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Olufemi Abiodun Abraham

Abstract

Efforts to improve the security of electricity grids include both physical measures,

such as detecting interference, and digital security methods, such as encryption.

However, these measures alone are insufficient for addressing the full range of

cyberattacks. For example, digital electricity meters, which are essential to new

infrastructure, are vulnerable to software and hardware issues, and the digiti-

zation of these meters reintroduces concerns about electricity theft, which can

now manifest as IT-related problems. To address these concerns, contemporary

approaches that use data analytics, machine learning (ML), and predictive tech-

niques are required. The rise in sophisticated statistical methods, particularly

those involving machine learning, has led to an interest in developing models and

algorithms, e.g., for smart homes, that can interpret smart meter data to quickly

identify signs of tampering.

Smart home appliances, which are becoming increasingly integral to modern

households, are also vulnerable to electricity theft. This can have a significant

impact on both utility providers and consumers, as these appliances often con-

nect to the internet and transmit usage data to utility providers for billing and

1Doctoral Dissertation, Graduate School of Science and Technology, Nara Institute of Science
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monitoring. This data transmission can be intercepted or manipulated, leading

to false readings and unauthorized electricity use. The ability to remotely con-

trol appliances also presents a risk of unauthorized access, which can lead to the

misuse or manipulation of consumption data. To address these vulnerabilities,

emerging technologies such as advanced ML algorithms and enhanced encryption

methods are being developed to detect anomalies in usage patterns and secure

data transmission. These technologies can help reduce the vulnerability of smart

home appliances to electricity theft and improve the overall security of the elec-

tricity grid.

This dissertation presents novel approaches to electricity theft detection (ETD)

by introducing various classification algorithms to detect anomalies in non-intrusive

appliance load monitoring (NIALM) or disaggregated smart meter networks. Our

proposed framework utilizes ML knowledge-based synthetic attack data (KB-

SAD) to train an attack classifier. These data consist of benign attack pat-

terns that serve as the foundation for generating synthetic and simulated attacks

that closely mirror real-world scenarios. The framework was validated using the

Almanac of Minutely Power dataset version 2 (AMPds2), which contains fine-

grained time-series data from a smart home. We preprocessed the data for binary

classification to evaluate our synthetic attack model using real attack data. The

Extreme Gradient Boosting algorithm performed best with an average area under

curve (AUC) score of 98.74% and 98.69% for detecting and classifying anoma-

lies in real and simulated attacks, respectively. These methods outperformed

legacy unsupervised methods (LUM). By integrating the KBSAD, our approach

eliminates the need for extensive data collection for real attacks and seamlessly

combines synthetic attacks with genuine consumption readings, representing a

significant advancement in the field of smart-home electricity theft detection.

Keywords:

Electricity Theft Detection, Smart homes, Data analytics, Cybersecurity, Ma-

chine Learning, Synthetic Attack Data, Real Attack Data, Non-Intrusive Appli-

ance Load Monitoring (NIALM), Encryption methods, Anomaly Detection.
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1. Introduction

The advent of smart meters has led to the provision of high-resolution electricity

data at the residential level [17], which has significantly enhanced our understand-

ing of energy usage and how it benefits both electricity providers and consumers.

In Europe, the shift to renewable energies has been accompanied by the adop-

tion of intelligent power meters[98]. These devices enable quick adaptation to

fluctuating energy demands and the variability of renewable energy sources like

wind and photovoltaic energy. This evolution has transformed the power grid

into an intelligent, decentralized network that not only transmits energy but also

data, thereby functioning as a communication channel[71]. The smart grid, a

next-generation electrical network, features bi-directional communication among

various sensors and actuators across several networks, enabling the collection and

analysis of detailed information[27].

Smart grid (SG), equipped with Advanced Metering Infrastructure (AMI),

smart meters, and connected smart home appliances, are engineered for resilience

against disruptions[56]. This resilience is tested by the integration of decentral-

ized, fluctuating renewable energy sources. Within this complex network, the

AMI plays a pivotal role in facilitating two-way communication between con-

sumers and utility providers, enhancing the grid’s adaptability and response to

changing energy demands. Smart meters, a critical component of the AMI, pro-

vide real-time, high-resolution data crucial for accurate energy demand predic-

tion. This data underpins essential tasks such as consumer profile forecasting,

dynamic energy pricing, and the monitoring of individual smart home appli-

ances. These appliances, ranging from smart thermostats, refrigerators, dish-

washers, washing machines and dryers, ovens and stoves, security cameras, smart

locks, smart doorbells, home hubs, and controllers, plugs, and switches to energy-

efficient lighting systems, contribute to a comprehensive demand response strat-

1



egy, adjusting consumption patterns to optimize energy usage[26].

The security of this interconnected smart grid system through the widespread

of Internet of Things (IoT) and its prominent application is paramount. It must

be robustly safeguarded against cyber threats, which encompass not only direct

attacks on the infrastructure but also fraudulent activities and potential software

failures. The integrity and reliability of the smart grid, particularly the data

transmitted and processed by AMI and smart meters, are essential for maintaining

both the efficiency of the grid and the trust of consumers using these smart

appliances.

Historical research in energy demand, spanning Non-Intrusive Appliance Load

Monitoring (NIALM), energy forecasting, residential energy demand modeling,

and Typical Load Classification (TLC) [34], has been a cornerstone in shaping

the evolution of smart grid research. Originating in the early 80s, these studies

have provided valuable insights into energy consumption patterns, which are now

critical in the realm of Electricity Theft Detection (ETD) at the level of smart

home appliances within the Home Area Network (HAN). In a modern HAN,

various devices such as smart meters, intelligent thermostats, connected lighting

systems, and smart home security devices are interconnected. These components

collectively monitor and manage energy usage within the smart home ecosystem.

By employing NIALM techniques, each appliance’s energy consumption can be

analyzed non-intrusively, enabling the detection of abnormal usage patterns that

could indicate electricity theft. This approach transforms the way residential en-

ergy demand is monitored, moving from aggregate to appliance-specific analyses,

thus enhancing the precision of ETD.

Furthermore, this granularity of monitoring brings to the fore the vulnerability

of appliance consumption patterns within the broader cybersecurity ecosystem of

smart homes. The interconnected nature of HAN devices makes them susceptible

to cyber threats, which can manifest as unauthorized access to energy usage data

or manipulation of smart meter readings. The insights gained from historical

research on energy demand, particularly in the development of TLC methods,

are now instrumental in identifying and mitigating such vulnerabilities. By un-

derstanding typical consumption patterns, anomalies - potentially indicative of

cybersecurity breaches or electricity theft - can be more readily identified and
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addressed. This integration of traditional energy demand studies with contem-

porary cybersecurity measures reflects the evolving challenges and technological

advancements in safeguarding smart home environments against electricity theft.

1.1 Problem Statement

The emergence of smart grids, with their intricate webs of interconnected smart

meters and home appliances, represents a significant leap forward in energy man-

agement and efficiency. However, with the sophistication of the smart grid comes

an increased vulnerability to cyber threats that can compromise the integrity of

the system. The high-resolution data provided by smart meters, essential for

dynamic energy pricing, load forecasting, and monitoring of smart appliances,

now stands at risk of unauthorized access and manipulation, which can lead to

electricity theft and other fraudulent activities.

The AMI at the heart of the smart grid facilitates crucial two-way communi-

cation but also opens the door to potential security breaches. These breaches

can distort the real-time data that is foundational for the grid’s efficiency and

the reliability of consumer demand response strategies. Moreover, the integration

of volatile renewable energy sources, although outside the scope of this disserta-

tion, adds another layer of complexity to the smart grid, necessitating even more

robust and resilient security measures to maintain stability.

In the HAN, every connected device, from intelligent thermostats to smart

lighting systems, not only enhances user convenience but also adds to the poten-

tial entry points for cyber attacks. The shift from aggregate energy monitoring to

appliance-specific analysis through NIALM techniques improves ETD capabilities

but simultaneously highlights the security challenges at the appliance level.

Anomalies in energy consumption patterns, once detectable only at a macro

level, can now be traced to individual devices, suggesting potential electricity

theft or cybersecurity issues within the HAN. The challenge lies in leveraging

historical energy demand studies and Typical Load TLC methods to fortify the

smart grid against such threats. This integration of traditional research with the

latest cybersecurity protocols is critical for identifying, mitigating, and ultimately

preventing the unauthorized use and manipulation of energy data within smart

homes.
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The scarcity of labeled data for energy theft incidents poses significant chal-

lenges in training robust detection models, necessitating advanced data augmen-

tation and unsupervised learning techniques to enhance the detection accuracy

of legacy and modern smart home systems.

As the smart grid evolves into an increasingly decentralized and user-driven

network, the need for a sophisticated approach to secure the vast amount of data

it generates and processes becomes paramount. This thesis addresses the pressing

problem of securing smart home appliance data against electricity theft and cy-

berattacks, ensuring the reliability and efficiency of the smart grid, and safeguard-

ing the trust and safety of the consumers it serves within the smart home area

network. To identify fraudulent customers within the smart home network, we

trained our model on fine-grained power consumption appliance data for unautho-

rized power usage detection(UPUD) leveraging smart meter data disaggregation

or Non-Intrusive Appliance Load Monitoring (NIALM).
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1.2 Research Objectives and Contributions

In this research, our primary objectives and contribution are as follows:

1.2.1 Research Objectives

In this research, we aim to design and develop an effective Electricity Theft

Detection (ETD) framework for smart homes with knowledge-based synthetic

attack data (KBSAD) by simulating real-life attack scenarios with validation

attack data and applying different Machine Learning (ML) algorithm approaches.

1. RO1.1: Design and develop an effective ML-based UPUD in AMI networks.

2. RO1.2: Transfer and adapt RO1.1 into Smart Home networks

• RO1.1: Design and develop an effective ML-based UPUD in AMI networks.

– To develop an effective framework that allows the training of attack

classifiers only from legitimate power consumption data.

– To optimize the Machine Learning models to achieve the best detection

performance.

– To investigate different machine learning algorithms based on perfor-

mance, accuracy, and effectiveness.

RO1.1 - the objective is to optimize machine learning (ML) models to

achieve reasonable detection accuracy and reduce false positive and false

negative rates. We thoroughly investigate how to optimize machine learn-

ing models. Our experiment results demonstrate that the right hyper-

parameter values selection is essential to developing a robust ETD system.

Additionally, transfer and adapt the above objective into smart home net-

works. The justification is presented in the later chapters.

As we affirm, several electricity theft cyber-attacks can transfer into the dis-

aggregated appliance consumption patterns (NIALM) in smart home net-

works; hence, we intend to transfer our solution into the NIALM system.

• RO1.2: Design and develop an effective ETD with Knowledge-Based Syn-

thetic Attack Data (KBSAD) for smart homes.
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– To provide an effective pre-processing method for developing an effec-

tive supervised classification model.

– To simulate real-world attack scenarios in apartments/office rooms and

optimize the Machine Learning models to achieve the best detection

performance.

– To deploy and validate KBSAD with real attack data from a building

in the detection of electricity theft (ETD) in the smart home network.

RO1.2 - the research’s principal aim is to generate Knowledge-Based Syn-

thetic attack datasets (KBSAD) for five samples of real-world attack sce-

narios in smart homes by arithmetically adding stolen power as power con-

sumption and adding onto real power consumptions for training an attack

classifiers and propose an effective pre-processing method to develop a ro-

bust ETD for smart home network system. Finally, we investigate different

machine learning models to determine the most suitable algorithms for de-

veloping the ETD smart home network attack detection. Although we study

datasets from an open source for a house in Canada (AMPds2), we believe

our ETD will be effective in any apartment, congested building complex,

and/or office rooms where power line cables are not easily traceable. The

aforementioned proposal details are presented in Chapters 5, 6 & 7.

1.2.2 Research Contributions

1. Cost-efficiency: Training ETD models with synthetic attack data by-

passes the need to gather real-life attack patterns and saves time and re-

sources.

• We thoroughly investigate how to optimize the machine learning ap-

proaches to attain higher detection rates.

2. Real-World Evaluation: Enables the testing of ETD models against

synthetic attacks and real data, ensuring cost-effective and practical assess-

ment.

3. Simplified Calculation: Streamlines the process of incorporating attack

scenarios into meter readings by adding synthetic data for legitimate usage.
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4. Previously Unattainable: Offers a solution to the challenge in computer

network communications, where node behavior analysis depends on actual

attack occurrences.

5. Enhanced flexibility: The adaptability of synthetic data, informed by a

wide knowledge base, can significantly improve ETD model training.

6. Improved Training and Precision: Leverages the diversity of synthetic

attacks to train more robust ETD models, leading to accurate attack de-

tection and classification in smart homes and by extension to SG through

AMI.

1.3 Research Scope and Limitation

The scope of this research includes the design and development of an electricity

theft detection (ETD) system that can be utilized in a smart home network with

refined aggregated appliance consumption patterns. The first part includes the

NIALM-based Unauthorized Power Usage Detection (UPUD) which optimizes

machine learning (ML) models to achieve reasonable detection accuracy and re-

duce false positive and false negative rates. It also introduces six different models

to determine the best-performing algorithm in UPUD of smart home electricity

theft attack (ETA).

Smart Home ML-Based
Electricity Theft Detection (ETD)

System

Unauthorised Power
Usage Detection (UPUD)

System

Anomaly Detection
evaluation with Real

Attack Data

Knowledge-Based
Synthetic Attack Data
(KBSAD) Framework

Figure 1.1: Smart Home ETD Research Scope.

In the second part, we include the introduction of the Knowledge-Based Syn-

thetic Attack Data (KBSAD) framework for Electricity Theft Detection (ETD)
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in the smart home network. This is due to one of the challenges with using ML

classifiers in ETD, which is data imbalance, i.e., the numbers of normal and ab-

normal samples are not in the same range. Benign samples are easily available

using historical data but attack/theft samples on the other hand, rarely or do

not exist for a given customer. Besides, in many cases, samples of attack classes

cannot be obtained from historic data due to zero-day attacks. However, the

problem of imbalanced data and zero-day attacks was addressed by generating

a synthetic attack dataset, benefitting from the fact that theft patterns are pre-

dictable. The final part focuses on anomaly detection of ETA in smart home

appliance consumption patterns. We evaluated our synthetic data with binary

classified real attack data measured from a power distribution board in a build-

ing to test our model performance. The simulation results include a comparison

of supervised and unsupervised learning frameworks with the synthetic and real

attacks in three different smart homes (Home A, Home B, and Home C).
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1.4 Dissertation Layout

The dissertation outline is as follows: In Chapter 2, we discuss the preliminary

studies of the Smart Grid and the Smart Home Area Network (HAN), Non-

Intrusive Appliance Load Monitoring (NIALM) - Disaggregated Smart Meter. We

also discuss the machine learning models’ performance evaluation matrix. Chap-

ter 3, presents our studies about Unauthorised Power Usage Detection (UPUD)

for Machine Learning-based ETD for smart home networks. In Chapter 4, we

explain our proposed knowledge-based synthetic Attack Data (KBSAD) ETDS

regarding some real-world simulated attack scenarios in a smart home/office com-

plex environment. We provide details on how to optimize the model and improve

the detection accuracy of the ETD. In Chapter 5, we discuss the detailed develop-

ment of the binary classification of Electricity Theft Attack Detection (ETA-DD)

in smart homes and also detail the anomaly detection algorithm for ETD in

smart home networks. We also discuss the performance evaluation with different

models and model applications. In Chapter 6, we present discussion and future

work.Chapter 7 concludes the dissertation.
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2. Literature Review

2.1 Preliminaries

This chapter discusses an overview of the Smart Grid, the Advanced Metering In-

frastructure (AMI) and different types of attacks. We will discuss Non-Intrusive

Appliance Load Monitoring (NIALM) - Disaggregated Smart Meter and con-

sumption patterns of some appliances and also mention the machine learning

models’ performance evaluation matrix.

2.2 Smart Grid Fundamentals

Advanced Metering Infrastructure (AMI), serving as a foundation for Smart Grids

(SGs), is a cornerstone of the modern electrical infrastructure, progressively re-

placing antiquated power systems in both residential and commercial sectors. SGs

represent an evolutionary leap in power grids, incorporating bidirectional infor-

mation and communication technology (ICT) alongside pervasive computing to

enhance energy management and distribution. This sophisticated integration fos-

ters enhanced control, heightened efficiency, augmented reliability, and increased

safety in energy distribution [92]. The United States Department of Energy’s

modern grid program designates Smart Grids (SGs) as a combination of control

methods, integrated communication systems, and advanced sensing technologies

within the existing electrical power infrastructure. This innovation allows both

consumers and utility providers to better monitor, manage, and predict energy

usage patterns. As depicted in Figure 2.1, the process starts with Bulk Genera-

tion, involving large-scale electricity production from various sources [47]. This

electricity is transmitted at high voltage from generation plants to substations

[75], and then distributed at lower voltages to end-users [10]. Substations convert
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Figure 2.1: Overview of Electrical and Data Flow in the Smart Grid.

transmission to distribution voltage [94]. The Advanced Metering Infrastructure

(AMI) Network facilitates two-way data communication between customers and

utilities [24]. Smart Meters (SM) record and report energy usage [97]. Home

Area Network (HAN), Building Area Network (BAN), and Industrial Area Net-

work (IAN) manage local energy usage and generation [30]. Markets enable the

buying and selling of electricity [13], while Grid System Operators ensure the

power system’s operation [12]. Finally, Service Providers offer diverse services

from energy supply to efficiency solutions [79].

SGs facilitate the integration of microgrids and various distributed energy re-

sources (DER), such as solar and wind power, as well as energy storage systems.
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This combination aims to tackle prevailing energy management challenges, re-

sulting in a robust, self-healing grid system. Moreover, SGs employ demand-side

management (DSM) strategies to encourage consumers to consciously adjust their

energy consumption. This incentivizes consumers to shift their usage to off-peak

hours, thereby reducing consumption rate fluctuations and balancing peak to

average energy demand. This shift is essential in achieving various objectives

such as reducing greenhouse gas emissions, combating global warming, and striv-

ing for national energy independence [57]. The following section, 2.2.1, delves

into the intricacies of Advanced Metering Infrastructure (AMI), which is crucial

for collecting information and data from consumers and loads, underpinning the

operation of Smart Grids.

2.2.1 Overview of AMI

The integration of Advanced Metering Infrastructure (AMI) represents a pivotal

advancement in the evolution of electrical grids. Central to the smart grid (SG)

paradigm is the active engagement and empowerment of consumers—a vision ar-

ticulated by the U.S. Department of Energy in 2008 [85]. AMI is instrumental

in providing a dynamic metering ecosystem that equips consumers with critical

insights, fostering informed energy usage and enabling proactive participation.

Concurrently, utility providers (UPs) benefit from enhanced customer engage-

ment and optimized operational efficiency through sophisticated asset manage-

ment facilitated by granular metering analytics. AMI serves as a conduit for real-

time energy consumption data and grid event notifications to both consumers and

UPs, fostering collaborative energy management. This synergy enhances billing

accuracy, aids in demand response initiatives, and supports judicious decision-

making within SGs. The role of AMI extends beyond mere data relay; it con-

stitutes a critical nexus connecting UPs, consumers, and the broader spectrum

of generation and storage assets, underpinned by a suite of integrated technolo-

gies encompassing advanced communication systems, intelligent metering devices,

Home Area Networks (HAN), Building Area Network(BAN), Industrial Area Net-

work (IAN) and robust interfaces for utility operations and data management.

This thesis delves into the appliance consumption patterns in smart homes and

the implications of smart meters (one of the components of AMI) within the
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electrical power distribution landscape.

2.2.2 Architectural Elements of AMI

The AMI comprises a complex network of intelligent devices, including smart

meters (SMs), data aggregation units, and Internet of Things (IoT) devices, as

well as a robust data management infrastructure, which includes systems such

as Meter Data Management Systems (MDMS) and central communication hubs.

These components are interconnected through a sophisticated network infras-

tructure that seamlessly integrates data into various software applications and

physical interfaces. AMI’s distinct feature is its bidirectional flow of both com-

munication and electricity, enabling a comprehensive overlay of informational and

power exchanges, as noted by Rashed Mohassel et al [63]. The integrated network

design and AMI’s role within the smart grid are illustrated in Figure 2.2.

Figure 2.2: Architecture of AMI in Smart Grid[93].
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2.2.3 Smart Metering Devices

Smart metering devices represent the cutting edge of technological innovation,

equipped with sophisticated hardware and software designed for precise data col-

lection and measurement at predetermined intervals. These devices are configured

and programmed by system administrators to transmit data to relevant entities

at regular intervals. As part of the bidirectional communication framework of the

AMI, these Internet of Things (IoT) devices not only receive but also transmit

signals to perform designated actions. Moreover, information on utility pricing

from UPs enables these devices to adjust energy consumption according to user-

defined preferences and operational parameters.

Traditionally, conventional meters were exclusively used for billing consumer

energy usage. However, with the emergence of SGs, contemporary SMs have be-

come increasingly prevalent, enhancing the resilience and operational efficiency

of power systems that incorporate DER and distributed demand response ini-

tiatives, as identified by W. Wang and Lu [90]. SMs are essential components

within AMI ecosystems, serving as advanced energy meters that record consumer

energy usage in regular, predetermined intervals. Unlike traditional meters, SMs

possess the capability to capture detailed energy usage metrics, such as voltage,

current, frequency, and phase angle. These meters collaborate with central data

aggregators and communication gateways to ensure power quality and secure data

transmission in real-time. Furthermore, SMs possess the ability to both execute

and receive control directives, whether locally or remotely. In addition to their

role in consumption regulation and system monitoring, SMs also gather diagnos-

tic data on domestic appliances, the distribution grid, and power-related events.

They can remotely regulate energy supply to consumers, thus controlling the

maximum energy consumption. The data collected by SMs includes consump-

tion figures, timestamps, and unique meter identifiers, as discussed by Depuru,

Wang, & Devabhaktuni [23]. Figure 2.3 illustrates the metering architectures of

both conventional power grids and SGs.

The essential features of SMs encompass a wide array of functionalities, such

as:

• The capacity for real-time data collection and evaluation
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• The ability to upgrade and operate remotely

• Notification of system failures and malfunctions

• Implementation of dynamic pricing structures based on time

• Monitoring of power quality

• Energy trading through net metering

• Load scheduling for Demand Side Management (DSM)

• Load limiting to encourage demand response

• Detection of energy theft and meter tampering using alert systems and

sensors

• Advancement of energy conservation for the sake of environmental sustain-

ability.

Figure 2.3: Models of conventional power and smart grids[93].
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2.2.4 Networking Framework for Advanced Metering Infrastructure

The Advanced Metering Infrastructure (AMI), as depicted in Figure 2.2, is sup-

ported by a tripartite networking system consisting of the Home Area Network

(HAN), Neighborhood Area Network (NAN), and Wide Area Network (WAN),

each possessing unique characteristics and functions:

• HAN: Within the domestic realm, HAN connects smart meters (SMs),

intelligent appliances, local generation units, energy storage systems, and

plug-in hybrid electric vehicles (PHEVs), along with their respective con-

trol units. To facilitate high bandwidth and low-energy signal transmission,

wireless modalities are the most appropriate communication methods for

HAN. Protocols such as ZigBee, WiFi operating at 2.4 GHz, HomePlug

standards, and IEEE 802.11 are commonly utilized to fulfill these require-

ments, as indicated by the U.S. Department of Energy [86].

• NAN: Comprising data aggregator units and SMs situated within con-

sumer properties, the NAN facilitates the exchange of information within a

localized community. The choice of communication technology within the

NAN is tailored to suit various operational contexts and may include Power

Line Communication (PLC), RS485 serial connections, GPRS/3G mobile

networks, or ZigBee interfaces.

• WAN: Serving as the communication backbone, the WAN provides con-

nectivity between the data aggregation points and the central operations

hub. The selection of communication channels within the WAN is predi-

cated upon regional requirements and may encompass PLC, Ethernet, or

GPRS/3G networks.

Subsequent to data acquisition, the collated information is conveyed to an

operations center. This center houses both a Meter Data Management System

(MDMS) and a head-end system. The head-end system orchestrates the commu-

nication protocols, aggregates, and preserves metering information, and ensures

compatibility with internet protocols while interfacing with various devices. In

parallel, the MDMS, as the core component of the AMI’s management archi-

tecture, oversees the monitoring of the distribution network and undertakes the
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analysis, maintenance, and operational management tasks integral to the func-

tioning of Smart Grids.

2.2.5 Operations and Advantages of AMI

AMI presents numerous benefits and implications that impact consumers, Utility

Providers (UPs), and society at large, as acknowledged by the U.S. Department

of Energy (2008).

For Consumers:

• Improved Energy Management: AMI offers extensive insights into energy

consumption and grid status, empowering consumers to make informed de-

cisions about their energy use. As a result, consumers can expect enhanced

power quality, increased reliability, and precise billing, ultimately leading

to reduced utility expenses.

For UPs:

• Operational Efficiency and Billing Process Improvement: AMI enables UPs

to gain advantages in areas such as operational efficiency and billing pro-

cesses.

• Cost Savings: The implementation of Smart Meters (SMs) facilitates au-

tomated data transmission and remote firmware updates, eliminating the

need for physical meter readings and maintenance. Consequently, opera-

tional and labor costs are reduced.

• Demand Response and Load Management: AMI equips UPs with the ability

to monitor grid load continuously, facilitating dynamic pricing and direct

load control. This not only reduces peak demand but also mitigates the

need for new-generation facilities and eases transmission congestion.

• Grid Health Monitoring: Real-time monitoring allows UPs to analyze line

losses and optimize the electrical power infrastructure.
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• Enhanced Outage Management: Smart metering aids UPs in promptly de-

tecting and locating outages, enabling more efficient repair crew dispatch.

• Non-Technical Loss Reduction: SMs and data collectors in AMI play a

crucial role in identifying and mitigating energy theft, thereby reducing

NTLs.

For Society:

Environmental Sustainability: AMI contributes to a greener environment by en-

hancing energy delivery and usage efficiency. It promotes the adoption of Dis-

tributed Generation (DG) and DER, potentially reducing carbon dioxide emis-

sions significantly, as suggested by Siddiqui [76].

2.2.6 Security Concerns and Challenges in AMI

The widespread adoption of SMs across homes and businesses in the United States

and initiatives like Tenaga Nasional Berhad (TNB) [83] pilot project in Malaysia

highlight the growing implementation of AMI. However, this expansion brings

about significant security challenges. This thesis will delve into these security

concerns, emerging from the new power infrastructure, and explore potential

mitigation strategies.

Privacy Concerns for Consumers

In the SG ecosystem, while consumers collaborate with UPs for efficient energy

management, privacy concerns arise due to the necessity of sharing detailed con-

sumption data. Third parties can utilize fine-grained SM data for load profiling,

which reveals not only appliance usage but also personal lifestyle patterns. The

ability to deduce such detailed information poses privacy risks, ranging from bur-

glary risks to unsolicited marketing and competitive disadvantages for industrial

consumers. Instances like the Dutch Parliament’s rejection of SG implementa-

tion in 2009 due to privacy concerns [20] underscore the need for robust privacy

protection measures. Establishing a regulatory framework that defines data col-

lection, sharing, and usage policies is crucial to maintaining consumer trust in
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SG adoption. Moreover, the security and reliability of smart devices must be rig-

orously assessed by academia, the government, and the energy industry to ensure

comprehensive protection against privacy invasions.

