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Leveraging Human Risk Sensitivity
for Enriching Imitation Learning∗

Hanbit Oh

Abstract

Humans demonstrate interesting behaviors, such as moderating actions to per-
ceived risks and enhancing task performance. However, Imitation Learning (IL),
where robots learn to perform these same tasks by observing human demonstra-
tions, often fails to capture such behavior. Since it relies on a black-box algorithm
that maps state to action while overlooking the underlying human characteristic
(i.e., risk sensitivity), limiting the applicability of IL and the robot’s generalizabil-
ity. Therefore, this thesis proposes a novel mechanism to design IL algorithms
based on behavioral psychology findings, embodying principles to capture and
leverage risk sensitivity to enhance IL. We focus on the risk sensitivity revealed
from the speed-accuracy trade-off, in which humans in risky areas slow down their
movement speed to enhance accuracy. We use such data to capture the environ-
mental risk. Our mechanism is verified through two IL applications: 1) the risk
estimator to improve the safety of on-policy IL, as a robot iteratively optimized
through human corrections in risky areas while executing its unmatured policy,
and 2) the risk-sensitive disturbance model to ensure demonstration feasibility of
disturbance-injected IL, as disturbances are injected into human demonstrations
to train robust policy while regulating its level small in risky areas. Verification
shows that, through enhanced risk sensitivity, significantly improved training
safety, and our best performance compared favorably with other IL methods.

Keywords:

Imitation Learning, Human Risk Sensitivity, On-policy Imitation learning, Disturbance-
injected Imitation Learning
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人間のリスク鋭敏性の活用による模倣学習の強化∗

Hanbit Oh

内容梗概

人間は、危険を察知し適切な行動を選択することで高度な作業スキルを発

揮している。一方でそのような人間の行動特性は、人間の教示でロボットを

学習する模倣学習（IL）で考慮することができない。標準的なILは、人間の
作業実演を用いてロボットにこれらと同じ作業を教えるアプローチである。

人間の実演から状態と行動の対応関係をブラックボックス化したアルゴリズ

ムに依存しており、危険に鋭敏な行動を駆動する根本的な特性（リスク鋭敏

性）を見落としてしまう。これにより、模倣学習の適用性とロボットの汎化

性能が制限される。そこで本論文では、人間の行動心理学に基づいてILアル
ゴリズムを設計する新しいメカニズムを提案し、ILを強化するためにリスク
鋭敏性を捉え、その活用に着目する。具体的に注目する人間のリスク鋭敏性

として、人間の速度-精度トレードオフを考慮する。人間は環境の理解を基
づいてリスクを感知しており状態のリスクに応じて速度を調整する。そのた

め、人間がみせる速度教示データから環境のリスク情報を推定することがで

きる。提案メカニズムを使用した２つの適用事例を示す。1) 人間のリスク
鋭敏性から派生した危険予測器を導入し、オンポリシーIL枠組みの安全を向
上させる。ロボットが危険な状態に遭遇した際に人間の介入・教示を能動的

に要請することにより、ロボットは反復的に最適化され、安全なオンポリシ

ーILが実現される。2) 人間のリスク鋭敏性から派生した外乱モデルを導入
し、外乱注入IL枠組みで安全性を確保する。人間の実演に外乱が注入するこ
とと同時に外乱レベルが危険な領域では小さく調整され、人間実演の安全性

の確保と外乱への頑健なポリシーの学習性を両立したILが実現される。これ
らの事例では、提案手法がリスク鋭敏性を取り入れることで、模倣学習の訓

練段階の安全性かつロボットの自律性能が向上することを確認した。

キーワード

模倣学習・人間リスク鋭敏性・オンポリシー模倣学習・外乱注入模倣学習
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1. Introduction

1.1. Robotic Manipulation and Its Challenge

In recent years, remarkable advancements in robot technology have revolution-
ized the manufacturing industries by increasing productivity beyond that of hu-
mans [1]. However, implementing robotic manipulation skills is still challenging.
This is because programming robots for a specific domain is time-consuming, but
they need to be re-programmed if the environment changes even slightly. For
example, in a housework domain where there are often new objects added or the
position of objects changes, it is expensive to measure and re-program each time
the environment changes. Instead of programming the robot for such domains,
robotic systems are typically allowed to operate by a human expert, who can
control a robot optimally for various scenarios. Nevertheless, it is also a difficult
situation due to a shortage of skilled human resources. This situation strongly
motivates an approach to generating robot manipulation with human-like perfor-
mance instead of high-cost programming.

1.2. Machine Learning for Robot Controllers

Creating robot controllers via machine learning has found widespread usage in
both research [2–4] and commercial [5–10] applications. Controller learning often
utilizes large-scale exploration [3], reward mechanisms (e.g., an optimal control
or reinforcement learning), and with highly accurate dynamics models [2] to learn
autonomous control. However, in scenarios with exploration or dynamics model
sparsity, Imitation Learning (IL) [11–13] is an intuitive method for learning skills
via observations of an expert demonstrator, avoiding explicit programming, re-
ward design, or large-scale exploration. Moreover, the fundamental idea behind
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Figure 1.1. Overview of the imitation learning.

IL is that a human can demonstrate a desired behavior by teleoperating a robot
or a machine. As a result, IL can be implemented in any system that necessitates
autonomous robot behaviors comparable to those of an expert’s operation.

1.3. Imitation Learning for Robot Manipulation

The key objective of Imitation Learning (IL) [11–13] is to teach robotic agents
how to perform a task by mimicking an expert using human demonstrations as a
guide. The standard form of this approach is training an agent to learn a policy
that outputs expert actions from given states of the environment as shown in
Figure 1.1. This approach involves collecting a sequence of state-action pairs
from human demonstrations and providing it to an agent to train for learning
a policy that maps its current state to the corresponding expert action. These
learned policies can be applied to execute various robot manipulation tasks [5–9].

Although many conventional imitation learning methods have been proposed,
they are often inherently flawed when learning realistic robot manipulation tasks
from humans. Specifically, actual human demonstrations have intrinsic behav-

3



ioral characteristics that enhance task performance, but existing methods rely
solely on learning state-to-action mappings with a black-box algorithm, and they
neglect the analysis of these behavioral characteristics underlying demonstrations.
For example, humans exhibit risk-sensitive behaviors such as regulating their ac-
tions cautiously depending on perceived environmental risks (e.g., collisions) to
perform a task safely. However, in standard IL, robotic agents overlook such
underlying risk sensitivity and only learn fragmentary state-to-action behaviors
from demonstrations [5, 9, 10, 14], resulting in task execution of policy that can
be risky. In other words, these gaps in IL induced by the overlooking of human
behavioral characteristics limit robot generalizability and applicability.

1.4. Human Behavioral Characteristics Inherent
in Demonstrations

This thesis explores the idea of identifying human behavioral characteristics from
human demonstrations based on findings in behavioral psychology. Humans
demonstrate a variety of interesting behaviors that enhance their task perfor-
mance based on understanding the domain and environment. As a specific hu-
man behavioral characteristic, we focus on human risk sensitivity. For example,
in a task that reaches a shaft between obstacles, humans slow down their hand
speed to increase their accuracy as the gap between obstacles narrowers (Fig-
ure 1.2). This behavioral characteristic has been actively studied in neuroscience
and called the speed-accuracy trade-off [15, 16]. Based on these findings, we can
identify human behavior characteristics (e.g., risk sensitivity) revealed from hu-
man demonstrations (e.g., speed-accuracy trade-off).

1.5. Leveraging Human Risk Sensitivity for
Enriching Imitation Learning

This thesis presents a novel mechanism, "Leveraging Human Risk Sensitivity for
Enriching Imitation Learning," that designs imitation learning algorithms focus-
ing on utilizing human risk sensitivity, thereby embodying principles for capturing

4
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and exploiting actual demonstrator risk sensitivity (Figure 1.3). Specifically, we
develop methods to capture risk sensitivity inherent in human demonstrations
based on behavioral psychology. By typifying human risk sensitivity, we estab-
lish an enriched imitation learning framework that captures and leverages human
risk sensitivity within the imitation learning paradigm. Through this integration,
robots can deepen their understanding of human behavior and more effectively
imitate expert behaviors.

In summary, leveraging human risk sensitivity for enriching imitation learning
consist of two major components:

(i) Developing a method to capture risk sensitivity from human demonstrations
based on findings in behavioral psychology;

(ii) Establishing a framework that captures and leverages human risk sensitivity
to enrich imitation learning.

1.6. Verification of Our Mechanism’s
Effectiveness

As the specific human risk sensitivity, we focus on the speed-accuracy trade-off ex-
hibited from human demonstrations, as described in Chapter 1.4. Therefore, the
effectiveness of our mechanism is verified through two distinct imitation learning
frameworks that leverage the speed-accuracy trade-off to enrich risk sensitivity
as follows:

6



(i) Leveraging human risk sensitivity to improve safety of on-policy imitation
learning;

(ii) Leveraging human risk sensitivity to ensure demonstration feasibility of
disturbance-injected imitation learning.

1.6.1. Application 1: Leveraging Human Risk Sensitivity
to Improve Safety of On-policy Imitation Learning

Our first application exploits the speed-accuracy trade-off to engage risk sensi-
tivity into on-policy imitation learning setup for improving training safety. On-
policy IL is a branch of imitation learning where a robot performs a task using its
current policy, and then refines its policy by learning from human feedback on its
actions in states a robot encounters. This approach allows a human to observe
the learning process, making it possible to train the robot more efficiently until its
performance is guaranteed. However, deploying unmatured policies often poses
significant collision risks in clearance-limited tasks, such as industrial insertion.
Therefore, we present a novel on-policy imitation learning algorithm that incor-
porates a risk estimator based on human risk sensitivity. Our algorithm enables
a robot to cede control to a human demonstrator in states where high risk is
detected during on-policy training, thereby reducing the likelihood of collisions.
Specifically, our method consist of two features:

(i) Risk-sensitive Model: We introduce the risk estimator that learns to capture
the speed-accuracy trade-off from human demonstrations and approximates
the demonstrator-perceived risks for given states;

(ii) Risk-aware On-policy IL Framework: We incorporate the risk estimator into
on-policy IL so that a robot can cede control to a human demonstrator in
high-risk areas while executing its policy in low-precision areas.

This incorporation of human risk sensitivity into on-policy IL can improve the
safety of on-policy learning and ensure its efficiency.

Our method’s effectiveness is assessed through simulations and real-robot ex-
periments that trained a UR5e 6-DOF robotic arm to perform assembly tasks.

7



Our results significantly improved training safety, and our best performance com-
pared favorably with other learning methods.

1.6.2. Application 2: Leveraging Human Risk Sensitivity
to Ensure Demonstration Feasibility of
Disturbance-injected Imitation Learning

Our second application exploits the speed-accuracy trade-off to engage risk sensi-
tivity in disturbance-injected imitation learning setup for ensuring demonstration
feasibility. Disturbance-injected IL is a branch of imitation learning that involves
adding artificial disturbances to human action commands during demonstrations
to generate richer datasets. In this, injecting disturbances simulates errors that
can occur during task execution, inducing human recovery actions of demonstra-
tion. This scheme enables robots to learn policies robust to diverse sources of
errors. However, in prior works, two naive setups limit its applicability. First,
scenarios requiring humans to perform cautious actions are common, but the
fixed disturbance level parameter used by prior methods cannot regulate the
level small in a state-dependent manner, causing unintended collisions during hu-
man demonstrations (i.e., lack of risk sensitivity), thereby significantly hindering
demonstration feasibility. In addition, scenarios requiring humans to choose be-
tween multiple optimal actions are common, but the deterministic policy models
used by existing methods fail to capture these actions (i.e., lack of flexibility),
significantly hindering the robot policy’s generalizability.

Therefore, we present the first Bayesian imitation learning framework that
unifies learning of flexibility, robustification, and risk sensitivity. Specifically, our
method consist of two features:

(i) Risk-sensitive Model: Risk-sensitive disturbance model is introduced in-
spired by the speed-accuracy trade-off exhibited by humans;

(ii) Risk-sensitive Disturbance-injected IL Framework: Bayesian inference is
used to learn flexible non-parametric multi-action policies, while simultane-
ously robustifying policies by injecting risk-sensitive disturbances to induce
human recovery action and ensuring demonstration feasibility.
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Our proposed method of combining flexibility, robustification, and risk sensitivity
allows a robot to learn robust multi-action policies while ensuring demonstration
feasibility.

Our method is evaluated through risk-sensitive simulations and real-robot ex-
periments (e.g., table-sweep task, shaft-reach task and shaft-insertion task) using
the UR5e 6-DOF robotic arm, to demonstrate the improved characterisation of
behavior. Results show significant improvement in task performance, through
improved flexibility, robustness as well as demonstration feasibility.

1.7. Thesis Structure

The contents of this thesis are structured as follows:

• Chapter 2 provides the preliminary information.

• Chapter 3 details the first implementation, which describes how human
speed-accuracy trade-off was utilized to improve safety of on-policy imita-
tion learning.

• Chapter 4 details the second implementation, which describes how human
speed-accuracy trade-off was utilized to ensure demonstration feasibility of
disturbance-injected imitation learning for robust and flexible policies.

• Chapter 5 raises several possible future extensions and open issues that
require further study.

• Finally, Chapter 6 presents the conclusion to this thesis.

9



2. Preliminaries

2.1. Imitation Learning from Expert’s
Demonstration

The objective of imitation learning is to learn a control policy by imitating the
action from the expert’s demonstration data. The classical approach of imitation
learning is Behavioral Cloning (BC) [17]. In BC, first, a human expert creates
training data by demonstration. Subsequently, a supervised learning algorithm
is executed directly regressing a policy from observed states to actions. Prior ap-
plications of BC have been impressive, including the learning of neural network
policies for autonomous car driving based on recorded human driver’s demonstra-
tions [9].

A dynamics model of this setting is denoted as Markovian with a state st ∈ RQ,
an action at ∈ R and a state transition distribution p(st+1 | st, at). A policy π(at |
st) decides an action from a state. A trajectory τ = (s0, a0, s1, a1 . . . aT −1, sT )
which is a sequence of state-action pairs of T steps. The trajectory distribution
is indicated as:

p(τ | π) = p(s0)
T −1∏
t=0

π(at | st)p(st+1 | st, at). (2.1)

A key aspect of imitation learning is to replicate the expert’s behavior, and as
such the function which computes the similarity of two policies using trajectories
is defined as:

J(π, π′ | τ) = −
T −1∑
t=0

Eπ(a|st),π′(a′|st)
[
||a− a′||22

]
. (2.2)

A learned policy πR is obtained by solving the following optimization problem

10



G
o
a
l

G
o
a
l

G
o
a
l

Disturbance-injected ILOn-policy IL

BC

Human Expert 
Demonstration:

Learned Policy 
Execution:

Figure 2.1. Comparing imitation learning methods on robot learning to reach a goal object.
Policies learned by expert’ demonstrations (blue arrow) inevitably make at least occasional
mistakes in operation (orange arrow). BC: A small mistake at an early stage will lead the learner
to deviate from the distribution of expert’s demonstration (grey). On-policy IL: allow the robot
to learn recovery behaviors in the state when it deviates from the expert’s demonstration.
Disturbance-injected IL: inject disturbance assuming learner’s mistakes into expert behavior to
expanded expert’s demonstration coverage, learning robust policies from mistakes.

using a trajectory collected by an expert’s policy π∗:

πR = arg max
π

Ep(τ |π∗) [J(π, π∗ | τ)] . (2.3)

The benefits of BC are straightforward application and the capability to learn
from demonstrations.

In imitation learning of this setup, however, a learned policy may suffer from the
problem of error compounding, caused by covariate shift as shown in Figure 2.1-
BC. This is defined as the distributional difference between the trajectories in the
training data as observed during the data collection stage, and those in testing:∣∣∣Ep(τ |π∗)[J(πR, π∗ | τ)]− Ep(τ |πR)[J(πR, π∗ | τ)]

∣∣∣ . (2.4)
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2.2. On-policy Imitation Learning

A more general approach to minimizing the covariate shift in imitation learning is
on-policy IL. This scheme involves iteratively collecting additional demonstrations
of the expert’s actions in the states where the robot encounters during learned
policy deployment (Figure 2.1-On-policy IL).

