
Doctoral Dissertation

A study on a trade-off between efficiency and
reliability in weakly Byzantine gathering

algorithms for mobile agents

Jion Hirose
Program of Information Science and Engineering

Graduate School of Science and Technology
Nara Institute of Science and Technology

Supervisor: Michiko Inoue
Dependable System Lab. (Division of Information Science)

Submitted on January 30, 2024

A Doctoral Dissertation
submitted to Graduate School of Information Science,

Nara Institute of Science and Technology
in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Jion Hirose

Thesis Committee:
Supervisor Michiko Inoue

(Professor, Division of Information Science)
Shoji Kasahara
(Professor, Division of Information Science)
Fukuhito Ooshita
(Adjunct Professor, Division of Information Science)
Junya Nakamura
(Associate Professor, Toyohashi University of Technology)
Ryota Eguchi
(Assistant Professor, Division of Information Science)

A study on a trade-off between efficiency and
reliability in weakly Byzantine gathering

algorithms for mobile agents∗

Jion Hirose

Abstract

In recent years, distributed systems, comprising many interconnected com-
puters, have become explosively popular. These systems require fault tolerance
and speed enhancement to maintain efficient operation, even when some comput-
ers fail. As one of the systems satisfying this requirement, systems using mobile
agents have emerged. The agents are software programs that autonomously move
among nodes, and they can operate the system efficiently by cooperating. One
of the most studied cooperating behaviors is gathering to make the agents, which
are initially placed at arbitrary locations in the system and can only communi-
cate with other agents at the same node, meet at a single node and declare the
termination at the same time. After all agents gather, they can efficiently com-
municate and coordinate for future tasks. In this context, one major challenge is
the gathering in a situation where some agents may fail. This is especially sig-
nificant when considering the impact of agent faults on the overall functionality
and efficiency of the system.

This dissertation focuses on the gathering in the presence of Byzantine agents,
each of which causes Byzantine faults. Byzantine faults are known as the most
severe among the various faults of agents because Byzantine agents behave mali-
ciously. As an algorithm tolerates Byzantine agents, the existing fastest algorithm
can tolerate any number of Byzantine agents, but it still requires significant time

∗Doctoral Dissertation, Graduate School of Information Science, Nara Institute of Science
and Technology, NAIST-IS-DD2121032, January 30, 2024.

i

complexity. This dissertation explores the possibility of reducing time complex-
ity by assuming that non-Byzantine agents are the majority in the system, given
that, in practice, the incidence of agent faults is not typically high. We pro-
vide two efficient algorithms for scenarios with O(f 2) and O(f) non-Byzantine
agents, where f is the number of Byzantine agents. These algorithms create
groups comprising a sufficient number of non-Byzantine agents, utilizing these
groups to reduce time to achieve gathering. Additionally, the second algorithm
saves on the number of non-Byzantine agents by using a new technique to reach
a consensus on the collected information. To reach consensus, the agents simu-
late a Byzantine consensus algorithm for synchronous message-passing systems
on agent systems. From these results, trade-offs between reliability and efficiency
in gathering problems are indicated.

Keywords:

Distributed algorithms, Fault tolerance, Mobile agents, Gathering, Byzantine
environments

ii

Contents

I Introduction 1

1. Background 1

2. Overview of This Dissertation 2

3. Related Works 4

4. Organization of This Dissertation 10

II Model and Problem Definitions 11

1. Model 11
1.1 Agent system . 11
1.2 Agents . 11
1.3 Byzantine agents . 12

2. Problem 13

III Preliminaries 14

1. Exploration Procedure 14

2. Extended Label 14

3. Rendezvous Procedure 14

4. Parallel Consensus Algorithm in Byzantine Synchronous
Message-Passing Systems 15
4.1 Model . 15
4.2 Parallel Byzantine Consensus Problem 16
4.3 Parallel Byzantine Consensus . 17
4.4 Requirement for Simulation . 17

iii

IV Gathering despite O(
√
k) Byzantine Agents 18

1. Introduction 18

2. Byzantine Gathering Algorithm with Non-Simultaneous Termi-
nation 19
2.1 Overview . 19
2.2 Details . 21

2.2.1 CollectID stage . 24
2.2.2 MakeGroup stage . 25
2.2.3 Gather stage . 29

2.3 Correctness and Complexity . 32

3. Byzantine Gathering Algorithm with Simultaneous Termination 41

4. Summary 46

V Gathering despite O(k) Byzantine Agents 47

1. Introduction 47

2. Byzantine Gathering Algorithm with Non-Simultaneous Termi-
nation 48
2.1 Overview . 48
2.2 Algorithms . 50

2.2.1 Idea of the Algorithm to Create a Reliable Group 51
2.2.2 Details of the Algorithm for Creating a Reliable Group . . 52
2.2.3 Idea of the Algorithm to Gather 64
2.2.4 Details of the Algorithm to Gather 65