2.2.7 Energy Theft: A Multi-Billion Dollar Concern

Energy theft within electrical power distribution systems has long been an inter-

national concern. Northeast Group [29] estimates the global annual cost of energy

theft to be approximately $96 billion in 2017, with a notable portion occurring

in emerging economies like India, Brazil, and Russia. Historically, methods of

energy theft involved physically tampering with meters to disrupt accurate mea-

surements. However, with the introduction of Smart Meters (SMs), the nature

of energy theft is evolving towards more complex cyber-related attacks, such as

remote device hacking and data manipulation. These advanced attacks can lead

to minor alterations in energy readings or even large-scale infrastructure threats,

as detailed by McDaniel & McLaughlin [57].

Smart Meters, integral to the Advanced Metering Infrastructure (AMI), are

built using common software and hardware, exposing them to typical vulnerabil-

ities found in networked and communication systems. This includes risks such

as unauthorized access, distributed denial-of-service (DDoS) attacks, and vari-

ous forms of malware, making SMs prime targets for cybercriminals [57]. The

exploitation of these vulnerabilities can lead to significant financial implications,

not only in terms of energy theft but also in the costs of replacing compromised

meters. Misuse of SMs could also pose serious risks to the power infrastruc-

ture, potentially leading to misguided operational decisions by UPs and hiding

imminent threats.

The future development of SG is highly dependent on the regulatory frame-

works established by governments and UPs. Addressing the security issues in-

troduced by AMI is crucial for transitioning to a more efficient and cost-effective

power grid.
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2.3 Electricity Losses in Distribution Systems

Energy loss in electrical distribution systems, as defined by Nagi et al. [66], refers

to the discrepancy between the energy supplied and that reported by consumers.

Assessing these losses is key to evaluating system performance. Generally, UPs

face two types of losses: technical losses (TLs), inherent to energy distribution

and transformation, and non-technical losses (NTLs), which are related to energy

fraud and metering errors. Although the supplied and recorded energy should

ideally match, discrepancies due to systemic losses are inevitable [28].

2.3.1 Technical Losses (TLs)

TLs in electrical distribution systems result from energy dissipation in electrical

components during transmission and distribution, contributing to increased costs

and carbon emissions [33]. Influencing factors include the physical properties of

the electrical equipment, voltage levels, and grid design. Common sources of TLs

encompass transformer winding losses and resistive losses in feeders and networks

[5].

According to Congres International des Reseaux Electriques de Distribution

[19], TLs primarily arise from load losses (variable resistive and reactance losses),

no-load losses (fixed losses), and losses due to network services. Advancements

in Information and Communication Technology (ICT) and data acquisition have

enabled more precise computation and verification of TLs, as demonstrated by

predictive models using transformer and SM data [53].

2.3.2 Non-Technical Losses (NTLs)

NTLs, which occur independently of TLs, are often more challenging to measure

and attribute to external factors such as energy theft and meter irregularities [74].

These losses have significant implications for political stability and the financial

well-being of UPs. High NTLs are commonly linked to governance issues like

political instability and corruption [22]. Addressing NTLs is crucial for enhancing

the efficiency of electrical distribution systems and reducing costs.

Key causes of NTLs include:
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• Non-payment by consumers: Leading to systemic financial issues for UPs.

• Meter irregularities: Resulting from incorrect meter readings and equipment

malfunctions.

• Energy theft: Entailing illegal connections and meter tampering.

Non-Payment by Consumers

Failure to pay utility bills can lead to a cascade of financial and systemic prob-

lems [14]. Strategies like service disconnection and prepayment meters are imple-

mented to mitigate these issues [43].

Meter Irregularities

Meter irregularities, contributing significantly to NTLs, occur when meters inac-

curately record energy consumption. Common causes include incorrect readings

and equipment malfunctions (Tenaga Nasional Berhad, 2018). With AMI, UPs

can effectively monitor SMs in real-time, aiding in the detection and resolution

of these issues. This comprehensive monitoring enables UPs to identify discrep-

ancies in energy reporting and manage the distribution system more efficiently.

Addressing NTLs is vital for the effective operation of electrical distribution

systems, enhancing network efficiency, reducing costs, and improving reliability.

Effective strategies involve ensuring accurate meter readings, proper installation

and maintenance, and implementing systems to detect and prevent energy theft.

2.3.3 Addressing Energy Theft

Meter tampering and energy theft are primary contributors to Non-Technical

Losses (NTLs) in Malaysia, as identified by Tenaga Nasional Berhad (2006).

NTLs have persistently troubled Utility Providers (UPs) globally since the in-

ception of energy billing. Current data suggests that worldwide energy theft

amounts to an astonishing $96 billion annually (Northeast Group, 2017). In the

United States, energy theft results in annual losses of about $6 billion (Karaim,

2015), while UPs in India face yearly losses of around $4.5 billion due to energy

fraud (Ahmad et al., 2018). In Canada, British Columbia Hydro incurs yearly
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losses of $100 million, largely attributed to illegal marijuana cultivation oper-

ations (Meuse, 2016). The increasing sophistication of energy theft techniques

poses a significant challenge in detecting NTLs, leading to inflated costs for con-

sumers and substantial government subsidies. This thesis, therefore, focuses on

identifying and combating energy theft and meter irregularities in Smart Grids

(SGs).

Various methods are employed to under-report energy usage:

• At the consumer level, common tactics include tampering with meters or

siphoning energy from unoccupied premises.

• At the grid level, fraudulent practices often involve bypassing meters by

directly connecting high-load appliances or the entire electrical system to

the feeder with an unauthorized distribution transformer (DT).

• At the utility level, inaccuracies in billing, whether due to unintentional

meter errors or intentional manipulation by corrupt personnel, can lead to

profit losses.

To counteract energy theft, TNB Malaysia has formed specialized teams for

physical meter inspections (Tenaga Nasional Berhad, 2006). These teams, equipped

with additional technicians and resources, conduct investigations into suspected

cases of energy fraud.

The implementation of Advanced Metering Infrastructure (AMI) and Smart

Meters (SMs) is a strategic response to energy theft. SMs are engineered to

detect and report tampering, mitigating certain vulnerabilities present in tra-

ditional analog meters. TNB’s pilot project in 2015 involved installing 1,000

SMs in Malacca and Putrajaya (Tenaga Nasional Berhad, 2017), aiming to of-

fer enhanced digital services, including failure alarms and tamper detection for

analyzing NTLs.

However, the integration of smart metering infrastructure introduces new vul-

nerabilities. For instance, SMs are not immune to tampering (McLaughlin et

al., 2010). An energy thief could gain unauthorized access to a SM, disrupting

its communication and neutralizing automated alarms. Additionally, the high

rate of false positives in meter alarms complicates the UPs’ task of differentiating

between fraudulent and legitimate consumers.
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Literature review (McLaughlin et al., 2010, 2013; Jiang et al., 2014; Accenture,

2011; Y. Liu et al., 2018; Tellbach & Li, 2018) categorizes energy theft techniques

into three main types:

1. Physical attacks

2. Cyberattacks

3. Data attacks

Data attacks can result from both cyber and physical breaches, compromising

consumer usage data at various stages: recording, transmission, or storage (Xiao

et al., 2013). These techniques are summarized in Section 2.4 below, which will

be referenced in Section 4.3 to construct an attack model encompassing various

known energy theft methods. Subsequently, energy theft and meter irregularity

scenarios will be simulated by altering benign SM readings to assess the proposed

anomaly detection frameworks in Chapters 5 & 6.

2.4 Classification of Attacks in Conventional and Smart

Grid Systems

2.4.1 Physical Attacks

These attacks involve direct interference with the electrical metering and distri-

bution equipment.

1. Meter Swapping: Replacement of meters with units from unoccupied or

low-usage locations.

2. Power Diversion: Redirecting power supply within a neighborhood.

3. Meter Tampering: Includes meter removal/disconnection, reversing the me-

ter’s position, using magnets to affect readings, obstructing or damaging the

rotating coil, introducing substances to impair meter function, unauthorized

access to Smart Meters (SMs), and modifying the current transformer (CT)

ratio.
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4. Meter Bypass: Direct wiring of high-load appliances to the grid, bypassing

the meter completely.

5. Illicit Grid Connection: Unauthorized connections to the primary voltage

grid or distribution feeder.

6. Corruption: Bribery of utility personnel for altered billing.

7. Meter Calibration and Regulation Issues: Inappropriate calibration and

regulation of meters.

2.4.2 Cyber Attacks

Cyber attacks target the digital and networked components of the grid.

1. Credential Theft: Unauthorized access to meters using stolen login creden-

tials.

2. Firmware Hacking: Remotely hacking into Smart Meter firmware.

3. Data Tampering: Altering meter storage data including total energy con-

sumption, audit logs, and encryption keys.

4. Network Exploitation: Compromising meter readings through network vul-

nerabilities and intercepting meter communications.

5. Bandwidth Flooding: Overloading the Neighborhood Area Network (NAN)

bandwidth.

6. Resource Exhaustion: Depleting meter memory or central processing unit

(CPU) capacity.

7. Event Logging Interference: Deleting or interrupting logged events.

8. Communication Disruption: Disrupting radio frequency (RF) communica-

tions.

9. Value Injection: Injecting forged values into communications between Util-

ity Providers (UPs) and Smart Meters.
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10. Traffic Modification: Altering traffic between UPs and Smart Meters.

11. Meter Spoofing and Jamming: Impersonation of meters and RF signal jam-

ming.

12. Malware: Designing and injecting malware into Smart Meters.

13. Pricing Manipulation: Altering predictive pricing algorithms.

2.4.3 Data Attacks

These attacks involve manipulation of consumption data.

1. Zero/Negative Reporting: Falsely reporting zero or negative energy con-

sumption.

2. Consumption Report Alteration: Stopping or altering energy usage reports.

3. Measurement Exclusion: Removing high-consumption appliances from mea-

surements.

4. Under-reporting: Reporting less energy consumption than actual.

5. Load Profile Modification: Changing appliance load profiles to hide larger

loads.

2.5 Strategies for Energy Theft

From the outset of energy billing, fraudulent consumers have employed numerous

methods to alter meters and their inputs for energy theft. These methods fall

primarily into two categories: meter tampering, involving manipulation of the

meter’s internal structure, and line tampering, which includes bypassing the meter

connection. This thesis focuses on identifying such attacks under the assumption

that the integrity of meter consumption readings has been compromised, and

does not address methods of manipulating communication signals.

Low Voltage Meters (230V Single Phase):
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Figure 2.4: Direct tapping to the power line[93].

1. Direct Connection to Power Grid (Bypassing the Meter): Con-

sumers, particularly in domestic or SME sectors, often directly tap into the

LV 230V single-phase/415V three-phase power lines. This method is more

straightforward and considered safer compared to tampering with HV lines.

2. Meter Tampering:

• Breaking the meter’s enclosure seal for internal access and tampering.

• Reversing number dials in analog meters or modifying CT turns.

• Using magnets to slow down the rotor disk, affecting consumption

measurement.

• Installing remote control switches to regulate energy consumption record-

ing.

3. Circuit Bypass/Hidden Switch: Utilizing jumper wires or hidden switches

to bypass the metering circuit, avoiding energy consumption registration.

This method is becoming increasingly sophisticated with the use of ad-

vanced gadgets and wiring.

These strategies illustrate the evolving nature of energy theft, ranging from

simple mechanical tampering to sophisticated electronic interference. The chal-
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lenge for utility providers lies in detecting and mitigating these diverse methods

of energy theft, ensuring accurate billing and fair energy distribution.

2.6 Approaches to Energy Theft in High Voltage Meters

Figure 2.5: Breaking control wire[93].

High Voltage (HV) meters, particularly three-phase watt-hour meters, are com-

monly installed at industrial sites with substantial energy demands. These meters

typically employ a ”two-watt-hour meters” connection in a three-phase energy

meter for measurement. Energy theft in these settings, particularly prevalent

in commercial and industrial sectors, contributes significantly to Non-Technical

Losses (NTLs) in countries like Malaysia.

High Voltage Meters (12kV or 24kV three-phase, three or four-wire

primary):

1. Direct Power Line Connection: Direct tapping into HV power lines is more

challenging, with heightened risks due to the high voltage.

2. Meter Tampering: Similar methods as those employed in LV meters are

applied, including physical alteration of the meter’s components.
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3. Control Wire Tampering: Energy theft executed by manipulating the con-

trol wires of the CT, resulting in reduced current readings.

4. Terminal/Meter Seal Tampering: Tampering with terminal seals located

below the meter to alter voltage phase readings.

5. Voltage Tap Interference: Disrupting voltage readings by shorting voltage

taps to the ground.

2.7 NTL Detection Methods

Several recent studies have proposed various NTL detection methods, such as

Support Vector Machine (SVM), load profiling, neural networks, and decision

trees (Viegas et al., 2017). This thesis categorizes these detection schemes into

three groups: state-based, game theory-based, and classification-based (Jiang et

al., 2014), focusing primarily on data-oriented schemes that rely on consumer

data like energy consumption measurements.

2.7.1 State-based Detection:

State-based detection involves monitoring the power system’s state using specific

equipment to identify energy fraud.

Xiao et al. (2013) proposed three inspection schemes for identifying anomalous

Smart Meters (SMs), which, while effective, increase cost due to the additional

metering equipment required. McLaughlin et al. (2013) designed an Advanced

Metering Infrastructure Intrusion Detection System (AMIDS) using various data

sources, though this raises privacy concerns due to non-intrusive load monitor-

ing (NILM). Selvapriya (2014) suggested using control units to compare individ-

ual and aggregated consumption against feeder input levels, with alerts sent via

GSM to investigate suspected energy theft. Khoo and Cheng (2011) integrated

RFID technology for better meter inventory management and energy theft re-

duction. Huang et al. (2013) and Sahoo et al. (2015) used variance analysis

and temperature-dependent predictive models, respectively, to identify abnormal

energy consumption patterns.
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Various recent studies have proposed NTL detection methods, focusing primar-

ily on data-oriented schemes that rely on consumer data like energy consumption

measurements.

2.7.2 Game-Theoretic Approaches in NTL Detection

Game-theoretic approaches to NTL detection conceptualize the interaction be-

tween fraudulent consumers and Utility Providers (UPs) as a strategic game (Car-

denas et al., 2012; Amin et al., 2015). In this framework, energy thieves aim to

under-report electricity consumption while minimizing detection risk. Conversely,

UPs focus on enhancing the likelihood of identifying theft while also aiming to

reduce the operational costs associated with these detection mechanisms. This

perspective offers a novel way to analyze and mitigate NTLs.

In the game-theoretic framework proposed by Amin et al. (2015), two scenarios

are considered: perfect competition and unregulated monopoly. The study de-

velops an elaborate game-theoretic model to assess various statistical techniques

for detecting energy theft. However, this model necessitates certain impractical

assumptions about the nature of fraudulent activities. The research yields precise

estimates of detection capabilities under these specific assumptions.

Cardenas et al. (2012) also developed a game-theoretic model, formulating a

strategic interaction between energy thieves and UPs. They determined the Nash

equilibrium of this game as the probability density function that both defend-

ers and attackers should adopt when sending Advanced Metering Infrastructure

(AMI) measurements. Furthermore, the study includes a preliminary analysis

of the optimal sampling interval for Smart Meters (SMs), balancing consumer

privacy concerns with the retention of demand response program benefits.

However, the development of utility functions for all involved parties, including

energy thieves and UPs, and the formulation of their potential strategies remain

complex challenges within this approach.

Game-theoretic approaches to NTL detection conceptualize the interaction be-

tween fraudulent consumers and Utility Providers (UPs) as a strategic game.

In this framework, energy thieves aim to under-report electricity consumption

while minimizing detection risk, whereas UPs focus on enhancing the likelihood

of identifying theft and reducing operational costs.
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2.7.3 Approaches in Classification-Based NTL Detection

Classification-based NTL detection utilizes a comparative approach between fore-

casted and actual energy consumption values, where a significant discrepancy of-

ten indicates potential fraud [59]. Both ARIMA and ARMA models, renowned

for time series forecasting, play a pivotal role in this process. Badrinath et al., [9]

found that ARIMA tends to be more effective for residential consumers. Expand-

ing on this, Krishna et al., [46], investigated the application of Kullback-Leibler

Divergence (KLD) for detecting sophisticated energy theft, where KLD is used to

assess the disparity between a set of measurements and a historical baseline. This

method is particularly adept at uncovering smart attacks that blend anomalous

usage into normal patterns using legitimate ARIMA models. Jindal et al. [40]

explored decision trees and SVM-based classifiers for in-depth analysis of energy

consumption data to pinpoint fraud. Their approach integrates two levels of data

processing, with the decision tree output serving as input for the SVM classi-

fier. Villar-Rodriguez et al.,[87] developed a novel algorithm for outlier detection

in SGs, which accommodates irregularities in consumer consumption habits by

focusing on consumption trends rather than temporal attributes.

However, protecting consumer privacy while detecting energy theft is a critical

aspect of SGs, as highlighted by Mirzaee et al. [61] and Llaria et al. [51]. They

proposed a Lower-Upper Decomposition (LUD) algorithm to calculate consumer

honesty coefficients in a privacy-preserving manner. The LUD approach is unique

in that it gauges the likelihood of having multiple energy thieves in a community

based on the honesty coefficient vector. Despite its innovative approach, the LUD

algorithm has limitations, such as not accounting for technical losses and being

constrained by the dimensionality of consumption data, which might necessitate

adjustments in data granularity.

Moreover, some classification-based methods are susceptible to contamination

attacks, where energy thieves subtly alter data to mislead learning algorithms.

The dependency of machine learning-based methods on extensive long-term mon-

itoring often results in a delay in theft detection due to the requirement of large

sample sizes [41]. Additionally, most NTL detection schemes overlook technical

losses, which could impede their practical application.

To overcome these limitations, this thesis proposes an electricity theft detec-
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tion (ETD) framework for smart homes with knowledge-based synthetic attack

classifiers and evaluated with real attack data. These frameworks are capable

of identifying electricity theft and meter irregularities without being constrained

by the dimensions or granularity of power consumption data. They are designed

to detect anomalies in the appliance consumption patterns, an NTL, occurring

minutely or intermittently throughout the day. The proposed frameworks also

consider the impact of electricity theft attacks (ETA) at three different homes

assumed to have different appliance configurations and different ETA scenarios,

aiming for a high detection rate with minimal false positives. A range of NTL

attack scenarios is evaluated to validate the reliability of these frameworks in real-

world AMI fraud and metering defect scenarios. Importantly, these frameworks

can be implemented without additional hardware costs, offering a cost-effective

solution for UPs and ultimately benefiting consumers through reduced opera-

tional costs.

2.8 Advances in Non-Intrusive Load Monitoring

In the realm of Smart Grids, AMI plays a pivotal role in generating data at

the household level concerning power consumption. However, appliance-level

data, offering more granularity, are increasingly sought after by homeowners and

building managers for a detailed analysis of each appliance’s contribution to total

energy usage and cost. The conventional method of collecting such data is known

as intrusive load monitoring, involving the physical installation of sensors on each

appliance. While this approach yields precise usage data for each appliance, it is

limited by its lack of scalability, efficiency, and cost-effectiveness.

Contrastingly, Non-Intrusive Load Monitoring (NILM) employs software al-

gorithms to disaggregate whole-house data, effectively deducing appliance-level

power consumption. This innovative technique was first introduced in the lit-

erature [99], where it focuses on identifying changes in voltage and current to

ascertain when different appliances are turned on and off. An illustrative exam-

ple Figure 2.6 in Hart et al., [45] demonstrates how NILM algorithms discern

individual appliance events based on their impact on overall household energy

consumption.

NILM algorithms can be categorized into three distinct types based on their
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objectives:

• On/Off Classification: This model simplifies the task of determining

whether an appliance is on or off, disregarding variations during operation.

Its strengths lie in high accuracy and simplicity. Due to the binary states

of each appliance (on or off), these states are easier to detect, reducing the

complexity of the models. However, this approach might lead to inaccurate

estimations of energy consumption by treating all active states uniformly.

• Multiple States Recognition: Often associated with Markov Chain

models as seen in Liu et al.[50], and Azaza et al. [8], this approach, akin to

a Finite State Machine (FSM), differentiates various operational states of

an appliance. It aims to identify the specific state an appliance is in during

operation, thus capturing more nuanced activities. However, the challenge

lies in manually defining the power consumption ranges for each state.

• Wave Reconstruction: This method aspires to reconstruct the power

wave of each appliance. Perfect reconstruction is challenging due to the

inherent variability in appliance operation and circuit-induced noise. Fur-

thermore, the high correlation among appliance operations can lead to com-

pounded errors from any noise or inaccuracies.

In practical applications, the first NILM product was introduced by Enetics,

Inc., a certified meter Data service provider, with the launch of their SPEED soft-

ware in 1996 (www.enetics.com). Since then, numerous energy service companies

have offered NILM services globally, catering to both residential and commercial

sectors. These services encompass various applications such as fault detection

in appliances, scheduling, and consumer education, providing disaggregated data

in real-time, or at various intervals like hourly or minutely. For instance, the

‘Trickl’ mobile application by London Hydro Inc., a Canadian energy provider,

shares hourly NILM data with its customers. According to a study by Home

Energy Analysis, Inc., NILM technologies have contributed to an average energy

consumption reduction of 12.8% (www.nilm.eu).
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Figure 2.6: NILM event capturing [89]

2.9 Evaluating Machine Learning

2.9.1 Model Performance Metrics

In machine learning, especially in the context of network attack detection, it is

critical to measure performance accurately. Performance is commonly evaluated

using metrics such as the Area Under The Curve (AUC) of Receiver Operating

Characteristics (ROC) curves and the F1 score [3]. The F1 score is particularly

crucial in scenarios where datasets are imbalanced. Relying solely on accuracy

for performance evaluation in such cases is insufficient. The F1 score, nearing

1.0, signifies a robust model, representing a harmonized average of precision and

recall. Additionally, the assessment includes the False Positive Rate (FPR) and

False Negative Rate (FNR), which are vital for gauging the efficacy of detection

systems.

The formulas for calculating these rates are as follows:

FPR =
FP

FP + TN
(2.1)
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FNR =
FN

FN + TP
(2.2)

Accuracy, denoted in Equation 3, is the proportion of correctly classified attack

instances out of the total number of observations [33].

Accuracy =
TP + TN

TP + FN + FP + TN
(2.3)

Where TP is True Positive, FP is False Positive, TN is True Negative, and FN

is False Negative.

Recall, as indicated in Equation 4, is the fraction of correctly predicted positive

observations to all observations in the actual class.

Recall =
TP

TP + FN
(2.4)

The F1 score, as described in Equation 5, is derived from precision and recall

[61, 73].

F1-Score =
2× (Recall× Precision)

Recall + Precision
(2.5)

2.10 Chapter Summary and Overview

Utility Providers (UPs) globally strive to reduce operational expenses and en-

hance revenue, often confronting challenges like technical losses (TLs) and non-

technical losses (NTLs), with energy theft being a primary factor in NTLs. This

type of loss not only inflates operational costs but also indirectly burdens hon-

est consumers through higher energy prices. The advent of Smart Grid (SG)

technologies has ushered in more effective strategies for detecting and analyzing

potential energy fraud. The fine-grained data provided by Smart Meters (SMs)

and other intelligent devices can be utilized through data analytics and software

applications to pinpoint instances of energy fraud and metering defects with pre-

cision. The integration of these smart devices into revenue protection systems

offers UPs substantial returns on their SG investments.

The current paradigm in combating energy theft involves leveraging consumers’

detailed energy usage data coupled with sophisticated data analytics. This ap-

proach is akin to fraud detection mechanisms used in other industries, such as
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banking and credit card transactions, and is highly recommended for adoption

by UPs.

This chapter has delved into the fundamentals of SGs and various aspects of

Advanced Metering Infrastructure (AMI). It provided a comprehensive review

of the literature concerning electricity losses in electrical distribution systems,

encompassing both TL and NTL activities. It also discussed different methods of

energy theft, including direct connections, meter tampering, and methods to slow

down the meter’s rotating disk in both low voltage (LV) and high voltage (HV)

energy meters. Finally, the chapter presented a detailed examination of existing

NTL detection schemes, categorizing them into state-based, game theory-based,

and classification-based detection methods. Additionally, the chapter covered the

advances in Non-Intrusive Load Monitoring (NILM) as a significant development

in AMI, highlighting its role in enhancing the granularity of energy consumption

analysis and its importance in modern SGs.
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3. Unauthorized Power Usage Detection (UPUD)

System

3.1 Introduction

This research aims to enhance the detection of unauthorized power usage (UPUD)

in Advanced Metering Infrastructure (AMI) within the Smart Grid (SG) context.

The focus is on identifying irregularities in electricity consumption patterns of

users, leveraging historical data to analyze user behavior. This study employs

a supervised machine learning (ML) approach to UPUD, specifically targeting

abnormal or fraudulent usage in SG meter data. Prior research has explored var-

ious ML techniques for detecting unauthorized power usage, including artificial

neural networks, autoregressive integrated moving averages, time series methods,

and support vector machines, as indicated in the literature [41]. Recent advance-

ments, such as those highlighted in [52], demonstrate the effectiveness of Gradient

Boosting Classifier (GBC) in non-technical loss (NTL) detection.

This paper aims to conduct an exhaustive comparative analysis of six distinct

ML algorithms: Logistic Regression (LG), Support Vector Machine, Decision

Tree Classifier (DTC), Random Forest (RF), Ridge Regression Classifier (RRC),

and Gradient Boosting Classifier (GBC). These analyses are based on the feature

engineering-based preprocessing module of the GBC, which enhances detection

rates, reduces the false positive rate (FPR), and optimizes time complexity. The

GBC’s preprocessing module includes a stochastic feature generation function

that augments FPR and detection rate (DR) by using daily electricity consump-

tion patterns as features. Additionally, it features a weighted feature importance

(WFI) extraction mechanism that minimizes training time complexity by elimi-

nating irrelevant data, thereby also reducing storage needs for customer data in
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SGs.

For each SG customer, historical real-usage data are readily available. However,

UPUD samples may be rare or absent. To address this, the study simulates UPUD

cases by modifying real usage data based on mathematical formulas, reflecting

the concept that theft typically involves reporting lower consumption than actual

usage or shifting high usage to low-tariff periods, as proposed in [1]. Unlike [2],

which focuses on detecting primarily unintentional fraud, this paper concentrates

exclusively on intentional unauthorized power usage detection at the appliance

level (NIALM). The dataset used here contains 50% NTL samples, generated

based on a previously studied dataset [1], as opposed to the 5.38 to 8.37% NTL

samples in [2]. This approach enables a fair and reliable comparison of classifier

performance in terms of detection efficacy.