Dataset Aggregation (DAgger) [18], one famous on-policy IL, learns a sequence
of policies during the iterative on-policy demonstrations. Initially, the policy
πR

1 is learned in BC using only a recorded expert’s demonstration trajectory
τ . Subsequently, at iteration k, DAgger collects on-policy demonstrations by
employing a meta-policy πM

k (at | st) that outputs actions from either a learned
policy πR

k or a human demonstrator π∗ based on the robot’s control mode:

πM
k (at | st) = g(st)π∗(a∗

t | st) + (1− g(st))πR
k (aR

t | st), (2.5)

where g(st) = 1 is a binary decision function, which determines whether a robot
operates in an auto mode (g(st) = 0, controlled by learned policy πR

k ) or an expert
mode (g(st) = 1, controlled by an expert’s policy π∗). The specific implementation
of g(st) in DAgger is using δk = (δ0)k, where δ0 ∈ [0, 1] is the initial probability
of allocating expert mode:

g(st; δk) =

1, if ot ≤ δk

0, otherwise
, (2.6)

where, random variable ot is sampled from the uniform distribution at each time
step t as ot ∼ U(0, 1), in turn, a meta policy πM

k randomly selects robot control
mode. At the end of each iteration k, additional data, where states visited by a
meta policy πM

k and actions given by expert policy π∗, added to the datasets D
used to learn the policy πR

k+1. A detail of the method is shown in Algorithm 1.
In this, policy optimization convergence is theoretically guaranteed [18]. Accord-
ingly, DAgger-like on-policy approaches can alleviate the covariate shift problem
and achieve better performance with smaller training datasets size [19].

However, this approach has limited applicability in practice due to the risk of
deploying an unmatured learned robot. This situation is especially problematic in
clearance-limited tasks (Figure 1.2), because the risk of collisions can greatly hin-
der task performance and significantly damage robots. In Chapter 3, we present
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Algorithm 1 Dataset Aggregation (DAgger) [18]
Input: initial data set of expert’s demonstrations D,

initial probability of expert mode allocation δ0,
the maximum number of iteration K

Output: πR
K

1: for k = 1 to K do
2: Get dataset through the stochastic mixed policy πM

k : {a∗
t , st}Nt=1 ∼ p(τ | πM

k ).
3: Aggregate datasets :D ← D ∪ {a∗

t , st}Nt=1.
4: Train the policy πR

k+1 on D by policy optimization of BC as (2.3).
5: end for

a novel on-policy IL to estimate the environmental precision as a risk of policy
deployment and prompt human intervention control in states where high risk
is estimated for collision risk mitigation, instead of randomly switching control
mode such as DAgger.

2.3. Disturbance-injected Imitation Learning

Another valuable IL branch for reducing covariate shift is disturbance-injected
IL, which adds artificial disturbances to the human behavioral commands during
the demonstration to generate a richer dataset (Figure 2.1-Disturbance-injected
IL). In this context, disturbance injection simulates errors that may occur dur-
ing task execution to induce human recovery actions in the demonstration. This
scheme allows the robot to learn policies robust to diverse sources of errors. Dis-
turbances for Augmenting Robot Trajectories (DART) is a representative method
of disturbance-injected IL, where the level of disturbance injection is optimized
to reduce the covariate shift between the collected demonstration data and the
predicted trajectory [20]. The disturbance distribution is optimized iteratively
during the data collection process. Finally, the robust policy is learned using the
collected data.

This injection disturbance is assumed that sampled from a Gaussian distribu-
tion as ϵt ∼ N (0, σ2

k), where k is the number of optimization iterations. The
injection disturbance ϵt is added into the expert’s action a∗

t . The distribution of
trajectories from a disturbance injected expert, is denoted as p(τ | π∗, σ2

k) and

13



the distribution of trajectories from a learned policy is p(τ | πR
k ). To reduce

the covariate shift, DART proposes to use the upper bound of covariate shift by
Pinsker’s inequality as:∣∣∣Ep(τ |π∗,σ2

k
)

[
J(πR, π∗ | τ )

]
− Ep(τ |πR

k
)

[
J(πR, π∗ | τ )

]∣∣∣
≤ T

√
1
2KL (p(τ | πR

k ) || p(τ | π∗, σ2
k)), (2.7)

where, KL(· || ·) is Kullback-Leibler divergence. However, the upper bound
(2.7) is analytically intractable to compute since the trajectory distribution of
learned policy p(τ | πR

k ) is unknown. Therefore, DART solves the upper bound
by replacing the trajectory distribution of the learned policy with the trajectory
distribution of the disturbance-injected expert. As such, data are collected over
several iterations and a disturbance distribution is optimized at each iteration as:

σ2
k+1 = arg max

σ2
Ep(τ |π∗,σ2

k
)[

T −1∑
t=0

EπR
k

(a′
t|st)

[
logN

(
a′

t

∣∣∣ at, σ
2
)]]

, (2.8)

where, a learned policy at k th iteration πR
k is obtained in the similar form as

(2.3) by following:

πR
k = arg max

π

k−1∑
i=1

Ep(τ |π∗,σ2
i )[J(π, π∗ | τ )]. (2.9)

Although DART can reduce the covariate shift by injecting disturbances into
expert demonstrations, its applicability still suffers from the following issues.
The applied policy model is deterministic, which means that it cannot recog-
nize complex human behavior (e.g., multiple optimal actions) from the training
data. Additionally, as shown in Figure 2.2-(a), the disturbance is injected uni-
formly regardless of the current state of the robot, which may induce dangerous
situations (e.g., physical contacts as in Figure 1.2-bottom). Furthermore, the
disturbance level optimization (2.8) corresponds to the maximum likelihood es-
timation based on the assumption of a deterministic policy model and a fixed
disturbance level parameter; thus, non-parametric policy learning (e.g., [21]) in
which effectively captures multiple optimal actions without requiring the speci-
fied number of optimal actions in each state, cannot be directly integrated into
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Figure 2.2. Illustration of the comparison between (a) state-independent and (b) state-
dependent disturbance models. (a): a constant disturbance level regardless of the risk of
the state, may be dangerous in risky states. (b): the disturbance level can be modified accord-
ing to the state; e.g., in risky states the disturbance level is reduced.

the DART framework. Therefore, a scheme to resolve these issues simultaneously
via non-parametric Bayesian inference is derived in Chapter 4.
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3. Leveraging Human Risk
Sensitivity to Improve Safety
of On-policy Imitation
Learning

3.1. Safety Issue of On-policy Imitation
Learning

As described in the Chapter 2.2, on-policy imitation learning allows a robot
to learn covariate shift minimized policy efficiently [22]. This is achieved by
repeatedly optimizing a robot while it performs a task with its unmatured policy
a human provides corrective demonstrations while observing its execution.

However, deploying unmatured policies poses significant risks. In particular,
in clearance-limited tasks, such as aperture-passing and ring-threading, a robot’s
small mistakes may lead to collisions and break objects in the environment. In
order to ensure safety, a robot must recognize the risk of a collision and take
appropriate steps to avoid it by stopping performing a task and allowing human
intervention. In robotics, detecting collision risks requires precision information,
such as the narrowness of the environment, which provides the spatial context
of collisions while a robot executes a task. Although precision can be obtained
with a model of the environment, on-policy IL is the model-free scheme, and this
contradictive situation limits its applicability significantly.
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3.2. Existing Methods to Improve Safety of
On-policy Imitation Learning

Several approaches have been investigated to improve the safety of on-policy IL
by measuring the risk of executions in given states and requesting intervention
by ceding control to a human demonstrator when encountering risky states. One
approach to guarantee on-policy learning safety is using the risk awareness of
humans based on their understanding of the environment or tasks. Humans
continuously monitor a robot’s execution and intervene when a robot encounters
risky states and provide corrective action [23–25] or reset the task execution [26].
However, these approaches have the constraint of forcing users to constantly
monitor the robot.

Instead of continuous human monitoring, other approaches have been investi-
gated that leverage robotic risk awareness based on their policy analysis [27–30].
These approaches allow a robot to quantify the execution risks and actively ask a
human to intervene when the risk exceeds a threshold. Previous research defined
risk indicators as the uncertainty of a robot’s decision about the visited state [27]
or the discrepancy between the actions proposed by a robot’s policy and a human
expert [28]. However, neither metric can detect collision risks since a robot still
lacks precision information of its environment. Although Hoque et al. introduced
a precision estimation metric [29], it requires a robot to experience hundreds of
collisions by itself to optimize the precision estimator; thus, this metric is limited
in practical application. Alternatively, this paper explores implicitly estimating
environmental precision from human demonstrations without requiring collision
experiences.

3.3. Speed-accuracy Trade-off in
Clearance-limited Tasks

During human demonstrations of clearance-limited robotic tasks, humans can
perceive environmental precision based on their understanding of a domain and
its environment and carefully regulate a robot’s speed through constrained spaces
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(e.g., obstacles) to avoid collisions [15]. This phenomenon has been extensively
examined in neuroscience to identify the human balance between speed and accu-
racy, commonly called the speed-accuracy trade-off [16]. This idea has also been
studied in robotics to efficiently complete tasks while ensuring collision avoid-
ance. In a path-planning context, speed-accuracy cost-maps have been achieved
by providing explicit environmental dynamics models [31] and incorporating a
heuristic search algorithm [32].

On the other hand, this thesis explores the idea of identifying environmental
precision from human demonstrations in a model-free manner to improve the
safety of on-policy IL. Instead of assuming an environmental dynamics model, we
use the human speed-accuracy trade-off to capture the demonstrator-perceived
precision and use this precision as an indirect indicator of environmental preci-
sion. To that end, we employ a leader-following teleoperation system where a
robot directly follows human hand movements, and the human’s speed-accuracy
trade-off is directly reflected in demonstrations. This allows the speed of a robot
controlled by a human to reflect the demonstrator-perceived precision.

3.4. Proposed Method

In this section, we present a novel on-policy learning approach that incorporates
demonstrator-perceived precision as intervention criteria to improve safety dur-
ing on-policy learning (Figure 3.1): Demonstrator-perceived Precision-aware On-
policy Imitation Learning (DP-OnIL). We introduce a precision estimator that
learns to capture such speed distribution from demonstrations and approximates
the precision for given states. Since DP-OnIL solicits human intervention in states
where the estimated precision must be extremely high (i.e., risk of collisions is
excessive), DP-OnIL enhances the safety of on-policy IL.

In the following, Chapter 3.4.1 describes how the demonstrator-perceived pre-
cision is estimated based on the speed-accuracy trade-off exhibited by humans,
Chapter 3.4.2 introduces the collision-risk-estimation metric from both the pre-
cision and the uncertainty analysis of a learned policy, Chapter 3.4.3 introduces
an intervention design for mitigating collision risks, and Chapter 3.4.4 describes
DP-OnIL’s overall algorithmic procedure.
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Figure 3.1. Overview of Demonstrator-perceived Precision-aware On-policy Imitation Learn-
ing (DP-OnIL). In clearance-limited tasks, demonstrator-perceived precision is in the mind of
humans. By capturing this precision level from demonstration data and incorporating it into
on-policy IL, a robot can cede control to a human (expert mode, bottom) in high-precision
areas while executing its policy (auto mode, top) in low-precision areas, thus enhancing safety.
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3.4.1. Demonstrator-perceived Precision Estimation

First, we defined speed transformation function fv, which computes speed vt

from a pair of states along 1-step transitions: fv(st, st+1) = vt. For the following
formulation, vt is given by fv. Under this speed definition, human speeds are
corrupted by state-dependent noise [33], whose variance increases with the size
of the input actions during demonstrations. Such variations in demonstrations
are called aleatoric uncertainty, and a natural way to capture this uncertainty is
to use a probabilistic neural network regression model [34] that consists of two
neural networks predicting the mean and variance (i.e., aleatoric uncertainty),
respectively. Specifically, the speed estimator is defined as Vλ(vt|st), which out-
puts the Gaussian distribution with mean network µλ(st) and variance network
σ2

λ(st) for a given state st with parameter λ:

Vλ(vt|st) = N (vt|µλ(st), σ2
λ(st)). (3.1)

In practice, training dataset D for involving human speeds v∗
t can be calcu-

lated by fv using transition (st, a∗
t , st+1) of a human expert’s trajectory: D =

{a∗
t , st, v

∗
t }T

t=1. For learning probabilistic speed estimator Vλ(vt|st) in an imita-
tion learning context, negative log-likelihood loss L of the estimator is defined:

L(Vλ|D) =
T∑

t=1
− logN (v∗

t |µλ(st), σ2
λ(st)). (3.2)

Therefore, the speed estimator’s parameter λ is optimized by minimizing the
expected loss along the training dataset:

λ′ = arg min
λ

ED∼p(τ |πθ∗ )[L(Vλ|D)]. (3.3)

Due to the speed-accuracy trade-off of humans [16], in narrow areas, the human
speed mean and variance are decreased. For this human behavior, there are two
types of modeling possibilities for precision estimator Preλ′(st):

• Preµ
λ′(st) = {µλ′(st)}−1, where the precision is inversely proportional to the

estimated speed’s mean;

• PreUCB
λ′ (st) = {µλ′(st) + σλ′(st)}−1, where the precision is inversely propor-

tional to the estimated speed’s Upper Confidence Bound (UCB), which is
the sum of the mean and the standard deviation.
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Implementing the former type is simpler, although it is expected to be less sen-
sitive for capturing demonstrator-perceived precision than the latter type, which
consider speed variance simultaneously. The DP-OnILs used for each precision
model are defined as DP-OnILµ and DP-OnILUCB.

3.4.2. Collision Risk Estimation

To estimate the collision risk, the robot must analyze not only the environment’s
precision but also the uncertainty of the learned policy for performing the task.
Such policy uncertainty, called epistemic uncertainty, stems from a lack of demon-
stration data and increases the risk that the robot will make unmatured decisions,
which may induce collisions.

To account for epistemic uncertainty in a learned policy, its decisions must
be analyzed probabilistically based on a given state. Accordingly, we employ
an ensemble neural network as a policy model similar to the prior study [27].
As such, each component of the ensemble policies is learned by (2.3). Then the
ensemble of learned policies outputs actions for any given state st, and variances
σ2

θL(st) of these actions can be interpreted as the level of epistemic uncertainty in
the decision. Finally, to quantify the collision risk by comprehensively evaluating
state st regarding both estimated precision Preλ′(st) and the epistemic uncertainty
of learned policy σ2

θL(st), collision risk Risk(st) is defined as the product of both
factors:

Risk(st) = Preλ′(st) · σ2
θL(st). (3.4)

3.4.3. Intervention Design

Deciding intervention using the collision risk estimation of Chapter 3.4.2 is in-
troduced to improve the safety of the on-policy learning. To prompt human
intervention triggered by collision risk, decision function g(st;χ) is defined that
is activated when Risk(st) exceeds threshold χ:

g(st;χ) =

1, if Risk(st) > χ

0, otherwise
, (3.5)
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Algorithm 2 DP-OnIL
Input: Number of iterations K, threshold χ

Output: Parameter of learned policy θL
K , parameter of precision estimator λK

1: Get the initial dataset through a human expert:
D = {a∗

t , v∗
t , st}Tt=1 ∼ p(τ | πθ∗)

2: Initialize θL
0 and λ0 by (2.3) and (3.3) on D

3: for k = 1 to K do
4: Get the dataset through a meta-policy:

{a∗
t , v∗

t , st | g(st, χ) = 1}Tt=1 ∼ p(τ | πθM
k

)
5: Aggregate datasets:

D ← D ∪ {a∗
t , v∗

t , st | g(st, χ) = 1}Tt=1
6: Learn θL

k and λk by (2.3) and (3.3) on D
7: end for

which indicates whether state st is safe (g(st;χ) = 0) or risky (g(st;χ) = 1) re-
garding collisions. During a robot’s training phase (Figure 3.2-top), this decision
function allows a robot to request human intervention (i.e., expert mode) only
in risky state st while deploying a learned policy (i.e., auto mode) during the
others.

3.4.4. DP-OnIL Overview

This section describes DP-OnIL’s algorithmic flow. As shown in Figure 3.2,
the robot’s policy is learned by iterating two phases: (i) generating training
datasets through on-policy data collection with collision risk intervention criteria
(Figure 3.2, top), and (ii) learning the robot’s policy and the precision estimator
using the accumulated training datasets (Figure 3.2, bottom).

