenham. Procedures for performing systematic reviews. Keele, UK,
Keele Univ., 33:1–26, 2004.

[47] Howard J Klein, Beth Polin, and Kyra Leigh Sutton. Specific onboarding practices
for the socialization of new employees. International Journal of Selection and
Assessment, 23(3):263–283, 2015.

[48] Georg Krogh, Sebastian Spaeth, and Karim Lakhani. Community, joining, and
specialization in open source software innovation: A case study. Research Policy,
32:1217–1241, 02 2003.

[49] Raula Gaikovina Kula and Gregorio Robles. The Life and Death of Software
Ecosystems, pages 97–105. Springer, 2019.

[50] Adriaan Labuschagne and Reid Holmes. Do onboarding programs work? In 2015
IEEE/ACM 12th Working Conference on Mining Software Repositories, pages
381–385. IEEE, 2015.

91



[51] Karim Lakhani and Robert Wolf. Why hackers do what they do: Understanding
motivation and effort in free/open source software projects. Perspectives on Free
and Open Source Software, 09 2003.

[52] Manny M Lehman and Laszlo A Belady. Program evolution: processes of software
change. Academic Press Professional, Inc., 1985.

[53] Manny M Lehman, Dewayne E Perry, and Juan F Ramil. Implications of evolution
metrics on software maintenance. In Proceedings. International Conference on
Software Maintenance (Cat. No. 98CB36272), pages 208–217. IEEE, 1998.

[54] Meir M Lehman, Juan F Ramil, Paul D Wernick, Dewayne E Perry, and Wla-
dyslaw M Turski. Metrics and laws of software evolution-the nineties view.
In Proceedings Fourth International Software Metrics Symposium, pages 20–32.
IEEE, 1997.

[55] Paul Luo Li, Amy J Ko, and Jiamin Zhu. What makes a great software engineer?
In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,
volume 1, pages 700–710. IEEE, 2015.

[56] Antonio Lima, Luca Rossi, and Mirco Musolesi. Coding together at scale: Github
as a collaborative social network. In Proceedings of the international AAAI
conference on web and social media, volume 8, pages 295–304, 2014.

[57] Yuyang Liu, Ehsan Noei, and Kelly Lyons. How readme files are structured
in open source java projects. Information and Software Technology (IST), 148:
106924, 2022.

[58] Jennifer Marlow, Laura Dabbish, and Jim Herbsleb. Impression formation in
online peer production: Activity traces and personal profiles in github. In
Proceedings of the 2013 conference on Computer supported cooperative work,
CSCW ’13, page 117–128, New York, NY, USA, 2013. Association for Computing
Machinery.

[59] Jennifer Marlow, Laura Dabbish, and Jim Herbsleb. Impression formation in
online peer production: activity traces and personal profiles in github. In
Proceedings of the 2013 conference on Computer supported cooperative work,
pages 117–128, 2013.

92



[60] G. Mathew, A. Agrawal, and T. Menzies. Finding trends in software research.
IEEE Transactions on Software Engineering, pages 1–1, 2018.

[61] Gerardo Matturro, Karina Barrella, and Patricia Benitez. Difficulties of new-
comers joining software projects already in execution. In 2017 International
Conference on Computational Science and Computational Intelligence (CSCI),
pages 993–998. IEEE, 2017.

[62] Paulo Meirelles, Carlos Santos Jr, Joao Miranda, Fabio Kon, Antonio Terceiro,
and Christina Chavez. A study of the relationships between source code metrics
and attractiveness in free software projects. In 2010 Brazilian Symposium on
Software Engineering, pages 11 – 20, 11 2010.

[63] Christopher Mendez, Hema Susmita Padala, Zoe Steine-Hanson, Claudia Hilder-
brand, Amber Horvath, Charles Hill, Logan Simpson, Nupoor Patil, Anita Sarma,
and Margaret Burnett. Open source barriers to entry, revisited: A sociotechni-
cal perspective. In Proceedings of the 40th International conference on software
engineering, pages 1004–1015, 2018.