In this chapter, our ML algorithms are based on load disaggregation otherwise

known as Non-Intrusive Load Appliance Monitoring (NIALM). This technique

generates appliance-level power consumption data based on a single smart meter

reading to improve detection performance as well as time complexity.

3.2 Related Work

This section summarizes pivotal research in detecting power theft within smart

meter networks. Jiang et al. [39] and Jokar et al. [84] focused on classification

methodologies using fuzzy clustering and SVM for abnormal consumption pattern

recognition. Salinas et al. [60] and Huang et al. [36] developed distributed tech-

niques and neural network models, respectively, to identify dishonest or malicious

users in the system.

Challenges in using SVM for electricity theft detection were explored by Depuru

et al. [25], while Ren et al. [72] incorporated ML algorithms for False Data

Injection Attacks (FDIA) in smart meters. Dayaratne et al. [21] demonstrated

cost-effective FDIA using a Demand Response (DR) scheme. Park et al. [68]

and Wang et al. [89] proposed anomaly detection approaches and deep learning

models for Non-Intrusive Appliance Load Monitoring (NIALM), respectively.

Despite these studies, limited research has been conducted on applying ML

to design NIALM smart meter consumption patterns, which has implications for

billing accuracy. Our work aims to bridge this gap by using various ML classifiers
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based on historical data. Security aspects of these models, crucial in the context of

household energy usage prediction [78], and appliance-level power theft detection

in ML models [67], have been relatively underexplored and represent a key focus

of this research.

3.2.1 AMPds2 Dataset

In this research, we consider the Almanac of Minutely Power Dataset version

2 [16] dataset to detect unauthorized power usage attacks. Measurements are

made available, and it is composed of two years of measurements recorded for the

whole house and 20 appliances Table 4.2 inside the house. [55] Figure 2 describes

the disaggregation of each appliance from the main meter into sub-meters with

their loads. WHE represents the monitoring point of the whole house, while

HPE represents the monitoring point of the heat pump, CWE represents the

washer and DWE represents the Dishwasher. All these monitoring points are

characterized by high voltage (240V) power-consuming appliances sub-meters.

We discussed the UPUD attack scenarios in Section 2.1.

Figure 3.1: Home Appliances Disaggregated Metering Diagram with load value

3.2.2 Dataset Preliminary Preprocessing

We extracted our data from the AMPds2 public dataset, Table II, which lists 20

disaggregated appliances Figure 3.1 and their associated attributes in chronolog-

ical sequence, with their unit label. This dataset has 730 rows and 1441 columns.

Each row represents a day. The first 1440 columns are the power consumption

[W] of a minute from 00:00 every day. For example,

• The first column is the power consumption of 00:00 of the day.

• The second column is the power consumption of 00:01 of the day.
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Table 3.1: Appliances and units in AMPds

Appliance

ID

Description Appliance

ID

Description

WHE Whole House Meter FRE HVAC/Furnace

B1E North Bedroom GRE Garage

B2E Master/South BR HPE Heat Pump

BME Basement Plugs/Lights HTE Instant Hot Water Unit

CDE Clothes Dryer OFE Home Office

CWE Clothes Washer OUE Outside Plug

DNE Dinning Room Plugs TVE Entertainment

TV/PVR/AMP

DWE Dishwasher UTE Utility Room Plug

EBE Electronics Workbench WOE Wall Oven

EQE Security/Network UNE Unmetered Loads

FGE Kitchen Fridge .

• The 1440th column is the power consumption of 23:59 of the day.

The last column (the 1441th) column is the label.

The meaning of the label is as follows.

• Label 0 (BASE): Base power consumption of the house, which is the aggre-

gated power of [’B1E’, ’B2E’, ’BME’, ’CWE’, ’DNE’, ’DWE’, ’EBE’, ’EQE’,

’FRE’, ’OFE’, ’OUE’, ’TVE’, ’UTE’, ’WOE’] as shown in Fig 8 visualization

of base minutely consumption pattern for three consecutive days.

• Label 1 (False Injection by ‘CDE’): ‘CDE’ is added to the base power con-

sumption only if ‘CDE’ has experienced any power consumption on the

day.

• Label 2 (False injection by ‘HPE’): ‘HPE’ is added to the base power con-

sumption only if ‘HPE’ has experienced any power consumption on the

day.

• Label 3 (False injection by ‘HTE’): ‘HTE’ is added to the base power con-

sumption only if ‘FGE’ has experienced any power consumption on the

day.
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• Label 4 (False injection by ‘FGE’): ‘FGE’ is added to the base power con-

sumption only if ‘FGE’ has experienced any power consumption on the

day.

• Label 5 (False injection by ‘WOE’): ‘WOE’ is added to the base power

consumption only if ‘WOE’ has experienced any power consumption on the

day.

Figure 3.2: Base power consumption data pattern

The purpose of these load additions is to detect “unauthorized power usage”

from the main power line.

Example of Label 0 (Base power consumption), Figure 3.2, Benign Data. This

data has been pre-cleaned to provide consistent and comparable accuracy results

among researchers and machine learning algorithms.

Dataset Preprocessing for Augmentation

Our labeled dataset has 6 categorical features in a numerical representation which

are assigned numbers for each category. In this investigation we discover dataset

imbalance, Figure 3.5. This led to overfitting of our training set as the model

could not generalize well because the random fluctuations in the training data

are picked up and learned as concepts by the model.
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Figure 3.3: False Injection of CDE - Consumption pattern changes

Figure 3.4: False Injection of HPE - Consumption pattern changes

We deployed a data augmentation algorithm by oversampling minority class

using the Synthetic Minority Over Sampling Technique (SMOTE) to make up

for the imbalance multiclass classification label. In this process, we use the K-

Nearest Neighbour algorithm and try to produce a synthetic sample from our

sample.
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Table 3.2: NIALM-Hacking Dataset - Benign and Attack Instances

Type of

Attacks

Attack Description Attack Messages Number of

Instances

0 (Benign) Base power Appliances consump-

tion pattern

730

1 (CDE) Cloth dryer injection pattern changes 283

2 (HPE) Heat pump injection pattern changes 730

3 (HTE) Instant hot water in-

jection

pattern changes 729

4 (FGE) Kitchen Fridge injec-

tion

pattern changes 730

5 (WOE) Wall Oven injection pattern changes 91

3.3 Modeling Attack Scenarios

This study primarily focuses on experimenting with five types of attacks by inject-

ing high voltage-consuming home appliances into the system. These appliances

include the Clothes Dryer (CDE), Heat Pump (HPE), Instant Hot unit (HTE),

Kitchen Fridge (FGE), and Wall Oven (WOE), as detailed in Table 3.2. For

each type of attack, a corresponding message is defined to represent the unau-

thorized usage. In the context of our training model, ’Benign’ refers to the base

consumption pattern encompassing all appliances.

3.3.1 False Appliance Injection Attack Scenarios

Assumption:

• We assume that false injection constitutes unauthorized power usage through

the illegitimate addition of appliances to the network.

In constructing our threat model, understanding the adversaries’ knowledge

is essential. Therefore, based on our preprocessed dataset, we have crafted six

distinct attack labels. These attacks are categorized into various scenarios, each

defined by different levels of energy consumption from the injected appliances.
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Figure 3.5: Distribution of imbalance dataset

The scenario of unauthorized power usage is a classic case of an imbalanced

dataset, where the frequency of one class is significantly less than that of other

classes. This imbalance is depicted in the multiclass distribution shown in Figure

3.5.

3.4 GB-based UPUD model on smart meter disaggretated

data

To effectively train the Non-Intrusive Appliance Load Monitoring (NIALM) clas-

sifier, it is imperative to have access to detailed power consumption data for

each appliance over a prolonged duration. For this purpose, the AMPds2 (Al-

manac of Minutely Power Dataset version 2) dataset was utilized. This dataset

encompasses two years of comprehensive power measurements for both the entire

household and 20 individual appliances, as detailed in Table 4.2, [55]. Figure 3.1

illustrates the disaggregation process, showing how each appliance’s consumption

is separated from the main meter into individual sub-meters, each representing a
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different high voltage (240V) consuming appliance.

Figure 3.6: Block diagram of our proposed UPUD system

The UPUD (Unauthorized Power Usage Detection) system’s workflow is de-

picted in Figure 3.6. Figure 3.7 further highlights the importance of sensing

and decision-making in a home prediction model. Data from smart meter aggre-

gated appliances are collected following conventional patterns and then fed into

the NIALM classifier. This classifier disaggregates each appliance’s consumption

pattern for training the model through a sophisticated communication process

where decision-making occurs.

Figure 3.7: Smart meter NIALM at benign model diagram

An intelligent attacker, however, poses a significant threat by executing what

is known as a false appliance injection attack or unauthorized power usage, as

shown in Figure 3.8. This type of attack, indicated by the dotted rectangular
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box in the NIALM model, can manifest in two ways. Firstly, it can occur during

the transmission of information, akin to a man-in-the-middle or spoofing attack,

where the transmitted data is susceptible to alteration. Secondly, the attack can

be integrated into the machine learning model as a form of false data injection.

Our proposed model is designed within this context, addressing these specific

attack paradigms and ensuring robust unauthorized power usage detection.

Figure 3.8: Smart meter NIALM attack model diagram

3.4.1 Proposed Gradient Boosting Classifier Algorithm

In this study, we employed machine learning (ML)-based algorithms to identify

unauthorized power usage patterns in customers’ electricity consumption data.

The approach centered on training a classifier model in a supervised manner,

utilizing a dataset that encompassed daily power usage profiles of both regular

and fraudulent users.

A crucial initial step in developing this model involved preprocessing the data

with a specialized data preparation technique. This step was particularly impor-

tant, as the classification process might be biased towards certain classes due to

data imbalances, as highlighted in Figure 3.5. To enhance the model’s perfor-

mance and mitigate class disparity issues, we implemented data augmentation
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techniques during the preprocessing phase.

Following the preparation of the data, the model underwent hyper-tuning to

refine its parameters. The optimized version of the model was then subjected to

testing using a separate set of test data to evaluate its effectiveness. The entire

methodology, from data preparation to model testing, is concisely illustrated in

Figure 3.6, providing a clear overview of the process involved in developing the

proposed Gradient Boosting Classifier Algorithm.

3.4.2 Classifier Training Process

The Machine Learning (ML) module in our model training process adopts a

method akin to a forward (input) function, which ultimately yields the output.

At its core, simple machine learning involves taking the input, applying weights

and biases, processing it through multiple hidden layers, and then producing

the output. In essence, ML serves as a technique to approximate an unknown

function based on historical data or observations from a specific domain.

For our model, we have utilized a classification algorithm, a form of super-

vised learning, to identify new observations. This could include detecting a new

appliance injection based on the patterns learned from the training data. Alter-

natively, regression algorithms are employed when there is a discernible relation-

ship between input and output variables. These are typically used for predicting

continuous variables, such as in weather forecasting or market trend analysis. Su-

pervised learning models like ours are instrumental in solving various real-world

challenges, including fraud detection and spam filtering. Our model, focusing on

fraud detection, employs a supervised classification approach.

3.4.3 Proposed Machine Learning Approach for Training NIALM

One of the key aspects of training Non-Intrusive Appliance Load Monitoring

(NIALM) is the extraction of detailed features from appliances for accurate state

identification. Machine Learning facilitates this automatic feature learning pro-

cess.

In the context of NIALM, numerous potential features could be extracted. For

instance, the washing machine’s ramping patterns, including the subtle move-
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Table 3.3: GB Multiclass Classification Report

Attack labels Accuracy TPR FPR Recall AUC F-1 score

Benign 72.34% 0.94 0.81 0.94 0.97 0.82

CDE 100.00% 0.75 0.86 0.70 0.88 0.83

HPE 91.42% 0.89 0.90 0.86 0.92 0.88

HTE 91.04% 0.64 0.75 0.76 0.95 0.85

FGE 94.44% 0.93 0.93 0.95 0.91 0.96

WOE 67.55% 0.22 0.33 0.33 0.92 0.50

ments of the drum during its operation, are critical features. The ML algorithm

takes a vector input where each input is assigned a weight. It multiplies each

input by its corresponding weight and sums up the results, incorporating a non-

linearity to process these inputs effectively.

3.5 Experiment results and Performance Evaluation

For our investigation, we used python PyCharm IDE 2022.5.30 and Keras with

TensorFlow as the backend. We did our experiment with CPU Intel(R) Core(TM)

i7-4710MQ CPU @ 2.50GHz 2.50 GHz, 16GB RAM. Windows 10 (64-bit) pro-

cessor.

In this study, we rigorously evaluate the effectiveness of our proposed Machine

Learning (ML) model in accurately identifying instances of false appliance injec-

tions within a baseline smart meter dataset. Central to this assessment is the

performance analysis of the Gradient Boosting Classifier (GBC) in the Unau-

thorized Power Usage Detection (UPUD) context. We focus on ensuring the

reliability and robustness of our experimental analysis using various performance

metrics.

Table 3.3 showcases the performance of our method in detecting six types of

attacks across different training rates. The table includes metrics such as Accu-

racy, True Positive Rate (TPR), False Positive Rate (FPR), Recall, Area Under

Curve (AUC), and F-1 Score. The test results highlight the model’s exceptional

capability in identifying all types of attacks.
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Table 3.4: Experimental Results of different Algorithms

Models Accuracy TPR FPR FNR Recall

Baseline 25.56% 0.04 0.17 0.07 0.00

Support Vector Machine (SVM) 68.89% 0.65 0.645 0.50 0.41

Decision Tree Classifier (DTC) 70.65% 0.61 0.62 0.62 0.70

Logistic Regression (LR) 44.86% 0.41 0.34 0.35 0.81

Random Forest (RF) 81.85% 0.74 0.68 0.70 0.41

Ridge Regression Classifier (RRC) 44.99% 0.41 0.34 0.35 0.41

Gradient Boosting (GB) 87.99% 0.93 0.76 0.80 0.87

For this experiment, we reprocessed the public AMPds2 dataset to create spe-

cific attack labels. We then conducted various attack scenarios using our multi-

class classification dataset with six different ML algorithms, excluding the base-

line for comparison. Notably, the Gradient Boosting Classifier emerged as the

top performer, achieving an accuracy of 87.99%.

Figure 3.11 illustrates the relationship between the number of iterations and

the accuracy of the augmented dataset. This graph demonstrates that higher

training and testing accuracy significantly bolsters the strength of our model.

Moreover, we conducted a multi-class classification metric evaluation to deter-

mine the most accurate model in comparison to others, including the baseline, in

detecting UPUD, as detailed in Table 3.4. The confusion matrix, depicted in Fig-

ure 3.9, visually represents the performance of our classification models against a

given set of test data. It effectively contrasts the actual values with the model’s

predictions, particularly for the imbalanced dataset.

After augmenting our dataset to address imbalances, we observed an enhanced

performance. Our approach involved using the Synthetic Minority Over Sam-

pling Technique (SMOTE) for over-sampling minority classes, as detailed in the

classification model report shown in Figure 3.10. This technique played a pivotal

role in improving the model’s detection capabilities in our investigation.

The evaluation of our balance dataset is shown in Figures 3.10 and 3.11: Ac-

curacy and deviance graphs.
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Figure 3.9: Evaluation Report of imbalance dataset

3.5.1 Discussion

The execution of this experiment presented several challenges, particularly in

generating attack label datasets for Non-Intrusive Appliance Load Monitoring

(NIALM).

Notwithstanding the effectiveness of the proposed method in this context, there

are notable limitations when considering its application in real-world scenarios.

Firstly, our method’s current focus is solely on electricity consumption data.

This approach may yield limited insights, as it overlooks other critical factors.

Future enhancements should integrate additional data sources, such as climatic

conditions (like temperature), regional characteristics, and electrical parameters

(current and voltage), to provide a more comprehensive analysis.

Secondly, the scarcity of training data in practical settings poses a significant

challenge. Electric companies often refrain from sharing customer data for re-
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Figure 3.10: Classification Model Report after data augmentation

Number of iteration

Figure 3.11: Accuracy of the balanced dataset
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search purposes, primarily due to privacy concerns. Furthermore, a common

issue in UPUD within NIALM is the imbalance in data sets, where malevolent or

attack samples outnumber benign ones. Addressing this imbalance in a real-world

setting requires the application of multiple techniques, as there is no universally

applicable solution to this challenge.

Looking ahead, our future endeavors will focus on harnessing the capabilities

of Deep Neural Networks and incorporating a more extensive set of training data.

This approach aims to refine and enhance the outcomes of our previous experi-

ments, further advancing the effectiveness of our methods in detecting unautho-

rized power usage in NIALM systems.

3.6 Chapter Summary

This study introduces a method for detecting unauthorized power usage (UPUD)

in disaggregated smart meter networks, utilizing a Gradient Boosting Classifier

(GBC). The GBC-based UPUD approach is designed to iteratively refine the

model by adding new trees that address errors from prior iterations. The model

is trained on a mix of benign and malicious samples, using the AMPd2 power

preprocessed public dataset, which includes six types of attacks. The experi-

mental results demonstrate that the GBC-based UPUD model surpasses various

AI-based models such as SVM, DTC, RRC, LRC, and RF classifiers in terms of

performance. Notably, the application of the Synthetic Minority Over-sampling

Technique (SMOTE) effectively addresses the imbalance in the training set, con-

tributing to the model’s high performance across various parameter ranges Ta-

ble 3.3. Furthermore, GBC enhances detection rates and reduces False Positive

Rates (FPR) while also minimizing storage requirements and processing time for

customer data. Comparative analysis using different algorithms, including Lo-

gistic Regression (LG), Support Vector Machine (SVM), Decision Tree Classifier

(DTC), Random Forest (RF), Gradient Boosting (GB), and Ridge Regression

Classifier (RRC), reveals that GB achieves the highest accuracy of 87.99% com-

pared to others Table 3.4.
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4. Electricity Theft Detection for Smart Homes

with Knowledge-Based Synthetic Attack Data

(KBSAD) Framework

4.1 Introduction

Electricity, though intangible, holds significant material value, making Electric-

ity Theft Attacks (ETAs) a global concern, particularly prevalent in developing

countries. For instance, India loses over a fifth of its electricity production to theft

[70]. Traditional detection methods, such as meter inspections and user reports

[7], are human-reliant and struggle with the complexities of power systems.

In smart meters, electricity consumption is aggregated, blending legitimate and

malicious loads, complicating theft detection through simple analysis [65]. How-

ever, machine learning’s advancement offers new avenues for detecting electricity

theft from these aggregated patterns.

This paper introduces a framework for detecting electricity theft in smart homes

using knowledge-based synthetic attack data. We explore five attack scenarios, fo-

cusing on detailed time-series data to extract electricity load features and predict

attack types.

A major challenge in Machine Learning (ML) for Electricity Theft Detection

(ETD) is data imbalance, where benign samples outnumber theft samples. Ad-

ditionally, historical data often lacks examples of attack classes, particularly for

zero-day attacks. We address this by generating synthetic attack datasets [41],

which enhances detection capabilities across various attack types.

Training ETD models with synthetic data [69] is promising due to the pre-

dictability of theft patterns and the cost-effectiveness of not waiting for real-life

attack data. Synthetic data allows for incorporating a wide range of knowledge,
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aiding in effective model training.

Unlike previous studies [69] that used simple statistical models for synthetic

attacks, we propose more realistic scenarios like Baseload, Weakload, Peakhour,

Midnight, and Evil-Twin attacks. These scenarios, grounded in real-world inten-

tions, offer more realistic dimensions than purely statistical approaches.

ETD research often focuses on protecting utility companies [21, 78, 69], utilizing

smart meter data for demand control and dynamic pricing. However, the fine-

grained data available within smart meters, though private and not reportable to

utilities, can be instrumental in detecting theft at the household level for smart

home applications.

It’s important to differentiate between protecting utility companies and indi-

vidual homes. If an attacker steals power by tampering with a meter, it reduces

the home’s electricity bills. Conversely, if power is stolen from one home by an-

other, it results in increased bills for the victim, necessitating household-level

theft detection.

In our study, we compare nine ML algorithms, demonstrating the superior per-

formance of Gradient-boosting algorithms, with Random Forest as a secondary

option. We also assess how these algorithms perform in classifying various at-

tack types, noting that Weakload and Peakhour attacks present classification

challenges in these models, while other algorithms struggle with different attack

types.

4.2 Related Work

Aldegheishem et al. [4] have outlined five prevalent methods of electricity theft

from a utility company’s perspective, including bypassing meters, hacking meters,

direct hooking, tapping, and meter tampering. Additionally, False Data Injection

Attacks (FDIA) have been recognized as a significant cyber threat to cyber-

physical systems [21, 78]. Jokar et al. [41] have also considered FDIA along

with physical attacks like bypassing or tampering with meters, as these actions

ultimately reflect in the meter readings as reduced electricity consumption [3].

This has led to a focus on detecting electricity theft by analyzing meter readings.

Various machine learning methods have been explored for pattern classification

and electricity theft detection, including Support Vector Machines (SVM) [25,
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41], Decision Trees [40], and more recently, Gradient-Boosting [69, 37]. These

approaches primarily rely on supervised learning, utilizing both benign and attack

data samples; however, obtaining accurately labeled data in real-life scenarios

remains challenging.

Anomaly detection is another strategy employed for electricity theft detection,

especially in cases where data labels are not readily available. This includes

approaches like Anomaly Pattern Detection based on Hypothesis Testing (APD-

HT) [68], Hierarchical Self-Organizing Maps (SOM) [84], and Stacked Sparse

Denoising Autoencoders [36]. One limitation of anomaly detection is its tendency

to flag all abnormal patterns, including non-malicious irregular appliance use.

Our research adopts a practical approach, acknowledging the absence of real-

life labels, and integrates knowledge of potential attack scenarios with synthetic

attack data to train a supervised model from unlabeled datasets. We focus on

safeguarding homes against electricity theft, considering scenarios where an at-

tacker steals electricity not from the grid but from other households, a concern

often overlooked by utility companies.

Punmiya et al.’s work [69] is similar in using Gradient Boosting and synthetic

theft patterns, but it is aimed at protecting utility companies rather than indi-

vidual homes. Their approach involves designing theft patterns to reduce billing,

while our work considers theft scenarios that increase billing. We simulate more

realistic electricity theft patterns and train a multi-classification model to identify

specific attack types, a novel and more complex approach than previous studies.

Our research utilizes fine-grained time-series data in a smart home environment,

advancing beyond current smart grid capabilities.

4.3 Electricity Theft Attacks in Smart Homes

Electricity theft in smart homes, particularly through manipulation of appliance

consumption patterns, can be executed in several ways. These theft methods

exploit the smart home’s electrical system or the data communication network of

smart meters and appliances. Below are various types of electricity theft attacks:

1. Meter Tampering: Physically manipulating the smart meter so it under-

reports consumption. This can involve tampering with the meter’s hardware
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to slow down or alter its recording of electricity usage.

2. Bypassing the Meter: Illegally connecting electrical lines before the me-

ter or bypassing the meter entirely. This allows electricity to be used with-

out being measured by the meter.

3. Remote Hacking: Gaining unauthorized access to the smart meter’s soft-

ware or firmware through hacking. This can be used to alter the reported

consumption data or to interfere with the meter’s normal operation.

4. Data Fabrication/Injection: Injecting false data into the system to

under-report actual consumption. This can be done by manipulating the

data transmitted from the smart meter to the utility provider.

5. Appliance Misreporting: Hacking into smart appliances to report lower

consumption than is actually occurring. Since many smart homes rely on

the Internet of Things (IoT) devices, these appliances can be targets for

hackers to alter reported energy use.

6. Energy Resale or Redistribution: Illegally siphoning off electricity to

sell to others or redistributing to different locations. This involves using

one connection to supply multiple users, with only one user (or none) being

billed.

7. Cloning Smart Meters: Copying the identity of a legitimate smart me-

ter and using it for another connection. This allows a user to consume

electricity under another user’s account.

8. Signal Jamming or Interference: Using devices to jam or interfere

with the communication signals of smart meters. This can disrupt the

transmission of accurate consumption data to the utility company.

9. Algorithmic Predictive Manipulation: Sophisticated theft methods

could involve using machine learning or algorithmic techniques to predict

when audits or inspections are likely to happen and temporarily reduce

theft activities to avoid detection.

55



10. Power Reselling/Redistribution Via Smart Inverters: In homes with

renewable energy systems like solar panels, smart inverters can be manipu-

lated to disguise stolen grid power as self-generated power.

These methods represent a mix of old-fashioned physical tampering and mod-

ern digital hacking, reflecting the challenges posed by the digital transformation

of energy systems. Utilities and smart home providers are continuously working

to strengthen security measures to prevent such thefts. This includes improved

physical security for meters, advanced encryption for data transmissions, regular

firmware updates, and anomaly detection algorithms to identify unusual con-

sumption patterns indicative of theft.

4.3.1 Attack Model

In this dissertation, the hypothesis is that the adversaries, represented by dishon-

est consumers, manipulate their smart meters (SMs) to falsify energy consump-

tion data, thereby lowering their bills. Their objective is to report lower energy

usage, resulting in financial gain at the utility providers’ (UPs) expense. Section

2.3.2 outlines various established methods for illicit energy extraction from power

grids. It’s important to remember that these methods of energy theft, common in

both traditional and smart grids (SGs), fall into three main categories: physical,

cyber, and data attacks, as detailed by McLaughlin et al. (2013). Data attacks, in

particular, can stem from vulnerabilities in both the cyber and physical domains.

4.3.2 Attack Scenarios

A house has an electric meter for accounting purposes. The household has to

pay the bill based on the accumulated power counted by the meter. An attacker

may physically access the power distribution board under the electric meter and

steal power from the house to make the household pay the bills (Fig. 4.1) on

their behalf. An attacker may also steal power from an outlet if it is physically

accessible outside.

This kind of scenario may happen in apartments, congested complex buildings,

and/or office rooms where power line cables are not easily traceable. For example,

some houses might be leased with pre-deployed lines for electricity theft.
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In this paper, we have identified the following five attack classes for theft con-

sumption patterns.
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Figure 4.1: The Power Distribution board and ETA Scenarios

1. Baseload Attack: In the Baseload attack, the attacker continuously and

constantly steals the power from the power line just as it is leaked. The

instant power is not large, but accumulated theft power becomes huge. The

owner of the power will not notice that the power is theft.

2. Weakload Attack: In the Weakload attack, the attacker has a sensor and

steals the power weakly only when the power consumption of the home is

high – in other words, when some appliances, such as TVs, washing ma-

chines, and refrigerator, are consuming the power. The owner of the house

will simply misunderstand that the power consumption increases because

they use their appliances.

3. Peakhour Attack: In the Peakhour attack, the attacker has a sensor and

steals the power largely only when the power consumption of the home

is very high – in other words, when some appliances, such as oven, heat

pump, and hairdryer are consuming the power. The owner of the house

will simply misunderstand like in the Weakload attack case. The attacker

consumes large power during the short peak periods.