Specifically, an initial dataset, D = {a∗
t , st, v

∗
t }T

t=1, is only collected by an ex-
pert’s policy πθ∗ . The initial parameters of policy θL

0 and precision estimator
λ0 are obtained by optimizing (2.3) and (3.3) on D. Under this initialization,
meta-policy πθM

k
collects a training dataset for K iterations, as described in Chap-

ter 3.4.3. At each k th iteration, θL
k−1 is used for the robot policy in meta-policy

πθM
k

. The states that are performed in the expert mode and the expert’s actions
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Figure 3.2. Overview of on-policy learning with DP-OnIL: (top): While a robot is executing a
task with its policy, if st is too risky, a human controls it until the risk is sufficiently lowered.
(bottom): Policy and precision estimator are iteratively learned from training data accumulated
through on-policy data collections. Collision risk is computed with analyzed uncertainty of
learned policy and estimated precision.
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and speeds are collected during each k th iteration:

Dk = {a∗
t , st, v

∗
t | g(st;χ) = 1}T

t=1 ∼ p(τ | πθM
k

). (3.6)

These collected data are added to dataset D: D = D ∪Dk. After each iteration,
the parameters of learned policy θL

k and precision estimator λk in the k th itera-
tion are optimized using equations (2.3) and (3.3)on accumulated dataset D. A
summary of DP-OnIL is shown in Algorithm 2.

3.5. Simulation

In this section, we validated whether our proposed method can effectively achieve
an automation performance of a robot more safely than the prior algorithms in
the following two simulation domains: (i) an aperture-passing task (Figure 3.3)
and (ii) a ring-threading task with a 6-DOF UR5e robot (Figure 3.6).

Evaluation Metrics: The DP-OnIL performance is considered during the
training and deployment test phases. For the former, the on-policy demonstra-
tion performance was evaluated as the probability of the task’s success over all
the training episodes of the on-policy IL approaches. For the latter, the robot-
autonomous performance was evaluated as the probability of the task’s successful
deployment of the learned policy after training without expert assistance. Both
metrics were assessed in both simulations (Chapter 3.5.1,Chapter 3.5.2) and real-
robot experiments (Chapter 3.6).

Comparison Methods: Our methods (DP-OnILUCB and DP-OnILµ) are
compared as a baseline to the following other imitation learning methods:

• Behavior Cloning (BC) [17]: A conventional imitation learning that learns
a policy without any interactions;

• Dataset Aggregation (DAgger) [18]: a conventional IIL that randomly re-
quests human intervention;

• EnsembleDAgger [27]: A state-of-the-art IIL that only uses policy decision
uncertainty σ2

θL as Risk(st);

• ThriftyDAgger [29]: A state-of-the-art IIL where a precision estimator is
learned through collision experiences;
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• HG-DAgger [23]: A state-of-the-art IIL where an algorithmic expert decides
when to intervene or not.

Our evaluation assumes an example problem where the ratio of states assigned
as risky is sufficient and fair across risk-aware approaches (EnsembleDAgger,
ThriftyDAgger, and DP-OnIL). To achieve this, we set the threshold χ for each
method at the value of approximately the top 20% of the estimated risk in the
training dataset, similar to previous works [28–30]. Its sensitivity is analyzed in
Chapter 3.5.1. See Chapter A for how the hyperparameters of each method are
set.

Demonstration Setting: Initially, speed transformation function fv is de-
fined by the Euclidean norm of the difference in position-related states spos

t ∈ st,
which are generally included as the state space of robotic tasks (e.g., positions
of agent center or end effector): fv(st, st+1) = ∥spos

t+1 − spos
t ∥2

2. Under this initial
setting, demonstrations are provided by an algorithmic expert, especially where
a human-like risk-sensitive movement [15] is implemented as shown in Figure 3.3
and Figure 3.6. Such movement is simulated by specifying agent’s action for each
state: fast in open areas (e.g., far from walls), and slow in small clearance areas
(e.g., aperture traversal), while injecting state-dependent Gaussian noise [33] as
described in Chapter 3.4.1. For an algorithmic expert in HG-DAgger, the tim-
ing of the intervention is also specified to prevent failure during interactions in
Chapter 3.5.1.

3.5.1. Aperture-passing Simulation

An aperture-passing task involving multiple narrow apertures was initially per-
formed in the OpenAI gym [35] environment (Figure 3.3. In this experiment,
on-policy demonstration and robot-autonomous performances are evaluated in
a challenging environment that includes states where such physical contacts are
likely to occur as passing through narrow apertures, although no contacts are
allowed for task success.

25



X-axis [cm]

DAgger DP-OnIL (Ours)EnsembleDAgger

Success

Fail Fail

Precision Uncertainty

Initial demonstration

On-policy demonstrations

Expert Mode Auto Mode

Y
-a

x
is

 [
c
m

]
Y

-a
x
is

 [
c
m

]

Figure 3.3. Qualitative analysis of aperture-passing simulation (On-policy Demonstration
Phase): Uncertainty and precision results across state space are obtained using a policy and
a precision estimator learned from initial demonstration dataset. Both measurements are nor-
malized to clarify variations across states. Based on these indicators, on-policy demonstration
trajectories of on-policy IL algorithms (DAgger, EnsembleDAgger, DP-OnIL (Ours)) are com-
pared, where red and blue circles represent states with expert and auto modes.
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Figure 3.4. Qualitative analysis of aperture-passing simulation (Robot-autonomous Phase):
Comparison of the 2D vector fields of the policies learned by BC and DP-OnIL (ours) and their
execution trajectories.
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Figure 3.5. Quantitative analysis of aperture-passing simulation: (a) Quantitative analy-
sis: Averaged performance of on-policy demonstration (left) and robot-autonomous (right) are
evaluated by repeating each experiment 10 times with random seeds. (left): On-policy demon-
stration performance is measured as a box plot of average success probability during training
phases across entire trials of each on-policy IL approach. Significant differences by t-test are
observed between proposed method and a baseline (∗ : p < 5e−2, ∗ ∗ ∗ : p < 5e−4). (right):
Comparing robot-autonomous performance for number of expert actions used to train by con-
ducting 100 test episodes of each learned policy. No significant differences by t-test are observed
between our methods and a state-of-the-art on-policy IL (EnsembleDAgger). (b) Sensitivity
analysis: On-policy demonstration and robot-autonomous performances are measured as χ

values fixed at χ ∈ [10−5, 10−3] for each experiment; square of correlation coefficient r2 [36]
between hyperparameter χ and each performance is measured as sensitivity indicator.
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Task Setting

The task goal is to move the agent (black circles with a 0.25 cm radius) clock-wise
from the starting position through the apertures (each of which has a width of
3.0 cm and 1.5 cm sequentially) to the goal without colliding with the walls (gray).
The system state and action are the agent’s position (e.g., x, y-axis coordinates)
and velocity (e.g., x, y-axis). The initial state is deviated by additive uniform
noise ϵs0 ∼ U(−2 cm, 2 cm).

Learning Setting

Under these experimental parameters, we collected three initial demonstration
trajectories (248 state-action pairs) by the expert policy for all the comparisons.
This dataset is used to optimize initial learned policy πθL

0
and precision estimator

Preλ0 until (2.3) and (3.3) converge. For DP-OnIL and each on-policy IL compar-
ison method, an on-policy demonstration is performed with a meta-policy that
switches the control between the expert and the learned policy, only collecting
state-action pairs in which the expert controlled (i.e., expert mode). After col-
lecting 100 state-action pairs, the policy and precision estimator were updated
by optimizing equations (2.3) and (3.3) on the accumulated dataset. If the agent
collides with a wall, fails to reach the goal position within the time limit (200
steps), or moves beyond the task space, it is considered a failure. This process is
denoted as one k iteration in Algorithm 2 and is repeated K = 5 times in this
experiment. For BC, demonstration datasets are additionally provided by expert
policy only until the number of expert actions is roughly equivalent to the other
on-policy IL algorithms.

Result

The results are shown in Figure 3.3, Figure 3.4, and Figure 3.5.
Qualitative Analysis: The on-policy demonstration trajectories of the on-

policy IL methods are compared in (Figure 3.3). In DAgger, the timing of an
expert’s intervention is randomly decided during on-policy demonstrations. Even
if the agent has drifted away from the demo trajectories, expert intervention may
not be requested timely, leading to failures (e.g., leaving the task space). Ensem-
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bleDAgger requests expert intervention when the uncertainty of the policy deci-
sion is high due to a lack of demo data. Although this intervention design allows
the robot to avoid drastic deviations from the demo trajectories, it cannot detect
a collision risk in narrow states where slight deviations are unacceptable; expert
intervention is not requested, resulting in failure (e.g., collisions). In contrast,
our method (DP-OnIL) implicitly estimates the precision of the environment by
observing the expert’s demonstrations. When the estimated precision is applied
to detect the collision risk, expert interventions are encouraged in narrow states,
resulting in successful interventions that avoid collisions.

In terms of robot-autonomous performance, learned policies of BC and DP-
OnIL are compared in (Figure 3.4). In BC, the policy learned only near the initial
trajectories, accumulating errors and failing execution. In contrast, DP-OnIL
can train the policy that recovers to the initial trajectory through interaction,
resulting in successful execution.

Quantitative Analysis: Our methods are compared with other baseline
schemes in terms of the interactive and robot-autonomous performances (Fig-
ure 3.5(a)). In terms of interaction performance, DAgger had poor performance
(52%) since its robot cannot be aware of any risks during the learned-policy exe-
cution. Although EnsembleDAgger has better performance (73%) by considering
the uncertainty of policy decisions and promoting expert intervention in highly
uncertain states, it has next poor performance since it does not ask experts to
intervene in states where collisions may occur, as predicted by our qualitative
analysis. Despite utilizing precision estimation, ThriftyDAgger performs (78%)
similarly to EnsembleDAgger since it requires sufficient collision experience to
estimate precision properly. In comparison, both our methods (DP-OnILµ and
DP-OnILUCB) had significantly better performances (89% and 96%) than the
others by using precision estimation without the collision experience, nearing the
performance of an oracle (HG-DAgger) where an algorithmic expert decides when
to intervene optimally.

In terms of robot-autonomous performance, BC performed poorly (21%) as
predicted by our qualitative analysis. HG-DAgger monotonically increases the
performance of the learned policy, but its performance is the worst (60%) among
the On-policy IL methods. This is because the conservative expert repeatedly
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intervenes in a certain area and cannot generalize to a wider range of states. The
next worst On-policy IL method is DAgger (79%), since if the robot fails the task
during the interactive demonstrations, it won’t be able to continue training on the
rest of the task progress, reducing the efficacy of interactive learning. In contrast,
risk-aware approaches can significantly improve performance (EnsembleDAgger:
96%, ThriftyDAgger: 95%, DP-OnILµ: 89%). One of our methods (DP-OnILUCB)
had the best performance (100%) across all the iterations, suggesting that DP-
OnIL increases the interaction safety and ensures efficiency.

Sensitivity Analysis of χ: We analyzed and compared hyperparameter χ’s
sensitivity from the prior risk-aware on-policy approach (EnsembleDAgger) and
our best method (DP-OnILUCB) (Figure 3.5(b)). EnsembleDAgger, which uses
the uncertainty of the policy decision as risk, is sensitive to χ, and the on-policy
demonstration and robot-autonomous performances are mutual trade-offs in a
range of χ ∈ [10−4, 10−3]. In contrast, our method (DP-OnILUCB), which uses
precision that is combined with uncertainty as a collision risk, is more robust to
a wider range of χ in the on-policy demonstration performance and has sufficient
robot-autonomous performance at χ = 10−3.

3.5.2. Ring-threading Simulation

To evaluate DP-OnIL’s scalability, a second experiment was conducted for learn-
ing a ring-threading task with a 6-DOF UR5e robot in a Robosuite [37] environ-
ment (Figure 3.6). This task has two challenges that surpass an aperture-passing
task: (i) various physical contact scenarios (e.g., robot vs. object, object vs. ob-
ject) can occur dynamically on high dimensional state-action space, and (ii) the
ring and robot positions are randomly initialized.

Task Setting

The goal is to grasp a ring with the random initial positions and insert it through
a peg with a fixed position, regardless of the physical contact. The dimension
of the state is 51D, consisting of the robot’s joint angles and the ring’s position,
and the action is 6D, specifying the end-effector’s translation (e.g., x, y, z-axes),
rotation (e.g., y, z-axes), and gripper manipulation (e.g., open or closed). See a
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Figure 3.6. Qualitative analysis of ring-threading simulation: Algorithmic expert’s demonstra-
tion includes two high-precision phases as a robot reaches to grasp a ring and inserts it into
a peg. Precision and uncertainty results were obtained by analyzing a demo trajectory’s se-
quence using a precision estimator and a policy learned on the initial demo dataset. Based on
this expert, on-policy demonstration trajectories of on-policy IL algorithms (DAgger, Ensem-
bleDAgger, DP-OnIL (Ours)) were compared.
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previous work [37] for details about the state composition and randomizing the
initial position of the robot and ring.

Learning Setting

The procedure here is similar to Chapter 3.5.1, but due to the task’s complexity,
the amount of training data is increased by a factor of 10. The number of initial
demonstration trajectories collected by the expert policy is 30 (4,414 state-action
pairs), and the number of state-action pairs collected by the expert mode in each
iteration is 1,000. Accordingly, the amount of training data for BC also increased.
In addition, the time limit (200 steps) is this task’s only failure condition for
evaluating the performances under various physical contacts.

Result

The results can be seen in Figure 3.6 and Figure 3.7.
Qualitative Analysis: We compared the on-policy demonstration trajectories

of the on-policy IL methods (Figure 3.6). As described in the previous qualita-
tive analysis (Chapter 3.5.1), the randomized intervention timing of DAgger may
induce a robot to fall into a state where the task is infeasible even in the expert
mode (e.g., robotic arms getting tangled up), resulting in failure. Although the
uncertainty-based intervention of EnsembleDAgger prevents vast deviations from
the demo trajectory, it cannot detect precision to request an expert’s interven-
tion in high-precision areas, resulting in repeatedly failing to thread a ring due
to slight deviations. Contrarily, the DP-OnIL implicitly detects environmental
precision from expert demonstrations to promote interventions in high-precision
areas (e.g., near a peg), resulting in successful on-policy demonstrations.

Quantitative Analysis: The overall results (Figure 3.7) show a similar trend
to the previous task (Chapter 3.5.1), although due to an increase in the task
complexity, even DP-OnILUCB, which had the best performance in the previous
results (Figure 3.5(a)), required more than 10 times the amount of training data
to exceed the 90% robot-autonomous performance (93.3%). The other meth-
ods fail to even surpass 90% despite the extra data. As the amount of training
data increased, the overall number of interactions also increased. Our methods
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Figure 3.7. Quantitative analysis of ring-threading simulation: Averaged performances of on-
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experiment 10 times with random seeds. (left): On-policy demonstration performance is mea-
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on-policy IL (EnsembleDAgger).
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Figure 3.8. Illustration of user interface using buttons on a joystick (X-box). In expert mode,
pressing the "A" button synchronizes the position of the robot’s end effector with that of the
human-held ring. While the "B" button is pressed, the robot follows the movement of the ring.
If the "B" button is released, the robot stops moving, and synchronization must be redone by
pressing the "A" button again. In auto mode, while the "Y" button is pressed, the robot is moved
by learned policy. Note, "Y" button is only set to ensure safety in verification evaluations, not
as the requirement of our method (DP-OnIL).
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(DP-OnILUCB and DP-OnILµ) still have significantly higher interactive perfor-
mance, and the other methods have larger variance than the previous results
(Figure 3.5(a)) due to increased interactions. These findings suggest that DP-
OnIL can effectively address safety concerns in the interactive policy learning of
clearance-limited tasks while ensuring efficiency.

3.6. Real-Robot Experiments with Human
Experts

In this section, we verified the applicability of our method in various real-world
scenarios (Figure 3.9 and Figure 3.10) by conducting an experiment that trains
the 6-DOF UR5e robot by human demonstrations of the following two assembly
tasks:

(i) a shaft-reaching task: We assessed the robot’s skill to reach and grasp a
shaft while avoiding fixed obstacles (Figure 3.9). Successfully performing
this task within the time limit (150 steps) is challenging since the environ-
ment is prone to physical contact (e.g., robot vs. obstacles);

(ii) ring-threading task: We assessed the robot’s skill of inserting a ring into a
peg without bumping into another peg for the assembly (Figure 3.10). This
scenario is more complicated than the shaft-reach task since the clearance
for inserting the ring is smaller (only 2 mm), requiring more precise control
and a larger time limit (200 steps).

Task Setting

The system state dimension is 12D, which consists of the robot’s joint angles and
the 3D coordinates of its arm and each task’s target assembly part (e.g., a shaft,
a peg). Markers are attached to each object (e.g., a shaft, a peg, obstacles) and
its coordinates are captured by a motion capture system (OptiTrack Flex13). An
action is defined as the velocity of the robot arm in the x, y, and z-axes. The
initial robot end-effector position is deviated with additive uniform noise: (i) the
shaft-reaching task: ϵs0 ∼ U(−0.05 m, 0.05 m), and (ii) the ring-threading task:
ϵs0 ∼ U(−0.02 m, 0.02 m).