2.3 Correctness and Complexity Analysis 67
2.3.1 Creation of Reliable Groups 68
2.3.2 Gathering with Non-simultaneous Termination 84

3. Byzantine Gathering Algorithm with Simultaneous Termination100

iv

4. Summary 103

VI Discussion 104

VII Conclusion 106

Acknowledgements 108

References 109

Publication list 113

v

List of Figures

1 Stage flow of Algorithm ByzantineGathering. 23
2 Example execution of the algorithm by good agents ai, aj, and ak. 24
3 Stage flow of Algorithm MakeReliableGroup (Upper: Starting this

algorithm, Lower: Starting AgreeID stage). 55
4 Gathering flow of Algorithm ByzantineGathering. 66
5 Example of the execution of rendezvous procedures by reliable

groups RG and RGmin and cycles by good agents afc and aec. . . 86

List of Tables

1 A summary of the gathering algorithms for agents with unique IDs
in synchronous environments with weakly Byzantine agents. 2

2 A summary of the gathering algorithms for agents with unique IDs
in synchronous environments. 9

3 Variables of agent ai. 25
4 Variables of agent ai (Part 1). 53
5 Variables of agent ai (Part 2). 54

vi

Part I

Introduction

1. Background

In recent years, distributed systems, comprising many interconnected comput-
ers, have become explosively popular. These systems have become integral to
various applications, from the Internet to the Internet of Things (IoT). Their
effectiveness stems from the capability to perform complicated tasks distributed
over several nodes. However, this decentralized nature also brings challenges in
terms of fault tolerance and speed enhancement. These systems require fault tol-
erance and speed enhancement to maintain efficient operation, even when some
computers fail. Within this domain, systems using mobile agents, where these
agents are software programs autonomously moving among nodes, have emerged
as a solution satisfying these requirements. Their ability to independently explore
the network and perform tasks collaboratively makes them valuable in enhancing
system resilience and operational efficiency. Therefore, algorithms for achiev-
ing the behaviors have been studied, and prominent algorithms among these are
exploration (i.e., visiting all nodes in the system), gathering (i.e., meeting at a
single node), gossiping (i.e., sharing information among all agents), and so on.
Researchers explore the solvability of these behaviors in various situations, and
the necessary costs (time and memory required) when they are possible [14].

This dissertation considers the behavior gathering. This process involves
agents, which are initially scattered throughout the system and are limited to
communication with only others at the same node, meeting at a single node and
declaring the termination. The case where precisely two agents gather is called a
rendezvous. After all agents gather, they can effectively communicate and coordi-
nate for future tasks. Thus, this behavior has been extensively studied in various
scenarios and models [1, 30]. One critical challenge in this context is gathering in
situations where some agents may fail. These faults can occur for various reasons,
such as network disruptions, hardware malfunctions, software errors, or cracking.
This is especially significant when considering the impact of agent faults on the

1

Table 1. A summary of the gathering algorithms for agents with unique IDs in
synchronous environments with weakly Byzantine agents.

Input Condition of
#Byzantine agents Time complexity Space complexity

Dieudonné
et al. [11] n f + 1 ≤ k O(n4 ⋅Λgood ⋅X(n)) Poly. of n & Λall

Dieudonné
et al. [11] F 2F + 2 ≤ k Poly. of n & Λgood Poly. of n & Λall

Algorithm 1 N 4f 2 + 9f + 4 ≤ k O((f +Λall) ⋅X(N)) O(k ⋅Λall + log(X(N)))

Algorithm 2 N 8f + 7 ≤ k O(f ⋅Λall ⋅X(N))
O(k ⋅ (Λall + log(X(N)))
+MSREN(N,2Λgood)