4. Midnight Attack: In the Midnight attack, the attacker steals the power at

midnight when the households are sleeping. This attack can happen when

a power outlet is available outside the house. They physically connect the
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Figure 4.2: The framework for electricity theft detection with synthetic attack

data.

cable to the power outlet at midnight and steal to charge their battery

including electric vehicles or to boil hot water (i.e., thermal storage).

5. Evil-Twin Attack: In the Evil-Twin attack, the attacker steals and uses

the power at their house. The pattern of power consumption will look like

the aggregated power consumption of two houses. In this scenario, the

same kinds of home appliances will co-exist in the consumption domain.

For example, two refrigerators, two washing machines, and two TVs will

appear in the power consumption patterns.

4.4 Electricity Theft Detection with Synthetic Attack Data

4.4.1 Multiclass classification approach

To detect such electricity theft attacks, we take the approach of monitoring power

consumption with enough granularity in both time and power domains at the

power aggregation point. In this paper, we explore the possibility of synthetic

attack data deployed to validate machine learning applications for identifying the

attack types only from legitimate electricity consumption patterns.

Figure 4.2 shows the framework of our synthetic attack data learning for elec-

tricity theft detection.
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Let us consider x – a vector of power consumption. This vector contains the

power consumption of each timeslot in the time order. For example, x may rep-

resent a power consumption of a certain day, and the i-th element xi corresponds

to the power usage at i-th minute from the beginning of the day. In this case, x

has 1440 elements: i.e., 60× 24 = 1440.

In supervised learning, we assume that each x has a corresponding label y for

training a classification model for power consumption patterns. In our case, we

can assume that label y = 0 as a benign case, y = 1 as a Baseload attack, y = 2

as a Weakload attack, and so on.

In the real, practical scenario, we will only get a collection of x from a house

as a result of long-term monitoring, and we will not get real attack-enabled cases

with labels. However, many power-stealing cases can be simulated just by arith-

metically adding stolen power as a power consumption.

Let xA be a vector of stolen power by an attacker. As we assume the at-

tacker changes the stealing power based on the consumption of the house, xA is

a function of x and attacking parameters θ: e.g., xA(x, θ).

Depending on the attack cases, i.e., depending on the label y(̸= 0), we can

consider different stolen power vectors: x
(y)
A (x, θ(y)).

Finally, we can get the labeled dataset as follows.

(x′, y) =

(x, 0) y = 0

(x+ x
(y)
A (x, θ(y)), y) y ̸= 0

(4.1)

Supervised machine learning models can be applied to the collection of (x′, y).

4.5 Dataset for Electricity Theft Detection

4.5.1 Overview

We have used AMPds2 (Almanac of Minutely Power Dataset version 2) [55] as

a benchmark for the two-year power consumption of homes. AMPds2 consists

of minute-level measured powers at the outputs of a power distribution board.

They have put the names of their monitoring points as Table 4.2.

Depending on the configuration of the houses, they may not have some appli-

ances such as Clothes Dryers, Wall Ovens, or Dishwashers. So, by removing the
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Table 4.1: The Configuration of Synthetic Attack Data For Supervised Learning

in the experiment.

Attack Class Configuration

Baseload Theft = 100W

Weakload Threshold=500W

Theft=500W

Peakhour Threshold=1500W

Theft=2000W

Midnight Starting from 1 AM - 2 AM (at random)

Duration = 120 minutes

Theft=1000W

Evil-Twin One day was randomly chosen in the dataset.

Table 4.2: Appliances and units in AMPds

Appliance

ID

Description Appliance

ID

Description

WHE Whole House Meter FRE HVAC/Furnace

B1E North Bedroom GRE Garage

B2E Master/South BR HPE Heat Pump

BME Basement Plugs/Lights HTE Instant Hot Water Unit

CDE Clothes Dryer OFE Home Office

CWE Clothes Washer OUE Outside Plug

DNE Dinning Room Plugs TVE Entertainment

TV/PVR/AMP

DWE Dishwasher UTE Utility Room Plug

EBE Electronics Workbench WOE Wall Oven

EQE Security/Network UNE Unmetered Loads

FGE Kitchen Fridge .

power consumption of some optional appliances, we have virtually set up three

types of homes, as follows.

• Home A is composed of a full set of appliances, which is the aggregated

power consumptions of B1E, B2E, BME, CWE, DNE, HTE, EBE, EQE,

FRE, OFE, OUE, TVE, UTE, CDE, HPE, DWE, FGE, and WOE. Some of
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those appliances such as those associated with HPE and WOE make peak

power consumption, which may allow the peak-hour attacker to steal power

more efficiently.

• Home B excludes CDE and WOE from Home A, assuming that the exis-

tence of a cloth dryer and wall oven may influence the accuracy of attacker

detection.

• Home C excludes DWE, HPE, and TVE from Home A, assuming that the

existence of a dishwasher, heat pump, and small appliances may influence

the accuracy of attacker detection.

As the electric power consumption is time-dependent data, we have picked up

the first 80% of data (i.e., 584 days) for the training data, applying our synthetic

attack data method, and the last 20% of data (i.e., 146 days) for the test data.

The test data also contains the simulated attacks in this study. Please also note

that the test data does not cover the whole year because we wanted to use a

larger amount of data for training.

4.5.2 Data Profiles

Table 4.3 shows the profiles of the data for our ETA detection study. We have 584

benign records for training for each home from the original monitoring data. We

simulated and added Baseload, Weakload, Peakhour, Midnight, and Evil-Twin

attacks based on the definitions in Section III, and the method of Section IV. For

more details, Table 4.1 shows the parameters of each attack. In some conditions, if

the base power consumption of the home does not reach the threshold, Weakload

and Peakhour attacks are not triggered. Such attack samples are not included in

the dataset.

Figure 4.3 shows examples of Benign and Attack data samples of different three

days of Home A. From these figures, we can observe that the electric consumption

pattern has a huge change by the day, and we cannot easily recognize the attack

class only from a single power consumption data.

Figure 4.4 shows the Uniform manifold approximation and projection (UMAP)

[58] of the data samples for Homes A, B, and C. Each plot corresponds to a day.
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We can observe that different homes have different characteristics in data. For

example, in Home A, benign data is scattered having overlaps with all the types

of attack samples, whereas in Home C, we can observe more clusters that might

be easier for classification.

(a) Day 1 (b) Day 2 (c) Day 3

Figure 4.3: Electricity usage of Home A with synthetic attack data on different days.

(a) Home A (b) Home B (c) Home C

Figure 4.4: 2D projections of attack contained electricity usage with the benign case by UMAP

4.5.3 Attack Impact

We define attack impact (AI) as a score to measure electricity theft. This attack

impact is the amount of stolen energy in the bill.

Let wi be the weighted price of the power of xi on the day at each index i. Let

us denote the vector of wi by w.

The attack impact of electricity theft of the day is :

I = w · xA =
∑
i

wixAi (4.2)

Here, xAi represents the power stolen at index i of xA.
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For calculating AI on our dataset, we have assumed 0.20 USD/kWh constantly

for the unit price. The daily bill mounted by the attacker is around 1 USD on

average (see, Table 4.3). It will be about 30 USD monthly, and 360 USD in a

year. If the base power consumption of the home is larger, such as in the case

of an office, shop, restaurant, or factory, the attacker will be able to steal much

more power.

Table 4.3: The Profile of the dataset generated with synthetic attack data, and

corresponding attack impacts (AI).

Home Category Benign Baseload Weakload Peakhour Midnight Evil-Twin Averaged AI AI Ratio

A
Train 584 584 580 490 584 584 1.15 USD 1.77

Test 146 146 146 140 146 146 1.17 USD 1.72

B
Train 584 584 580 437 584 584 1.08 USD 1.80

Test 146 146 146 130 146 146 1.10 USD 1.77

C
Train 584 584 576 306 584 584 0.78 USD 1.66

Test 146 146 146 84 146 146 0.76 USD 1.68

4.6 Evaluation

4.6.1 Experiment Settings

In this study, we have taken the approach of surveying a wide range of machine

learning algorithms with the synthetic framework in order to find the ranking of

the algorithms for our problem.

Table 4.4 shows the configuration of the experiment in our evaluation. The

details of these configurations are given below.

For Gradient Boosting (GB) classifier, we have set up (1) the learning rate

which shrinks the contribution of each tree to default value = 0.1, (2) the number

of boosting stages to perform n estimator to default value = 100.

For Extreme Gradient Boosting (XGB), we have used an open-source library

’xgboost’ [1] that provides an efficient and effective implementation of the gra-

dient boosting algorithm. We used the python library to run Extreme Gradient

Boosting to predict power output using the default extreme gradient boost clas-

sifier model: objective=”multi:softprob”, random state=0.

For Random Forest (RF) estimator, we used the default hyperparameter values

with n estimator = 100.
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Table 4.4: Models parameter configuration

Model Library Configuration

GB sklearn learning rate = 0.1

n estimator=100

XGB xgboost objective=”multi:softprob”

random state=0

RF sklearn n estimator=100

DTC sklearn random state=12

MLP-4 sklearn hidden layer 1=720

hidden layer 2=200

epoch=500

MLP-3 sklearn hidden layer 1=720

epoch=500

LR sklearn copy=True

with mean=True

with std=True

RRC sklearn copy=True

with mean=True

with std=True

SVM sklearn c=1000

gamma=0.01

kernel=’rbf’
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Table 4.5: Experimental results of different algorithms.

Ranking Models Home Acc. P R F1

1
Gradient

Boosting(GB)

A 92.98% 0.94 0.93 0.93

B 94.53% 0.95 0.95 0.95

C 93.61% 0.94 0.94 0.93

2
Extreme Gradient

Boosting(XGB)

A 92.53% 0.94 0.93 0.92

B 95.00% 0.96 0.95 0.95

C 92.75% 0.94 0.93 0.92

3
Random Forest

(RF)

A 86.78% 0.91 0.87 0.87

B 89.19% 0.92 0.89 0.90

C 88.94% 0.93 0.89 0.88

4
Decision Tree

Classifier(DTC)

A 70.58% 0.75 0.71 0.71

B 77.33% 0.81 0.77 0.78

C 80.47% 0.82 0.80 0.80

5

Multilayer

Perceptron 4

(MLP-4)

A 66.44% 0.70 0.66 0.67

B 71.28% 0.76 0.71 0.72

C 77.52% 0.78 0.78 0.78

6

Multilayer

Perceptron 3

(MLP-3)

A 65.75% 0.69 0.66 0.66

B 69.88% 0.73 0.70 0.71

C 71.01% 0.76 0.71 0.72

7
Logistic Regression

(LR)

A 54.83% 0.54 0.55 0.54

B 56.86% 0.56 0.57 0.55

C 70.76% 0.73 0.71 0.71

8
Ridge Regression

Classifier(RRC)

A 52.30% 0.53 0.52 0.52

B 54.88% 0.56 0.55 0.54

C 62.04% 0.67 0.62 0.62

9
Support Vector

Machine(SVM)

A 52.29% 0.51 0.52 0.51

B 56.16% 0.56 0.56 0.55

C 67.69% 0.69 0.68 0.67
Acc., P, R, F1 refer to the Accuracy, Precision, Recall and F1-score.

For Multilayer Perceptrons (MLPs), we have tested with 3-layer MLP (MLP-
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3) and 4-layer MLP (MLP-4). For MLP-3, we have set 720 features for the sole

hidden layer. For MLP-4, we have set 720 features for the first hidden layer and

200 features for the second hidden layer. We have run 500 epochs for training. We

used the default values of sklearn for other hyperparameters.For Decision Tree

Classifier (DTC) we used random state=12 using the Sklearn library.

For Logistic Regression (LR) and Ridge Regression Classifier (RRC), we have

used sklearn.preprocessing.StandardScaler (*, copy=True, with mean=True,

with std=True) default parameters to avoid the dataset behaving badly if the

individual feature does not more or less look like standard normally distributed

data to machine learning estimators.

For SVM, we used the default hyperparameter, error regularization, c = 1000,

preventing overfitting with gamma = 0.01 and defining the function to transform

the dataset, kernel= ’rbf’.

For carrying out these experiments, we have used Google Colaboratory.

4.6.2 Performance Overview

Table 4.5 shows the ranking of the algorithms based on the accuracy of Home A.

GB and XGB performed the best in every home scenario. RF could also achieve

higher accuracy than the others. Compared to them, MLPs did not perform well.

We found that SVM, LR, and RRC do not fit our electricity theft dataset well.

In many algorithms except RF, GB, and XGB, we have observed the perfor-

mances of homes as Home C > Home B > Home A. There were about 5% to 15%

gaps between their accuracies. This is probably because Home A contains a lot

of legitimate consumption peaks, whereas Homes B and C do not. This indicates

that the detection of electricity theft in Home A is potentially more difficult than

in Homes B and C.

However, RF, GB, and XGB could successfully achieve high accuracy in Home

A although it is still lower than the other homes. These results indicate that RF,

GB, and XGB, especially GB and XGB are promising algorithms for detecting

electricity theft with smart meters.
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Figure 4.5: Confusion matrices of the trained models. The number (No. #) indicates the rank

of the overall accuracy.
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4.6.3 Performance by Attack Class

Figure 4.5 shows the confusion matrices of the trained models for Home A. The

colors of this figure are:

• Red if the overall accuracy is more than 80%.

• Green if the overall accuracy is between 70% and 80%.

• Blue if the overall accuracy is between 60% and 70%.

• Gray if the overall accuracy is less than 60%.

The numbers (i.e., No. #) indicate the rank, which corresponds to Table 4.5.

The colors indicate the group of accuracy. Midnight and Evil-Twin attacks

were relatively easily detected by all the models, especially achieving 100% ac-

curacy with GB, XGB, Baseload, Weakload, and Peakhour attacks were difficult

to classify but GB and XGB could perform well. The false positive rates of GB,

XGB, and RF were about 5% which is much better than other models.

We can observe that Midnight and Evil-Twin attacks were well classified in

all the classifiers. Especially, with GB, XGB, and RF – i.e., the best three al-

gorithms, have achieved 100% accuracy for these attacks. Compared to these

attacks, Baseload, Weakload, and Peakhour attacks were difficult to classify. For

example, we can observe confusion in classifying these attacks with Benign sam-

ples in DTC, MLP, LR, RRC, and SVM. Especially, the false positives of these

algorithms were not good. For example, in LR, 33% of the Benign cases were

predicted as Weakload attacks. In MLPs, 34% of the Benign cases were predicted

as Peakhour attacks. These false positives should be critical in real operational

scenarios. GB and XGB also have false positives in Weakload and Peakhour

attacks. However, the ratio has decreased to less than 3%. They have false neg-

atives in Peakhour and Weakload attacks with 26-34% and 7-8% respectively,

which can be eventually detected if they continuously perform the attacks every

day onwards.
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4.7 Discussion

This research presents a machine learning approach for identifying and catego-

rizing electricity theft in smart home environments, employing synthetic attack

data informed by specific attack scenarios.

Our investigation revealed that the Gradient Boosting model demonstrates

superior performance when compared to a range of machine learning algorithms.

This finding suggests its effectiveness in this specific context of electricity theft

detection.

Looking ahead, our research can be extended in several directions. Firstly,

there is scope for expanding the range of attack types beyond the five currently de-

fined in our study. Additionally, exploring diverse household profiles and varying

patterns of electricity consumption, particularly in the context of sophisticated

attacks like the Evil-Twin, could further refine the model’s accuracy.

Another critical aspect to consider is the impact of the attack on the detec-

tion capability. The relationship between the magnitude of an attack’s impact

and its detectability needs thorough exploration. High-impact attacks are more

likely to be detected, whereas low-impact ones might elude detection despite their

potential cumulative significance over time.

Moreover, adapting to short monitoring durations and seasonal variations, such

as increased heat pump usage, could enhance model accuracy. The uniqueness

of electricity usage, influenced by factors like family composition, home size,

location, and personal habits, underscores the need for personalized models. One

potential avenue to address these privacy-sensitive issues is through the adoption

of federated learning, which allows for the personalization of a general model

without compromising data privacy. Future research could explore this domain,

as suggested by Tan et al. in their recent work [81].

4.8 Chapter Summary

This research focuses on the detection of electricity theft in smart homes, utilizing

synthetic attack data informed by specific knowledge. We identified five distinct

attack types that illicitly siphon electricity from other homes. Our analysis, based

on the minute-level, two-year monitoring data from the AMPds2 dataset, revealed
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that Gradient Boosting algorithms outperformed others, achieving an impressive

93% accuracy, with Random Forest as a close alternative at 87%.

In our classification, Baseload, Midnight, and Evil-Twin attacks—referred to

as legacy attacks—were almost perfectly identified with near 100% accuracy. On

the other hand, the more sophisticated Weakload and Peakhour attacks posed a

greater challenge and were not as effectively detected. While further investigation

into additional scenarios is warranted, the preliminary results suggest that our

methodology holds significant promise for practical application in identifying and

categorizing electricity theft in smart home settings.
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5. Electricity Theft Detection for Smart Homes:

Harnessing the Power of Machine Learning

with Real and Synthetic Attacks

5.1 Introduction

In the dynamic field of Electricity Theft Detection (ETD), the ability to discern

anomalous consumption patterns within smart home environments is critical.

Given the inherent complexity and variability in electricity usage data, enhancing

the diversity and volume of training data is crucial for the development of robust

and reliable anomaly detection models. This study introduces a novel approach

to data augmentation, an essential component in addressing the challenge of

imbalanced datasets, a common occurrence in ETD scenarios.

5.2 Related Work

Although there is extensive research on appliance consumption patterns [77],

[91],[95], there is a lack of specific focus on using these patterns to train a clas-

sifier for electricity theft detection. Existing literature primarily discusses load

disaggregation, human activity recognition, and energy consumption forecasting

based on appliance power consumption patterns. However, the direct application

of these patterns to train a classifier for electricity theft detection has not been

explicitly addressed.

The literature provides insights into the challenges associated with appliance

consumption patterns, such as the complexity of identifying appliance-specific

consumption patterns and overlapping operation of appliances, which makes event

detection difficult [88].
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Additionally, some studies discuss the application of appliance power consump-

tion patterns for simulating human living activities [95] and improving residential

load disaggregation [64]. Furthermore, some studies have emphasized the accu-

racy of identifying appliance usage patterns using the proposed models [77], [91].

However, the specific task of using appliance consumption patterns to train

a classifier for electricity theft detection in smart homes remains underexplored.

The references did not directly address the development of a classifier for detecting

electricity theft based on appliance consumption patterns. Therefore, there is a

clear gap in existing knowledge regarding this specific application.

Although the literature provides valuable insights into appliance consumption

patterns and their applications, there is a notable gap in knowledge concerning

the direct utilization of these patterns to train a classifier for electricity theft

detection in smart homes.

Our work operates within the context of real-life scenarios where labeled data

are scarce. However, we introduced a novel approach by incorporating knowledge

of potential attack scenarios and synthetic attack data to train a supervised model

using a non-labeled real-world dataset. Furthermore, our work capitalizes on

fine-grained time-series data within a smart home environment, a resource that

is currently unavailable in today’s smart grid landscape.

In our previous work [2], we introduced nine algorithms for detecting five real-

world simulated attack classes in smart homes based on appliance consumption

patterns. The present work is an extension of [2]. This paper is focused on elec-

tricity theft detection in smart homes and improvements relative to [2] including

making the algorithm robust against unclassified attacks, application of synthetic

binary discriminator, and legacy unsupervised techniques to enhance classifica-

tion accuracy, employment of real building appliance consumption dataset for

performance evaluations and model comparison with other existing models.

5.3 Attacks Model Beyond The Distribution Board

In the context of a Synthetic Binary Discriminator Model (SYNBDM) used for

detecting electricity theft and ensuring appliance usage authentication in smart

homes, various attack scenarios can threaten the integrity, availability, and con-

fidentiality of the system. These threats are not limited to physical interactions
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with the distribution board, as in Figure 4.1, but can also involve digital intru-

sions and manipulative tactics. Here are some potential attack scenarios:

Physical Attacks:

1. Meter Swapping: Swapping meters with those from vacant or low-consumption

premises.

2. Power Diversion: Rerouting the power supply within a community.

3. Meter Tampering: This encompasses removing or disconnecting meters,

inverting meters, employing magnets to disrupt readings, and unauthorized

Smart Meter (SM) access.

Cyber Attacks:

1. Credential Theft: Gaining unauthorized meter access via stolen login

details.

2. Firmware Hacking: Compromising Smart Meter firmware remotely.

3. Data Tampering: Modifying stored meter data, including total energy

use, audit trails, and cryptographic keys.

Data Attacks:

1. Zero/Negative Reporting: Incorrectly reporting no or negative energy

use.

2. Consumption Report Alteration: Halting or modifying energy con-

sumption reports.

3. Measurement Exclusion: Excluding high-usage appliances from records.

5.4 Knowledge-Based Attack Simulation Framework

The framework proposed in Figure 5.1, employs a knowledge-based approach to

generate synthetic attack scenarios on power consumption data, encapsulating
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domain expertise within its operational paradigm. The core of this methodol-

ogy is the utilization of the actual power consumption profiles, denoted as x, as

the foundational dataset from which attack patterns are derived. This frame-

work benefits from recognizing both specific attacks and unclassified anomalies,

integrating the strengths of both approaches for a robust security posture.

Figure 5.1: ETD framework for processing real power consumption data to detect

anomalies.

5.4.1 Attack Data Generation

Distinct attack scenarios are simulated through a series of transformations ap-

plied to real consumption data, parameterized by θ. These transformations—

xA(x, θ
(1)), xA(x, θ

(2)), and xA(x, θ
(3))—are crafted based on expert insights into

the modus operandi of various attack vectors, with each θ iteration representing

a unique attack typology.

5.4.2 Data Labeling and Preprocessing

Further cementing its knowledge-driven architecture, the framework classifies con-

sumption data into normal (y = 0) and anomalous (y = 1) states, employing pre-

established criteria that delineate normalcy from theft-related anomalies. Before

classification, data undergo a shuffling and normalization process, for eliminating

potential classifier bias attributable to sequential order or feature scale disparities.
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5.4.3 Attack Classification

The culmination of the framework is the attack classifier, a predictive model

trained on a rich historical corpus comprising known instances of consumption

patterns, both benign and malignant. This classifier is not merely a data-driven

algorithm but a knowledge-infused system tuned to recognize and react to the

subtle intricacies of electricity theft within smart grid environments.

The framework’s reliance on domain-specific knowledge for the generation and

processing of data points designates it as knowledge-based. This is exemplified by

the methodical application of expert understanding to the identification of theft

signatures, which is paramount for effective discrimination between legitimate

and fraudulent electricity usage patterns.

Our knowledge-based framework sets a new benchmark for electricity theft

detection systems, marrying the depth of domain knowledge with the rigor of

machine learning classification. This synergy promises a robust and discerning

methodology, poised to advance the state-of-the-art in smart grid security.

Our research is propelled by the crucial need to equip home operators with

the ability to effectively detect and categorize cyber threats. Hence the following

benefits are manifold:

• Rapid response: Our system enables operators to recognize threats im-

mediately by employing binary classification techniques, prompting a quick

response to cyber incidents.

• In-depth analysis and prevention: Through multiclass classification, we

provide comprehensive insights into the nature of attacks, which is essential

for effectively strategizing prevention and allocating defensive resources.

• Strategic planning & resilience: Our approach to specific attack classi-

fications underpins the development of customized incident response strate-

gies, thereby fortifying system resilience.

• Compliance and confidence: Our method ensures compliance with cy-

bersecurity regulations, thereby reinforcing customer trust in protective

measures.
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• Operational integrity: The efficiency of our detection and classification

system is paramount for sustaining operational continuity and mitigating

the impacts of cyber threats.

Figure 5.2 depicts the architecture of the proposed ETD mode to consolidate ap-

pliance consumption data from smart homes, ensuring privacy through anonymiza-

tion and consistency through normalization. Simulated theft scenarios enhance

the dataset, with each instance labeled as normal or fraudulent as described in

Section V.

A training set derived from this data trains algorithms to detect consump-

tion patterns, whereas a testing set comprising simulated and real data evaluates

accuracy. The model employs both traditional machine learning and neural net-

work classifiers, benchmarked against metrics such as accuracy, area under curve

(AUC), and F1-score. In post-validation, the model was deployed, with ongoing

retraining to refine its detection capabilities.
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Figure 5.2: Flow of ETD model

5.5 Dataset for electricity theft detection

5.5.1 Data Collection

For our study, we utilized the AMPds2 dataset (Almanac of Minutely Power

Dataset version 2)[55] as a benchmark, representing two years’ worth of home

76



power consumption data. AMPds2 includes minute-by-minute power measure-

ments recorded at the outputs of power distribution boards as shown in Figure

4.1A in the previous chapter. The monitoring points within this dataset are

detailed in Table 4.2. Given the varying configurations of homes, it is possible

that certain appliances, such as Clothes Dryers, Wall Ovens, or Dishwashers,

may not be present in some households. To address this variability, we simulated

three distinct home types by excluding the power consumption of these optional

appliances as listed in Table 5.1.

In configuring each home, we assumed the following:

• Home A, some appliances associated with HPE and WOE have peak power

consumption, (Figure 4.3), which may allow the peak-hour attacker to steal

power more efficiently.

• Home B that the existence of a cloth dryer and wall oven may influence

the accuracy of the attacker detection.

• Home C that the existence of a dishwasher, heat pump, and small appli-

ances may influence the accuracy of attacker detection.

Table 5.1: Home configurations based on appliance data points

Home Aggregated Appliances Excluded

Appliances

A B1E, B2E, BME, CWE, DNE, HTE, EBE, EQE,

FRE, OFE, OUE, TVE, UTE, CDE, HPE, DWE,

FGE, WOE

None (full

set)

B B1E, B2E, BME, CWE, DNE, HTE, EBE, EQE,

FRE, OFE, OUE, TVE, UTE, HPE, DWE, FGE

CDE, WOE

C B1E, B2E, BME, CWE, DNE, HTE, EBE, EQE,

FRE, OFE, OUE, UTE, CDE, FGE, WOE

DWE, HPE,

TVE

Recognizing that electric power consumption data are inherently time-dependent,

we adopted a data segmentation strategy. Specifically, we selected the initial 80%

of the data, equivalent to 584 days, for our training dataset. During this phase,
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Figure 5.3: Maximum power values for each appliance

we applied our synthetic attack data methodology to enrich the dataset. The

remaining 20% of the data, spanning 146 days, was reserved for our test dataset

in our benchmark experiment as listed in Table 4.3. Importantly, the test dataset

included simulated attacks generated as part of this study.