36



Initial Demonstration

PrecisionUncertainty

X-axis

Z
-a

x
is

On-policy Demonstration

EnsembleDAgger DP-OnIL (Our)
Auto ModeExpert Mode

Z
-a

x
is

Obstacle

Shaft

Fail

Success

Fail

Figure 3.9. Real-robot experiments of the shaft-reaching task: Experimental environments were
conducted for a 6-DOF robotic arm (UR5e) reaching a shaft by avoiding obstacles. Precision and
uncertainty results were obtained by analyzing initial demonstration trajectories and normalized
to visualize variations across states. On-policy demonstrations of EnsembleDAgger and DP-
OnIL (Ours) show trajectories at the on-policy learning phase.
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Figure 3.10. Real-robot experiments of the ring-threading task: Experimental environments
were conducted for a 6-DOF robotic arm (UR5e) threading a ring into a peg. Precision and
uncertainty results were obtained by analyzing initial demonstration trajectories and normalized
to visualize variations across states. On-policy demonstrations of EnsembleDAgger and DP-
OnIL (Ours) show trajectories at the on-policy learning phase.
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Learning Setting

In a similar procedure to Chapter 3.5.1, the human initially collects 5 demonstra-
tion trajectories. The number of state-action pairs collected by the human expert
in each iteration equals the time limit of each task and the number of iteration
is 2 (K = 2). Accordingly, the amount of BC training data is roughly similar to
the other on-policy IL comparisons.

Comparison Methods: In real-world evaluations, DAgger was excluded from
the comparison since its random intervention criteria is too risky (Chapter 3.5.2).
Therefore, two approaches were compared with out methods (DP-OnILUCB and
DP-OnILµ):

• BC [17]: a conventional imitation learning;

• EnsembleDAgger [27]: a state-of-the-art risk-aware on-policy IL.

Moreover, to ensure sufficient human analysis, more human actions are encour-
aged by setting threshold χ as 50% of the overall training states that are classified
as expert modes.

Demonstration Setting: Demonstrations of each task were performed using
a teleoperation system (Figure 3.8) that synchronizes the robot’s end effector
with the position of a ring grasped by a human demonstrator. Thus, a robot
follows a human hand’s movements in a real-time manner. We used four hu-
man subjects with robotics experience. To obtain sufficient expert performance
from them, the following curriculum was applied. Before starting each experi-
ment, all subjects practiced teleoperating the robot by performing several task
scenarios, ranging from wide clearance (e.g., obstacle-free) to narrow clearance
(e.g., obstacle-present), until they became achieving success in each scenario con-
secutively. These interactions increased their understanding of environmental
precision. In addition, during task demonstrations, the subjects were informed of
their remaining time by bells at every 1/3 interval of the time limit.

Results

The results are seen in Figure 3.9, Figure 3.10, and Table 3.1.

39



Table 3.1. Real-robot experiments results of performance comparison: Performance of each
learning model is mean and standard deviation of results of four subjects. Robot-autonomous
performance of policies learned by each learning model was measured over ten test executions.
Since BC does not employ a meta-policy, we annotated it as N/A in on-policy demonstration
performances. Our methods are significantly better than task results marked ∗ (t-test, p <

5e−2).

Learning On-policy Demo. Perf. [%] Robot-auto. Perf. [%]
Models Shaft-reach. Ring-thread. Shaft-reach. Ring-thread.
BC N/A N/A 0.0∗ ± 0.0 0.0∗ ± 0.0
Ensemble
DAgger

41.1∗ ± 19.4 39.8∗ ± 19.1 42.5∗ ± 30.3 55.0∗ ± 26.9

DP-OnILµ

(ours)
100.0± 0.0 100.0± 0.0 82.5± 13.0 85.0± 11.18

DP-OnILUCB

(ours)
100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0

Qualitative Analysis: The on-policy demonstration trajectories of the on-
policy IL methods are compared in Figure 3.9 and Figure 3.10. EnsembleDAgger
uses the uncertainty of the policy decisions as intervention criterion and requests
human intervention in highly uncertain areas (e.g., near the starting position).
However, the uncertainty of the policy decision alone does not recognize the la-
tent collision risks in the limited clearance areas due to obstacles. Therefore, the
robot is operated in the auto mode in narrow areas, and no human intervention
is requested even when a collision is imminent, resulting in task failure. In con-
trast, the proposed method (DP-OnIL) uses human demonstrations to capture
environmental precision and incorporates it into an intervention criterion to rec-
ognize collision risks during the on-policy data collection. Accordingly, the robot
is operated in the expert mode during times of high collision risks (e.g., near
obstacles), thereby reducing their risk.

Quantitative Analysis: The results (Table 3.1) show that BC has zero robot-
autonomous performance in both the clearance-limited tasks. This is because,
as noted in a previous work [18], policies learned by BC easily lead a robot
to deviate from human-demonstrated trajectories, and such deviations are not
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Table 3.2. Real-robot experiments results of human stress comparisons: The total number of
interventions (mode switching from auto to expert) is measured as the factor of human stress.

Learning Models Total Number of Interventions
Shaft-reach. Ring-thread.

BC N/A N/A
EnsembleDAgger 16.5± 8.5 20.3± 4.6
DP-OnILµ (ours) 12.25± 4.76 18.2± 2.6
DP-OnILUCB (ours) 10.5± 2.7 16.0± 2.1

allowed in either task. EnsembleDAgger outperformed BC, although it did not
exceed 55% in either one since frequent failures during interaction (less than 50%
of the interactive performance) make training on the task’s later part insufficient.
Notably, our method (DPIIL) significantly improves both the interactive and
robot-autonomous performances by at least 30% compared to EnsembleDAgger
in both tasks, without increasing the total number of interventions (i.e., human
stress Table 3.2).

3.7. Summary of Chapter 3

In this chapter, we presented DP-OnIL, a safe on-policy IL algorithm that lever-
ages human risk sensitivity to mitigate the risk of collisions during on-policy
demonstration. Human risk sensitivity is exhibited through the speed-accuracy
trade-off in demonstrations, and we built on this psychological finding to intro-
duce a model that captures and estimates the demonstrator-perceived precision
as a risk in an on-policy demonstration. This approach enables the robot to auto-
matically request human intervention where there is a high risk of collision during
an on-policy demonstration, thus ensuring safety while maintaining the effective-
ness of the on-policy IL. The efficacy of our method (DP-OnIL) was evaluated
in learning on various assembly tasks with limited clearances on simulation and
real environment. The results suggest that through the utilization of risk sensi-
tivity, our algorithm can effectively learn limited clearance tasks with substantial
improvements in the safety of on-policy IL.
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4. Leveraging Human
Risk-sensitivity to Ensure
Demonstration Feasibility of
Disturbance-injected Imitation
Learning

4.1. Robustness and Demonstration Feasibility

As described in Chapter 2, a major issue limiting application of learned policies is
the problem of covariate shift [38]. Specifically, environment variations (e.g., ma-
nipulator starting position) induces differences between the policy distribution as
learned by the manipulator and the actual task distribution during application.

An intuitive approach to robustifying learned policies against sources of er-
ror, without needing to a priori specify task-relevant learning parameters, is to
exploit phenomenon similar to persistence excitation [39]. In this, disturbances
are injected into the expert’s demonstrated actions, and the recovery behavior of
the expert is learned given this perturbation. In an imitation learning context,
DART [20] exploits this phenomenon for learning a deterministic policy model
with a single optimal action (Chapter 2.3). Additionally, DART is well suited to
creating a richer dataset, by concurrently determining the optimal disturbance
level to be injected into the demonstrated actions during policy learning.

However, the applicability of algorithms proposed to implement DART [20] is
limited, since DART employs a naïve disturbance model which cannot regulate
the level of disturbance regarding given states (i.e., state-independent distur-
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Figure 4.1. Illustration of the critical functions of the proposed method. (a): Multiple optimal
policies are captured from complex human demonstrations, which may involve multiple optimal
actions. (b): Generating richer (more exploratory) demonstrations by injecting disturbances
into expert’s actions. Risk-sensitive disturbance models, which regulates its level response to
risks of states, is employed to ensure demonstration feasibility.
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bance). For robotics tasks with local precision involving small clearance, such
as a Figure 4.1, applying a uniform level of disturbance may hinder collecting
human demonstration datasets. For example, using a large level of disturbance
regardless of state can effectively reduce the covariate shifts, but it may lead to
unintended collisions, making human demonstration unfeasible. On the other
hand, to be safe, simply limiting a level of disturbance to a small level does not
sufficiently reduce the covariate shift.

This study aims to develop a disturbance injection approach for robustify-
ing policies while maintaining demonstration feasibility. A natural approach to
addressing this in an imitation learning context, is to explore how human demon-
strators approach this problem. Demonstrators, when aware of environmental
risks, decrease movement velocity to increase action accuracy [15], based on a
speed-accuracy trade-off [16]. Inspired by such risk-sensitive behavior, this paper
proposes a state-dependent disturbance model, which regulates the disturbance
level to be small at risky states (e.g., close to obstacles). As such, our disturbance
injection robustifies policies, while maintaining demonstration feasibility. Specif-
ically, a Heteroscedastic Gaussian Process (HGP) [40], which can accurately infer
probabilistic regression models with input-dependent variance, and is employed
as a state-dependent disturbance model in this chapter.

4.2. Flexibility

Learning generalized optimal action policies from human demonstrations, which
often contain complex behaviors (e.g., multiple optimal actions for a task), re-
quires elaborate policy models with non-linearity and stochasticity. However,
classical imitation learning approaches, including DART, commonly assume a
deterministic policy model, which outputs only a single action from observations,
due to its simplicity of application. This oversight leads to undesirable policy
learning in real-world scenarios where humans stochastically choose from mul-
tiple optimal actions as shown in Figure 4.2-(a). For DART (Chapter 2.3), in
particular, approximation errors of learned policy can lead to a cascade of ef-
fects that induce learning larger disturbance levels (2.8), limiting demonstration
feasibility. To this end, in this section, existing methods to address this lack of
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Figure 4.2. Comparing flexibility of policy model on a problem which have multiple optimal
actions over one state. (a): Standard unimodal GPs may learn undesirable actions since it
can not capture multiple actions. However, (b): Multimodal GPs successfully capture expert’
demonstrated actions which have multiple optimal actions.

flexibility are explored.

Dynamic Movement Primitives (DMPs)

Classical approaches to modelling uses dynamical frameworks for learning trajec-
tories from demonstrations, e.g., Dynamic Movement Primitives (DMPs). DMPs
represent demonstrated movement with combination of a point attractor term
and a nonlinear forcing term F as follows:

s̈ = Λa
s(Λb

s(g − s)− ṡ) + F . (4.1)

where, g is the goal state and Λa
s ,Λb

s are gain parameters that determined the
damping and spring behavior, respectively. In this, the forcing term F over time
is defined by a nonlinear system called a canonical system [41] with radial basis
functions.

As such, DMPs can generalize the learned trajectories to new situations (i.e., goal
location or speed) while retaining control stability, which is achieved by a point
attractor term performing a spring-damper system stabilizing actions [41–43].
However, this generalization depends on heuristics (e.g., the appropriate number
of basis functions regarding the complexity of trajectories), and is thus unsuitable
for learning state-dependent feedback policies.
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Gaussian Mixture Regression (GMR)

A common method for modeling these imitation learning policies, which over-
comes the issues of DMP by using the Gaussian Mixture Model (GMM) [44]. The
GMM is a probabilistic model that assumes that N data points X = {si, ai}N

i=0

are generated from a mixture of a finite number of a Gaussian distributions with
unknown parameters (e.g., means {µm}M

m=1, covariances {Σm}M
m=1, mixing coef-

ficients {zm}M
m=1) as:

p(X) =
M∑

m=1
zmN (X | µm,Σm) (4.2)

In addition, parameters of a joint distribution p(X) is optimized by the Expec-
tation-Maximization (EM) algorithm [45]. In this, the GMM is used as a basis
function to capture non-linearities during learning and has been utilized in imi-
tation learning that deals with human demonstrations [46].

In the Gaussian Mixture Regression (GMR) model, the conditional probability
distribution p(a | S) is derived in terms of the Bayesian theorem and regres-
sion functions from each model. As such, the GMR is an intuitive means to
learn trajectories or policies from demonstrators in the state-action-space, non-
parametrically, without imposing a priori structure. However, a major constraint
limiting the applicability of GMR is that hyperparameter tuning (including se-
lecting the optimal number of Gaussians initialization conditions) does not scale
well to high-dimensional systems, becoming computationally intensive for robotic
manipulation [47].

Variational Auto-Encoders (VAE)

In data-driven manner, nonlinearities can also be captured flexibly using Varia-
tional Auto-Encoders (VAE), which is a generative model that can embed high-
dimensional features in latent variables [48]. Furthermore, Conditional VAE
(CVAE) can learn multi-modality by conditioning latent variables on a decoder
[49], and has been applied to capture multiple optimal actions from human
demonstrations [50, 51]. However, such CVAE-based methods typically require
large amounts of data to capture multi-modality, and even though such multi-
modality is obtained using latent variables, learned policies may be sub-optimal
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for the high precision task; since latent variables are randomly sampled from a
standard Gaussian prior distribution [52].

Gaussian Processes (GPs)

As an alternative method for modeling these imitation learning policies, is to use
Gaussian processes. For a set of N input state S = {s1, s2, · · · , sN}, when the joint
probability distribution p(a) of the corresponding action a = {a1, a2, · · · , aN}
follows a multivariate Gaussian distribution, it is called the Gaussian processes
(GPs) [53]. It has a meaning as a probability model to infer the latent function
f between s and a.

In the Gaussian process regression (GPR) model, using the Gaussian noise
ε ∼ N (0, σ2) and function f sampled from the GPs, assume as follows:

an = f(sn) + εn (4.3)
f ∼ GP(0, k(s, s′)). (4.4)

where k(·, ·) is a kernel function. Let fn = f(sn) be the latent variable indicat-
ing the output of the function for the input data xn, and let f = {f1, · · · , fN}
represent the latent variable for all the input data. A multivariate Gaussian
distribution is assumed for the relationship between the data output a and the
function output f as:

p(a | f) = N (a | f , σ2IN)
p(f | S;ω) = N (f | 0,K;ω). (4.5)

where IN is the identity matrix of size N and K = k(S,S) is the kernel gram matrix
with a kernel hyperparameter ω. In addition, to obtain the joint distribution of
a, the latent function f is marginalized as follows:

p(a | S;ω) =
∫
p(a | f)p(f | S;ω)df

= N (0,K + σ2IN;ω). (4.6)

Note, the kernel hyperparamter ω is used to optimize the maximised log marginal
likelihood as:

ω̂ = arg max
ω

log p(a | S;ω) (4.7)
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According to the definition of GP, the relationship between the joint distribu-
tion of a and the unknown output a∗ is also a multivariate Gaussian distribution
as:  a

a∗

 ∼ N
0,

 K + σ2IN k∗

k⊤
∗ k∗∗ + σ2

 (4.8)

where [k∗]n = k(sn, s∗) and k∗∗ = k(s∗, s∗) Then, the predictive distribution of
the a∗ conditioning on observed data is derived as:

p(a∗ | s∗,S, a) = N (a∗ | µ∗, σ
2
∗) (4.9)

µ∗ = k⊤
∗ (K + σ2IN)−1a (4.10)

σ2
∗ = σ2 + k∗∗ − k⊤

∗ (K + σ2IN)−1k∗ (4.11)

In this, Gaussian process regression (GPR) deals with implicit (high-dimensional)
feature spaces with kernel functions. It thus can directly deal with high-dimensional
observations without explicitly learning in this high-dimensional space [53–56].

In particular, Overlapping Mixtures of Gaussian Processes (OMGP) [57] learns
a multi-modal distribution by overlapping multiple GPs as shown in Figure 4.2-
(b), and has been employed as a policy model with multiple optimal actions on
flexible task learning of robotic policies [21]. To further reduce a priori tuning,
Infinite Overlapping Mixtures of Gaussian Processes (IOMGP) [58] requires only
an upper bound of the number of GPs to be estimated. As such, IOMGP is an
intuitive means of learning flexible multi-modal policies from unlabeled human
demonstration data and is employed in this paper.

To the authors’ knowledge, there is no unified framework for imitation learn-
ing that can simultaneously consider robustness, demonstration feasibility, and
flexibility. Our insight into this stems from the difficulty of formulating all three
elements as a single framework. For example, in flexible policy learning, us-
ing non-parametric probabilistic policy models (e.g., [21]) effectively captures
multiple optimal actions from real human demonstrations where the number of
optimal actions in each state cannot be specified a priori. However, the previ-
ously proposed disturbance injection method [20] optimizes the disturbance level
by minimizing the covariate shift, which corresponds to the maximum likelihood
estimation based on the assumption of a deterministic policy model and a fixed
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disturbance level parameter. Thus, such flexible policy learning cannot be directly
integrated into the previous framework.