+MSPCONS(S)

overall functionality and efficiency of the system.
This dissertation focuses on the gathering in the presence of Byzantine agents,

each of which causes Byzantine faults. Byzantine faults are known as the most
severe among the various faults of agents because Byzantine agents behave mali-
ciously. Therefore, we can guarantee the gathering even if the agents experience
any agent faults. As algorithms tolerate Byzantine agents, several algorithms
have already been proposed. Among them, the fastest can tolerate any num-
ber of Byzantine agents, but it still requires significant time complexity. The
dissertation proposes solutions aimed at reducing time complexity by assuming
that non-Byzantine agents are the majority in the system. While the existing
algorithms are highly effective in systems prone to agent faults, they can be ex-
cessively fault-tolerant in systems with less likelihood of agent faults, leading to
inefficiencies. By proposing these solutions, we can provide algorithms that are
appropriately tailored to the fault tolerance of the systems. This ensures task
completion efficiency.

2. Overview of This Dissertation

This dissertation aims to provide efficient algorithms that solve a gathering prob-
lem with simultaneous termination in synchronous environments, where k agents
exist in the system and include some weakly Byzantine agents behaving arbi-
trarily, except for changing their IDs. These k agents have unique IDs but not
the capability to leave information at any node, f of them are weakly Byzantine

2

agents. Each agent initially placed at an arbitrary node wakes up at a different
time and behaves in synchronous rounds. This problem requires that all agents
meet at a single node and declare the termination at the same time.

Dieudonné et al. [11] proposed the fastest algorithm in this context. If all
agents know the number n of nodes, this algorithm tolerates any number of
weakly Byzantine agents and achieves the gathering with simultaneous termina-
tion in O(n4 ⋅ Λgood ⋅X(n)) rounds, where Λgood is the length of the largest ID
among non-Byzantine agents, and X(n) is the time required for exploring any
n-nodes network (e.g., O(n) rounds for a cycle, a clique, and a tree [18] and
O(n5 logn) rounds for an arbitrary graph [31]). Some papers [25, 33] proposed
faster algorithms by setting additional assumptions. Miller et al. [25] assume
that each agent can monitor the status of other nodes and Tsuchida et al. [33]
assume that each node has dedicated memory space for each agent. However, the
behaviors of Byzantine agents are significantly limited under these assumptions,
which means these assumptions are strong.

In this dissertation, we assume that the number of Byzantine agents is small
and propose two faster gathering algorithms with different conditions on the num-
ber of non-Byzantine agents. This assumption is considered reasonable because it
is unlikely for many agents to fail in practice. Table 1 summarizes our algorithms
and the fastest existing algorithm in this context. In this table, input is the infor-
mation initially given to all agents; N is the upper bound on n; Λall is the length
of the largest ID among agents; and F is the upper bound of f . The space com-
plexity represents the amount of memory space required for an agent to achieve
the gathering, and this is measured in bits. Variable MSREN(n, label) is the space
complexity when an agent executes a rendezvous procedure calculated from n and
a natural number label, and MSPCONS(S) is the space complexity when an agent
executes a parallel Byzantine consensus algorithm calculated from an ID set S.
The first algorithm assumes that O(f 2) non-Byzantine agents exist and all agents
know the upper bound N on n, and it achieves the gathering with simultaneous
termination in O((f +Λall) ⋅X(N)) rounds, where f is the number of Byzantine
agents, and Λall is the length of the largest ID among agents. The second al-
gorithm assumes that O(f) non-Byzantine agents exist and all agents know N ,
and it achieves the gathering with simultaneous termination in O(f ⋅Λall ⋅X(N))

3

rounds. Both algorithms achieve the gathering with simultaneous termination,
similar to existing algorithms, which offer various benefits (e.g., all non-Byzantine
agents can move to the next step after confirming that all non-Byzantine agents
have met at a single node). By proposing these algorithms, trade-offs between
the ratio of non-Byzantine agents to Byzantine agents and the time complexity
in gathering problems in the presence of Byzantine agents are indicated.