5.5.2 Overview of the Feature Selection

1. Aggregated Power Consumption Patterns (APCP) The feature for

each minute m on day d is represented as the power consumption at that

minute, denoted by Pd,m, where d = 1, 2, . . . , 730 (for 730 days) and m =

1, 2, . . . , 1440 (for 1440 minutes in a day). The aggregated power consump-

tion for a day d is given by:

APCPd =
1440∑
m=1

Pd,m (5.1)

2. Deviation from Typical Consumption (DTC)

This feature measures the deviation of actual consumption from the ex-
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pected (baseline) consumption. Let Bd,m represent the baseline power con-

sumption for minute m on day d. The deviation for that minute is:

DTCd,m = Pd,m −Bd,m (5.2)

The total deviation for a day d can be aggregated as:

DTCd =
1440∑
m=1

|DTCd,m| (5.3)

3. Temporal Features (TF)

Temporal features could include binary indicators for peak and off-peak

hours. We define PeakHour(m) as a function that returns 1 if minute m is

within peak hours, and 0 otherwise. The temporal feature for a day d is:

TFd =
1440∑
m=1

PeakHour(m)× Pd,m (5.4)

4. Combined Feature Vector

For a machine learning model, these features collectively form the input

vector for each day d, represented as:

FeatureVectord = [APCPd,DTCd,TFd] (5.5)

To determine the best feature for measuring appliance consumption patterns,

we consider how each feature relates to energy consumption and how well it might

differentiate between different consumption patterns [? ]. Let us now review each

feature:-

1. V (voltage): While voltage levels can affect power consumption, in most

residential and commercial settings, the voltage is relatively constant. It is

not a direct measure of consumption but can be relevant in some analyses.

2. I (Current): The current is directly related to the power consumption

(P = V I, where V is the voltage and I is the current). Fluctuations in

current can indicate changes in appliance consumption patterns.
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3. f (Frequency): The frequency is stable in most power systems. Vari-

ations are usually an indication of grid instability rather than appliance

consumption patterns.

4. DPF (Displacement Power Factor): This measures the efficiency of

power usage but does not directly indicate consumption levels. This is

more about the quality of consumption than the quantity.

5. APF (Apparent Power Factor): Similar to DPF, it indicates the effi-

ciency of power usage and is more about power quality.

6. P (Power): Power is a direct measure of energy consumption at any given

moment. This is one of the most direct measures of appliance consumption.

7. Pt (Total Power): If this is cumulative power over time, it is an excellent

measure of total consumption but less useful for instantaneous consumption

patterns.

8. Q (Reactive Power): This is related to the energy stored in the load and

returned to the source and is more about the type of load than the quantity

of consumption.

9. Qt (Total Reactive Power): Similar to Q, but cumulative. It is more

relevant to assessing load type over time than consumption patterns.

10. S (Apparent Power): This is a combination of reactive power and real

power and provides a total power figure but doesn’t directly measure con-

sumption efficiency.

11. St (Total Apparent Power): Cumulative apparent power over time. Like

S, it encompasses active and reactive power but does not directly indicate

consumption patterns.

Based on this analysis, when we apply the correlation coefficient for feature

selection, for most relevant features, P and Q are relative to S. Figure 5.4 shows

that feature P has a higher correlation to feature S (the orange bar) and a slightly

lower, yet still high correlation with feature 2 Q (the blue bar). Also Figure 5.5
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shows that (P) (Power) is the best feature for measuring appliance consumption

patterns using a mutual information algorithm [? ] because it directly reflects the

amount of electric power being used at any given moment. In the case of power

consumption patterns, the machine automatically learns the key features from

the raw sequence of power consumption data without providing any statistically

processed data as explicit features.

The power base dataset has the following features: • Time Components: • Day:

The day number relative to the baseline (day offset). • Minute: The minute of

the day. • Aggregated Power Readings: • We extracted the active power P for its

processing (as seen in power=float(row[6])), the aggregated data in power base

consists of the sum of active power readings from selected meters (base names)

for each minute of each day. Therefore, each entry in power base represents the

total active power consumption (in watts) from a subset of meters, Figure 5.3,

for each minute of each day over 730 days. This aggregated dataset forms a

baseline for normal power consumption patterns against which deviations (such

as potential electricity theft) can be compared.

This dataset is pivotal for our analysis and predictive modeling. The struc-

ture of power base is organized as a two-dimensional array, where each entry in

power base[day][min] denotes the aggregated power consumption for a specific

category, as listed in Table 5.1 for a given day and minute. The data spanned

a temporal resolution of one minute, totaling to 1440 min (24 h) per day. This

granularity allows for a detailed analysis and forecasting of power consumption

patterns.

5.5.3 Dataset preprocessing for binary classification

The electricity theft attack detection dataset (ETA-DD) consists of:

1. two training sub-datasets and

2. two testing sub-datasets for homes A, B, and C

This ETA-DD is assumed for binary classification problems (Benign or Attack).

This is because it is intended for applying unsupervised learning for attack detec-

tion and evaluating detection accuracies with real building data. The real building

81



Figure 5.4: Features selection with correlation comparison

power consumption cannot be easily labeled for the predefined attack cases (as

mentioned in subsection A above). These are the reasons why this study focuses

on attack detection, rather than classification. Even though it is not intended for

attack classification, the evaluation scope has drastically widened. This paper ex-

pands the limitations of the model to detect attacks that are not classified hence

we preprocessed our dataset to accommodate the 5 simulated attack scenarios to

include unknown or new attacks, n, as 1 and the benign or non-attack data as 0

as shown in Figure 5.6.

If we denote the original class labels by C where C ∈ {Benign,Baseload,Weakload,

Peakhour,Midnight,Evil-twin, . . . , n}, with their attack parameters as shown in
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Figure 5.5: Features selection with mutual information Scores

Table 4.1, the binary classification function f(C) can be defined as

f(C) =

0 if C = Benign

1 otherwise
(5.6)

Here, label 0 corresponds to the normal (benign) class, and label 1 corresponds

to any kind of attack scenario. This binary labeling strategy is a common ap-

proach in anomaly or intrusion detection systems [? ] where the focus is on

differentiating between normal and abnormal behaviors, regardless of the specific

type of abnormal activity.

Our real test attack data which have the same features (aggregated power base

consumption patterns), further solidify the evaluation of our model’s performance.

We extended our research by transitioning from multiclass[2] to binary classi-

fication, incorporating data from three distinct homes (Home A, Home B, and

Home C as depicted in Table 5.1.
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5.6 Data preparation

5.6.1 Data anonymization

Data from various appliances are combined to create a comprehensive view of a

home’s power usage, with measures to protect user privacy.

The main feature of our dataset is the aggregation of the power consumption

of each appliance in each home. The values are only numerical readings without

any direct personal identifiers.

The aggregated baseline power consumption for each home (Table 5.1), Ptotal base

for n appliances is given by the sum of individual baseline power consumptions

Pbase,i:

Ptotal base =
n∑

i=1

Pbase,i (5.7)

where Pbase,i is the baseline power consumption of the i-th appliance.

The total energy consumption Etotal, considering the duration of usage Di for

each appliance, is calculated as:

Etotal =
n∑

i=1

(Pbase,i ×Di) (5.8)

where Di is the duration of usage for the i-th appliance in hours, and Pbase,i is as

defined earlier.

5.6.2 Normalization

In our ETD for smart homes, we deployed both StandardScaler and MinMax to

normalize the feature vectors before synthetic binary discriminators (SYNBDM)

and legacy unsupervised models (LUM) experiments respectively.

• For SYN-supervised models, we used StandardScaler to normalize the

feature vectors by removing the mean and scaling to unit variance which

helped improve the performance and stability of our models.

The scaler is first fitted on the training data:

µj =
1

n

n∑
i=1

Xtrainij
(5.9)
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σj =

√√√√ 1

n

n∑
i=1

(Xtrainij
− µj)2 (5.10)

where µj and σj are the mean and standard deviation for each feature j,

and n is the number of training samples.

The training data are then transformed using these parameters:

Xtrain scaledij =
(Xtrainij

− µj)

σj

(5.11)

The same transformation is applied to the test data:

Xtest scaledij =
(Xtestij − µj)

σj

(5.12)

This ensures that both training and test data are on the same scale.

• MinMaxScaler was deployed to ensure that the input features contribute

equally to the model training, enhancing the learning process of anomaly

detection.

The MinMax Scaler linearly transforms each feature to a common scale,

typically between 0 and 1. The transformation is defined as:

Xscaled =
X −Xmin

Xmax −Xmin

(5.13)

where Xmin and Xmax are the minimum and maximum values of the feature

in the training dataset, respectively, and X represents the original feature

value.

5.6.3 Framework for binary class from multi-class attack scenarios

From the previous chapter, in which we categorized smart home attacks into five

categories, this study expands the limitations of the models to detect attacks

that are not classified; hence, we preprocessed our dataset to accommodate the

five attack scenarios generated from the knowledge-based attack consumption in

Figure 4.2. For example, x
(1)
A (x, θ(1)), x

(2)
A (x, θ(2)), corresponds to baseload attack

with attack parameter θ(1) of 100W increase in power consumption during the
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Figure 5.6: Multi-class attack scenarios with unspecified attacks preprocessed to

binary attack class for anomaly detection.

attack period and weakload attack with attack parameter θ(2) of 500W stolen

power weakly only when the power consumption of the home is high, etc., in-

cluding x
(n)
A (x, θ(n)), corresponding to unclassified attack with attack parameter

θ(n) of anomaly pattern classified as ’1’ as shown in Figure 5.6 and the benign or

non-attack data as ’0’ for our proposed ETD framework to detect known attacks

and classify unknown as anomalies.

Our methodology, as illustrated in Figure 5.8, focuses on the strategic manipu-

lation of time offsets to generate varied yet realistic benign consumption patterns.

This approach is grounded in the core principle of our data augmentation frame-

work, which involves the application of circular shifting techniques to the original

dataset.

5.6.4 Data Augmentation

5.6.5 Circular Shifting

Circular shifting is a data augmentation technique that’s particularly useful in

ML for image and time-series data[18]. It involves rotating or shifting the data

points in a dataset circularly, meaning the data wraps around. This method can

be visualized as moving the last data point to the first position, and shifting all

other data points one position forward.

For time-series data, such as electricity consumption patterns, circular shifting

involves shifting time points. For instance, earlier data points might move to the

end of the series and vice versa. This is useful for creating variations in datasets
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where the sequence is important but the exact starting point is arbitrary.

Overall, circular shifting as a data augmentation method enhances the diversity

of training data, thereby improving the model’s ability to generalize and reducing

the risk of overfitting to a limited set of data patterns.

This dataset comprises pairs of feature vectors (X ) and corresponding labels

(Y ), each vector encapsulating 1380 data points, representing minute-by-minute

power consumption over 23 hours.

The augmentation process introduces random time offsets, ranging from 0 to

59 minutes, to the original feature vectors. This temporal shifting, executed using

circular shifting methods as discussed by Chen et al. [15], effectively simulates

variations in daily power usage while maintaining the integrity of the original data

patterns. Importantly, the label for each augmented sample remains constant,

ensuring that the classification of ’benign’ or ’attack’ is consistently applied across

all variations.

5.6.6 Feature Vector (X ) and Label (Y )

Each file starts from a header row, and then consumption records follow. Each

consumption record is organized as Figure 5.7.

Let X be the original feature vector of length n = 1380, representing power

consumption readings for every minute of 23 hours:

X = [x1, x2, . . . , xn] (5.14)

Let k be the time offset for circular shifting, where k ∈ {0, 1, . . . , 59}.
The augmented feature vector X′ after applying a circular shift of k positions

is defined as:

X′ = [x(i−k) mod n, x(i−k+1) mod n, . . . , x(i−1) mod n, xi, . . . , x(i−k−1) mod n]

(5.15)

where i = 1, 2, . . . , n and xi is the power consumption at the i-th minute. The

modulo operation mod ensures that the index wraps around the vector when

the shift exceeds the vector’s start.
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Figure 5.7: Features Vector and Labels

The label Y remains unchanged for all augmented records. If the original record

is labeled as benign (Y = 0) or attack (Y = 1), then all augmented versions of

the record retain this label:

Y ′ = Y (5.16)

For each record in the dataset, this augmentation process is repeated 60 times,

corresponding to each possible offset k, effectively increasing the number of benign

records.

The length of the augmented feature vector X′ is 1380 instead of the full 1440

which represents the total number of minutes in 24 hours. The reasoning for this

is twofold:

1. A circular shift by an offset k ranging from 0 to 59 minutes implies that we

need to have a buffer at the end of the vector to accommodate the maximum

possible shift without wrapping into the data of the next day.

2. By limiting the feature vector to 1380 minutes, we ensure that for the largest

shift of 59 minutes, the augmented data still represents a continuous 23-hour
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Figure 5.8: Framework of Data Augmentation

window from the same day. This is crucial for maintaining the integrity of

daily patterns in power consumption without mixing data from two different

days.

The label Y , which represents whether the original 1440-minute vector corre-

sponds to a benign or attack pattern, remains associated with the corresponding

1380-minute augmented vector X′. This ensures that the model learns to de-

tect anomalies based on the most representative and complete daily consumption

patterns possible within the constraints of the data augmentation process.

To illustrate the effectiveness of this augmentation technique, Figures 5.9 and

5.10 provide visualizations of the augmented power consumption patterns for a

single home (Home A) and multiple homes (Homes A, B, and C), respectively.

This strategy not only enriches the dataset but also reflects the everyday fluctua-

tions in appliance operation times in residential settings, thereby creating a more

comprehensive and realistic training environment for machine learning models

employed in anomaly detection for ETD.

Through this innovative data augmentation strategy, our research aims to sig-
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nificantly enhance the performance of binary classification models in detecting

electricity theft. This methodology promises to advance the accuracy and re-

liability of ETD systems in smart home settings, contributing to the evolving

landscape of smart grid security and management.

Figure 5.9: Electricity power consumption pattern of Home A for original class

and augmented data class for a day

In our daily life, the operation of home appliances may be shifted for about

one hour. Based on this idea, we have shifted the original data over the time axis

up to 60 minutes and extracted them also as a benign record.

5.6.7 UTokyo Data - Real Attack Data

To test the performance of ETD in both synthetic and unsupervised approaches,

we consider including the consumption pattern of real rooms of the University of

Tokyo as attack data for the model tests. We measured the power consumption

at the power distribution boards of the I-REF building (6th-floor building) from

2012 with a sampling frequency of 1 min. We selected the daily consumption

patterns in which the attack impact (AI) corresponded to the attack on the

simulation test dataset.
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Figure 5.10: Electricity power consumption pattern of all homes for original class

and augmented data class for a day

Table 5.2: Distribution of simulated and real binary dataset

Dataset Home Benign samples Attack samples

SYN Train

A 35040 33818

B 35040 33242

C 35040 31533

UN Train

A 35040 0

B 35040 0

C 35040 0

Sim Test

A 146 144

B 146 142

C 146 133

Real Test

A 8760 8760

B 8760 8760

C 8760 8760

Note: SYN = Synthetic, UN = Unsupervised
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5.7 Synthetic Binary Discriminator Model (SYNBDM)

Figure 5.11 shows the evaluation flow of our SYNBDM. We examine the perfor-

mance of supervised XGB, RF, and MLP classifiers in different homes. Suppose

X represents the input features, from the synthetic train dataset, and Y is the

output prediction for binary classification,

f(X) = Y (5.17)

where f represents the learning function of the Binary Discriminator.

During the testing phase, the trained model, f is evaluated using two different

datasets:

Figure 5.11: Flow of evaluation with Supervised Binary Descriminator
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For the Simulated Test Dataset:

f(Xsim) = Y ′
sim (5.18)

where Xsim are the input features and Y ′
sim is the output predicted by the model.

For the Real Test Dataset:

f(Xreal) = Y ′
real (5.19)

where Xreal is the input feature and Y ′
real is the output predicted by the model.

The performance of the model was assessed based on the accuracy of the pre-

dictions Y ′
sim and Y ′

real in comparison to the true labels.

5.7.1 Proposed models Characteristics overview

5.7.2 XGBoost (XGB)

XGBoost is a prominent ensemble learning method that, primarily utilizes de-

cision tree structures. It employs gradient boosting, a technique that iteratively

refines models by integrating multiple weak learners to formulate a robust pre-

dictive framework.

• Regularization: A distinctive feature of XGBoost is the incorporation of

a regularization term into its objective function [16]. This term is instru-

mental in mitigating the risk of overfitting, thereby enhancing the model

generalization.

• Objective Function:

ObjectiveXGB(θ) =
n∑

i=1

loss(yi, ŷi) +
K∑
k=1

Ω(fk) (5.20)

where θ denotes the model parameters, n is the number of observations,

loss(yi, ŷi) is the loss function, and
∑K

k=1Ω(fk) is the regularization com-

ponent.
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5.7.3 Random Forest (RF)

Random Forest is an ensemble learning technique based on decision tree al-

gorithms. It constructs a multitude of decision trees during training, and their

collective output obtained through averaging or majority voting, constitutes the

final model prediction.

• Overfitting Reduction: The algorithm introduces randomness in tree gener-

ation, effectively reducing overfitting compared to individual decision trees

[31].

• Objective Function:

ObjectiveRF (θ) =
1

n

n∑
i=1

loss(yi, ŷi) (5.21)

where θ represents the model parameters, n is the number of data points,

and loss(yi, ŷi) are the loss functions.

5.7.4 Multi-Layer Perceptron (MLP)

Multilayer Perceptron (MLP) is a class of feedforward artificial neural net-

works, characterized by multiple layers of nodes. Each layer is interconnected

through weights and biases, enabling MLPs to capture complex, non-linear rela-

tionships in the data [6].

• Backpropagation: MLPs rely on backpropagation for training, which is an

algorithm that iteratively adjusts weights and biases to minimize the error

between the actual and predicted outcomes.

• Objective Function:

ObjectiveMLP (θ) =
1

n

n∑
i=1

loss(yi, ŷi) + α

L−1∑
i=1

||Wi||2 (5.22)

where θ denotes the model parameters, n is the number of observations,

loss(yi, ŷi) the loss function, α is the regularization parameter, and L the

number of network layers.
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5.7.5 Maximum Likelihood Estimation (MLE)

For each model, parameter estimation can often be described using Maximum

Likelihood Estimation (MLE), which for classification problems, involves maxi-

mizing the log-likelihood function:

θ̂ = argmax
θ

n∑
i=1

logP (yi|Xi; θ) (5.23)

where θ represents the parameters, P (yi|Xi; θ) is the probability of the target yi

given the input Xi, and θ̂ is the set of parameters that maximizes the likelihood,

that is, involves finding the values of hyperparameters, for example, learning

rate (eta), max-depth or the number of trees (n estimators) that maximize the

likelihood of observing the actual data.

We performed a grid search with cross-validation techniques, where the objec-

tive function, which is a combination of the loss function and regularization was

minimized during training, and selection was made based on the hyperparameter

tuning of each model.

We normalized our dataset with a StandardScaler to improve performance and,

trained our SYNBDM classifier with benign and synthetic attack samples, as

shown in Table 5.2 for Home A. We evaluated the degree to which the classifier is

capable of detecting attack instances with real test data. We repeated the same

experiment with Homes B and C, on both the simulated and real attack datasets.

In the experiment, we used Jupyter Notebook, an open-source web application,

written in Python; hence, it was easy to use with TensorFlow. Table 5.3 lists the

parameter values used in the binary classification experiment. We selected the

best hyperparameter values by experimenting with grid search. We performed

validation through the fit() function using validation data, that is, simulated and

real data. After training and testing each home, we calculated the accuracy and

loss based on the number of correctly classified instances.

Our framework integrates model selection and feature selection to optimize

the machine learning pipeline for ETD. It uses synthetic training data for the

initial model training and hyperparameter tuning. The model is then validated

on synthetic and real test datasets to ensure that it generalizes well to unseen,

real-world data. This is achieved by performing a test each time the new appli-
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Table 5.3: Parameters for the binary supervised discriminator

Model Parameters Values

XGB learning rate 0.1

n estimators 100

reg alpha 0.01

reg lambda 1.0

RF n estimators 50

max depth 10

min samples leaf 1

min samples split 2

MLP hidden layer sizes 50, 100

activation tanh

batch size 50

learning rate init 0.001

ances are connected. Each new appliance was preprocessed and converted into

a proper format consistent with the training set. The proposed XGB is applied

to a new sample format to determine whether it belongs to the benign or attack

class. The framework incorporates MLE to optimize the objective function, en-

suring that the models are well-calibrated, and providing probabilistic outputs

that can be interpreted as risk scores for ETD. Table 5.4 presents the results of

our experiments for all the homes.

5.8 Legacy unsupervised model (LUM)

The process depicted in Figure 5.12 involves an unsupervised learning model,

specifically an autoencoder, which is trained to detect anomalies based on the

reconstruction error.

5.8.1 ETA Based Autoencoder Detection Algorithm

In our model, we deployed a reconstruction error threshold to classify data points

as normal (benign) or anomalous (attack) and also metrics like area under the re-
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Table 5.4: Flow of the evaluation with Synthetic Binary Discriminator

Home DataSet Model Acc Recall F1-score Prec AUC

A

Sim

XGB 0.9521 0.9169 0.9492 0.9839 0.9876

RF 0.9197 0.8452 0.9113 0.9886 0.9647

MLP 0.9733 0.9633 0.9723 0.9816 0.9656

Real

XGB 0.9555 0.9209 0.9530 0.9875 0.9891

RF 0.9223 0.8505 0.9146 0.9894 0.9702

MLP 0.9243 0.9048 0.9212 0.9383 0.9668

B

Sim

XGB 0.9615 0.9281 0.9590 0.9921 0.9878

RF 0.9359 0.8718 0.9296 0.9957 0.9756

MLP 0.9514 0.9237 0.9486 0.8718 0.9724

Real

XGB 0.9624 0.9293 0.9599 0.9927 0.9878

RF 0.9327 0.8662 0.9259 0.9942 0.9764

MLP 0.9441 0.9250 0.9413 0.9583 0.9795

C

Sim

XGB 0.9526 0.9116 0.9480 0.9837 0.9853

RF 0.9269 0.8539 0.9168 0.9906 0.9625

MLP 0.9168 0.8791 0.9168 0.9406 0.9537

Real

XGB 0.9570 0.9209 0.9540 0.9894 0.9853

RF 0.9291 0.8612 0.9216 0.9911 0.9654

MLP 0.9293 0.9026 0.9251 0.9487 0.9649
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ceiver operating characteristic curve (AUC-ROC), F1-score, precision, and recall,

which are often more informative in such cases. High accuracy can be achieved

by simply classifying everything as benign, which does not help detect attacks.

Figure 5.12: Flow of evaluation with Unsupervised Autoencoder

5.8.2 Training Phase

During the training phase, the autoencoder learns parameter θ by minimizing the

reconstruction error of the input historical electricity consumption data (benign

only) X as follows:
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min
θ
∥X − X̂(θ)∥2 (5.24)

where X̂(θ) denotes the reconstructed output of the autoencoder, and θ denotes

its parameters.

5.8.3 Threshold Determination

A threshold τ was established based on the reconstruction error distribution dur-

ing the training phase as shown in Table 5.6. These thresholds were used to

classify the data points as either normal or anomalous.

5.8.4 Testing Phase

In the testing phase, the autoencoder reconstructs new data from both Simulated

and Real Test Datasets:-

X̂ ′ = Autoencoder(X ′) (5.25)

Subsequently, the reconstruction error E for each data point is computed:

E = ∥X ′ − X̂ ′∥ (5.26)

An anomaly is flagged if the reconstruction error E exceeds the predetermined

threshold τ :

Y ′ =

Anomaly if E > τ

Normal if E ≤ τ
(5.27)

The performance of the autoencoder in anomaly detection is contingent on the

accuracy of the threshold τ and its capability to accurately learn the representa-

tion of normal data during training.

The binary classification output Y ′ indicates whether a data point is normal

or anomalous, based on the reconstruction error relative to the threshold.

Our experimental parameter settings in Table 5.5 reference attack detection

based on unsupervised binary classification models [35]: Multi-Layer Perceptron

Autoencoder (MLP AE) employed a fixed learning rate of 0.001. The autoencoder

has a single hidden layer consisting of 32 neurons. A batch size of 32 was used
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for the training. The model was trained for 100 epochs, and the Adam optimizer

was utilized. A validation split of 10% was employed during the training.

1D Convolutional Autoencoder (1D-CONV AE): A fixed learning rate of 0.001

was used. The latent space dimension was set to 64. A batch size of 32 was

used during the training. The model was trained for 100 iterations. The Adam

optimizer was utilized and a validation split of 10% was employed during training.

We used 100 trees in the Isolation Forest (IF) algorithm. The random state was

set to 42 to ensure reproducibility. The contamination parameter was set to 0.05,

which represented the assumed proportion of outliers in the dataset.

Table 5.5: Parameters for legacy unsupervised models

Model Parameters Values

MLP AE learning rate 0.001

hidden layer sizes 32

batch size 32

epoch 100

optimizer adam

Validation split 0.1

1D-CONV AE learning rate 0.001

latent dim 64

batch size 32

epoch 100

optimizer adam

Validation split 0.1

IF n estimators 100

random state 42

contamination 0.05

Similar to the supervised binary discriminator, we first normalized the data

using MinMaxScaler and trained the autoencoder with historical electricity con-

sumption data X.

Equations (30), (31), (32), and (33) indicate that TP, TN, FP, and FN are true

positive, true negative, false positive, and false negatives respectively. A TP refers
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to a sample that is malicious and is detected as malicious. TN indicates a benign

sample that was detected as benign. FP indicates that the sample is benign but

is detected as malicious. An FN represents a malicious sample detected as benign

[80].

Accuracy =
TP + TN

TP + TN + FP + FN
(5.28)

Precision =
TP

TP + FP
(5.29)

Recall =
TP

TP + FN
(5.30)

F1− Score =
2 ∗ Precision ∗Recall

Precision+Recall
(5.31)

For our electricity consumption data from various homes and datasets, nor-

malization facilitates the scaling of input features. This scaling ensures that the

features, such as aggregate power consumption, have uniform scales across differ-

ent homes and datasets; therefore, the original feature values X are transformed

into scaled values Xscaled within the [0, 1] range. This standardized scaling pro-

cess is essential for the autoencoder to accurately learn and detect anomalies in

electricity consumption patterns.

During training, the autoencoder leveraged these scaled features to reconstruct

benign data, and a threshold was determined using the statistical method Median

Absolute Deviation (MAD), (Equations 34 and 35), and reconstruction errors to

identify anomalies. For example, Figure 5.13 shows the threshold determination

from the training set only for home A while Table 5.6 depicts the threshold values

used in training MLP-AE and 1D-CONV-AE for all homes.

The robust Z-score method uses the Median Absolute Deviation (MAD) [73]

instead of the standard deviation, and is not significantly affected by outliers.

The mathematical representation of the Modified Z-score is:

MAD = median (|xi − x̃|) (5.32)

Modified Z-score = 0.6745× xi − x̃

MAD
(5.33)
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Figure 5.13: Threshold determination for Home A training dataset

0.6745 is the 0.75th quartile of the standard normal distribution, to which the

MAD converges.

• x̃ which is just the median of the sample

• MAD, is calculated by taking the absolute difference between each point

and the median, and then calculating the median of those differences.

This feature scaling contributes to the robustness and accuracy of anomaly de-

tection in the context of protecting homeowners from energy theft by identifying

unusual electricity consumption patterns, as indicated in the experimental data

from different homes in Table 5.2.