To address this difficulty, we propose to reformulate it as a non-parametric
Bayesian inference problem, which employs the objective function of robustifica-
tion as the likelihood and other non-parametric flexible policy and risk-sensitive
disturbance models as the prior distribution. As such, we presents a novel
Bayesian imitation learning framework that learns a probabilistic policy model ca-
pable of being both flexible to variations in demonstrations and robust to sources
of error in policy application by injecting risk-sensitive disturbances in next sec-
tion.

4.3. Proposed Method

In this section, a novel Bayesian imitation learning framework is proposed (Fig-
ure 4.3) to learn a probabilistic policy via expert demonstrations with disturbance
injection. Specifically, flexibility, robustness, and risk-sensitivity are incorporated
as a single formulation in a Bayesian manner; thus, it is referred to as Bayesian
Disturbance Injection (BDI). The general form of BDI is derived in Chapter 4.3.1.
As an overview, a non-parametric mixture model is utilized as a policy prior for
capturing multiple optimal actions from human demonstration. A heteroscedastic
model is employed as a disturbance prior for regulating disturbance level regard-
ing states as shown in Figure 2.2-(b). The disturbance optimization term (2.8)
is employed as a likelihood for minimising the covariate shift. This combination
derives an imitation learning method, which learns a multi-modal policy and an
injection disturbance distribution by Bayesian inference. Given this model, the
predictive distribution is induced in a Bayesian form. A specific implementation
of BDI, which employ IOMGP [58] as a policy prior and HGP [40] as a disturbance
prior, is derived from Chapter 4.3.2.

4.3.1. Bayesian Disturbance Injection (BDI)

Bayesian treatment is employed to learn probabilistic policies and disturbances
in a single incorporated framework. As such, each goal function of the learning
a policy (2.9) and disturbances (2.8) are formulated as a single likelihood. In
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Figure 4.3. Overview of MHGP-BDI, learning robust multi-modal policy with state-dependent
disturbance injection. (a): Collect and accumulate training datasets by injecting disturbance
into the expert’s demonstration actions. (b): Optimize the disturbance at which level can be
regulated in a state-dependent manner. These processes (a) and (b) are repeated to obtain a
robust multi-modal policy finally.
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addition, prior distributions of policy and disturbances are defined, and their
respective posterior distributions are obtained via Bayesian inference.

To capture complex human behaviors as involving uncertainties, the proba-
bilistic policy model which output action at from the state st with Gaussian
disturbance ϵt ∼ N (0, σ2) is defined as: at = f(st) + ϵt, where f(·) is an output
of a latent non-linear function. By applying this policy model to the objective
function of policy learning (2.9), a log-likelihood function that integrates policy
and disturbances is derived as follows:

J(π∗, f , σ2 | τ ) =
T −1∑
t=0

log p(a∗
t | f(st), σ2), (4.12)

where, f = [f(st)]T −1
t=0 is a set of a latent function outputs. Note that this log

likelihood function (4.12) is equal to the objective function of disturbance learning
(2.8) if the mean and variables are swapped in a Gaussian distribution (the value
of the distribution remains the same).

In addition, to infer a policy and disturbances in a non-parametric way from
iteratively accumulated state-action pairs ({a∗,S} = {a∗

n, sn}N
n=1, where N =∑k

j=1 Nj , Nj is a size of the dataset that collected at j-th iteration), the prior
distribution of a policy and disturbances are defined as p(f | S) and p(σ2), re-
spectively. Accordingly, posterior distributions of a policy and disturbances are
simultaneously inferred by Bayesian inference as:

p(f , σ2 | a∗,S) = p(a∗ | f , σ2)p(f | S)p(σ2)
π∗(a∗ | S) . (4.13)

A summary of the BDI is shown in Algorithm 3.

4.3.2. Multi-modal Heteroscedastic Gaussian Process
BDI (MHGP-BDI)

Formulation

To learn a multi-modal policy, the policy prior is considered as the product of
infinite GPs, inspired by IOMGP. In addition, to learn state-dependent distur-
bances that can regulate its level respond to states, the prior of disturbances is
considered as a state-dependent variance GP prior, inspired by HGP. Intuitively,
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Algorithm 3 Bayesian Disturbance Injection (BDI)
Input: σ2

1
Output: p(f , σ2 | a∗, S)

1: for k = 1 to K do
2: Get dataset through the disturbance injected expert:

{a∗
t , st}Nk

t=1 ∼ p(τ | π∗, σ2
k)

3: Aggregate datasets :
a∗ ← a∗ ∪ {a∗

t }
Nk
t=1 , S← S ∪ {st}Nk

t=1
4: Update p(f , σ2 | a∗, S)
5: end for

Figure 4.4 shows a probabilistic policy model in which expert’s actions a∗ are esti-
mated by f (m),Z,g. The latent function f (m) is the output of m-th GP given state
S. To allocate the expert’s n-th action a∗

n to the m-th latent function f (m), the
indicator matrix Z ∈ RN×∞ is defined. To estimate the optimal number of GPs,
a random variable vm quantifies the uncertainty assigned to f (m). In addition, to
learn an injection disturbance which can regulate its level in a state-dependent
way, a state-dependent disturbance level σ2(sn) = eg(sn) is introduced, where g(·)
is an output of GP given a state sn.

Policy prior: the set of latent functions is denoted as {f (m)} = {f (m)}∞
m=1 and

a GP prior is given by :

p({f (m)} | S, {ω(m)}) =
∞∏

m=1
N (f (m) | 0,K(m)

f ;ω(m)), (4.14)

where K(m)
f = k(m)

f (S,S) is the m-th kernel Gram matrix with the kernel function
k(m)

f (·, ·) and a kernel hyperparameter ω(m)
f . Let {ω(m)

f } = {ω(m)
f }∞

m=1 be the set
of hyperparameters of infinite number of kernel functions.

To infer the optimal number of GPs from the above GP mixtures (4.14), the
Stick Breaking Process (SBP) [59] is used as a prior of Z, which can be interpreted
as an infinite mixture model as follows:

p(Z | v) =
N∏

n=1

∞∏
m=1

vm

m−1∏
j=1

(1− vj)
Znm

, (4.15)

p(v | β) =
∞∏

m=1
Beta (vm | 1, β) . (4.16)
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Note that the implementation of variational Bayesian learning approximates infinite-
dimensional inference with a predefined upper bound of M . In this process, vm

is a random variable indicating the probability that the data corresponds to the
m-th GP. Thus, it is possible to estimate the optimal number of GPs with a
high probability of allocation starting from an infinite number of GPs. β is a
hyperparameter of SBP denoting the level of concentration of the data in the
cluster.

Disturbance prior: the above policy model differs from the IOMGP model
for regression [58]; our model employs a state-dependent disturbance level eg(sn)

where the values are determined in response to the state. To learn a state-
dependent disturbance, the disturbance prior is considered as a heteroscedastic
Gaussian disturbance, inspired by HGP [40]. Accordingly, a GP prior is placed
on a latent function g = {g(sn)}N

n=1, which represent a level of disturbance as:

p(g | S;ωg) = N (g | µ01N ,Kg;ωg), (4.17)

where, µ0 is mean of disturbance distribution, 1Ni
is a vector whose size is Ni

and all components are one, and Kg is kernel Gram matrix with a kernel hyper-
parameter ωg.

Likelihood: the likelihood function, as in (4.12), for the variables ({f (m)},g,Z)
in the policy and disturbance models, is derived as follows:

p(a∗ | g, {f (m)},Z)

=
N∏

n=1

∞∏
m=1
N (a∗

n | f (m)
n , egn)Znm . (4.18)

This formulation is described in a graphical model that defines the relationship
between the variables as shown in Figure 4.4, and the joint distribution of the
model as :

p(a∗,g, {f (m)},Z,v | S; Ω)
= p(a∗ | g, {f (m)},Z)p(g | S;ωg)·

p({f (m)} | S; {ω(m)
f })p(Z | v)p(v | β), (4.19)

where Ω = ({ω(m)
f }, ωg, µ0, β) represents a set of hyperparameters.
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Figure 4.4. Graphical model of policy with state-dependent injection disturbance.

Optimization of Policies and Injection Disturbance via Variational
Bayesian Inference

Bayesian inference is a framework that estimates the posterior distributions of the
policies and their predictive distributions for new input data rather than point
estimates of the policy parameters. To obtain the posterior and the predictive
distributions, the marginal likelihood is calculated as :

p(a∗ | S; Ω)

=
∫
p(a∗,g, {f (m)},Z,v | S; Ω)dgd{f (m)}dZdv. (4.20)

However, it is intractable to calculate the log marginal likelihood of (4.20)
analytically. Therefore, the variational lower bound is derived as the objective
function of variational learning. The true posterior distribution is approximated
by the variational posterior distribution, which maximizes the variational lower
bound. Such the variational lower bound L(q,Ω) is derived by applying the
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Jensen inequality to the log marginal likelihood, as:

log p(a∗ | S; Ω)

≥
∫
q log p(a

∗,g, {f (m)},Z,v | S; Ω)
q

dgd{f (m)}dZdv

= L(q,Ω), (4.21)

where, q = q(g, {f (m)},Z,v) represents a set of variational posteriors.
As a common fashion of variational inference, the variational posterior dis-

tribution is assumed to be factorized among all latent variables (known as the
mean-field approximation [60]) as follows:

q(g, {f (m)},Z,v) = q(g)q(f (m))q(Z)
∞∏

m=1
q(vm). (4.22)

In addition, to compute the variational lower bound in closed form, the posterior
of g is restricted to a multivariate Gaussian distribution. Furthermore, to reduce
the computational complexity and facilitate the optimization problem, similar to
Gaussian approximation [61], a positive variational parameter Λ = diag{λn}N

n=1

is employed as :

q(g) = N (g | µg,Σg), (4.23)

µg = Kg

(
Λ− 1

2I
)

1N + µ01N , (4.24)

Σ−1
g = K−1

g + Λ, (4.25)

where, I is an identity matrix.
Therefore, the optimization formulation is derived by utilizing the Expectation-

Maximization (EM)-like algorithm. The variational posterior distributions q are
optimized with fixed hyperparameters Ω′ in E-step, and the hyperparameters Ω′

are optimized with fixed variational posterior distributions q in M-step with:

q̂, Ω̂′ = arg max
q,Ω′

L(q,Ω′), (4.26)

where, Ω′ = (Ω,Λ) represents a set of variational hyperparameters. See Chap-
ter B.1 for details of q update laws and Chapter B.2 for details of lower bound
of marginal likelihood. In addition, a summary of the proposed method is shown
in Algorithm 4; and Table 4.1 shows the computational complexity of each opti-
mization.
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Algorithm 4 Multi-modal Heteroscedastic Gaussian Process BDI (MHGP-BDI)
Input: M, σ2

1
Output: q̂, Ω̂′

1: for k = 1 to K do
2: Get dataset through the disturbance injected expert:

{a∗
t , st}Nk

t=1 ∼ p(τ | π∗, σ2
k)

3: Aggregate datasets :D ← D ∪ {a∗
t , st}Nk

t=1
4: while L(q, Ω′) is not converged do
5: while L(q, Ω′) is not converged do
6: Update q(f (m)), q(Z),and q(vm) alternately
7: end while
8: Optimize Ω′ with fixed q:

Ω̂′ ← arg maxΩ′ L(q, Ω′)
9: end while

10: end for

Table 4.1. Computational complexity of each optimization in MHGP-BDI: N and M are number
of training data sets and upper bound of mixtures, respectively.

q(g) q(v) q({f (m)}), q(Z), L
MHGP-BDI O(N3) O(M2N) O(MN3)

Predictive Distribution

Using variational parameter Λ optimized by maximizing (4.26), the predictive
disturbance q(g∗) on a new state s∗ can be obtained as:

q(g∗) =
∫
p(g∗ | s∗,S,g)q(g)dg

= N (g∗ | µg∗, σ
2
g∗), (4.27)

µg∗ = k⊤
g∗(Λ− I/2)1N + µ0, (4.28)

σ2
g∗ = kg∗∗ − k⊤

g∗(Kg + Λ−1)−1kg∗, (4.29)

where kg∗ = kg(s∗,S), and kg∗∗ = kg(s∗, s∗). As such, a level of disturbance
injected at the next iteration k + 1 is calculated as: σ2

k+1(s∗) = eµg∗ .
In addition, using the hyperparameters Ω′ and the variational posterior distri-

butions q optimized by variational Bayesian learning, the predictive distribution
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Table 4.2. Computational complexity of each prediction in MHGP-BDI: N is number of training
data sets.

q(g∗) p(a(m)
∗ | s∗,S, a∗)

MHGP-BDI O(N3) O(N3)

of the m-th action a
(m)
∗ on a current state s∗ is derived as:

p(a(m)
∗ | s∗,S, a∗)

≈
∫
p(a∗

∗ | f (m), g∗, s∗)q(f (m))q(g∗)df (m)dg∗

=
∫
N (a∗

∗ | µ(m)
∗ , c2(m)

∗ + exp(g∗))N (g∗ | µg∗, σ
2
g∗)dg∗; (4.30)

however, it is analytically intractable to compute. Alternatively, using a Gauss-
Hermite quadrature rule [62], mean µ

(m)
∗ and variance σ

2(m)
∗ of the predictive

distribution (4.30) can be approximated as:

µ(m)
∗ = k(m)⊤

f∗ (K(m)
f + R−1)−1a∗, (4.31)

σ2(m)
∗ = c2(m)

∗ + exp(µg∗ + σ2
g∗/2), (4.32)

c2(m)
∗ = k

(m)
f∗∗ − k(m)⊤

f∗ (K(m)
f + R−1)−1k(m)

f∗ , (4.33)

where k(m)
f∗ = k(m)

f (s∗,S), and k(m)
f∗∗ = k(m)

f (s∗, s∗); and Table 4.2 shows the com-
putational complexity of each prediction. Additionally, m is chosen as the value
that maximizes the inverse of the predicted variance σ2(m)

∗ as:

m̂ = arg max
m

1
σ

2(m)
∗

, (4.34)

as such, meaning the m̂-th GP is selected, due to its minimal uncertainty.

4.4. Simulation

In this section, the proposed methodology (MHGP-BDI) is evaluated in regards
to the following questions, to examine key objectives of capturing human be-
havior characteristics in a simulated precision wall-avoidance task: (i) flexibility:
how does capturing multiple optimal human actions affect imitation learning
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of robotic tasks?, (ii) robustness: how does injecting disturbances into human
demonstrations affect the applicability of learned policies?, and (iii) risk-sensitiv-
ity: how does injecting disturbance into human action command affect human
demonstrations’ feasibility?

Evaluation Metrics: Performance of MHGP-BDI is considered during the
training phase and execution phase. For the former, demonstration feasibility, or
the success rate of collecting training data with a human expert in the loop, is
evaluated. On the latter, execution performance, or the success rate of deploy-
ing the learned policy after training, is evaluated. These metrics are reported
in the wall-avoidance simulation study (Chapter 4.4.1) and the real robot as-
sembly study (Chapter 4.5). By comparing both performances across different
algorithms, each algorithm is evaluated for how effectively it obtains policy per-
formance while ensuring the demonstration feasibility.

Table 4.3. Comparison models in terms of flexibility, robustness, and demonstration feasibility.

Learning Models Flexibility Robustness
Demonstration

Feasibility

BC [17] ✗ ✗ ✓

DART [20] ✗ ✓ ✗

CVAE-BC [51] ✓ ✗ ✓

UGP-BC ✗ ✗ ✓

UGP-BDI ✗ ✓ ✗

UHGP-BDI ✗ ✓ ✓

MGP-BC ✓ ✗ ✓

MGP-BDI [63] ✓ ✓ ✗

MHGP-BDI (Proposed) ✓ ✓ ✓

Comparison Methods: To evaluate the proposed method (MHGP-BDI),
comparisons are made between 8 baselines. Each baseline’s features (flexibility,
robustness, and demonstration feasibility) are represented in Table 4.3. Specifi-
cally, these algorithms are implemented as:

• Behavior Cloning (BC) [17]: Conventional supervised imitation learning
as described in Chapter 2.1 using a neural network policy model,
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• Disturbances for Augmenting Robot Trajectories (DART) [20]: Ro-
bust imitation learning by injecting disturbance into expert as described in
Chapter 2.3 using a neural network policy model,

• Conditional Variational AutoEncoders BC (CVAE-BC) [51]: Multi-
modal imitation learning based on BC algorithm using a CVAE policy
model,

• Uni-modal GP Behavior Cloning (UGP-BC): BC using standard uni-
modal GPs [53],

• Multi-modal GP BC (MGP-BC): BC using infinite overlapping mix-
tures of GPs (IOMGP),

• UGP-BDI: BDI using standard uni-modal GPs and state-independent dis-
turbance model with a constant disturbance level of σ2,

• Uni-modal Heteroscedastic GP BDI (UHGP-BDI): BDI using stan-
dard uni-modal GPs and Heteroscedastic Gaussian Processes (HGP) as
state-dependent disturbance model σ2(st),

• MGP-BDI [63]: BDI using IOMGP policy model and state-independent
disturbance model which level parameter as σ2.