3. Related Works

The gathering problem has been extensively studied, and most of these studies
concentrate on the rendezvous scenario. These studies have the gathering problem
in various environments that combine assumptions such as agent synchronization,
anonymity, the presence or absence of memory on a node (called whiteboard),
utilization of randomization, and network topology. These studies aim to examine
the solvability of the gathering problem in these environments and measure the
costs required to solve this problem, such as time, the number of moves, and
memory space, if solvable. Table 2 summarizes some of the results. Pelc [30]
conducted a comprehensive survey of deterministic gathering problems in various
environments. Similarly, Alpern et al. [1] have reviewed randomized gathering
problems in various environments. This dissertation focuses on deterministic
gathering in graphs. The rest of this section details the existing results.

Many papers for the rendezvous problem assume that agents behave in syn-
chronous rounds and whiteboards do not exist. In this scenario, agents can rec-
ognize other agents at the same node in a round, but they cannot notice other
agents passing through the same edge in a round. If agents are anonymous,
meaning they lack IDs, no algorithm can solve this problem in general graphs,
as it is impossible to break the symmetry in some graphs such as rings. Several
papers [9, 19, 32, 24] tackled this problem by assigning unique IDs to agents and
revealed the time complexity in general graphs. Dessmark et al. [9] proposed
the rendezvous algorithm in Õ(n5

√
τλ + n10λ) rounds, where n is the number of

nodes; λ is the length of the smallest ID among agents; τ is the maximum dif-
ference between the starting times of two agents; and Õ hides a poly-logarithmic
factor of n. Kowalski et al. [19] and Ta-Shma et al. [32] provided algorithms in

4

Õ(n15+λ3) rounds and Õ(n5λ) rounds, respectively, improving the time complex-
ity to be independent of τ . Molla et al. [26] showed a trade-off between the total
number k of agents and the time complexity in the gathering problem. Their
proposed algorithm works in O(n3) if k ≥ ⌊n/2⌋ + 1, in Õ(n4) if k ≥ ⌊n/3⌋ + 1,
and in Õ(n5) otherwise when agents start an algorithm simultaneously and have
unique IDs whose range is [1, nb] for a constant b > 1. Bouchard et al. [4] pro-
posed an algorithm that solves the gathering problem when agents can detect the
number of agents at the current node, but they cannot exchange any message
with other agents. Miller et al. [24] investigated the trade-off between the time
and the number of moves required to solve the rendezvous problem. In contrast,
some studies assumed that agents are anonymous and examined the amount of
memory required to solve this problem in trees [15, 7, 16] and arbitrary graphs
[6]. Additionally, Dieudonneé et al. [10] investigated the gathering problem when
agents are anonymous.

Several papers [23, 8, 12, 20] assumed a scenario in which agents move at dif-
ferent constant speeds from each other or move asynchronously. In these papers,
agents are assigned unique IDs. Several papers (e.g., Kranakis et al. [20]) studied
the former scenario when agents can meet other agents at nodes or inside edges,
but it is unknown whether this problem can be solved in this scenario restricted
to agents meeting only at nodes. In the asynchronous scenario, each agent can
decide which node to visit next, but the adversary varies the movement speed of
every agent arbitrarily. When agents meet other agents only at nodes, this prob-
lem in the asynchronous scenario cannot be solved in very simple graphs; thus,
the papers for this problem in the asynchronous scenario assumed that agents
can meet other agents at nodes or inside edges. De Marco et al. [23] clarified the
costs required to solve the rendezvous problem in infinite and finite graphs. They
assumed that agents initially know an upper bound of nodes in finite graphs.
Czyzowicz et al. [8] removed this knowledge assumption. Dieudonné et al. [12]
proposed the rendezvous algorithm in a polynomial number of moves with the
number of nodes in finite graphs and the length of the smallest ID.

Recently, several papers considered the gathering problem under conditions
where agent faults may occur. In the following, we discuss studies about the
gathering problem in the context of crash faults, transient faults, and Byzantine

5

faults.
Pelc [29] explored the gathering problem with crash faults, distinguishing

between motion faults, where some agents stop at any time but retain memory
access, and total faults, where they lose all memory upon stopping. The gathering
problems in both cases require all non-faulty agents to meet at a single node
because faulty agents can not gather. He proved that it is impossible to solve the
gathering problem with both types of crash faults in asynchronous environments,
and thus assumed that every agent moves at a fixed speed determined by the
adversary and is ticking at the same rate. He proposed an algorithm achieving
the gathering for the motion fault if at least two agents exist, and an algorithm
achieving the gathering for the total fault if at least two non-faulty agents exist.
These algorithms work in time polynomials in n, the length of the largest ID, the
inverse of the smallest speed, and the ratio between the largest and the smallest
speed.