[64] Justin Middleton, Emerson Murphy-Hill, Demetrius Green, Adam Meade, Roger
Mayer, David White, and Steve McDonald. Which contributions predict
whether developers are accepted into github teams. In Proceedings of the 15th
International Conference on Mining Software Repositories, pages 403–413, 2018.

[65] Audris Mockus. What make long term contributors: Willingness and oppor-
tunity in oss community. Proceedings - International Conference on Software
Engineering, pages 518–528, 06 2012.

[66] Elizabeth Wolfe Morrison. Newcomers’ relationships: The role of social network
ties during socialization. Academy of management Journal, 45(6):1149–1160,
2002.

[67] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. Curat-
ing github for engineered software projects. EMSE, 2016.

[68] David R Musicant, Yuqing Ren, James A Johnson, and John Riedl. Mentoring in
wikipedia: a clash of cultures. In Proceedings of the 7th International Symposium
on Wikis and Open Collaboration, pages 173–182, 2011.

93



[69] Kumiyo Nakakoji, Yasuhiro Yamamoto, Yoshiyuki NISHINAKA, Kouichi
Kishida, and Yunwen Ye. Evolution patterns of open-source software systems
and communities. International Workshop on Principles of Software Evolution
(IWPSE), 01 2003.

[70] Kumiyo Nakakoji, Yunwen Ye, and Yasuhiro Yamamoto. Supporting expertise
communication in developer-centered collaborative software development envi-
ronments. Collaborative Software Engineering, pages 219–236, 2010.

[71] Yunrim Park and Carlos Jensen. Beyond pretty pictures: Examining the benefits
of code visualization for open source newcomers. In 2009 5th IEEE International
Workshop on Visualizing Software for Understanding and Analysis, pages 3–10,
2009. doi: 10.1109/VISSOF.2009.5336433.

[72] Yunrim Park and Carlos Jensen. Beyond pretty pictures: Examining the benefits
of code visualization for open source newcomers. In VISSOFT, 2009.

[73] Raymond Paternoster, Robert Brame, Paul Mazerolle, and Alex Piquero. Using
the correct statistical test for the equality of regression coefficients. Criminology,
36(4):859–866, 1998.

[74] Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. Systematic
mapping studies in software engineering. In 12th International Conference on
Evaluation and Assessment in Software Engineering (EASE) 12, pages 1–10, 2008.

[75] Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. Guidelines for conduct-
ing systematic mapping studies in software engineering: An update. Information
and software technology, 64:1–18, 2015.

[76] Lukas Pradel. Quantifying the ramp-up problem in software projects. In
Proceedings of the 20th International Conference on Evaluation and Assessment
in Software Engineering, pages 1–4, 2016.

[77] Gede Artha Azriadi Prana, Christoph Treude, Ferdian Thung, Thushari Atapattu,
and David Lo. Categorizing the content of github readme files. Empirical Software
Engineering (EMSE), 24(3):1296–1327, 2019.

[78] Israr Qureshi and Yulin Fang. Socialization in open source software projects: A
growth mixture modeling approach. Organizational Research Methods - ORGAN
RES METHODS, 13, 12 2010.

94



[79] Eric Raymond. The cathedral and the bazaar. Knowledge, Technology & Policy,
12(3):23–49, 1999.

[80] Jeffrey A Roberts, Il-Horn Hann, and Sandra A Slaughter. Understanding the
motivations, participation, and performance of open source software developers:
A longitudinal study of the apache projects. Management science, 52(7):984–999,
2006.

[81] Richard M Ryan and Edward L Deci. Self-determination theory and the facil-
itation of intrinsic motivation, social development, and well-being. American
psychologist, 55(1):68, 2000.

[82] Carlos Santos, George Kuk, Fabio Kon, and John Pearson. The attraction of
contributors in free and open source software projects. J. Strateg. Inf. Syst., 22
(1):26–45, March 2013.

[83] Sonali Shah. Motivation, governance, and the viability of hybrid forms in open
source software development. Management Science, 52:1000–1014, 07 2006.

[84] Gaurav G Sharma and Klaas-Jan Stol. Exploring onboarding success, organiza-
tional fit, and turnover intention of software professionals. Journal of Systems
and Software, 159:110442, 2020.