See Chapter C.2 for how the hyperparameters of each method are set. Note, in
all experiments, demonstrations are performed without injecting disturbances in
the first iteration (i.e., σ2

1 = 0); since initially, there is no available evidence of
which level of disturbance is suitable.

4.4.1. Wall-avoidance Task

Initially, a wall-avoidance task involving multiple apertures is presented (Fig-
ure 4.5-(a)). In this experiment, demonstrations are conducted in an environment
involving states in which physical contact (e.g., collisions of an agent and walls)
is likely to occur, and the demonstration feasibility (e.g., avoiding collision) will
be evaluated. The learned policy is evaluated through test execution episodes
to evaluate its flexibility capturing multiple optimal actions from demonstrations
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Figure 4.5. Wall-avoidance Task (Wide). (a): Environment of passing through a multiple
aperture. S and G represent a starting and a goal position, respectively. An algorithmic
supervisor’s demonstrated movement, which includes the cautious phase (e.g., move slow when
a robot is close to an aperture), is captured as multiple frames with a 0.025 frame rate. (b),
(c): Comparing flexibility between multi-modal approaches and uni-modal approaches. (b) The
predictive distribution of x-axis action a∗ in a given starting position state. (c) Movements of
multi-modal approaches and uni-modal approaches at policy application phase.

(e.g., multiple paths through an aperture to reach the goal), and robustness
against environmental variations (e.g., starting positions of the agent or inertial
of the agent) that may induces the covariate shift.

Setup

In the wall-avoidance task environment (Figure 4.5-(a)), the aim is for the agent
(blue square with width and height 1.4 cm and 1.5 cm respectively) to move from
the starting position (black cross) through one of the two apertures to the goal
position (red circle) without colliding with the wall (grey square). The system
state is the agent’s position (e.g., x, y-axis coordinates), and the action is the
agent’s velocity (e.g., x, y-axis).

Expert demonstrations are provided by an algorithmic supervisor, specifically
human-like cautious behavior [15] is generated by a classical PID controller. This
behavior is simulated by adjusting the agent’s velocity during task execution:
high velocity (high p-gain) in open regions far from apertures, and low velocity
during aperture traversal, as shown in Figure 4.5-(a).

60



(c) (d)

Goal

𝑡

Wall

MHGP-BDI
MGP-BDI

Di
st
ur
ba
nc
e 
le
ve
l

Wall

G

S

𝜎 ∗"
of
 M
GP
-B
C

MHGP-BDI
MGP-BC

𝑡
(b)

Expert

(a)

𝜎 ∗"
of
 M
H
GP
-B
DI

G

S

Figure 4.6. Wall-avoidance Task (Complex). (a), (b): Comparing robustness between MHGP-
BDI and MGP-BC. (a) Generated trajectory from policy learned by MHGP-BDI and MGP-BC,
and (b) sequentially depicts the predictive action variance σ2

∗ (i.e., norm of the XY-axis σ2
∗)

of both policy at each step. This result shows that as the agent deviates from the expert’s
trajectory towards the perpendicular distance, the confidence decreases as the data becomes
more sparse. (c), (d) : Demonstration feasibility comparison of MHGP-BDI and MGP-BDI.
(c) Demonstration trajectory with injecting a state-dependent disturbance (MHGP-BDI) and a
state-independent disturbance (MGP-BDI), and (d) sequentially depicts the level of disturbance
injected at each step.
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Figure 4.7. Wall-avoidance Task Results (Wide & Complex). (a), (c): Comparing the demon-
stration success rate for representative learning methods (MGP-BC, DART, MGP-BDI, and
MHGP-BDI) of each robustification method. The demonstration success rate of each compar-
ison method is measured as the mean and standard deviation of the demonstration success
probability for the entire trials of the final learning iteration. Significant differences by t-test
were observed between the proposed method and baselines (∗∗ : p < 0.005, ∗ ∗ ∗ : p < 0.0005).
Note, uni-modal methods exhibit similar results in these experiments. It is seen that demo suc-
cess rate is more related to robustifying than flexibility; thus, these results focus on comparing
between robustifying approaches. (b), (d): Comparing task performance with the number of
trajectories. The task performance of policy application is measured as the mean and standard
deviation of the task success probability by conducting five learning trials and testing each
learned policy 100 times.
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Wide: Under these experimental parameters, expert demonstrations of passing
through each aperture (aperture width is 5.0 cm) is provided in sequence. If the
agent collides with a wall or fails to reach the goal position within the time limit
(400 steps), it is considered as a failure, and data is discarded, and the demon-
stration is restarted. After collecting 2 demonstration trajectories, the data are
used to optimize the policy and the disturbance until the optimization equation
(4.26) converges. In contrast, learning methods that fail to collect demonstra-
tions more than 5 times are considered a learning failure and are not included in
the task performance comparison. This process is defined as one iteration of k in
Algorithm 4, and is repeated K times, adding the successful demonstrations to
the training dataset and continuously updating the policy and disturbance until
the fixed number of iterations is reached. In this experiment, K is empirically
chosen to stop learning when the average of injected disturbance level is suffi-
ciently small (i.e., learned policy from each comparison is achieved at K = 6).
During the test execution stage, each element of the initial state is deviated by
an additive uniform noise ϵs0 ∼ U(−0.05 cm, 0.05 cm), and positions of the walls
and goal remain constant.

Complex: To evaluate the proposed method’s scalability, a second experiment
is also presented for a more complex task, as shown in Figure 4.6-(a),(c). In this,
apertures with a smaller width (2.0 cm) is placed in the environment, and a sec-
ondary wall with four apertures is additionally placed below the first wall of the
previous experiment. The clearance for moving the agent is smaller in the both
layer apertures (0.5 cm), requiring more precise control to avoid collision. Addi-
tionally, this secondary layer creates new traversal branches, inducing additional
multiple optimal actions and requiring longer steps to accomplish the task. Due
to the increased task complexity, the time limitation is increased to 1500 step and
the maximum number of demonstration trajectories for updating the policy and
disturbance estimates is increased to 8 and the maximum number of iterations
is K = 5 (total 40 trajectories). Additionally, during the test execution stage,
each element of the initial state is deviated by the wider additive uniform noise
ϵs0 ∼ U(−0.1 cm, 0.1 cm).
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Results

This section presents the qualitative and quantitative analysis of this simulation.
The qualitative analysis is presented in terms of (i) flexibility, (ii) robustness, (iii)
demonstration feasibility. In addition, the quantitative analysis is presented with
previously described evaluation metrics. The results of this simulation are shown
in Figure 4.5, Chapter 4.6, Chapter 4.7.

(i) Flexibility: Initially, to evaluate the ability of the agent to flexibly learn in
scenarios with multiple-optimal actions (Figure 4.5-(a)), policies are learned for
each of the comparison methods, and generated action distributions are shown in
Figure 4.5-(b). In this, it is seen that the uni-modal policy learned by UHGP-BDI
fails to capture multiple optimal actions at the starting position (S) of the task.
Note, all other uni-modal GP-based methods (UGP-BC, UGP-BDI) exhibit very
similar Gaussian distributions. Specifically, as seen in Figure 4.5-(c), uni-modal
approaches learn a mean-centered policy from the demonstrations, resulting in
an incorrect average direction and inability to reach any aperture. However, poli-
cies learned by MHGP-BDI can correctly capture the multi-modal distribution
(Figure 4.5-(b)) and learn the two optimal actions (Figure 4.5-(c)). Note, all
other multi-modal GP-based methods (MGP-BC, MGP-BDI) exhibit very simi-
lar Gaussian mixture distributions.

(ii) Robustness: To evaluate the effect of demonstrations on policy learning
and application (i.e., the test execution phase), initially the successful demon-
strations from the MGP-BC method are used for policy learning. The results for
applying policy learning is seen in (Figure 4.6-(a)), where immediately the agent
poorly performs the task by veering away from trained trajectory, and does not
recover back to the optimal trajectory. This demonstrates the error compounding
problem, whereby the lack of robustness in the learned model causes the agent to
visit unexplored and unrecoverable states. This effect can be seen in (Figure 4.6-
(b)), whereby the action variance of MGP-BC is dramatically increased during
policy learning, in a failed attempt to mitigate the problem. As such, the confi-
dence of the policy learned by MGP-BC decreases monotonically after the 60 th
time step and fails the task (time-limitation). Note that the other multi-modal
neural network-based approach (CVAE-BC) exhibits a similar phenomenon.

In contrast, in the MHGP-BDI method, error compounding is minimised by
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injecting disturbances into demonstrations, thereby collecting recovery actions
under conditions that drift from an optimal trajectory. Accordingly, when ap-
plying the policies learned in the MHGP-BDI method, even though the agent
similarly immediately drifts, it can recover to an optimal trajectory and complete
the task (Figure 4.6-(a)). Even if there is a momentary decrease in confidence due
to environmental variations, the policy exhibits a high confidence (Figure 4.6-(b)).
Note that confidence is relatively lower when passing through the first aperture
(60 th time step) than the second aperture (440 time step), since the perpendic-
ular distance from the expert’s trajectory to the agent is larger, induced by the
environmental variations (e.g., random starting position and inertial effects).

(iii) Demonstration Feasibility: Given this demonstration of flexibility and
robustification, the disturbance injection approaches are then evaluated in terms
of their ability to limit collisions. Specifically, the ability of methods which utilizes
either a state-independent (MGP-BDI) or a state-dependent (MHGP-BDI) dis-
turbance, is evaluated in aperture traversal. In Figure 4.6-(c), it is seen that state-
independent methods, which do not regulate disturbance, collide with the walls,
due to its constant level of disturbance (as seen in Figure 4.6-(d)). As such, state-
independent robustification (MGP-BDI) injects disturbances that are unsafe, and
render this method unable to collect supervisor demonstrations, and the learning
process cannot proceed any further. Note that the other state-independent ap-
proach (DART) exhibit similar phenomenon. In contrast, MHGP-BDI equipped
with a state-dependent disturbances, successfully navigates the tasks-space, by
reducing the level of disturbance to about 23% of that of the MGP-BDI when
it comes close to aperture (t = 86) (Figure 4.6-(d)). This cautious-like behavior
enables the agent to pass through the aperture safely, and complete the demon-
strations.

Quantitative Evaluation: To evaluate the stability of these approaches,
these experiments were repeated five times. The averaged demo success proba-
bilities for representative learning methods (MGP-BC, DART, MGP-BDI, and
MHGP-BDI) of each robustification method are shown in Figure 4.7-(a), (c). In
addition, the averaged task execution performance of each learned policy is shown
in Figure 4.7-(b), (d).

In the wide aperture experiments, (Figure 4.7-(a)), the demonstration feasibil-
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ity is not significantly different from MGP-BC even with the disturbance injection
learning approaches (DART, MGP-BDI and MHGP-BDI), since the aperture size
is sufficiently large. However, (Figure 4.7-(b)), the uni-modal policy schemes (BC,
DART, UGP-BC, UGP-BDI and UHGP-BDI) all fail to learn the multi-modal
task and as expected produce low performance (under 50%) results, due to lack
of flexibility (as discussed in Figure 4.5-(b), (c)). Note, DART, UGP-BDI, and
UHGP-BDI gain additional robustness over the standard uni-modal approaches;
since some deviated states, induced by control errors due to failure to capture
multiple optimal actions, may be covered by disturbance injection. Thus its
performance increases monotonically in the early stages; however it eventually
cannot exceed 50% due to the limitation of learning flexibility. In comparison,
the multi-modal policy schemes (CVAE-BC, MGP-BC, MGP-BDI and MHGP-
BDI) improve the learning performance by nearly 100% with increasing number
of trained trajectories.

In the complex aperture experiments, (Figure 4.7-(d)), even multi-modal BC
approaches (CVAE-BC, MGP-BC) using a flexible multi-modal policy, learned
policies’ task performance cannot exceed 60%, due to the lack of robustness
(as discussed in Figure 4.6-(a), (b)). However, if disturbances are injected into
demonstrations in a state-independent manner (DART, MGP-BDI), this pertur-
bation may cause physical contact at narrow apertures, and lead to demonstra-
tion failure (as discussed in Figure 4.6-(c), (d)). This failure is seen in DART
and MGP-BDI; both have a low demonstration success rate in the complex sim-
ulation (Figure 4.7-(c)), with demonstration success decreased by 32% compared
to the wide-version. Accordingly, DART and MGP-BDI are removed from the
comparison of learning performance in the complex aperture experiments (Fig-
ure 4.7-(d)), since they failed 5 times demonstrations during learning iteration.
In contrast, MHGP-BDI, which can learn a state-dependent disturbances, has a
100% demonstration success rate for both simulations, and consistently shows su-
perior learning efficiency and obtain policies with high task performance (nearly
100%, only very small failures due to some specific starting position or given
environmental noise).
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Figure 4.8. Real Robot Experiments Setup. Experimental environments for 6-DOF robotic arm
(UR5e) assembly tasks with human expert are conducted as: (a) sweeping gears on the table,
(b) reaching to a shaft with avoiding obstacles, (c) inserting a shaft into a hole. Test execution
scenes of learned policies: Failure: (Uni-modal) Due to the inability to capture the multiple
optimal actions, these approaches learn mean-centred policy, resulting in (a) sweeping a centre
of the gears, (b) colliding to an obstacle between shafts, (c) putting a shaft onto the centre
of the holes. (BC) Even though the approach can capture multiple optimal actions, without
disturbance injection in demonstrations, policies are vulnerable to environmental variations,
resulting in a robot departure from the demonstrated states; thus, the robot (a) cannot sweep
gears completely or ((b), (c)) go out of the task space. Success: Our proposed method (MHGP-
BDI) provides policies that are learned by capturing optimal actions or initiating recovery
actions by injecting optimized disturbances, which allow the robot to successfully (a) sweep
the whole gears, (b) reach to both shafts and (c) insert a shaft into the holes, in a given any
starting position. Our supplementary video can be seen at: https://youtu.be/NeJy8pfkrC4.
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Figure 4.9. Comparison of Two Types of Disturbances. Both disturbances (state-independent
and state-dependent) are injected into a human demonstration during a shaft-reach task ((a),
(b)) and a shaft-insertion task ((c), (d)). Graphs showing the disturbance level with regards to
the end-effector position with fixed y-coordinate ((a), (b) fixed Y-axis = 0.23 m) and the grasped
shaft position with fixed X-coordinate ((c), (d) fixed X-axis = −0.7 m) : state-independent
disturbances have a uniform level in any state (left), and state-dependent disturbances, obtained
by MHGP-BDI, have a spectrum of level depending on the state (right). Colors of disturbance
level are normalized by the amount of clearances for each task.
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Table 4.4. Real Robot Experiments Results. Each learning model’s demonstration success is
measured at the last iteration of learning each task (10 demonstration attempts). If a human
fails demonstration (e.g., robot crashes with obstacles or fails to complete the task within the
time limit) over 5 times at a single iteration then finish the learning process, failing to obtain a
policy. Such learning models are not able to measure the task execution performance of learned
policy; thus it is annotated as N/A. The test execution performance of policies learned by each
learning model has been measured over 10 test executions.