Some papers [5, 27] focused on the rendezvous problem with transient faults
in synchronous environments. Chalopin et al. [5] addressed delay faults that
cause an agent to remain at the current node in a round r, regardless of its
planned behavior in round r. If the agent planned to move in round r, it becomes
aware of the delay fault in round r. The authors consider three types of delay
faults: random, unbounded adversarial, and bounded adversarial. Random fault
occurs independently with a constant probability 0 < p < 1, independent for
each agent in every round. In the unbounded adversarial scenario, the adversary
can defer the behavior of an agent for any finite sequence of rounds, whereas
in the bounded adversarial scenario, the adversary can delay the progress of an
agent for at most c consecutive rounds, where c is a positive integer unknown
to the agents. They measured the cost of a rendezvous algorithm through edge
traversals. They proposed a rendezvous algorithm for random fault with cost
polynomial in n and the length of the larger ID L in any network, succeeding
with probability at least 1 − 1/n. They showed that it is impossible to solve the
rendezvous problem with unbounded adversarial in any ring, but provided the
rendezvous algorithm for unbounded adversarial with cost O(nℓ) in any tree,
where ℓ is the smaller ID. They designed the rendezvous algorithm for bounded
adversarial with cost polynomial in n, and logarithmic in c and in L in any

6

network. Ooshita et al. [27] proposed a self-stabilizing rendezvous algorithm
in any network. Self-stabilization, introduced by Dijkstra [13], is an important
concept of fault tolerance in distributed systems. A self-stabilizing rendezvous
algorithm ensures that if the agents start with any memory states at any two
nodes, they eventually meet at the same node in the same round. Thus, this
algorithm tolerates any kind of transient fault that corrupts agent memories.
They provided a self-stabilizing rendezvous algorithm in any network without a
time guarantee, one in any tree in time polynomial in n and ℓ, and one in any
ring in time polynomial in n and their IDs.

Several papers [11, 2, 3, 33, 34, 25] considered the gathering problem in the
synchronous scenario where k agents with unique IDs exist, and f of them are
Byzantine agents. In this case, this problem requires all non-Byzantine agents
to meet at a single node because Byzantine agents do not follow algorithms.
These studies considered two types of Byzantine agents: weakly Byzantine and
strongly Byzantine ones. Weakly Byzantine agents can act unpredictably except
for changing their IDs, while strongly Byzantine agents may even falsify their
IDs.

Dieudonné et al. [11] introduced this gathering problem under both Byzantine
conditions and examined the minimum number of non-Byzantine agents ensuring
the gathering in any n-nodes graphs. They proposed two gathering algorithms for
weakly Byzantine agents and two for strongly Byzantine agents, all with different
initial knowledge. Furthermore, they showed lower bounds on the number of
non-Byzantine agents for all combinations of Byzantine conditions and initial
knowledge. The first algorithm works in O(n4 ⋅ Λgood ⋅X(n)) if agents know n

and k ≥ f + 1 holds, where Λgood is the length of the largest ID among non-
Byzantine agents, and X(n) is the time required for exploring any network of n
nodes. The second algorithm works in time polynomial in n and Λgood if agents
know the upper bound F on f and k ≥ 2F + 2 holds. These algorithms achieved
optimality regarding the required number of non-Byzantine agents. The third
algorithm works in time exponential of n and Λgood if agents know n and F and
k ≥ 3F + 1 holds. The fourth algorithm works in time exponential of n and Λgood

if agents know F and k ≥ 5F + 2 holds. By contrast, the lower bounds of the
numbers of non-Byzantine agents required to solve the gathering problem under

7

these initial knowledge conditions are F +1 and F +2. Bouchard et al. [2] proposed
two gathering algorithms with the numbers of non-Byzantine agents that match
these lower bounds. Bouchard et al. [3] improved the time complexity to time
polynomial in N and λgood if agents know ⌈log logN⌉ and k ≥ 5f 2 + 7f + 2 holds.