[85] Jefferson Silva, Igor Wiese, Daniel M German, Christoph Treude, Marco Aurélio
Gerosa, and Igor Steinmacher. A theory of the engagement in open source projects
via summer of code programs. In Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pages 421–431, 2020.

[86] Jefferson De Oliveira Silva, Igor Scaliante Wiese, Daniel M German, Igor Fabio
Steinmacher, and Marco Aurélio Gerosa. How long and how much: What to
expect from summer of code participants? In 2017 IEEE International Conference
on Software Maintenance and Evolution (ICSME), pages 69–79. IEEE, 2017.

[87] Jefferson O Silva, Igor S Wiese, Igor Steinmacher, and Marco A Gerosa. Students’
engagement in open source projects: an analysis of google summer of code. In
Proceedings of the XXXI Brazilian Symposium on Software Engineering, pages
224–233, 2017.

95



[88] Jefferson O Silva, Igor Wiese, Daniel M German, Christoph Treude, Marco A
Gerosa, and Igor Steinmacher. Google summer of code: Student motivations and
contributions. Journal of Systems and Software, 162:110487, 2020.

[89] Susan Elliott Sim and Richard C Holt. The ramp-up problem in software projects:
A case study of how software immigrants naturalize. In Proceedings of the 20th
international conference on Software engineering, pages 361–370. IEEE, 1998.

[90] I. Steinmacher, T. U. Conte, and M. A. Gerosa. Understanding and supporting the
choice of an appropriate task to start with in open source software communities.
In HICSS, 2015.

[91] Igor Steinmacher and Marco Aurélio Gerosa. How to support newcomers on-
boarding to open source software projects. In Open Source Software: Mobile
Open Source Technologies: 10th IFIP WG 2.13 International Conference on Open
Source Systems, OSS 2014, San José, Costa Rica, May 6-9, 2014. Proceedings 10,
pages 199–201. Springer, 2014.

[92] Igor Steinmacher, Marco Aurelio Gerosa, and David Redmiles. Attracting, on-
boarding, and retaining newcomer developers in open source software projects. In
CSCW, 2014.

[93] Igor Steinmacher, Marco Aurélio Graciotto Silva, Marco Aurelio Gerosa, and
David Redmiles. A systematic literature review on the barriers faced by newcom-
ers to open source software projects. IST, 2014.

[94] Igor Steinmacher, Marco Aurélio Graciotto Silva, and Marco Aurélio Gerosa.
Barriers faced by newcomers to open source projects: a systematic review. In
Open Source Software: Mobile Open Source Technologies: 10th IFIP WG 2.13
International Conference on Open Source Systems, OSS 2014, San José, Costa
Rica, May 6-9, 2014. Proceedings 10, pages 153–163. Springer, 2014.

[95] Igor Steinmacher, Tayana Conte, Marco Aurélio Gerosa, and David F. Redmiles.
Social barriers faced by newcomers placing their first contribution in open source
software projects. In CSCW, 2015.

[96] Igor Steinmacher, Tayana Uchoa Conte, Christoph Treude, and Marco Aurélio
Gerosa. Overcoming open source project entry barriers with a portal for newcom-
ers. In ICSE, 2016.

96



[97] Igor Steinmacher, Sogol Balali, Bianca Trinkenreich, Mariam Guizani, Daniel
Izquierdo-Cortazar, Griselda G Cuevas Zambrano, Marco Aurelio Gerosa, and
Anita Sarma. Being a mentor in open source projects. Journal of Internet Services
and Applications, 12(1):1–33, 2021.

[98] V. N. Subramanian, I. Rehman, M. Nagappan, and R. G. Kula. Analyzing first
contributions on github: What do newcomers do. IEEE Software, pages 0–0,
2020.

[99] Walter Swap, Dorothy Leonard, Mimi Shields, and Lisa Abrams. Using mentor-
ing and storytelling to transfer knowledge in the workplace. J. of Management
Information Systems, 18:95–114, 06 2001.