Learning
Demonstration Success Test Execution Performance

Models
Table-
sweep

Shaft-
reach

Shaft-
insertion

Table-
sweep

Shaft-
reach

Shaft-
insertion

BC 10/10 10/10 10/10 0/20 0/10 0/10
DART 10/10 4/10 4/10 0/20 N/A N/A
CVAE-BC 10/10 10/10 10/10 16/20 4/10 5/10
UGP-BC 10/10 10/10 10/10 0/20 0/10 0/10
UGP-BDI 10/10 0/10 0/10 0/20 N/A N/A
UHGP-BDI 10/10 10/10 10/10 0/20 0/10 0/10
MGP-BC 10/10 10/10 10/10 10/20 7/10 5/10
MGP-BDI 10/10 2/10 1/10 20/20 N/A N/A
MHGP-BDI
(Proposed) 10/10 10/10 10/10 20/20 10/10 10/10

4.5. Real Robot Experiments

In this section, three experiments are conducted to demonstrate the proposed
method’s applicability on various scenarios as shown in Figure 4.8. MHGP-BDI
is applied to a 6-DOF UR5e (Universal Robotics) robot to learn three assembly
tasks:

• Table-sweep task: the robot’s ability to reach multiple objects and sweep
them out of the table, is evaluated. Demonstrations of sweeping two gears
on the table are provided by a human, as shown in Figure 4.8-(a). The
state of the system is defined as the relative 2D coordinate from the robotic
arm to two gears (Q = 4); an action is defined as the velocity of the robotic
arm in the x and y axis.
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• Shaft-reach task: the robot’s ability to avoid fixed obstacles and reach
a shaft to grasp it, is evaluated. Demonstrations of reaching one of the
assembly supplies (e.g., shaft) without colliding with fixed obstacles are
provided by a human, as shown in Figure 4.8-(b). The state of the system
is defined as the relative 3D coordinate between the robot arm and two
shafts (Q = 6), an action is defined as the velocity of the robot arm in
the x, y and z axis. This is a more difficult task than the table-sweep
task, as: (1) the state-action space is larger to deal with a more general
setting, (2) the environment is prone to physical contact (e.g., collision
with obstacles).

• Shaft-insertion task: the robot’s ability for inserting a shaft into a hole for
assembly, is evaluated. Demonstrations of inserting the assembly supplies
(e.g., shaft) into one of the holes (on both side of white “L” shaped base) are
provided by a human, as shown in Figure 4.8-(c). The state of the system is
defined as the relative 3D coordinate between the robot arm and two holes
(Q = 6), an action is defined as the velocity of the robot arm in the x, y
and z axis. This scenario is more complicated than the shaft-reach task
as: (1) Physical contacts are involved, requiring more sensitive behavior,
(2) the clearance for inserting shaft is smaller (only 1 mm), requiring more
precise control.

In the following experiments, learned policies are evaluated in terms of ability to
flexibly learn tasks with multiple optimal actions (e.g., the order in which to in-
teract with the objects), and well as robustness to environmental covariance shift
inducing disturbances (e.g., friction between the objects and environment, induc-
ing variations in movement). Here, the test execution performance of the learned
policies is measured by 10 deployment tests of the final learned policy for each
learning method. In addition, human demonstrations are evaluated in terms of
feasibility for completing a task. For example, if the robot collides with obstacles
or fails to complete a task during the demonstration stage within the time limit
(400 steps), it is considered a failure, and the demonstration is instead repeated.
Suppose a human fails demonstration over 5 times at a single learning iteration.
In that case, it is considered learning failure (terminate the learning process), and
such learning methods are removed from the task performance comparison. Here,
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the demonstration success is measured by conducting 10 demonstration attempts
with same conditions (e.g., disturbance model) used at the last learning iteration.

To measure the state of the system, markers are attached to each object (gear,
shaft, hole) and tracked through a motion capture system (OptiTrack Flex13).
In addition, to validate the robustness of the policy to deviations from optimal
trajectories, each element of the initial state is deviated with additive uniform
noise: (1) table-sweep task: ϵs0 ∼ U(−0.05 m, 0.05 m) (2) shaft-reach/insertion
task: ϵs0 ∼ U(−0.005 m, 0.005 m) The assembly model used [64] (e.g., gears,
shafts, base) is a standardized benchmark task for robotic assembly.

4.5.1. Table-sweep Task

Setup

Initially, two gears and the robot arm are placed at fixed coordinates on a table.
The human expert performs demonstrations in which the objects are swept off
the table. Two demonstrations from these initial conditions are then performed,
capturing both variations in the order of which the objects are swept from the
table. The method optimizes a policy and disturbances until (4.26) is converged.
This process is repeated K = 4 times (8 trajectories).

The learned policies’ performance is evaluated according to the number of gears
swept out of the table at the end of the test execution episode.

Result

The results of this experiment are seen in Table 4.4. In the table-sweep task,
the expert can successfully perform demonstrations using any of the proposed
methods, even when disturbances (i.e., state-dependent or state-independent)
are injected; since the environment does not involve any obstacles in which dis-
turbances may induce risks (e.g., collisions or confusion in decision making).

Given these successful demonstrations, task performance is then evaluated in
Table 4.4. In this, it is seen that the uni-modal policy methods (BC, DART, UGP-
BC, UGP-BDI, UHGP-BDI) all fail. Specifically, in terms of flexibility, it is seen
that instead of capturing multiple optimal actions at the start of sweeping, instead
a mean-centered policy is learned that fails to reach either gears (Figure 4.8-(a)
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Uni-modal failure). As such, they have a zero task execution performance, and
demonstrate a lack of flexibility. In comparison, the multi-modal policy methods
(CVAE-BC, MGP-BC, MGP-BDI and MHGP-BDI) correctly learn that there are
multiple optimal actions (e.g., move to blue or green gear), and outputs actions to
sweep the two gears accordingly (Figure 4.8-(a)Success). However, while CVAE-
BC and MGP-BC incorporate flexibility, it has a low task performance (80% and
50%, respectively). This is due the dynamic behavior of gears varying between
the test execution and training due to environmental variations (e.g., friction
between gears and the table), thereby introducing error compounding and result-
ing in the robot being unable to sweep the remaining gear after the first sweep
(Figure 4.8-(a) BC failure). In contrast, while the proposed disturbance-injected
methods also experiences some uncertainty, it recovers and successfully sweep
gears (Figure 4.8-(a) Success); thus MGP-BDI and MHGP-BDI show greatly
improved performance (both are 100%).

4.5.2. Shaft-reach Task

Setup

Prior to the start of a demonstration, two shafts and robot arm are placed at
fixed positions between the obstacles (black blocks) on the table. Following the
same procedure as outlined in Chapter 4.4.1, the human expert performs demon-
strations in which the robot arm reach to each shaft alternatively. When the
robot arm collides with an obstacle, it is considered a failure. After collecting
two demonstrations, a policy and disturbances are optimized until (4.26) is con-
verged. This process is repeated K = 4 times (8 trajectories).

The learned policies’ performance is evaluated according to the success of the
test execution episode, determined by whether the robot arm grasped the shaft
at the end of the episode.

Result

The results of this experiment are seen in Table 4.4. In this, it is seen that the
state-independent disturbance injection methods (DART, UGP-BDI and MGP-
BDI) have a poor demonstration success rate, 40%, 0% and 20% respectively.
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Specifically, to examine this result, the learned disturbance is visualised in the
state-space (Figure 4.9-(a), (b)). In this, it is seen that state-independent meth-
ods generate disturbances with a uniform level, and as such inducing physical
contacts (e.g., collide with obstacle) at the demonstration. In contrast, a state-
dependent disturbance injection methods (UHGP-BDI and MHGP-BDI) can reg-
ulate disturbance level small when robot arm close to obstacles (Figure 4.9-(b)),
both have a 100% demonstrations success rate.

At the policy execution phase, it is seen that the uni-modal policy methods
(BC, UGP-BC, UHGP-BDI) both fail to correctly learn policies to account for
multiple optimal actions in the environment; thus robot collide with obstacle
between the two shafts as shown in Figure 4.8(b)-Uni-modal failure. As such,
they have a 0% success rate, and demonstrate a lack of flexibility. In contrast,
the multi-modal policy methods (CVAE-BC, MGP-BC and MHGP-BDI) show
improved performance (40%, 70% and 100%, respectively). However, it is clear
that even when incorporating flexibility, the success rate for BC is poor; since
environmental variation (e.g., starting position), the robot may deviate from
trained states (Figure 4.8(b)-BC failure), demonstrating a lack of robustness.

4.5.3. Shaft-insertion Task

Setup

Before the start of a demonstration, the “L" shaped base and shaft grasped robot
arm are placed at fixed starting positions in the environment. This task involves
physical contact (e.g., between shaft and base) and requires a scheme to pro-
tect the experimental environment, including a robot and objects. As such, an
impedance control [65] is implemented, that cancels the force by adding reverse
direction velocity when the shaft collides with the base.

Following the same procedure as outlined in Chapter 4.4.1, the human expert
performs demonstrations in which the robot arm inserts the shaft into each hole
alternatively. After collecting four demonstration, a policy and disturbances are
optimized until (4.26) is converged. This process is repeated K = 3 times (12
trajectories).

The learned policies’ performance is evaluated according to the success of the
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Table 4.5. Shaft-insertion Task Results (Multiple Subjects). Experimental results of robotic
shaft insertion varied by four expert subjects. To obtain sufficient expert demonstrations, test
subjects are practiced velocity control and make a smooth trajectory with simple instructions
(e.g., move the shaft from the starting point to the hole while sequentially decelerating the
robotic arm), before performing the demonstrations. Each multi-modal approach (MGP-BC,
MGP-BDI, and MHGP-BDI) has been validated during the demonstration and test execution
phases. The success rate of each learning model is the mean and standard deviation of the
results from four subjects.

Subjects
Demonstration Success Test Execution Performance

MGP MGP MHGP MGP MGP MHGP
BC BDI BDI BC BDI BDI

#1 10/10 1/10 10/10 5/10 N/A 10/10
#2 10/10 0/10 10/10 3/10 N/A 9/10
#3 10/10 1/10 10/10 6/10 N/A 10/10
#4 10/10 0/10 10/10 2/10 N/A 9/10

Success
Rate (%) 100± 0 5.0±5.0 100± 0 40.0±15.8 N/A 95.0±5.0

test execution episode, determined by whether the shaft is in the hole at the end
of the episode.

Result

The results of this experiment are seen in Table 4.4. In the demonstration phase,
methods that employ state-independent disturbance injections (DART, UGP-
BDI and MGP-BDI) have a uniform strong level of disturbance in any state (seen
Figure 4.9-(c)). This disturbances make it challenging to insert the shaft; thus
leading to a poor demonstration success rate (40% , 0% and 10%, respectively).
In contrast, a state-dependent disturbance injection methods (UHGP-BDI and
MHGP-BDI) regulates the disturbance level when the shaft is close to the hole
(Figure 4.9-(d)), and as such has a superior demonstrations success rate (both are
100%). This allows for both enriching the demonstrations in clear open spaces,
and allowing for precision manipulation in tasks that require fine control, such as
physical contact.
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At the test execution of learned policies, it is seen that, as expected, the
uni-modal policy methods (BC, UGP-BC, UHGP-BDI) learned mean-centered
policies that generate movements between the two holes and fail the task (Fig-
ure 4.8(c)-Uni-modal failure); they have a 0% success rate, demonstrating a lack
of flexibility. Furthermore, similar to Chapter 4.5.2, incorporating flexibility with-
out robustification (CVAE-BC and MGP-BC), causes the robot to deviate from
trained states (Figure 4.8(c)-BC failure), giving a poor success rate (50% and
50%, respectively). In contrast, policies learned by MHGP-BDI can output mul-
tiple optimal actions while robust to sources of error as shown in Figure 4.8.
In particular, despite the small clearance in the hole’s vicinity, it is seen that
the robot can overcome with precise control, resulting in improved performance
(100%).

In addition, to evaluate intersubject robustness of the methods, four human
experts with experience in robotics are used to compare multi-modal approaches
(MGP-BC, MGP-BDI, MHGP-BDI); with results shown in Table 4.5. Note,
for the sake of simplicity and fairness of analysis, this experiment is conducted
between GP-based multi-modal imitation learning approaches. In this, inject-
ing state-independent disturbances into demonstrations results in demonstration-
infesibility for all subjects; thus, MGP-BDI has a poor demonstration success rate
(5.0±5.0%). Test execution performance of MGP-BC similarly demonstrates poor
average success rate (40± 15.8%), due to error compounding similar to previous
experiments. However, these results show a higher intrasubject variance, due to
the inherent differences between human-specific strategies. In contrast, MHGP-
BDI consistently obtains a superior success rate on both demonstrations and test
executions (100± 0% and 95± 5.0%, respectively) with multiple subjects.

4.6. Summary of Chapter 4

This algorithm presents a novel paradigm on imitation learning, by focusing on
learning human risk sensitivity, and demonstrating its importance and usage.
Our proposal Bayesian imitation learning framework injects risk-sensitive dis-
turbances into an expert’s demonstration to learn robust multi-action policies.
This framework captures intrinsic human risk sensitivity and allows for learn-
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ing reduced covariate shift policies by collecting training data on an optimal set
of states without losing demonstration feasibility. The effectiveness of the pro-
posed method is verified on several simulations and real robotic tasks with human
demonstrations.
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5. Discussions

This dissertation presented a novel mechanism for enhancing imitation learning
that captures and exploits human risk sensitivity. Our idea is implemented as
two distinct imitation learning algorithms (DP-OnIL and BDI). As demonstrated
in the experimental results, our proposed methods of combining human risk-
sensitivity via speed-accuracy trade-off are effective for imitation learning and
improve the robot’s generalizability and applicability. This chapter discusses
several open issues and possible future works of our proposed mechanism, and
guidance on implementing risk estimation derived from human risk sensitivity as
below.

5.1. Open Issues

In this section, we discuss some open issues and limitations of the presented
methods that require further study and investigation.

5.1.1. Diverse Risk Sensitivities of Human Demonstrators

Although this thesis assumes a human demonstrator that has high sensitivity
to risks, in practice, this situation may vary across individuals. For example, a
demonstrator who emphasizes swiftly performing tasks at the expense of safety
may operate the robot at high speeds even when high precision is required. Such
human sensitivities can be captured as latent variables [66], and our future work
will explore how this changes performances of our methods (DP-OnIL and BDI).
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5.1.2. Unable to Guarantee Collision Avoidance

By inferring environmental information only from human data, this thesis avoided
the expensive costs (e.g., sensors, measuring system design) typically required for
direct sensing of the environment. However, in practice, it is impossible to guar-
antee collision avoidance without directly sensing the environment. Therefore, in
the future, our method can be extended to integrate technologies that map the
environment around the robot using distance sensors [67, 68] to ensure collision
avoidance at a minimal cost.

5.1.3. Diverse User Interface

This thesis uses two types of user interfaces: In Chapter 3, leader-following teleop-
eration, which can directly reflect human movement speed; in Chapter 4, joystick
teleoperation, which indirectly reflects human decision-making speed. In both
examples, the validity of the proposed methods is verified using the respective
user interface. However, there are numerous user interfaces for controlling robots,
and in imitation learning, the choice of user interface significantly impacts the
demonstrator’s task performance (e.g., task completion time [69]). Therefore,
in the future, we will investigate how variations in user interface can affect our
proposed risk estimation.

5.1.4. Diverse Quality of Demonstrations

While the standard imitation learning assumes that the demonstrator is capable
of outputting the optimal behavior in any given state, in robotic tasks that require
high precision, such as a needle threading task [70], even a human demonstrator
rarely succeeds at one time without any mistakes. Applying imitation learning
in such tasks requires a lot of time and cost for collecting demonstration data.
To alleviate this contradiction, human demonstrations can be parameterized with
weighted values of task achievement and enabling to learn from demonstration
data that contains mistakes [71–73].
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5.1.5. Tasks Involving Long-term Process

While standard imitation learning only deals with low-level control abilities, such
as determining velocity from a given robot’s position, many tasks in daily human
life have long-term processes and are divided into symbolic sub-tasks, which re-
quire high-level planning ability to determine the sequence of sub-tasks [74]. In
applying conventional imitation learning to such tasks, even changing one sub-
task requires re-learning the entire task from the beginning, which is inefficient
and imposes a heavy burden on a human demonstrator. To address this contra-
diction, the hierarchical policy model [75, 76], which can simultaneously execute
high-level planning in symbolic task space and low-level control in geometric task
space, can be employed to learn a human high-level planning ability.

5.1.6. Environmental Uncertainty

While environmental uncertainty is not directly addressed in this paper, uncer-
tainty and fuzziness of environment are another important challenges in appli-
cations to real systems. In the field of adaptive control, to cope with various
uncertainties on environment, attempts to achieve more accurate control [77, 78]
or safe-conscious engineering [79] commonly propose a probabilistic model to
capture complex system dynamics’ uncertainty or adapt a dynamics model to
an unknown environment through iterative online learning. In light of this, BDI
can be extended for employing the Model Predictive Control (MPC)-type pol-
icy model [80], in which a sequence of states and actions are estimated with a
stochastic dynamics model at each time step; thereby, enabling BDI to account
for environmental uncertainty.