Some papers improved the time complexity of the gathering problem with
Byzantine agents using additional assumptions. Miller et al. [25] assumed that
each agent can monitor the status of other agents and k ≥ 2f + 1 holds, and
they give an algorithm with O(kn2) for strongly Byzantine agents. Tsuchida et
al. [33] assumed that each node is equipped with an authenticated whiteboard,
where each agent can leave information on its dedicated area of the whiteboard
and can read all information on the whiteboard. Their algorithm achieves the
gathering in the presence of weakly Byzantine agents with O(Fm) rounds if
agents know F , where m is the number of edges. Additionally, using authenticated
whiteboards, Tsuchida et al. [34] first proposed the algorithm that achieves the
gathering problem in asynchronous scenarios with weakly Byzantine agents.

8

Ta
bl

e
2.

A
su

m
m

ar
y

of
th

e
ga

th
er

in
g

al
go

ri
th

m
s

fo
r

ag
en

ts
w

it
h

un
iq

ue
ID

s
in

sy
nc

hr
on

ou
s

en
vi

ro
nm

en
ts

.
In

pu
t

A
ge

nt
fa

ul
t

C
on

di
ti

on
of

#
to

ta
la

ge
nt

s
T

im
e

co
m

pl
ex

ity

D
es

sm
ar

k
et

al
.[

9]
A

bs
en

ce
A

bs
en

ce
A

bs
en

ce
Õ
(
n
5
√
τ
λ
+
n
1
0
λ
)

K
ow

al
sk

ie
t

al
.[

19
]

A
bs

en
ce

A
bs

en
ce

A
bs

en
ce

Õ
(
n
1
5
+
λ
3
)

Ta
-S

hm
a

et
al

.[
32

]
A

bs
en

ce
A

bs
en

ce
A

bs
en

ce
Õ
(
n
5
λ
)

M
ol

la
et

al
.[

26
]1

A
bs

en
ce

A
bs

en
ce

A
bs

en
ce

Õ
(
n
5
)

A
bs

en
ce

A
bs

en
ce

k
≥
⌊n
/3
⌋
+
1

Õ
(
n
4
)

A
bs

en
ce

A
bs

en
ce

k
≥
⌊n
/2
⌋
+
1

O
(
n
3
)

P
el

c[
29

]2
A

bs
en

ce
C

ra
sh

(M
ot

io
n)

k
≥
f c
+
1

P
ol

yn
om

ia
li

n
n
,Λ

a
ll
,1
/ϵ

an
d
γ

A
bs

en
ce

C
ra

sh
(T

ot
al

)
k
≥
f c
+
2

P
ol

yn
om

ia
li

n
n
,Λ

a
ll
,1
/ϵ

an
d
γ

D
ie

ud
on

né
et

al
.[

11
]

n
W

ea
kl

y
B

yz
an

ti
ne

k
≥
f
+
1

O
(
n
4
⋅Λ

g
o
o
d
⋅X
(
n
)
)