Table 5.7 shows the results for all the algorithms in different homes. We de-

ployed the receiver operating characteristic curve (AUC-ROC), F1-score, preci-

sion, and recall metrics, which are often more informative in such cases. High

accuracy can be achieved by simply classifying everything as benign, which does

not help in detecting attacks.
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In Figure 5.15 we plotted the ROC curves for the MLP-AE, 1D-CONV-AE,

and IF for both simulated and real attack scenarios in Home A. The MLP-AE

detector outperformed both 1D-CONV-AE and IF with an AUC score of 0.76

for simulated and 0.59 for real attacks, respectively while 1D-CONV-AE had an

ROC value of 0.67 and 0.61; IF has AUC values 0.64 and 0.54 respectively.

Table 5.6: Legacy unsupervised AE Threshold values for Anomaly detection

Home Dataset Model Threshold

A Sim & Real UN-MLP-AE 0.017565

UN-1D-CONV-AE 0.000020

B Sim & Real UN-MLP-AE 0.018085

UN-1D-CONV-AE 0.000055

C Sim & Real UN-MLP-AE 0.019676

UN-1D-CONV-AE 0.000055

In many real-world scenarios, the attack patterns vary and evolve constantly.

Rare attack patterns can be vastly exceeded by benign data. Consequently, the

autoencoder may not have sufficient examples of these rare attacks to learn ef-

fective representations, making it difficult to detect new attacks.

5.9 Experiments Results and Performance Evaluation

We present a comprehensive performance evaluation of various machine learning

models for ETD, utilizing both real-world and synthetic attack datasets. We

primarily focus on the AUC metric from Table 5.7 as the primary evaluation

criterion and complement it with additional metrics from Table 5.4, including

F1-score, accuracy, precision, and recall.

5.9.1 Model Performance by ROC and Confusion Matrices

Figures 5.14 and 5.15 further generate ROC curves for the remaining supervised

benchmark detectors to facilitate a comparative analysis. The ROC curve pro-

vides a general view of the model’s performance across all thresholds and, provides

a sense of discrimination ability. In contrast, the confusion matrix provides de-
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Table 5.7: Evaluation of the ETD model with AUC and accuracy Scores

Home DataSet Model AUC ACC

A Sim SYN-XGB 98.76% 95.21%

SYN-RF 96.47% 91.97%

SYN-MLP 96.56% 97.33%

UN-MLP-AE 74.61% 58.28%

UN-1D-CONV-AE 67.31% 54.83%

UN-IF 63.55% 63.79%

Real SYN-XGB 98.91% 95.55%

SYN-RF 97.02% 92.23%

SYN-MLP 96.68% 92.43%

UN-MLP-AE 58.96% 51.26%

UN-1D-CONV-AE 61.12% 50.51%

UN-IF 53.66% 53.66%

B Sim SYN-XGB 98.78% 96.15%

SYN-RF 97.56% 93.59%

SYN-MLP 97.24% 95.14%

UN-MLP-AE 78.90% 64.58%

UN-1D-CONV-AE 77.04% 65.63%

UN-IF 61.64% 62.15%

Real SYN-XGB 98.78% 96.24%

SYN-RF 97.64% 93.27%

SYN-MLP 97.95% 94.41%

UN-MLP-AE 60.61% 52.58%

UN-1D-CONV-AE 71.77% 53.58%

UN-IF 55.01% 55.01%

C Sim SYN-XGB 98.53% 95.26%

SYN-RF 96.25% 92.69%

SYN-MLP 95.37% 91.68%

UN-MLP-AE 75.04% 55.20%

UN-1D-CONV-AE 64.95% 60.22%

UN-IF 67.66% 68.82%

Real SYN-XGB 98.53% 95.70%

SYN-RF 96.54% 92.91%

SYN-MLP 96.49% 92.93%

UN-MLP-AE 65.64% 50.26%

UN-1D-CONV-AE 54.95% 51.10%

UN-IF 74.35% 74.35%

tailed information regarding the performance of our model at a specific threshold

level.

In the ROC curve, the AUC for each model (XGBoost, Random Forest, MLP)

provides a single measure of performance across all possible classification thresh-

olds, summarizing the trade-off between TPR and FPR.

The confusion matrices in Figure 5.16 provide a more granular view. For in-
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stance:

• The MLP for Home A simulated (Home A sim) confusion matrix indicates

that the model correctly identifies 95% of benign cases (TN), the exact

value is 6655, and 89% of attack cases (TP), 6065, at a specific threshold.

• The Random Forest confusion matrix showed a high TN rate of 99%, but

a lower TP rate of 84%.

• The XGBoost confusion matrix showed a similarly high TN rate of 99%

and a better TP rate of 91%.

The ROC curve does not show the actual values of TP, FP, TN, and FN; rather,

it shows the rate at which these values change with the different thresholds as

shown in Figure 5.14 (a),(b), and (c), samples - taken from home A (sim and

real), and home C(real attack) respectively. A high AUC reflects a model with a

high TPR and low FPR across different thresholds, which generally corresponds

to high values of TP and TN and low values of FP and FN in the confusion

matrices at a particular operating threshold.

The same principles were applied to legacy unsupervised models (LUM). For

instance, consider the confusion matrices for the simulated and real data from

Home B using the 1D-CONV-AE model in Figure 5.15(b):

• The AUC of 0.78 and 0.72 for simulated and real data respectively on the

ROC curve suggests that the model’s ability to distinguish between the

classes is reasonably good for simulated data and less so for real data.

• For the corresponding confusion matrices in Figure 5.16, we see high TN

rates (0.99 for simulated, 1.00 for real) but varying TP rates (0.78 for sim-

ulated, 0.98 for real). This suggests that, while the model is quite good

at identifying negative cases (benign), its performance on positive cases

(attacks) is inconsistent between the simulated and real data.

• In the confusion matrices, we observed the specific number of instances that

are correctly and incorrectly classified, which was reflected in the ROC curve

by the closeness of the curve to the top left corner.
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From the ROC curve for the isolated forest model in Figure 5.15(c):

• Home A Simulated has an AUC of 0.64, meaning that the model has a 64%

chance of correctly distinguishing between a benign and an attack instance

for the simulated environment of Home A.

• Home A Real had a lower AUC of 0.54, suggesting that the model was

less effective in distinguishing between benign and attack instances in the

real-world data of Home A.

Similarly, Home B Simulated and Home B Real have AUCs of 0.62 and 0.55,

respectively, and Home C Simulated and Home C Real have AUCs of 0.68 and

0.74. The higher the AUC, the better the model is at distinguishing between pos-

itive (attacks) and negative (benign) classes. For example, the model performed

best on real data for Home C, with an AUC of 0.74.

From the confusion matrix for Home C real data:

• True Positive (TP): 4737 - The model correctly identified 4737 attack in-

stances.

• True Negatives (TN): 8289 - The model correctly identified 8289 instances

as benign.

• False positive (FP): 471 - The model incorrectly identified 471 benign in-

stances as attacks.

• False Negatives (FN): 4023 - The model failed to identify 4023 attacks,

mistakenly classified as benign.

Relating the Confusion Matrix to the ROC Curve:

• The specific values in the confusion matrix correspond to a single point on

the ROC curve for Home C’s real data. The point is determined by the

sensitivity (TPR) and FPR.

• These values would indicate a corresponding point on the ROC curve, but

the exact point was not marked in the ROC curve. However, we know that

point exists, and if the threshold is adjusted, this point moves along the

curve, resulting in different values in the confusion matrix.

106



Generally, the ROC curve indicates how well the model can separate the two

classes, and provides a holistic view of the model’s performance across all thresh-

olds. By contrast, the confusion matrix indicates exactly where the model makes

mistakes at a specific threshold.

(a) ROC curves for three

model-based simulated

attacks at Home A

(b) ROC curves for the

three models based on

real attacks in Home A

(c) ROC curves for the

three models based on a

real attack at Home C

Figure 5.14: Sampled ROC curves for comparison performance evaluation of the

proposed SYNBDM of some selected homes.

(a) MLP-AE: sim vs. real

attack

(b) 1D-CONV-AE: sim

vs. real attack

(c) IF: sim vs. real

attack

Figure 5.15: Performance comparison of ROC curves for LUM across homes.

5.9.2 Model Training and test error

To ensure balanced optimization between the training and test errors, we em-

ployed GridSearchCV for meticulous hyperparameter tuning. A five-fold cross-

validation was incorporated to enhance the robustness of our model evaluations.
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(No.1) XG Boosting

(XGB)

(No.2) Random Forest

(RF)

(No.3) Multilayer Perceptron

(MLP)

(No.4) Multilayer Perceptron

Autoencoder

(No.5) 1D-Convolutional

Autoencoder

(No.6) Isolation Forest

Outliers (IF)

Figure 5.16: Confusion matrices of the SYNBDM and LUM in order of overall

performance.

For the XGBoost model, the regularization parameters L1 (reg alpha) and L2

(reg lambda) were utilized. Conversely, in the context of the Random Forest

model, the parameters min samples split and min samples leaf serve a regu-

lative function by constraining the complexity of the decision trees. The MLP

model employed an L2 penalty term (alpha) and a maximum number of iterations

(max iter), combined with an early stopping criterion to prevent overfitting.

The subsequent results, as shown in Table 5.8, were obtained through the

post-application of the aforementioned hyperparameter tuning and regularization

strategies, as detailed for each model in Table 5.3.

The bar charts in Figure 5.17 show the training and test error rates for var-

ious models, based on simulated and real data aggregate performance outputs

in Table 5.8. The error rates were calculated as one minus the AUC and ac-
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Table 5.8: Models training and testing error report for all homes.

Home DataSet Model AUC ACC Tr Err Ts Err

A+B+C

Sim av
SYN-XGB 0.9869 0.9554 0.0446 none

SYN-RF 0.9676 0.9275 0.0725 ”

SYN-MLP 0.9632 0.9472 0.0528 ”

UN-MLP-AE 0.7618 0.5935 0.4065 ”

UN-1D-CONV-AE 0.6977 0.6023 0.3877 ”

UN-IF 0.6428 0.6492 0.3508 ”

Real av
SYN-XGB 0.9874 0.9583 none 0.0417

SYN-RF 0.9707 0.9280 ” 0.0720

SYN-MLP 0.9704 0.9326 ” 0.0674

UN-MLP-AE 0.6174 0.5137 ” 0.4863

UN-1D-CONV-AE 0.6261 0.5170 ” 0.4830

UN-IF 0.6428 0.6101 ” 0.3899

Note: Tr Err = Train Error, Ts Err = Test Error

curacy (ACC) values for each model. From the charts, we can observe that for

the detection of electricity theft in smart homes utilizing aggregated appliance

consumption patterns, the comparative performance analysis of various models is

pivotal. Our investigation encompassed the following: both supervised and unsu-

pervised learning paradigms, with the supervised models demonstrating superior

efficacy.

5.9.3 Model selection

From our performance analysis with other ETD models for smart homes through

aggregated appliance consumption patterns, the XGBoost model (SYN-XGB)

emerged as a standout performer, hence it was selected as the best model for our

proposed ETD for the following reasons:

It achieved the highest Area Under the Curve (AUC) of 98.69% and accuracy

(ACC) of 95.54% among the evaluated models. The XGBoost (SYN-XGB) model

also exhibited the lowest error rates across simulated and real datasets, indicating

its robustness and high accuracy in discerning normal consumption from theft-
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Figure 5.17: Training and test error comparison for our proposed model

related anomalies. The robustness of XGBoost is further enhanced by its ensemble

learning framework that employs boosting [96], which has proven effective in

managing anomalies and noise prevalent within electricity consumption data.

Incorporating regularization within the objective function of the model serves

as a bulwark against overfitting, thus facilitating better generalization to unseen

data. The model’s adeptness in binary classification makes it particularly well-

suited for anomaly detection tasks, such as identifying instances of electricity

theft in smart home environments. Given its exemplary performance across key

metrics, XGBoost is highly recommended for deployment in ETD systems, where

the accurate and reliable identification of theft-related irregularities is paramount.

The synthetic random forest (SYN-RF) and synthetic multilayer perceptron

(SYN-MLP) also perform well, although they exhibit marginally higher error

rates in comparison to SYN-XGB, suggesting room for optimization.

Conversely, unsupervised models, which include the MLP Autoencoder (UN-

MLP-AE), the 1D Convolutional Autoencoder (UN-1D-CONV-AE), and the IF
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(UN-IF), exhibit significantly higher error rates. This is particularly notable in

scenarios simulating training conditions, which may point to challenges these

models face in capturing complex patterns inherent to electricity theft without

labeled training data. Notwithstanding, the UN-IF model demonstrates a lesser

increase in error rate transitioning from simulated to real datasets, hinting at a

certain level of stability in model performance despite lower overall accuracy.

The findings suggest that, in the context of smart home electricity theft detec-

tion, supervised models adeptly leverage the nuanced patterns within aggregated

appliance consumption data, thus providing a strong foundation for the develop-

ment of reliable theft detection systems.

5.9.4 Trade-off between training and test errors

In the dedicated exploration of Electricity Theft Detection (ETD) within smart

homes, a critical aspect of our experimental design was ensuring equilibrium

between the training and test error rates. This balance, a trade-off between

training and test errors, is imperative to avert the model’s overfitting to training

data, which could compromise its generalization capabilities on new, unseen data.

This phenomenon could skew the detection of electricity theft.

Our methodology encompasses the strategic application of GridSearchCV to

perform exhaustive hyperparameter tuning, [82], a practice that aids in identify-

ing optimal model parameters setting recorded in Table 5.3. To further bolster

the reliability of our findings, we used a five-fold cross-validation scheme, which

provides a more rigorous validation of the model’s predictive probability.

In the domain of unsupervised anomaly detection, particularly when employing

autoencoders, the goal is to minimize the reconstruction error across both training

and test datasets. However, too low a training error (overfitting) may result in

poor generalization of the test data. To achieve a good trade-off, we deploy

early stopping techniques, and validation data splits, which form the cornerstone

of our strategy to fine-tune the model’s complexity. Additionally, the nuanced

adjustment of hyperparameters, Table 5.5, including the dimensionality of the

encoding and hidden layers, as well as the learning rate, was instrumental in

achieving a judicious balance between underfitting and overfitting.
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5.10 Privacy Concerns and Model Development

5.10.1 Privacy Concerns in Smart Home Environments

Developing a model to protect smart home users’ privacy using an appliance con-

sumption patterns dataset involves a comprehensive approach aimed at ensuring

the model’s capability to analyze or predict patterns without exposing sensitive

personal information. The methodology encompasses several key steps outlined

below:

1. Understanding the Dataset

• Data Inspection: This involves understanding the dataset comprehen-

sively, including the types of appliances, usage patterns, timestamps, and

any user-identifiable information present.

• Privacy Concerns Identification: Identifying elements within the data

that might pose privacy risks, such as usage patterns that could infer when

a household is occupied.

2. Data Anonymization

• Anonymizing Data: Techniques like pseudonymization (replacing pri-

vate identifiers with fictitious ones) and aggregation (summarizing data to

obscure individual details) are applied.

• Noise Addition: Introducing randomness into the data helps further mask

individual patterns.

3. Differential Privacy (Optional)

Implementing differential privacy techniques is recommended for highly sensitive

datasets. This ensures that the dataset’s analysis remains unaffected by the

alteration of any single record, thereby safeguarding individual privacy.
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4. Feature Engineering

• Select Relevant Features: Features that are pertinent to the analysis

yet less likely to compromise privacy are chosen.

• Create Derived Features: Derived features can sometimes offer valuable

insights without disclosing sensitive information.

5. Model Development

• Choose a Model: A machine learning model suitable for the objective,

such as predicting energy usage or identifying abnormal consumption pat-

terns, is selected.

• Train the Model: The model is trained using the anonymized and engi-

neered dataset.

6. Model Validation and Testing

• Cross-Validation: Techniques like k-fold cross-validation are employed to

ensure the model’s validity.

• Performance Metrics: The model’s performance is evaluated using met-

rics such as accuracy and F1-score, ensuring that privacy-preserving mea-

sures do not significantly impair effectiveness.

7. Deployment and Monitoring

• Deploy the Model: The model is integrated into the smart home system.

• Monitor and Update: Continuous performance monitoring and necessary

updates are carried out to accommodate new patterns or privacy concerns.

8. Compliance and Ethical Considerations

Ensuring compliance with data protection laws (like GDPR, CCPA) and regu-

larly reviewing ethical considerations, particularly regarding data usage and the

implications of model predictions, is crucial.
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Tools and Technologies

Programming languages such as Python and R are used for data analysis and

model development, with libraries like Pandas, NumPy, Scikit-learn, TensorFlow,

or PyTorch supporting various stages of the process. For implementing differential

privacy, libraries such as TensorFlow Privacy, PySyft, or Opacus can be utilized.

Security Measures

Ensuring secure data storage and transmission, alongside regular audits for data

and model security, is paramount.

In developing such a model, maintaining a balance between utility and privacy

is crucial to ensure the model’s effectiveness without compromising user privacy.

5.11 Appliance Authentication Methods

5.11.1 Authentication of Appliance

Authentication strategies for electrical appliances focus on ensuring that only

registered and verified devices operate within a given network, enhancing security

and enabling efficient electricity use monitoring.

5.11.2 Appliance Signature Analysis

• Each electrical appliance exhibits a unique power consumption signature

(load profile), distinguishable through variations in voltage, current, and

frequency during different operational states.

• Algorithms are implemented to learn and recognize these power signatures,

employing machine learning techniques to differentiate between authenti-

cated appliances within a home environment.

5.11.3 Smart Meter Data Utilization

• Smart meters provide fine-grained electricity usage data, enabling the iden-

tification of operational patterns specific to authenticated appliances.
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• This data aids in detecting anomalies by highlighting deviations from es-

tablished consumption patterns, potentially indicating unauthorized usage

or tampering.

5.11.4 Integration with Home Automation Systems

• The proposed SYNBDM model integrates with home automation systems,

which catalog information on registered appliances, facilitating cross-reference

checks between power usage data and authenticated appliance lists.

• Anomalies are flagged when discrepancies arise between actual power con-

sumption and expected usage patterns of registered devices.

5.11.5 Real-Time Monitoring and Authentication Checks

• Real-time monitoring of electricity consumption is complemented by peri-

odic authentication checks (updating), ensuring alignment between power

usage and registered appliance profiles as depicted in Figure 5.18.

• Unauthorized appliance usage or abrupt changes in consumption patterns

trigger immediate alerts for investigation.

5.11.6 Machine Learning for Anomaly Detection

• Both supervised and unsupervised machine learning algorithms are utilized

to identify a typical usage patterns that deviate from recognized appliance

profiles.

• The model is trained on datasets encompassing normal operations and var-

ious theft scenarios to enhance detection accuracy.

5.11.7 User Interaction and Feedback

• The SYNBDM system allows users to provide feedback on generated alerts,

enabling confirmation of whether an anomaly signifies actual theft or a

legitimate alteration in usage.
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• This feedback loop plays a crucial role in refining the model’s accuracy and

reliability.

5.11.8 Security and Privacy Considerations

• Data collection and processing protocols are designed to comply with pri-

vacy regulations, ensuring user information is handled securely.

• Secure communication protocols are implemented to safeguard data trans-

mitted between smart meters, appliances, and the SYNBDM system from

unauthorized access.

Alert

generation

Deployment
Model

selection

Anomaly
detection

Data
preprocessing

Monitoring
& Updating

Model
evaluation

Data
splitting

Feature
engineering

Data
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Data
exploration
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Figure 5.18: SYNBDM implementation process

5.11.9 Physical Fingerprint Appliances Authentication.

Some appliances have unique, measurable characteristics in their electricity usage

that can be observed without internal data access, akin to a ”fingerprint” [11].

In training the SYNBDM, these physical fingerprints—patterns in power con-

sumption—are crucial. They serve as the dataset’s features, enabling the model
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to learn and distinguish between normal operation and anomalies, such as elec-

tricity theft. This approach leverages the appliance’s consumption behavior as

a distinctive signature to improve detection and authentication processes within

the smart home environment.

To combine appliance physical fingerprints with consumption patterns in train-

ing the SYNBDM model, you would first collect detailed usage data for each ap-

pliance, including power draw, usage cycles, and any unique electrical signatures.

This data forms the physical fingerprint. Next, integrate this with consumption

patterns—how and when the appliance is typically used. The model is trained on

these combined features to recognize normal operating conditions. By learning

the nuanced differences between appliances and their typical usage, the model

can more accurately detect anomalies indicative of electricity theft, enhancing its

predictive capabilities.

5.11.10 Appliance Authentication Using Physically Unclonable Func-

tions

To authenticate appliances with physical fingerprints within the context of a

Synthetic Binary Discriminator Model (SYNBDM), we leverage the concept of

Physically Unclonable Functions (PUFs). PUFs are unique, unclonable identi-

fiers derived from the inherent physical variations of hardware devices. These

variations, which occur naturally during the manufacturing process, can serve as

a secure and tamper-evident fingerprint for each appliance.

Relevance to Previous Research

The integration of PUFs into electricity theft detection models like SYNBDM

builds upon the foundation laid by previous research in both cybersecurity and

smart grid management. Previous studies have highlighted the effectiveness of

PUFs in various applications, from secure key generation to hardware authenti-

cation [54, 32], underscoring their potential for enhancing security in smart home

environments.
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5.11.11 Advantages of Using PUFs with SYNBDM

• Enhanced Security: PUFs provide a high level of security due to their

unclonability and inherent resistance to physical tampering. This makes the

SYNBDM more resilient against attempts to bypass or deceive the system

through hardware manipulation.

• Unique Identification: Each appliance’s PUF serves as a unique identi-

fier, enabling precise authentication and monitoring of individual devices.

This specificity aids SYNBDM in accurately detecting anomalous behavior

indicative of electricity theft.

• Reduced False Positives: By ensuring that only authenticated appli-

ances are monitored, PUFs can help minimize false positives in theft detec-

tion, improving the overall accuracy of the SYNBDM.

• Low Overhead: Incorporating PUFs into the SYNBDM does not sig-

nificantly increase computational overhead, as the authentication process

leverages inherent physical properties rather than complex cryptographic

procedures.

5.11.12 Authentication without Biometrics

The focus on non-biometric user authentication aims to link appliance usage

to specific users through interaction patterns, offering an alternative to direct

biometric methods.

Non-Biometric Authentication Approaches

• Behavioral patterns and device interaction profiles serve as the basis for

user authentication, leveraging smart home interfaces and IoT devices to

monitor and authenticate user interactions with appliances.

• Techniques such as user-specific PIN codes, Radio Frequency Identification

(RFID) tags, and smart device interaction monitoring enable the system

to recognize and authenticate user activities without relying on biometric

data.
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This approach not only enhances the system’s ability to monitor and con-

trol appliance usage but also significantly improves the detection capabilities for

unauthorized use and electricity theft, thereby ensuring more secure and efficient

energy consumption.

5.11.13 Privacy Concern Comparison of Recent Studies on ETD

The comparison of the methodologies used in these papers as related to our model

is shown in the table below:
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Paper Name Methods Used Contributions Limitations Practical

Implications

Improving Home

Appliance-Based

Electricity Theft

Detection: Insights

from Real and

Synthetic Attack

Scenarios (This

thesis)

SYNBDM-XGB,

RF, MLP,

LUM-MLP-AE,

1D-CONV-AE,

Isolation Forest

High accuracy in

theft detection

with AUC scores

up to 98.74%.

Expands model to

detect unknown

attacks.

Dependence on

data quality,

overfitting, and

privacy concerns.

Enhances energy

security and

management in

smart homes.

Electricity Theft

Detection in AMI

Using Customers’

Consumption

Patterns [41]

SVM, CPBETD

algorithm, Kernel

function, Cluster

analysis

Novel algorithm

for detecting

energy theft in

AMI. Robust

against

contamination

attacks.

False alarm rate,

need for on-site

inspection, privacy

risks with high

sampling rate.

High-performance

solution for energy

theft detection in

smart grids.

Fully

Homomorphic

Encryption with

Table Lookup for

Privacy-Preserving

Smart Grid [49]

FHE, Table

Lookup with FHE,

Integer encoding

Efficient protocol

for function

evaluation with

FHE. More

practical than

previous methods.

Limited to

addition and

multiplication on

encrypted data.

Lookup table

scalability.

Protects user data

in smart grids

while allowing

function

evaluation.

Privacy-Preserving

Data Falsification

Detection in Smart

Grids using

Elliptic Curve

Cryptography &

Homomorphic

Encryption [42]

ECC-based

homomorphic

encryption

18x faster

execution than

CKKS scheme.

Ensures data

privacy with

smaller memory

space.

Long execution

time for HE

schemes. Privacy

concerns with

customer data

analysis.

Fast and

privacy-preserving

detection of data

falsification in

smart grids.

Look-Up Table

based FHE System

for Privacy

Preserving

Anomaly Detection

in Smart Grids [48]

Homomorphic

LUT-based FHE,

Private

information

retrieval with FHE

First

implementation of

flexible control

over detection

accuracy and time.

Detects various

attack types.

Differential

privacy limits

accuracy. SMC

has high

communication

costs.

Enables

privacy-preserving

anomaly detection

with flexible

accuracy and time

control.

Towards

Privacy-preserving

Anomaly-based

Attack Detection

against Data

Falsification in

Smart Grid [38]

Optimization of

encryption for

resource-

constrained

devices,

Homomorphic

encryption

Framework detects

energy theft and

data integrity

attacks. 40x faster

encryption for

low-power devices.

Balancing privacy

and security.

Future work on

quantification of

information

leakage.

Optimized for

automated billing

and load

monitoring in

smart grids,

preserving user

privacy.
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5.12 Model Updates

5.12.1 Implementation of the SYNBDM Algorithm

Application of the SYNBDM algorithm proceeds as follows:

1. In each home, one or more transformers, Figure 5.23, gauge the total elec-

tricity delivered to the homeowner within the smart home network. This

measured value is then compared with the aggregate amount of consump-

tion as reported by the associated distribution transformer.

2. Every new sample undergoes preprocessing and is transformed into a format

that aligns with the training set.

3. XGB is utilized on a new sample to ascertain whether it falls into the benign

or attack class.

4. If step 1 fails to identify an anomaly and the XGB classifies the new sam-

ple as benign, this sample is then incorporated into the benign dataset.

Concurrently, the relevant attack patterns are created and appended to the

attack dataset.

5. If NTL is identified in step 1 and the classifier detects an attack, the ap-

pliance’s behavior in the smart home is marked as suspicious. Electricity

theft is confirmed when this suspicious appliance behavior in a smart home

occurs n times within a specified timeframe. During this period, new sam-

ples are collected in a temporary database. Upon confirmation of electricity

theft, an appropriate response, such as a physical inspection, is initiated.

Homes in areas with higher NTL, as determined in step 1, are given pri-

ority for inspection. If theft is confirmed, the samples from the temporary

database are moved to the attack dataset. If no theft is found, these sam-

ples are instead added to the benign dataset, along with their associated

attack patterns.