5.1.7. Computational Complexity of GP (Chapter 4)

Since the main purpose of our experiment is to investigate the effect of our method
on several tasks with underlying contradictions in the demonstration data, only
the Gaussian Processes (GPs) are employed as an inference tool for generating
policies or disturbance of BDI. While GP allows several advantages to our method,
it still suffers from computational complexity, which significantly increases with
the number of data points N as Table 4.1. As such, BDI as applied to long-term
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tasks with real-time control systems is limited by this underlying policy generation
method. To address this, GPs’ kernels can be approximated with randomized
Fourier features from the fastfood algorithm [81], which lowers the computational
time of computing the inverse kernel matrix from O(N3) to O(NW 3), where W
is a dimension of feature space.

5.2. Other Information Inherent in Human
Demonstration

One of the key conceptual ideas of this thesis is to identify auxiliary information
from human data within the fundamental paradigm of robotic imitation learn-
ing. To this end, our applications have shown their effectiveness by inferring
environmental risk information from human data and leveraging it appropriately
for imitation learning. In the future, our ideas can be extended to incorporate
approaches of extracting other information (e.g., stress [82]) from human data
and leveraging it for imitation learning.
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5.3. Guidance of Risk Estimation Derived from
Human Risk Sensitivity

This section offers a step-by-step guide on how to leverage human risk sensitivity
in risk estimation for generalizing to diverse robotic tasks. The main idea of
our risk estimation is that the human demonstrations reflects environmental risk
information based on their understanding of the environment. Therefore, it is
crucial to design a training curriculum that allows humans to deepen their un-
derstanding of the environment and to develop models that decode environmental
information from human data.

We concluded four steps for implementing risk estimation derived from human
risk sensitivity onto new robotic systems and tasks:

1. Construct a robotic teleoperation system: To collect a dataset of
human demonstrations, a robot should allow humans to control it to per-
form desired tasks. Therefore, constructing a robot teleoperation system
for humans to complete the task demonstration is essential.

2. Define risk factors involved in tasks: Based on the given task, define
factors that pose a risk (e.g., collision) and make it difficult to perform the
task.

3. Design a demonstrator training curriculum: Design practice tasks
from low-risk (e.g., no obstacles) to high-risk (e.g., with obstacles) based
on defined risk factors. Plan a curriculum for practicing tasks from low
risk to high risk until sufficient success is achieved (e.g., 5 successes in a
row). This allows to ensure that human demonstrators understand the
environment and robotic tasks.

4. Design a risk estimation model: Investigate human data related to de-
fined risk factors based on human psychological findings, and design a risk
estimation model to predict risk factors from collected human demonstra-
tion dataset.
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6. Conclusion

Advancements in robot technology have boosted manufacturing industries; how-
ever, generating robotic manipulation is still challenging due to the necessity of
explicit programming or skillful human operation, both of which are high-cost.
In this situation, Imitation Learning (IL) is an attractive scheme for learning
robot manipulators via observations of expert demonstrations, where a human
performs a desired behavior by operating a robot.

The standard form of IL is training an agent to learn a policy that outputs
expert actions from given states of the environment by relying solely on state-
action pairs from human demonstrations. However, actual human demonstrations
have intrinsic behavioral characteristics that enhance task performance, and these
cannot be captured solely depending on simplified behavioral representations of
state-action policy.

This thesis presents a novel mechanism, "Leveraging Human Behavioral Char-
acteristics for Enriching Imitation Learning," that designs imitative learning al-
gorithms that utilize human behavioral characteristics, embodying principles for
capturing and exploiting actual demonstrator behavioral characteristics. Specifi-
cally, we develop methods to capture behavioral characteristics inherent in human
demonstrations based on behavioral psychology. By typifying human behavioral
characteristics, we establish an enriched imitation learning framework that cap-
tures and leverages human behavioral characteristics within the imitation learning
paradigm. Through this human behavioral characteristic integration of imitation
learning, robots can deepen their understanding of human behavior, improving
robot generalizability and applicability.

The effectiveness of our methods is verified through two distinct imitation learn-
ing algorithms. The success of our algorithms on risk-sensitive simulations and
real-robot experiments for various assembly tasks proves that, through improved
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risk-sensitivity, the task execution performance of policy as well as demonstration
feasibility are significantly better than comparison methods.
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A. Appendix: Hyperparameter
of Comparisons in Chapter 3

The hyperparameter of comparisons are described in Table A.1, Table A.2, Ta-
ble A.3, Table A.4, Table A.5, and Table A.6.

Table A.1. Hyperparameters of DP-OnIL.

Hyperparameters Simulations Real Environments
Aperture-

pass.
Ring-

thread.
Shaft-
reach.

Ring-
thread.

optimizer Adam Adam Adam Adam
activation function Hardswish Hardswish Hardswish Hardswish
# of hidden layers 2 2 2 2
# of hidden units per layer 64 64 64 64
minibatch size 100 100 100 100
learning rate of πθL 1× 10−3 1× 10−2 1× 10−3 1× 10−3

weight decay of πθL 1× 10−5 1× 10−5 0.0025 0.0025
# of network of πθL 5 5 5 5
output acti. func. of πθL Identity Identity Identity Identity
learning rate of µλ and σ2

λ 1× 10−3 1× 10−3 1× 10−3 1× 10−3

weight decay of µλ and σ2
λ 0.0025 0.0025 0.0025 0.0025

output acti. func. of µλ Sigmoid Sigmoid Sigmoid Sigmoid
output acti. func. of σ2

λ Identity Identity Identity Identity
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Table A.2. Hyperparameters of EnsembleDAgger.

Hyperparameters Simulations Real Environments
Aperture-

pass.
Ring-

thread.
Shaft-
reach.

Ring-
thread.

optimizer Adam Adam Adam Adam
activation function Hardswish Hardswish Hardswish Hardswish
# of hidden layers 2 2 2 2
# of hidden units per layer 64 64 64 64
minibatch size 100 100 100 100
learning rate of πθL 1× 10−3 1× 10−2 1× 10−3 1× 10−3

weight decay of πθL 1× 10−5 1× 10−5 0.0025 0.0025
# of network of πθL 5 5 5 5
output acti. func. of πθL Identity Identity Identity Identity

Table A.3. Hyperparameters of BC.

Hyperparameters Simulations Real Environments
Aperture-

pass.
Ring-

thread.
Shaft-
reach.

Ring-
thread.

optimizer Adam Adam Adam Adam
activation function Hardswish Hardswish Hardswish Hardswish
# of hidden layers 2 2 2 2
# of hidden units per layer 64 64 64 64
minibatch size 100 100 100 100
learning rate of πθL 1× 10−3 1× 10−2 1× 10−3 1× 10−3

weight decay of πθL 1× 10−5 1× 10−5 0.0025 0.0025
# of network of πθL 1 1 1 1
output acti. func. of πθL Identity Identity Identity Identity
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Table A.4. Hyperparameters of DAgger.

Hyperparameters Simulations
Aperture-

pass.
Ring-

thread.
optimizer Adam Adam
activation function Hardswish Hardswish
# of hidden layers 2 2
# of hidden units per layer 64 64
minibatch size 100 100
learning rate of πθL 1× 10−3 1× 10−2

weight decay of πθL 1× 10−5 1× 10−5

# of network of πθL 1 1
output acti. func. of πθL Identity Identity

Table A.5. Hyperparameters of ThriftyDAgger.

Hyperparameters Simulations
Aperture-

pass.
optimizer Adam
activation function Hardswish
# of hidden layers 2
# of hidden units per layer 64
minibatch size of πθL 100
learning rate of πθL 1× 10−3

weight decay of πθL 1× 10−5

# of network of πθL 5
output acti. func. of πθL Identity
minibatch size of Q-function 50
discount factor of Q-function 0.9999
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Table A.6. Hyperparameters of HG-DAgger.

Hyperparameters Simulations
Aperture-

pass.
optimizer Adam
activation function Hardswish
# of hidden layers 2
# of hidden units per layer 64
minibatch size 100
learning rate of πθL 1× 10−3

weight decay of πθL 1× 10−5

# of network of πθL 1
output acti. func. of πθL Identity
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B. Appendix: Mathematical
Details of Chapter 4

B.1. Update laws of variational posteriors q

The analytical solution of variational posterior q∗(f (m)) is given by the following
derivation:

log q∗(f) =
∫ {

log p(a∗,g, {f (m)},Z,v | S; θ)
}
·

q(g)q(Z)q(v)dgdZdv + Const, (B.1)

where, Const is a constanct term for normalizing distributions. Accordingly,
q∗(f (m)) is obtained by solving (B.1) as:

q∗(f (m)) = N (f (m) | µ(m)
f ,C(m)), (B.2)

µ
(m)
f = C(m)B(m)a∗, (B.3)

C(m) = (K−1(m)
f + B(m))−1, (B.4)

B(m) = diag{rnm/Hnn}, (B.5)
H = diag{exp([µg]n − [Σg]nn/2)}. (B.6)

As similar to (B.1), the analytical solution of variational posterior q∗(Z) is
given by the following derivation:

log q∗(Z) =
∫ {

log p(a∗,g, {f (m)},Z,v)
}
·

q(f)q(g)q(v)dgdfdv + Const. (B.7)
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Therefore, q∗(Z) is obtained by solving (B.7) as:

q∗(Z) =
N∏

n=1

∞∏
m=1

rZnm
nm , (B.8)

rnm = ρnm∑∞
m=1 ρnm

, (B.9)

log ρnm = − 1
2Hnn

{(a∗
n − [µ(m)

f ]n)2 + [C(m)]nn}

−1
2 log (2πHnn)− ψ(αm + βm)

+ ψ(αm) +
m−1∑
j=1
{ψ(βj)− ψ(αj + βj)}, (B.10)

where, ψ(·) is the digamma function.
As well as, the analytical solution of variational posterior q∗(v) is given by the

following derivation:

log q∗(v) =
∫ {

log p(a∗,g, {f (m)},Z,v)
}
·

q(f)q(g)q(Z)dgdfdZ + Const. (B.11)

As such, q∗(vm) is obtained by solving (B.11) as:

q∗(vm) = Beta(vm | αm, βm), (B.12)

αm = 1 +
N∑

n=1
rnm, (B.13)

βm = β +
∞∑

j=m+1

N∑
n=1

rnj, (B.14)

where, Beta is the beta function.
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B.2. Lower bound of marginal likelihood L(q,Ω′)
The lower bound of the marginal likelihood L(q,Ω′) is analytically obtained by
the following derivation:

L(q,Ω′)

=
∞∑

m=1
logN (a∗ | 0,K(m)

f + B−1(m))

+
N∑

n=1

∞∑
m=1

[
rnm

{
ψ(αm)− ψ(αm + βm)− 1

2[µg]n

+
m−1∑
j=1
{ψ(βj)− ψ(αj + βj)} −

1
2 log 2π − log rnm

}

− 1
2 log{[B(m)]nn/2π}

]
−

∞∑
m=1

KL(q(vm) || p(vm))

−KL(N (g | µg,Σg) || N (g | µ01,Kg)), (B.15)

where,

KL(q(vm) || p(vm))
= log{Beta(vm|1, β)/Beta(vm|αm, βm)}
+ (αm − 1)ψ(αm) + (βm − α)ψ(βm)
+ (1− αm + α− βm)ψ(αm + βm), (B.16)

and

KL(N (g | µg,Σg) || N (g | µ01,Kg))

= 1
2

[
log{|I + KgΛ|} − 1 + tr{(I + ΛKg)−1}

+ 1⊤
(

Λ− 1
2I

)⊤
Kg

(
Λ− 1

2I
)

1
]
. (B.17)
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C. Appendix: Additional
Analysis of Chapter 4

C.1. Computational complexity analysis of
MHGP-BDI

As described in Table 4.1 and Table 4.2, the computational complexity of MHGP-
BDI is mainly related to the number of training data sets (N) and the upper
bound of mixtures (M). To analyze the impact of N and M on computational
complexity of MHGP-BDI in practice, optimization time, duration for one op-
timization loop, and prediction time, average time for 10-step prediction, were
measured in a wide version of wall avoidance simulation task; the results show
that the computational complexity of MHGP-BDI is increased as N and M in-
crease, as described in Table C.1. All experiments were ran on an Intel CPU Core
i9-9900 K.

C.2. Hyperparameters

Details of hyperparameters of MHGP-BDI and all comparison models are pro-
vided as below.

C.2.1. MHGP-BDI

The hyperparameters of MHGP-BDI are as follow: M,ωf , ωg, µ0,Λ, β. These
hyperparameters are empirically chosen with certain heuristic methodologies in
this paper. Such hyperparameters’ selection and sensitivity analysis are described
as below.
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Table C.1. Computational complexity analysis results: optimization time and prediction time
in MHGP-BDI

N M Optimization time [sec] Prediction time [sec]
713 2 2.3 0.0055
711 5 5.2 0.013
719 10 9.9 0.022
1409 2 12.3 0.022
1407 5 27.0 0.053
1415 10 49.2 0.10

The maximum number of mixtures GPs (M) and the concentration level pa-
rameter of SBP (β) are both related to the flexibility of the policy model. To
spread out data to multiple GPs, β is initialized as β = 100 in all experiments. In
addition, M is initialized based on the computational complexity of MHGP-BDI.
Such as, a larger M makes it better for capturing multiple optimal behaviors from
human demonstrations; however, the computational complexity of the algorithm
increases as M grows, as shown in Table C.1. Therefore, to ensure convergence
within a reasonable time frame period, M = 5 in all experiments.
ωf and ωg are parameters of kernel function to regress policy’s and disturbance’s

latent function ( f and g, respectively). In all experiments, Radial Basis Function
(RBF) kernel (k(x, y) = exp{−(∥x−y∥2)/(2ω2)}), which is most commonly used
kernel in GP regression [53], is employed for all GPs. Each parameter is initialized
using the maximum and the minimum of state as: |max(S)−min(S)|.

The initial mean of disturbance level (µ0) and the positive variational parameter
(Λ) are related to action variation of human demonstrations. In all experiments,
Λ = diag{λn}N

n=1 is initialized as λn = 1/2. In addition, µ0 is initialized with
variance of actions as: var(a∗)× 0.01.

To analyze sensitivity to hyperparameters, one-at-a-time parameter sensitivity
[36] is employed, in which the demonstration success rate and the test execution
performance are measured in the wide version of wall-avoidance simulation task
with varying one parameter at a time while holding the others fixed. Note,
to simplify analysis, β and Λ are initialized as β = 100 and λn = 1/2 in all
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Table C.2. MHGP-BDI hyperparameters sensitivity analysis results. The demonstration success
probability of each learning model is measured for entire learning iteration with one learning
trial. The test execution performance of policy application is measured as the task success
probability by conducting one learning trial and testing each final learned policy 100 times.
Success rate for all demonstrations are 100 %.

Parameters Initial Value Test Execution Performance

M

2 99%
5 100%
10 100%

ωf
|max(S)−min(S)| × 0.1 100%

ωg
|max(S)−min(S)| 100%

|max(S)−min(S)| × 10 70%

µ0

var(a∗)× 0.001 100%
var(a∗)× 0.01 100%
var(a∗)× 0.1 100%

experiments. As described in Table C.2, MHGP-BDI is robust to a wide range
of hyperparameters.

C.2.2. Other GP-based comparisons

The hyperparameter of other GP-based comparisons are described in Table C.3.

C.2.3. Neural networks-based comparisons

The hyperparameter of neural networks-based comparisons are described in Ta-
ble C.4 and Table C.5. These hyperparameters are set based on original pa-
pers [20, 51], but some parameters are tuned to improve performance in our do-
main.
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Table C.3. Hyperparameters of other GP-based comparisons. Since these methods employ the
GP model, parameters are selected the same as in MHGP-BDI, but if the parameters are not
available in the implementation, it is annotated as N/A.

Learning Hyperparameters
Models M β ωf ωg µ0 λn

UGP-BC 1 N/A |max(S)−min(S)| N/A N/A N/A
UGP-BDI 1 N/A |max(S)−min(S)| N/A N/A N/A
UHGP-BDI 1 N/A |max(S)−min(S)| var(a∗)×0.01 1/2
MGP-BC 5 100 |max(S)−min(S)| N/A N/A N/A
MGP-BDI 5 100 |max(S)−min(S)| N/A N/A N/A

Table C.4. Hyperparameters of BC and DART.

Hyperparameter Value
optimizer Adam
learning rate 1× 10−2

weight decay 1× 10−5

number of hidden layers 2
number of hidden units per layer 64
number of sample per minibatch 128
activation function Tanh

Table C.5. Hyperparameters of CVAE-BC.

Hyperparameter Value
optimizer Adam
learning rate 1× 10−3

weight decay 1× 10−5

number of hidden layers 2
number of hidden units per layer 64
number of sample per minibatch 64
activation function ReLU
number of latent dimension 5
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