[100] Xin Tan and Minghui Zhou. How to communicate when submitting patches: An
empirical study of the linux kernel. Proceedings of the ACM on Human-Computer
Interaction, 3(CSCW):1–26, 2019.

[101] Xin Tan, Minghui Zhou, and Zeyu Sun. A First Look at Good First Issues on
GitHub, page 398–409. Association for Computing Machinery, New York, NY,
USA, 2020.

[102] Maria Tomprou, Laura Dabbish, Robert E Kraut, and Fannie Liu. Career mentor-
ing in online communities: Seeking and receiving advice from an online commu-
nity. In Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems, pages 1–12, 2019.

[103] Wladyslaw M Turski. Reference model for smooth growth of software systems.
IEEE Transactions on Software Engineering, 22(8):599, 1996.

[104] Marat Valiev, Bogdan Vasilescu, and James Herbsleb. Ecosystem-level determi-
nants of sustained activity in open-source projects: A case study of the PyPI
ecosystem. In FSE, 2018.

[105] John Eastin Van Maanen and Edgar Henry Schein. Toward a theory of organiza-
tional socialization. 1977.

[106] Anthony J Viera, Joanne M Garrett, et al. Understanding Interobserver Agree-
ment: The Kappa Statistic. Family Medicine, 37(5):360–363, 2005.

97



[107] Giovanni Viviani and Gail C Murphy. Reflections on onboarding practices in
mid-sized companies. In 2019 IEEE/ACM 12th International Workshop on
Cooperative and Human Aspects of Software Engineering (CHASE), pages 83–84.
IEEE, 2019.

[108] Georg Von Krogh, Stefan Haefliger, Sebastian Spaeth, and Martin W Wallin.
Carrots and rainbows: Motivation and social practice in open source software
development. MIS quarterly, pages 649–676, 2012.

[109] Yunwen Ye and Kouichi Kishida. Toward an understanding of the motivation open
source software developers. In Proceedings of the 25th International Conference
on Software Engineering, ICSE ’03, page 419–429, USA, 2003. IEEE Computer
Society. ISBN 076951877X.

[110] M. Zhou and A. Mockus. Who will stay in the floss community? modeling
participant’s initial behavior. TSE, 2015.

[111] Minghui Zhou and Audris Mockus. Growth of newcomer competence: Challenges
of globalization. In FoSER, 2010.

98


	Abstract
	Acknowledgements
	List of publications
	Contents
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	The Onboarding Problem

	Contributions
	Thesis Structure

	Background
	The Evolution of Open Source Software (OSS)
	The Role of Newcomers in OSS
	The Impact of Social Coding Platform
	Research Gap and Thesis Focus
	Chapter Summary

	Systematically Map Related Work
	Introduction
	Chapter Organization

	The Systematic Mapping Process
	Results: Maps of Onboarding Research
	Threats To Validity
	Related study
	Studies on Human Aspect of Software Engineering
	How are project-specific forums utilized? A study of participation, content, and sentiment in the Eclipse ecosystem

	Conclusion

	Newcomer OSS-Candidates: Characterizing Contributions of Novice Developers to GitHub
	Introduction
	Identifying Newcomer OSS-Candidates through Survey
	Validating Pre-Onboarding Activities and Characterize them through Mixed Method Approach
	(RQ1) What kinds of repositories does a blackNewcomer OSS-Candidate target?
	(RQ2) What are the kinds of first Contributions that come from blackNewcomer OSS-Candidates?
	(RQ3) To what extent do blackNewcomer OSS-Candidates practice social coding with their first contributions? * Social Coding: in Terms of Multiple Authorship

	Analyzing Proportion of Onboarding to OSS Projects in GitHub
	(RQ4) What is the proportion of blackNewcomer OSS-Candidates that eventually onboard an OSS project?

	Discussions
	Lessons learned
	Implications (Expectations vs. Actual Results)

	Threats to Validity
	Related Work
	Studies on Onboarding Motivators:
	Studies on Onboarding to Organizations
	Studies on the Onboarding Process:
	Studies on Social Coding on GitHub
	Studies on the barriers to Onboarding:

	Conclusion

	Conclusion
	Contributions