6. Another possibility arises when step 1 fails to detect an NTL, but XGB

identifies an anomaly. This scenario can be attributed to three potential

causes. It might be a result of XGB misclassification or an error in the NTL
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calculation in step 1. Such cases are not expected to recur frequently on

consecutive days. Alternatively, the condition might stem from changes in

consumption habits, such as alterations in residents or appliances, leading

to significant shifts in usage patterns. In this instance, the condition will

persist. Consequently, when XGB detects an anomaly while step 1 shows

no NTL, the new sample is placed in a temporary database. Should this

condition repeat often in the following days, the current dataset will be

substituted by a new dataset created from the samples in the temporary

database. Upon reaching a sufficient size, the classifier is retrained. Each

smart home appliance is assigned a credibility factor, cf i, which is a bi-

nary variable initially set to one. In cases where a non-malicious anomaly

is detected as described, cf i is reduced to zero, and it is reset to one once

the issue is resolved. In instances of detected electricity theft, smart homes

with a cf i of 1 are prioritized for further action. This aspect of the algo-

rithm enhances SYNBDM’s resilience against non-malicious alterations in

consumption patterns.

7. If NTL is identified in step 1, but the (XGB) model does not detect any

anomalies and the situation persists, this may indicate an ongoing attack

that XGB is unable to recognize. In such instances, the safe dataset of the

appliances is examined for indications of a data contamination attack. This

attack type deceives the learning machine into misinterpreting an aberrant

pattern as normal by gradually altering the data, thereby corrupting the

dataset. The long-term usage pattern of the appliance is analyzed, with a

downward trend in the long-term consumption graph potentially signaling

contamination. Should historic data analysis not reveal a contamination

attack, SYNBDM will sound an alarm (alert generation), Figure 5.18, sug-

gesting that an attack may be occurring, although it remains undetected

by the algorithm, which then continues its standard operation for new sam-

ples. This situation is uncommon, such as when a new, high-consumption

load is directly connected to a feeder. This phase in the algorithm’s process

enhances SYNBDM’s resilience against contamination attacks.

The SYNBDM algorithm uses a more mathematical-style notation: Let:
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• S represents the new sample.

• E(S) be the total electricity measured by the transformer for sample S.

• R(S) be the reported consumption by the distribution transformer for sam-

ple S.

• P (S) be the preprocessing and format conversion of sample S.

• C(S) be the classification of sample S by XGB (returns ’benign’ or ’attack’).

• DBbenign and DBattack represent the benign and attack datasets, respec-

tively.

• DBtemp be the temporary database.

• CFi represents the credibility factors.

Etotal = TransformerMeasurement(S) (5.34)

Ereported = DistributionTransformerReport(S) (5.35)

NTL =

1 if Etotal ̸= Ereported

0 otherwise
(5.36)

Sprocessed = Preprocess(S) (5.37)

class = XGBClassify(Sprocessed) (5.38)

DatasetUpdate(Sprocessed, class,NTL) (5.39)

TheftHandling(NTL, class, Sprocessed) (5.40)

AnomalyHandling(NTL, class, Sprocessed) (5.41)

ContaminationCheck(NTL, class) (5.42)
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Algorithm 1 SYNBDM Algorithm for Electricity Theft Detection in Smart

Home Networks
Input: New sample S

Output: Updated benign dataset DBbenign, attack dataset DBattack, temp database DBtemp,

credibility factors CFi

1 Initialize: benign dataset DBbenign, attack dataset DBattack, temp database DBtemp, credi-

bility factors CFi

2 Step 1: Measure Total Electricity and Detect NTL E(S) ← Trans-

former Measurement(S) R(S) ← Distribution Transformer Report(S) NTL(S) ← E(S) ̸=
R(S)

3 Step 2: Preprocess Sample S′ ← P (S)

4 Step 3: Classify Sample Class(S′)← C(S′)

5 Step 4: Update Datasets if ¬NTL(S) and Class(S′) = ’benign’ then

6 DBbenign.add(S
′) Generate And Add Attack Patterns(DBattack)

7 Step 5: Detect And Handle Theft if NTL(S) and Class(S′) = ’attack’ then

8 Report Suspicious Behavior() if Suspicious Behavior Repeated(m, period) then

9 Take Appropriate Action() if Theft Verified() then

10 DBattack.add(DBtemp)

11 else

12 DBbenign.add(DBtemp)

13 Step 6: Handle Anomalies if ¬NTL(S) and Class(S′) = ’anomaly’ then

14 DBtemp.add(S
′) if Anomaly Persists(days) then

15 Discard Old And Create New Dataset(DBtemp) Retrain Classifier() Ad-

just Credibility Factors(CFi, appliance)

16 Step 7: Detect Contamination Attack if NTL(S) and Class(S′) ̸= ’anomaly’ and Condi-

tion Persists() then

17 if Check For Contamination Attack(appliance data) then

18 Raise Alert()

19 else

20 Continue Normal Operations()

21 return DBbenign, DBattack, DBtemp, CFi
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5.13 ETDModel Implementation in AMI Using Anonymized

Aggregated Appliance Consumption Data

5.13.1 Data Anonymization

The dataset utilized in this study has been pre-anonymized, containing only nu-

merical readings devoid of direct personal identifiers. It is imperative to scrutinize

the dataset thoroughly for columns harboring potentially identifiable information,

albeit not evident in the initial rows. Such columns necessitate anonymization or

elimination to uphold privacy standards.

5.13.2 Feature Engineering and Anomaly Detection

A pivotal aspect of our methodology involves identifying salient features that

significantly contribute to the detection of abnormal consumption patterns. This

process may entail the creation of novel features, such as the aggregation of read-

ings to encapsulate total consumption over specified intervals, thereby enhancing

the model’s predictive prowess.

5.13.3 Train Models

For the model training phase, the smaller subset designated for training is bifur-

cated into distinct training and validation sets. Subsequently, models including

XGBoost, Random Forest, and Multilayer Perceptron (MLP) are meticulously

trained on these datasets.

5.13.4 Model Evaluation

Model performance is rigorously evaluated using a dedicated test dataset, de-

noted as psa journal home A sim test.csv. Key performance metrics such as

Accuracy, Recall, Precision, F1-Score, and the Area Under the Curve (AUC) are

computed to ascertain the efficacy of each model.
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5.13.5 Visualizations of the Anonymized Dataset

To illustrate the dataset’s anonymized state while showcasing its utility for privacy-

conscious insights, several visualization techniques are employed:

1. Histograms of Feature Distributions: These histograms elucidate the

distribution of readings across the first 10 features, as depicted in Figure

5.19, offering insights into data spread and prevalent value ranges, thereby

ensuring privacy through aggregation.

2. Correlation Heatmap: A heatmap, Figure 5.20, depicting the correlation

among selected features is generated to unveil patterns and relationships

without compromising individual privacy.

3. Time Series Plots: For features representing time-series data, plots are

crafted to display general consumption trends over time, highlighting overall

patterns rather than individual behaviors as shown in Figure 5.21.

4. Box Plots for Anomaly Visualization: Utilization of box plots, Figure

5.22, facilitates the identification of outliers or anomalies within the data,

crucial for detecting abnormal consumption patterns.

Figure 5.19: Histograms of selected feature distributions
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Figure 5.20: Correlation heatmap of selected features

These visualizations underscore the feasibility of deriving meaningful insights

from data while strictly adhering to privacy considerations. The deliberate ab-

sence of direct or indirect personal identifiers, such as names or specific times-

tamps, ensures the anonymity of the dataset.

The Figure 5.23 provides a visual representation of the implementation of the

ETD (Electricity Theft Detection) model, known as SYNBDM, within an Ad-

vanced Metering Infrastructure (AMI) system. This implementation leverages

anonymized aggregated appliance consumption pattern data to enhance energy

management and efficiency.

In this context, the AMI system plays a crucial role by collecting granular

energy consumption data from smart meters deployed in distinct areas, namely
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Figure 5.21: Selected sample of first five features for time series plot

Figure 5.22: Selected sample of Box Plots for Anomaly Visualization

Area A for Smart Home Users and Area B for Commercial Users. This data

serves as the foundation for analyzing appliance consumption patterns.
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The flow of energy consumption data follows a path from the smart meters

to a central data concentrator and then to the Data Management System. This

streamlined data flow ensures centralized data processing and analysis, facilitating

meaningful insights.

The SYNBDM model is employed to make sense of the aggregated data, fo-

cusing on tasks such as optimizing energy distribution, identifying usage trends,

and improving overall energy efficiency. Notably, the implementation prioritizes

data privacy and security through the anonymization of collected data, adhering

to data protection regulations while enabling effective analysis of consumption

patterns.

The overarching objective of this implementation is to enhance energy man-

agement practices, improve efficiency, and potentially offer insights for future

infrastructure development and policy-making decisions related to energy distri-

bution.

This implementation exemplifies a sophisticated approach to energy manage-

ment, capitalizing on modern AMI systems and advanced data analysis models

while maintaining the utmost consideration for user privacy and data security.

Figure 5.23: SYNBDM implementation in AMI
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5.14 Model Performance Comparison

5.14.1 Comparison with Benchmark Models

The comparison of Table 5.9 with the accuracy and AUC scores and with other

classifiers in Table 5.10 provides a clearer picture of our model performance with

benchmark algorithms such as SVM and LR, each model in multiclass and binary

classification tasks.

Table 5.9: Comparison of models based on accuracy and AUC scores

Model
Multiclass

Accuracy

Binary Class

Accuracy

Multiclass

AUC

Binary Class

AUC

XGB 0.9330 0.9569 0.9851 0.9872

RF 0.8652 0.9276 0.8896 0.9692

MLP 0.6610 0.9399 0.6189 0.9668

LR 0.5537 0.8148 0.5743 0.8748

SVM 0.5220 0.9035 0.6478 0.9430

XGB had the highest scores across the board, achieving 93.30% accuracy and

98.51% AUC in multiclass, and 95.69% accuracy and 98.72% AUC in binary

classification. RF is a strong contender with 86.52% multiclass accuracy and

88.96% AUC, (Figure 5.24(a)), along with 92.76% binary accuracy and 96.92%

AUC.Figure 5.24(b). MLP performs moderately with 66.10% multiclass accu-

racy and 61.89% AUC, improving binary classification with 93.99% accuracy and

96.68% AUC. LR and SVM, while viable, offer lower accuracy and AUC, sug-

gesting that more advanced methods may be preferable for complex classification

challenges.

The line plot presented in Figure 5.24(c) illustrates the error rates for vari-

ous evaluation metrics across five different machine learning models: XGBoost

(proposed), Random Forest (RF), Multilayer Perceptron (MLP), Support Vector

Machine (SVM), and Logistic Regression (LR) derived from experimental result

Table 5.11. The error rate for each model is computed as a 1 − metric value,

where the metrics include accuracy (ACC), Recall, Precision, and Area Under

the Curve (AUC). Figure 5.24(d) shows the aggregate AUC and ACC binary
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(a) Comparison of multiclass classification

models

(b) Comparison of binary classification

models

(c) Comparison of training and test error

with benchmark model

(d) Model AUC and ACC scores compar-

ison with benchmark

Figure 5.24: Performance metrics comparison analysis

class performance comparison of the proposed models with the benchmark, ex-

isting literature, SVM, and LR models.

• The XGBoost model (proposed) shows the most favorable error rates

across all metrics, signifying its superior performance relative to the other

models.

• The Random Forest (RF) and Multilayer Perceptron (MLP) models

displayed competitive performance, with error rates marginally higher than

those of the XGBoost model.

• The Support Vector Machine (SVM) and Logistic Regression (LR)

models exhibit higher error rates, indicating that their performance is not

as robust as that of the models above for the tasks evaluated.
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Table 5.10: Performance metrics of different multiclass classification algorithms.

Models Accuracy Precision Recall F1-score AUC

XGB 0.9330 0.9417 0.9291 0.9174 0.9851

RF 0.8652 0.9082 0.8694 0.8701 0.8896

DTC 0.7142 0.7477 0.7068 0.7129 0.8208

MLP-4 0.6610 0.7044 0.6552 0.6812 0.6189

MLP-3 0.6582 0.6877 0.6571 0.6601 0.6097

LR 0.5537 0.5417 0.5543 0.5383 0.5743

RRC 0.5148 0.5280 0.5194 0.5178 0.5060

SVM 0.5220 0.5109 0.5189 0.5085 0.6478

Table 5.11: Proposed model performance metric comparison with binary class.

benchmark.

Metric XGB (Proposed) RF MLP SVM LR

ACC 0.9554 0.9275 0.9331 0.9035 0.8148

Recall 0.9213 0.8581 0.9472 0.8432 0.7311

Precision 0.9882 0.9916 0.9399 0.9471 0.8565

AUC 0.9869 0.9676 0.9632 0.9430 0.8748

The graph underscores the effectiveness of the XGBoost model in minimiz-

ing error rates, which correlates with the high predictive accuracy and model

reliability for our ETD in smart homes.

5.14.2 Model Performance on Synthetic Attack Data

For Home A, when evaluated on simulated synthetic attack data, for example,

the SYN-XGB model stands out with an impressive AUC score of 98.76%. It

achieves a high F1-score of 94.92%, indicating robust performance in capturing

fraudulent electricity consumption patterns as illustrated in Table 5.4. SYN-RF

and SYN-MLP also exhibit strong AUC scores of 96.47% and 96.56% respectively,

indicating their efficacy in identifying anomalies. It is noteworthy that SYN-MLP
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has a slightly higher AUC score metric performance detection rate of 0.06% than

SYN-RF and also has a higher F1-score of 97.23% which is 2.31% and 6.10%

performance rate better than SYN-XGB and SYN-RF respectively in Home A

simulated attack only, suggesting a trade-off between precision and recall.

Figure 5.25: Perfomance across homes for the SYNBDM

In contrast, the legacy unsupervised models(LUM), UN-MLP-AE, UN-1D-

CONV-AE, and UN-IF, struggle to match the performance of supervised models

on synthetic data. UN-MLP-AE achieves an aggregated AUC score of 76.18% and

61.74%, while UN-1D-CONV-AE (69.77% and 62.61%), and UN-IF (64.28%), for

simulated and real attacks for all homes, lag further behind, respectively as de-

picted in Table
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Figure 5.26: Perfomance across homes for the LUM

5.14.3 Model Performance on Real Attack Data

When assessing the same models on real attack data, for example in Home A,

SYN-XGB continues to excel with an AUC score of 98.91%, reaffirming its ca-

pability to detect electricity theft accurately. Similarly, SYN-RF and SYN-MLP

maintain strong AUC scores of 97.02% and 96.68%, respectively. These mod-

els also exhibit competitive F1-scores, indicating their reliability in real-world

scenarios.

In contrast, the LUM’s performance drops significantly when faced with a real

attack scenario. UN-MLP-AE, UN-1D-CONV-AE, and UN-IF struggle to achieve

AUC scores above 60%, signaling their limitations in detecting electricity theft
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in practical settings.

This Chapter centered on developing and evaluating machine learning models

for Electricity Theft Detection (ETD), focusing on binary classification via a Bi-

nary Discriminator model. The model’s effectiveness was assessed in two phases:

training and testing, using both simulated and real datasets. This approach en-

sured the model’s generalizability to real-world scenarios.

The chapter delved into the mathematical framework underpinning the primary

models employed in this study: XGBoost, Random Forest (RF), and Multilayer

Perceptron (MLP). Each model’s objective function and prediction mechanisms

were outlined, employing Maximum Likelihood Estimation (MLE) for optimizing

their respective objective functions.

Comprehensive performance evaluations were conducted, showcasing the mod-

els’ effectiveness in ETD. This was achieved through detailed analyses using Re-

ceiver Operating Characteristic (ROC) curves and confusion matrices, which pro-

vided insights into each model’s discriminative ability and detailed classification

performance.

Key findings from the evaluations included:

• The XGBoost model’s high accuracy and low false positive rate, making it

a standout performer.

• The Random Forest model also demonstrated high True Negative rates,

although with a slightly lower True Positive rate compared to XGBoost.

• The MLP model showed high accuracy in benign case identification, with

slightly lower accuracy in attack case detection.

Furthermore, the chapter addressed the challenge of training and test errors,

emphasizing the importance of balancing these errors to avoid overfitting or un-

derfitting. Techniques like GridSearchCV for hyperparameter tuning and cross-

validation were employed to refine the models further.

In conclusion, the chapter reaffirmed the potential of machine learning mod-

els in effectively detecting and classifying electricity theft, highlighting their role

in enhancing smart home security against such fraudulent activities. The ex-

ploration of different models and their performance metrics offered a thorough
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understanding of their capabilities and limitations, setting a foundation for future

advancements in ETD technologies.

5.15 Differences Between Consumption and Prevention in

Smart Home Electricity Management

In the context of electricity theft detection within smart homes, the terms ”con-

sumption” and ”prevention” hold distinct significances that are pivotal to the

management and protection of electrical resources:

• Consumption: Refers to the electrical energy usage by various appliances

and systems within the smart home. Monitoring and analyzing consump-

tion patterns serve multiple objectives, such as optimizing efficiency, cal-

culating costs, and identifying anomalous behaviors. Devices like smart

meters and home energy management systems are essential for tracking the

electricity usage across different appliances, their consumption rates, and

timing. This information is integral to establishing baseline consumption

patterns within a household.

• Prevention (Electricity Theft): Entails adopting measures and strate-

gies aimed at curtailing unauthorized access or theft of electricity. Various

methodologies for electricity theft include meter tampering, meter bypass-

ing, and infiltrating smart meter systems. Prevention strategies encompass:

– Technical Measures: Implementation of advanced security features

within smart meters, including tamper detection sensors, encrypted

data transmission, and robust authentication protocols.

– Data Analysis and Anomaly Detection: Utilizing consumption data

to identify unusual or suspicious patterns indicative of potential theft,

such as unaccountable surges in electricity use or consumption patterns

that deviate from the household’s typical profile.

– Regular Inspections and Audits: Conducting physical checks on the

meters and electrical installations to uncover any tampering or unau-

thorized modifications.
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5.15.1 The Consumption Pilot Approach

In the realm of smart homes and smart grids, the interplay between electricity

consumption and theft prevention is paramount. By meticulously analyzing elec-

tricity consumption data, we can not only streamline energy management but

also significantly enhance our ability to thwart electricity theft. It is through

the meticulous examination of normal consumption patterns that anomalies in-

dicative of theft emerge more conspicuously, enabling timely investigation and

intervention.

The concept of a “consumption pilot approach” is pivotal in this discourse. It

denotes a preliminary study or trial endeavor designed to gain insights into, mon-

itor, and refine electricity usage. Such approaches are instrumental in evaluating

the efficacy of novel technologies, methodologies, or behavioral strategies prior to

their widespread implementation. This methodology is integral to our Electricity

Theft Detection (ETD) model, which leverages data-driven insights to pinpoint

and mitigate unauthorized electricity usage effectively.

5.16 Analysis of Economic Implications

5.16.1 Economic Implication of SYNBDM Deployment

The deployment of a Synthetic Binary Discriminator Model (SYNBDM) in smart

homes for electricity theft detection and appliance usage authentication can have

several economic implications, both for the stakeholders directly involved (such

as utility companies, homeowners, and technology providers) and for the broader

economy. These implications can vary widely depending on the scale of deploy-

ment, the effectiveness of the technology, and the specific context in which it is

implemented. Here are some key economic implications to consider:

5.16.2 For Utility Companies and Electricity Providers

• Reduction in Electricity Theft: By accurately identifying and mitigat-

ing instances of electricity theft, utility companies can significantly reduce

losses. This improvement in revenue protection can translate to better fi-

nancial health for these companies.
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• Investment Costs: The initial outlay for developing, testing, and deploy-

ing SYNBDM systems can be substantial. However, if the system effectively

reduces theft, the long-term savings could outweigh these costs.

• Operational Efficiency: Implementing advanced detection systems can

streamline operations, reduce the need for manual inspections, and decrease

the incidence of false theft accusations, leading to cost savings.

5.16.3 For Homeowners and Consumers

• Increased Energy Costs: The cost of implementing and maintaining

such a system may be passed on to consumers in the form of higher energy

rates or service charges. However, if the system effectively deters theft, it

could contribute to a more equitable distribution of costs and potentially

lower rates over the long term.

• Privacy and Security Concerns: There could be additional costs related

to ensuring data privacy and security, especially given the sensitive nature

of biometric data like fingerprints.

5.16.4 For Technology Providers

• Market Opportunities: The development and deployment of SYNBDM

systems open new markets for technology providers specializing in smart

home devices, biometric authentication, and energy management systems.

This can lead to increased revenues and opportunities for innovation.

• Research and Development Costs: Providers will incur costs in re-

searching, developing, and continuously improving SYNBDM technologies.

These costs are investments in the competitive advantage of their solutions.

5.16.5 For the Broader Economy

• Innovation and Job Creation: The push towards advanced energy man-

agement solutions like SYNBDM can stimulate innovation, leading to the

creation of new jobs in technology, engineering, and data analysis sectors.
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• Energy Efficiency and Sustainability: By reducing electricity theft and

promoting efficient appliance use, SYNBDM deployment can contribute to

broader goals of energy efficiency and sustainability. This can have long-

term positive effects on the economy by conserving resources and reducing

environmental impact.

• Regulatory and Legal Framework: Implementing such systems may

require new regulations and legal frameworks to address issues like privacy,

data security, and consumer protection, potentially leading to costs associ-

ated with compliance and enforcement.

5.16.6 Economic Equity

• Access and Affordability: There’s a risk that the costs associated with

advanced systems like SYNBDM could exacerbate economic disparities,

making smart home technologies less accessible to lower-income households.

The economic implications of deploying SYNBDM in smart homes are mul-

tifaceted, involving trade-offs between upfront costs and long-term benefits, as

well as considerations of privacy, equity, and sustainability. The balance of these

implications would depend on the effectiveness of the technology, regulatory en-

vironment, and how the costs and benefits are distributed among stakeholders.

5.17 Chapter Summary

The chapter presents an in-depth exploration of methodologies for detecting elec-

tricity theft in smart homes, significantly expanding the scope of previous research

by incorporating a diverse range of attack scenarios. This expansion allows for

more comprehensive detection capabilities, including both classified and unclas-

sified attacks.

Central to the chapter is the sophisticated approach to data preprocessing,

tailored to accommodate various attack scenarios such as baseload, weakload,

and other unclassified attacks. This preprocessing is pivotal for preparing the

dataset for effective model training and ensuring accurate attack detection.
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A key innovation in the chapter is the implementation of data augmentation

using circular shifting. This technique addresses the limitation of insufficient be-

nign records, thereby enhancing the volume and diversity of the training dataset.

As a result, the robustness of the Electricity Theft Detection (ETD) framework

is significantly improved.

The chapter also delves into the integration of model selection and feature

selection techniques, crucial for optimizing the machine learning pipeline for ETD.

Employing Maximum Likelihood Estimation for parameter optimization ensures

that the models are not only well-calibrated but also highly effective in practical

scenarios.

Furthermore, the chapter provides insights into the specific features of the

appliance consumption dataset. These features are instrumental in training the

models to accurately differentiate between normal and anomalous consumption

patterns, thus enhancing the accuracy and reliability of the ETD system.

Also, the methodologies and approaches detailed in this chapter provide a

comprehensive and advanced framework for electricity theft detection in smart

homes. Through the integration of diverse attack scenarios, innovative data aug-

mentation techniques, and careful model and feature selection, the chapter lays

out a robust and efficient system capable of effectively safeguarding smart homes

against electricity theft.
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6. Discussion and Future Work

6.1 Discussion

In this study, we explored the complexities inherent in electricity theft detection

(ETD) within smart home environments, focusing on the use of aggregated power

consumption patterns of appliances. A critical challenge in ETD is the variability

of appliance consumption patterns, which can be influenced by a range of non-

attack factors, such as temporary electrical spikes, periodic variations, or even

permanent changes in usage habits. Such variations pose a risk of false positives in

theft detection systems, where benign changes in power usage might be mistakenly

identified as malicious activities.

Our synthetic binary discriminator model (SYNBDM) is designed to address

these challenges effectively. It incorporates mechanisms to differentiate between

short-term unusual behaviors and actual theft incidents. For instance, a transient

spike in power usage, which may occur due to atypical yet benign activities, is

not immediately flagged as an anomaly. This approach significantly reduces the

likelihood of false alarms triggered by such short-term changes. The utility of

aggregated power base consumption patterns in this context cannot be overstated,

as it plays a pivotal role in reducing false positives. By only reporting suspicious

behavior when both the smart meters and the XGB model concurrently detect an

anomaly, the system ensures a higher degree of accuracy. Consequently, a single

appliance’s unusual yet non-malicious behavior does not trigger a false alarm

unless another appliance is simultaneously compromised, indicating a potential

theft scenario.

Furthermore, to refine the system’s accuracy, we emphasize the importance of

calculating the false positive rate (FPR) and adjusting the sensitivity parame-

ter, denoted as’m’. This adjustment is crucial, as it allows the system to avoid
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overreacting to sporadic or isolated incidents of unusual power usage. By config-

uring the system to flag theft only upon the recurrence of suspicious behavior,

we significantly enhance the reliability of our ETD model.

The application of uniform manifold approximation and projection (UMAP)

for clustering adds another layer of sophistication to our approach. This tech-

nique enables the algorithm to discern and adapt to various distribution patterns

in the dataset, allowing for the training of separate classifiers tailored to specific

usage patterns. Such adaptation is particularly beneficial in accounting for the

differences in appliance usage between weekdays and weekends or across differ-

ent seasons. If time-dependent patterns are observed within these clusters, the

corresponding classifiers are labeled accordingly, ensuring that new instances are

evaluated using the most relevant classifier for that specific time frame.

Lastly, our model is adept at identifying and adjusting to permanent changes

in consumption patterns, such as those resulting from new appliances or shifts

in weather conditions. This adaptability is key to maintaining the long-term

effectiveness of the SYNBDM, ensuring that it remains reliable despite evolving

household dynamics.

Our study not only addresses the immediate challenges of detecting electricity

theft in smart homes but also lays the foundation for future advancements in

this field. By considering a wide array of factors that influence power consump-

tion and employing advanced analytical techniques, our approach demonstrates

a comprehensive and robust strategy for ETD.

6.1.1 Summary of our findings

This comprehensive study was dedicated to advancing the field of Electricity

Theft Detection (ETD) in smart home environments, utilizing sophisticated ma-

chine learning models. The primary focus was on devising and validating models

capable of discerning irregularities in electricity usage patterns, a key indicator

of potential theft.

142



6.1.2 Model Development and Evaluation

At the core of our research, we developed a Binary Discriminator model for binary

classification tasks. This model was rigorously trained and tested using both

simulated and real datasets to ensure its efficacy and adaptability to real-world

scenarios.

6.1.3 Machine Learning Algorithms

The investigation employed various machine learning algorithms, including XG-

Boost, Random Forest (RF), and Multilayer Perceptron (MLP). Each model was

meticulously configured, and its performance was optimized using Maximum Like-

lihood Estimation (MLE) techniques.

6.1.4 Performance Metrics

Our evaluation process heavily relied on Receiver Operating Characteristic (ROC)

curves and confusion matrices. These tools provided a detailed analysis of each

model’s capability to differentiate between normal and anomalous electricity us-

age patterns. Particularly, the XGBoost model demonstrated exceptional accu-

racy and a low false positive rate, marking it as a notably effective tool in ETD.

6.1.5 Challenges in Model Training

One of the significant challenges we addressed was the balancing of training and

test errors to prevent overfitting or underfitting. This was achieved through

methods such as GridSearchCV for hyperparameter tuning and the inclusion of

cross-validation techniques.

6.1.6 Data Augmentation Techniques

To combat the issue of limited benign records, data augmentation strategies were

employed. This involved creating time-offset variations of the input features,

enriching the dataset, and enhancing the model’s ability to generalize across

different scenarios.
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6.1.7 Synthetic Attack Data Utilization

A novel approach in our study was the use of synthetic attack data to train the

models. This methodology allowed for a more comprehensive understanding of

possible electricity theft scenarios and aided in the development of models that

are more attuned to real-world attack patterns.

6.1.8 Legacy vs. Smart Attacks

The research distinguished between legacy attacks (e.g., Baseload, Midnight, Evil-

Twin) and smart attacks (Weakload, Peakhour). While legacy attacks were de-

tected with high accuracy, smart attacks posed more challenges, indicating the

need for further refinements in model training and data analysis techniques.

6.1.9 Future Directions

Looking ahead, the study suggests exploring additional attack types and including

varied electricity consumption patterns to enhance the models’ robustness. Fur-

thermore, considering factors such as seasonal effects and personalization through

federated learning could significantly advance the effectiveness of ETD systems.

6.1.10 Limitations of the Proposed Model

Although our models mark significant advancements in detecting electricity theft

in smart homes, it is imperative to acknowledge certain limitations that accom-

pany our current methodology.

Dependence on Data Quality and Granularity: The effectiveness of our

models is closely tied to the quality and granularity of aggregated appliance con-

sumption data. Any inadequacies in data resolution or representativeness could

potentially affect the predictive accuracy of the models.

Assumption of Consistent Consumption Patterns: Our models oper-

ate under the assumption that consumption patterns within a household remain

relatively stable over time. Significant behavioral changes or the introduction

of new appliances could alter these patterns, potentially affecting the model’s

performance until retraining occurs.
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Overfitting Risks and Model Complexity: Despite the implementation

of regularization techniques, there remains the risk of overfitting, particularly if

the model complexity is not finely calibrated.

Privacy and Ethical Considerations: Although our dataset was anonymized,

the utilization of detailed electricity consumption data raises privacy concerns.

This can be resolved using federated learning or secure multiparty computation

in smart home energy consumption monitoring[62], [44]. The potential for re-

identification or misuse of these data, even in an anonymized form, cannot be

entirely ruled out. Ensuring ongoing compliance with privacy regulations and

maintaining ethical standards for data usage are paramount.

Computational Demands and Resource Constraints: The computa-

tional complexity associated with our models, especially in terms of hyperparam-

eter tuning and processing, presents limitations in terms of resource allocation.

In future work, we plan to address these limitations knowing that embarking

on further research in these areas will contribute to the ongoing development

of robust and effective ETD systems for smart homes. As the field continues

to evolve, these challenges provide exciting avenues for future exploration and

innovation in the quest for more secure and reliable smart grids.
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7. Conclusion

Electricity theft poses a significant and widespread global challenge, leading to

elevated utility expenses, additional financial burdens on compliant consumers,

and various safety concerns. Recent advancements, including smart metering and

Internet-based software in the smart grid, have increased its vulnerability to elec-

tricity theft. However, despite these developments, utility providers continue to

face challenges in identifying and addressing complex attacks targeting the me-

tering infrastructure. Consequently, the imperative arises for the development of

an anomaly detection framework that can discern irregular electricity consump-

tion patterns indicative of non-technical loss (NTL) activities. This framework

becomes essential in combating the illicit diversion of electricity through SM.

In this concluding chapter, we encapsulate the pivotal findings gleaned from

the preceding chapters. Additionally, we offer insights into intriguing avenues

for future research, recognizing the persistent need to address the multifaceted

challenges associated with electricity theft within the context of evolving smart

grid technologies.

In this research, we introduced the SYNBDM and LUM algorithms for electric-

ity theft detection in smart homes, utilizing fine-grained appliance consumption

data to distinguish between normal and malicious usage. By employing uniform

manifold approximation and projection (UMAP) to identify varied data distribu-

tions across different homes, our algorithm effectively leverages aggregated power

consumption patterns for robust anomaly detection. Our tests on a real building

appliance dataset demonstrated high performance, even with anonymized data,

highlighting the algorithm’s capability to balance effective theft detection with

customer privacy. Though highly effective, we noted that unsupervised learning

models require further refinement to better handle the complexities of real-world

attack data. Our findings underline the potential of machine learning in enhanc-
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ing energy security and stress the importance of incorporating appliance con-

sumption patterns in electricity theft detection. This approach offers significant

benefits to both consumers and energy providers, aiming for more efficient and

secure energy management in smart homes.
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based analysis of residential demand response: Appliance use behavior, elec-

tricity tariffs, home energy management systems. Sustainable Cities and

Society, 96:104628, 2023.

[27] E. Esenogho, K. Djouani, and A. M. Kurien. Integrating artificial intelligence

internet of things and 5g for next-generation smartgrid: A survey of trends

challenges and prospect. IEEE Access, 10:4794–4831, 2022.

[28] E. R. Frederiks, K. Stenner, and E. V. Hobman. Household energy use:

Applying behavioural economics to understand consumer decision-making

and behaviour. Renewable and Sustainable Energy Reviews, 41:1385–1394,

2015.

[29] N. Group. $96 billion is lost every year to electricity theft. Online, May

2017.

[30] V. Ç. Güngör and G. P. Hancke. Industrial wireless sensor networks: Appli-

cations, protocols, and standards. Crc Press, 2013.

[31] S. K. Gunturi and D. Sarkar. Ensemble machine learning models for the

detection of energy theft. Electric Power Systems Research, 192:106904,

2021.

[32] C. Herder, M.-D. Yu, F. Koushanfar, and S. Devadas. Physical unclonable

functions and applications: A tutorial. Proceedings of the IEEE, 102(8):1126–

1141, 2014.

[33] E. G. Hertwich, S. Ali, L. Ciacci, T. Fishman, N. Heeren, E. Masanet, F. N.

Asghari, E. Olivetti, S. Pauliuk, Q. Tu, et al. Material efficiency strategies to

reducing greenhouse gas emissions associated with buildings, vehicles, and

electronics—a review. Environmental Research Letters, 14(4):043004, 2019.

[34] D. Hock. Detecting Energy Theft and Anomalous Power Usage in Smart

Meter Data. PhD thesis, University of Plymouth, 2020.

153



[35] M. D. Hossain, H. Inoue, H. Ochiai, D. Fall, and Y. Kadobayashi. Lstm-based

intrusion detection system for in-vehicle can bus communications. IEEE

Access, 8:185489–185502, 2020.

[36] Y. Huang and Q. Xu. Electricity theft detection based on stacked sparse

denoising autoencoder. International Journal of Electrical Power & Energy

Systems, 125:106448, 2021.

[37] S. Hussain, M. W. Mustafa, T. A. Jumani, S. K. Baloch, H. Alotaibi, I. Khan,

and A. Khan. A novel feature engineered-catboost-based supervised machine

learning framework for electricity theft detection. Energy Reports, 7:4425–

4436, 2021.

[38] Y. Ishimaki, S. Bhattacharjee, H. Yamana, and S. K. Das. Towards privacy-

preserving anomaly-based attack detection against data falsification in smart

grid. In 2020 IEEE International Conference on Communications, Control,

and Computing Technologies for Smart Grids (SmartGridComm), pages 1–6.

IEEE, 2020.

[39] R. Jiang, R. Lu, Y. Wang, J. Luo, C. Shen, and X. Shen. Energy-theft

detection issues for advanced metering infrastructure in smart grid. Tsinghua

Science and Technology, 19(2):105–120, 2014.

[40] A. Jindal, A. Dua, K. Kaur, M. Singh, N. Kumar, and S. Mishra. Decision

tree and svm-based data analytics for theft detection in smart grid. IEEE

Transactions on Industrial Informatics, 12(3):1005–1016, 2016.

[41] P. Jokar, N. Arianpoo, and V. C. Leung. Electricity theft detection in ami

using customers’ consumption patterns. IEEE Transactions on Smart Grid,

7(1):216–226, 2015.

[42] S. Joshi, R. Li, S. Bhattacharjee, S. K. Das, and H. Yamana. Privacy-

preserving data falsification detection in smart grids using elliptic curve

cryptography and homomorphic encryption. In 2022 IEEE International

Conference on Smart Computing (SMARTCOMP), pages 229–234. IEEE,

2022.

154



[43] N. Kambule, K. Yessoufou, and N. Nwulu. Formulating best practice rec-

ommendations for prepaid electricity meter deployment in soweto, south

africa–capitalising on the developed-world’s experiences. Journal of Public

Affairs, 22(4):e2646, 2022.

[44] H. M. Khan, A. Khan, F. Jabeen, A. Anjum, and G. Jeon. Fog-enabled secure

multiparty computation based aggregation scheme in smart grid. Computers

& Electrical Engineering, 94:107358, 2021.

[45] N. A. Kipreos. Nonintrusive load identification & monitoring: techniques

and applications for smart meters. Pontificia Universidad Catolica de Chile

(Chile), 2011.

[46] V. B. Krishna, K. Lee, G. A. Weaver, R. K. Iyer, and W. H. Sanders. F-deta:

A framework for detecting electricity theft attacks in smart grids. In 2016

46th Annual IEEE/IFIP international conference on dependable systems and

networks (DSN), pages 407–418. IEEE, 2016.

[47] A. Kusiak. Smart manufacturing must embrace big data. Nature,

544(7648):23–25, 2017.

[48] R. Li, S. Bhattacharjee, S. K. Das, and H. Yamana. Look-up table based

fhe system for privacy preserving anomaly detection in smart grids. In

2022 IEEE International Conference on Smart Computing (SMARTCOMP),

pages 108–115. IEEE, 2022.

[49] R. Li, Y. Ishimaki, and H. Yamana. Fully homomorphic encryption with

table lookup for privacy-preserving smart grid. In 2019 IEEE International

Conference on Smart Computing (SMARTCOMP), pages 19–24. IEEE, 2019.

[50] L. Liu, Y. Peng, S. Wang, M. Liu, and Z. Huang. Complex activity recog-

nition using time series pattern dictionary learned from ubiquitous sensors.

Information Sciences, 340:41–57, 2016.

[51] A. Llaria, J. Dos Santos, G. Terrasson, Z. Boussaada, C. Merlo, and

O. Curea. Intelligent buildings in smart grids: A survey on security and

privacy issues related to energy management. Energies, 14(9):2733, 2021.

155



[52] J. Lloret, J. Tomas, A. Canovas, and L. Parra. An integrated iot architecture

for smart metering. IEEE Communications Magazine, 54(12):50–57, 2016.

[53] A. L’Heureux, K. Grolinger, and M. A. Capretz. Transformer-based model

for electrical load forecasting. Energies, 15(14):4993, 2022.

[54] R. Maes, V. van der Leest, E. van der Sluis, and F. Willems. Secure key

generation from biased pufs: extended version. Journal of Cryptographic

Engineering, 6:121–137, 2016.

[55] S. Makonin, B. Ellert, I. V. Bajić, and F. Popowich. Electricity, water, and

natural gas consumption of a residential house in canada from 2012 to 2014.

Scientific data, 3(1):1–12, 2016.

[56] J. F. Martins, A. G. Pronto, V. Delgado-Gomes, and M. Sanduleac. Smart

meters and advanced metering infrastructure. In Pathways to a smarter

power system, pages 89–114. Elsevier, 2019.

[57] P. McDaniel and S. McLaughlin. Security and privacy challenges in the

smart grid. IEEE security & privacy, 7(3):75–77, 2009.

[58] L. McInnes, J. Healy, and J. Melville. Umap: Uniform manifold ap-

proximation and projection for dimension reduction. arXiv preprint

arXiv:1802.03426, 2018.

[59] G. M. Messinis and N. D. Hatziargyriou. Unsupervised classification for non-

technical loss detection. In 2018 Power Systems Computation Conference

(PSCC), pages 1–7. IEEE, 2018.

[60] G. Micheli, E. Soda, M. T. Vespucci, M. Gobbi, and A. Bertani. Big data

analytics: an aid to detection of non-technical losses in power utilities. Com-

putational Management Science, 16(1):329–343, 2019.

[61] P. H. Mirzaee, M. Shojafar, H. Cruickshank, and R. Tafazolli. Smart grid

security and privacy: From conventional to machine learning issues (threats

and countermeasures). IEEE access, 10:52922–52954, 2022.

156



[62] P. H. Mirzaee, M. Shojafar, Z. Pooranian, P. Asef, H. Cruickshank, and

R. Tafazolli. FIDS : A Federated Intrusion Detection System for 5G Smart

Metering Network.

[63] R. R. Mohassel, A. Fung, F. Mohammadi, and K. Raahemifar. A survey on

advanced metering infrastructure. International Journal of Electrical Power

& Energy Systems, 63:473–484, 2014.

[64] A. Moradzadeh, O. Sadeghian, K. Pourhossein, B. Mohammadi-Ivatloo, and

A. Anvari-Moghaddam. Improving residential load disaggregation for sus-

tainable development of energy via principal component analysis. Sustain-

ability, 12:3158, 2020.

[65] M. Nabil, M. Ismail, M. Mahmoud, M. Shahin, K. Qaraqe, and E. Serpedin.

Deep learning-based detection of electricity theft cyber-attacks in smart grid

ami networks. In Deep learning applications for cyber security, pages 73–102.

Springer, 2019.

[66] J. Nagi, K. S. Yap, S. K. Tiong, S. K. Ahmed, and M. Mohamad. Non-

technical loss detection for metered customers in power utility using support

vector machines. IEEE transactions on Power Delivery, 25(2):1162–1171,

2009.

[67] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami.

Practical black-box attacks against machine learning. In Proceedings of the

2017 ACM on Asia conference on computer and communications security,

pages 506–519, 2017.

[68] C. H. Park and T. Kim. Energy theft detection in advanced metering infras-

tructure based on anomaly pattern detection. Energies, 13(15):3832, 2020.

[69] R. Punmiya and S. Choe. Energy theft detection using gradient boosting

theft detector with feature engineering-based preprocessing. IEEE Transac-

tions on Smart Grid, 10(2):2326–2329, 2019.

[70] R. Razavi and M. Fleury. Socio-economic predictors of electricity theft in

developing countries: An indian case study. Energy for Sustainable Devel-

opment, 49:1–10, 2019.

157



[71] M. H. Rehmani, M. Reisslein, A. Rachedi, M. Erol-Kantarci, and

M. Radenkovic. Integrating renewable energy resources into the smart grid:

Recent developments in information and communication technologies. IEEE

Transactions on Industrial Informatics, 14(7):2814–2825, 2018.

[72] K. Ren, T. Zheng, Z. Qin, and X. Liu. Adversarial attacks and defenses in

deep learning. Engineering, 6(3):346–360, 2020.

[73] J. Rodrigues. Outliers make us go mad: Univariate outlier detection. http:

//tinyurl.com/2vnz7nvb, 2018. [Online; accessed 20-July-2023].

[74] M. S. Saeed, M. W. Mustafa, N. N. Hamadneh, N. A. Alshammari, U. U.

Sheikh, T. A. Jumani, S. B. A. Khalid, and I. Khan. Detection of non-

technical losses in power utilities—a comprehensive systematic review. En-

ergies, 13(18):4727, 2020.

[75] P. Schavemaker and L. Van der Sluis. Electrical power system essentials.

John Wiley & Sons, 2017.

[76] O. Siddiqui. The green grid: Energy savings and carbon emissions reductions

enabled by a smart grid. Online, 2008.

[77] S. Singh and A. Yassine. Big data mining of energy time series for behavioral

analytics and energy consumption forecasting. Energies, 11:452, 2018.

[78] S. K. Singh, K. Khanna, R. Bose, B. K. Panigrahi, and A. Joshi. Joint-

transformation-based detection of false data injection attacks in smart grid.

IEEE Transactions on Industrial Informatics, 14(1):89–97, 2017.

[79] G. Strbac, N. Hatziargyriou, J. P. Lopes, C. Moreira, A. Dimeas, and D. Pa-

padaskalopoulos. Microgrids: Enhancing the resilience of the european mega-

grid. IEEE Power and Energy Magazine, 13(3):35–43, 2015.

[80] A. Takiddin, M. Ismail, U. Zafar, and E. Serpedin. Variational auto-encoder-

based detection of electricity stealth cyber-attacks in ami networks. In 2020

28th European Signal Processing Conference (EUSIPCO), pages 1590–1594.

IEEE, 2021.

158

http://tinyurl.com/2vnz7nvb
http://tinyurl.com/2vnz7nvb


[81] A. Z. Tan, H. Yu, L. Cui, and Q. Yang. Towards personalized federated

learning. IEEE Transactions on Neural Networks and Learning Systems,

2022.

[82] H. Tatsat, S. Puri, and B. Lookabaugh. Machine Learning and Data Science

Blueprints for Finance. O’Reilly Media, 2020.

[83] Tenaga Nasional Berhad. Tenaga nasional berhad annual report 2006. TNB,

2006.

[84] M. Toshpulatov and N. Zincir-Heywood. Anomaly detection on smart meters

using hierarchical self organizing maps. In 2021 IEEE Canadian Conference

on Electrical and Computer Engineering (CCECE), pages 1–6. IEEE, 2021.

[85] U.S. Department of Energy. The netl modern grid strategy powering our

21st-century economy: Advanced metering infrastructure. National Energy

Technology Laboratory, February 2008.

[86] U.S. Department of Energy. Communications requirements of smart grid

technologies. National Energy Technology Laboratory, October 2010.

[87] E. Villar-Rodriguez, J. Del Ser, I. Oregi, M. N. Bilbao, and S. Gil-Lopez.

Detection of non-technical losses in smart meter data based on load curve

profiling and time series analysis. Energy, 137:118–128, 2017.

[88] H. Wang and W. Yang. An iterative load disaggregation approach based on

appliance consumption pattern. Applied Sciences, 8:542, 2018.

[89] J. Wang. Deep learning on smart meter data: Non-intrusive load monitoring

and stealthy black-box attacks. 2020.

[90] W. Wang and Z. Lu. Cyber security in the smart grid: Survey and challenges.

Computer networks, 57(5):1344–1371, 2013.

[91] S. Wilhelm and J. Kasbauer. Exploiting smart meter power consumption

measurements for human activity recognition (har) with a motif-detection-

based non-intrusive load monitoring (nilm) approach. Sensors, 21:8036, 2021.

159



[92] Y. Yan, Y. Qian, H. Sharif, and D. Tipper. A survey on smart grid commu-

nication infrastructures: Motivations, requirements and challenges. IEEE

communications surveys & tutorials, 15(1):5–20, 2012.

[93] S. C. Yip. Anomaly detection frameworks for identifying energy theft and

meter irregularities in smart grids/Yip Sook Chin. PhD thesis, Universiti

Malaya, 2019.

[94] J. Zhang, X. Chen, M. Ni, T. Wang, J. Luo, et al. A security scheme

for intelligent substation communications considering real-time performance.

Journal of Modern Power Systems and Clean Energy, 7(4):948–961, 2019.

[95] X. Zhang, T. Kato, and T. Matsuyama. Learning a context-aware personal

model of appliance usage patterns in smart home. 2014 IEEE Innovative

Smart Grid Technologies - Asia (ISGT ASIA), 2014.

[96] C. Zhao, D. Wu, J. Huang, Y. Yuan, H.-T. Zhang, R. Peng, and Z. Shi.

Boosttree and boostforest for ensemble learning. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 2022.

[97] J. Zheng, D. W. Gao, and L. Lin. Smart meters in smart grid: An overview.

In 2013 IEEE green technologies conference (GreenTech), pages 57–64. IEEE,

2013.

[98] S. Zhou and M. A. Brown. Smart meter deployment in europe: A compara-

tive case study on the impacts of national policy schemes. Journal of cleaner

production, 144:22–32, 2017.

[99] A. Zoha, A. Gluhak, M. A. Imran, and S. Rajasegarar. Non-intrusive load

monitoring approaches for disaggregated energy sensing: A survey. Sensors,

12(12):16838–16866, 2012.

160



Publication List

Journals

1. Olufemi, Abiodun Abraham, Hideya Ochiai, Md Delwar Hossain, Yuzo

Taenaka and Youki Kadobayashi. “Electricity Theft Detection for Smart

Homes: Harnessing the Power of Machine Learning with Real and Synthetic

Attacks.” IEEE Access, 12 (2024): 240204-000239.

International Conferences

1. Olufemi, Abiodun Abraham, Hideya Ochiai, Md Delwar Hossain, Yuzo Tae-

naka, Youki Kadobayashi, ”Electricity Theft Detection for Smart Homes

with Knowledge-Based Synthetic Attack Data”, In 2023 IEEE PES Gen-

eral Meeting Student Poster Competition, July 2023.

2. Olufemi, A. Abraham, Hideya Ochiai, Md Delwar Hossain, Yuzo Taenaka,

Youki Kadobayashi, ”Electricity Theft Detection for Smart Homes with

Knowledge-Based Synthetic Attack Data”, In Proceedings of 19th IEEE In-

ternational Conference on Factory Communication Systems (WFCS 2023),

April 2023.

3. Olufemi, A. Abraham, Hideya Ochiai, Kabid Hassan Shibly, Md Delwar

Hossain, Yuzo Taenaka, Youki Kadobayashi, ”Unauthorized Power Usage

Detection in Disaggregated Smart Meter Home Network”, In IEEE Future

Networks World Forum (FNWF’2022), pp. 688-693, October 2022.

161


	Introduction
	Problem Statement
	Research Objectives and Contributions
	Research Objectives
	Research Contributions

	Research Scope and Limitation
	Dissertation Layout

	Literature Review
	Preliminaries
	Smart Grid Fundamentals
	Overview of AMI
	Architectural Elements of AMI
	Smart Metering Devices
	Networking Framework for Advanced Metering Infrastructure
	Operations and Advantages of AMI
	Security Concerns and Challenges in AMI
	Energy Theft: A Multi-Billion Dollar Concern

	Electricity Losses in Distribution Systems
	Technical Losses (TLs)
	Non-Technical Losses (NTLs)
	Addressing Energy Theft

	Classification of Attacks in Conventional and Smart Grid Systems
	Physical Attacks
	Cyber Attacks
	Data Attacks

	Strategies for Energy Theft
	Approaches to Energy Theft in High Voltage Meters
	NTL Detection Methods
	State-based Detection:
	Game-Theoretic Approaches in NTL Detection
	Approaches in Classification-Based NTL Detection

	Advances in Non-Intrusive Load Monitoring
	Evaluating Machine Learning
	Model Performance Metrics

	Chapter Summary and Overview

	Unauthorized Power Usage Detection (UPUD) System
	Introduction
	Related Work
	AMPds2 Dataset
	Dataset Preliminary Preprocessing

	Modeling Attack Scenarios
	False Appliance Injection Attack Scenarios

	GB-based UPUD model on smart meter disaggretated data
	Proposed Gradient Boosting Classifier Algorithm
	Classifier Training Process
	Proposed Machine Learning Approach for Training NIALM

	Experiment results and Performance Evaluation
	Discussion

	Chapter Summary

	Electricity Theft Detection for Smart Homes with Knowledge-Based Synthetic Attack Data (KBSAD) Framework
	Introduction
	Related Work
	Electricity Theft Attacks in Smart Homes
	Attack Model
	Attack Scenarios

	Electricity Theft Detection with Synthetic Attack Data
	Multiclass classification approach

	Dataset for Electricity Theft Detection
	Overview
	Data Profiles
	Attack Impact

	Evaluation
	Experiment Settings
	Performance Overview
	Performance by Attack Class

	Discussion 
	Chapter Summary

	Electricity Theft Detection for Smart Homes: Harnessing the Power of Machine Learning with Real and Synthetic Attacks
	Introduction
	Related Work
	Attacks Model Beyond The Distribution Board
	Knowledge-Based Attack Simulation Framework
	Attack Data Generation
	Data Labeling and Preprocessing
	Attack Classification

	Dataset for electricity theft detection
	Data Collection
	Overview of the Feature Selection
	Dataset preprocessing for binary classification

	Data preparation
	Data anonymization
	Normalization
	Framework for binary class from multi-class attack scenarios
	Data Augmentation 
	Circular Shifting
	Feature Vector (X) and Label (Y)
	UTokyo Data - Real Attack Data

	Synthetic Binary Discriminator Model (SYNBDM)
	Proposed models Characteristics overview
	XGBoost (XGB)
	Random Forest (RF)
	Multi-Layer Perceptron (MLP)
	Maximum Likelihood Estimation (MLE)

	Legacy unsupervised model (LUM)
	ETA Based Autoencoder Detection Algorithm
	Training Phase
	Threshold Determination
	Testing Phase

	Experiments Results and Performance Evaluation
	Model Performance by ROC and Confusion Matrices
	Model Training and test error
	Model selection
	Trade-off between training and test errors

	Privacy Concerns and Model Development
	Privacy Concerns in Smart Home Environments

	Appliance Authentication Methods
	Authentication of Appliance
	Appliance Signature Analysis
	Smart Meter Data Utilization
	Integration with Home Automation Systems
	Real-Time Monitoring and Authentication Checks
	Machine Learning for Anomaly Detection
	User Interaction and Feedback
	Security and Privacy Considerations
	Physical Fingerprint Appliances Authentication.
	Appliance Authentication Using Physically Unclonable Functions
	Advantages of Using PUFs with SYNBDM
	Authentication without Biometrics
	Privacy Concern Comparison of Recent Studies on ETD

	Model Updates
	Implementation of the SYNBDM Algorithm

	ETD Model Implementation in AMI Using Anonymized Aggregated Appliance Consumption Data
	Data Anonymization
	Feature Engineering and Anomaly Detection
	Train Models
	Model Evaluation
	Visualizations of the Anonymized Dataset

	Model Performance Comparison
	Comparison with Benchmark Models
	Model Performance on Synthetic Attack Data
	Model Performance on Real Attack Data

	Differences Between Consumption and Prevention in Smart Home Electricity Management
	The Consumption Pilot Approach

	Analysis of Economic Implications
	Economic Implication of SYNBDM Deployment
	For Utility Companies and Electricity Providers
	For Homeowners and Consumers
	For Technology Providers
	For the Broader Economy
	Economic Equity

	Chapter Summary

	Discussion and Future Work
	Discussion
	Summary of our findings
	Model Development and Evaluation
	Machine Learning Algorithms
	Performance Metrics
	Challenges in Model Training
	Data Augmentation Techniques
	Synthetic Attack Data Utilization
	Legacy vs. Smart Attacks
	Future Directions
	Limitations of the Proposed Model


	Conclusion
	Acknowledgements
	References
	Publication List