F
W

ea
kl

y
B

yz
an

ti
ne

k
≥
2F
+
2

P
ol

yn
om

ia
li

n
n

an
d
Λ

g
o
o
d

n
,F

St
ro

ng
ly

B
yz

an
ti

ne
k
≥
3F
+
1

E
xp

on
en

ti
al

in
n

an
d
Λ

g
o
o
d

F
St

ro
ng

ly
B

yz
an

ti
ne

k
≥
5F
+
2

E
xp

on
en

ti
al

in
n

an
d
Λ

g
o
o
d

B
ou

ch
ar

d
et

al
.[

2]
n
,F

St
ro

ng
ly

B
yz

an
ti

ne
k
≥
2F
+
1

E
xp

on
en

ti
al

in
n

an
d
Λ

g
o
o
d

F
St

ro
ng

ly
B

yz
an

ti
ne

k
≥
2F
+
2

E
xp

on
en

ti
al

in
n

an
d
Λ

g
o
o
d

B
ou

ch
ar

d
et

al
.[

3]
⌈l
og

lo
g
N
⌉

St
ro

ng
ly

B
yz

an
ti

ne
k
≥
5f

2
+
7f
+
2

P
ol

yn
om

ia
li

n
N

an
d
λ
g
o
o
d

n
is

th
e

nu
m

be
r

of
no

de
s,
k

is
th

e
to

ta
ln

um
be

r
of

ag
en

ts
,f

c
is

th
e

nu
m

be
r

of
cr

as
h

ag
en

ts
,f

is
th

e
nu

m
be

r
of

B
yz

an
ti

ne
ag

en
ts

,F
is

th
e

up
pe

r
bo

un
d

of
f
,λ

is
th

e
le

ng
th

of
th

e
sm

al
le

st
ID

am
on

g
ag

en
ts

,λ
g
o
o
d

is
th

e
le

ng
th

of
th

e
sm

al
le

st
ID

am
on

g
no

n-
B

yz
an

ti
ne

ag
en

ts
,Λ

g
o
o
d

is
th

e
le

ng
th

of
th

e
la

rg
es

t
ID

am
on

g
no

n-
B

yz
an

ti
ne

ag
en

ts
,Λ

a
ll

is
th

e
le

ng
th

of
th

e
la

rg
es

t
ID

am
on

g
ag

en
ts

,τ
is

th
e

m
ax

im
um

di
ffe

re
nc

e
be

tw
ee

n
th

e
st

ar
ti

ng
ti

m
es

of
tw

o
ag

en
ts

,ϵ
is

th
e

sm
al

le
st

sp
ee

d,
γ

is
th

e
ra

ti
o

be
tw

ee
n

th
e

la
rg

es
t

an
d

th
e

sm
al

le
st

sp
ee

d,
X
(
n
)

is
th

e
ti

m
e

re
qu

ir
ed

fo
r

ex
pl

or
in

g
an

y
ne

tw
or

k
of

n
no

de
s,

Õ
hi

de
s

a
po

ly
-lo

ga
ri

th
m

ic
fa

ct
or

of
n
.

1
T

he
y

as
su

m
e

th
at

al
la

ge
nt

s
st

ar
t

at
th

e
sa

m
e

ti
m

e
an

d
a

ra
ng

e
of

ag
en

t
ID

s
is
[
1
,n

b
]

fo
r

a
co

ns
ta

nt
b
>
1.

2
T

he
y

as
su

m
e

th
at

ev
er

y
ag

en
t

m
ov

es
at

a
fix

ed
sp

ee
d

de
te

rm
in

ed
by

th
e

ad
ve

rs
ar

y.

9

4. Organization of This Dissertation

This dissertation consists of five parts. Part II introduces a formal definition
for the agents model and gathering problem. Part III shows building blocks to
design our proposed algorithms. Part IV and V focus on the gathering problem
with different numbers of non-Byzantine agents. In Part IV, we propose a faster
algorithm than [11] by relaxing the number of Byzantine agents to about the
square root of the total number of agents. In Part V, we propose a faster algorithm
than [11] using a linear number of non-Byzantine agents relative to the number
of Byzantine agents. Finally, we discuss the time improvements and extensions
to the proposed algorithms in Part VI and conclude this dissertation in Part VII.

10

Part II

Model and Problem Definitions

1. Model

1.1 Agent system

An agent system can be represented as a connected, undirected graph G = (V,E),
where V is a set of n nodes, and E is a set of edges. Nodes have no ID and lack
computational, storage, or inter-node communication capabilities. The degree of
a node v ∈ V is denoted as d(v). Unique port numbers in the range {1, . . . , d(v)}
are assigned to each edge incident to node v. Notably, port numbering is lo-
cal, meaning the port number assigned to an edge e = (u, v) ∈ E at node u is
independent from its number at at node v.

1.2 Agents

The agent system includes k agents, and a set of these agents is denoted by MA.
Each agent ai ∈MA possesses a distinct ID, ai.id ∈ N. In this dissertation, for the
sake of simplicity, we use the term “an agent in an ID set” as shorthand for “an
agent with an ID in an ID set S.” All agents are equipped with a finite memory
capacity but are incapable of leaving any information at nodes or inside edges.
We model an agent as a state machine (S, δ, sini, Ster). Here, S is a set of agent
states, δ is a state transition function, sini is an initial state, and Ster ⊂ S is a
set of terminal states. Each state encapsulates a tuple representing all variable
values of an agent. An agent ai starts from sini, and it stops movement or state
updating upon entering any state in Ster. Agents know the upper bound N on n

and their own IDs, but do not know n, k, other agent IDs, or the topology of the
graph.

Agents may start from different nodes. An agent before starting is called a
dormant agent, and once it starts, it is called an active agent. A dormant agent
becomes active in either of the two following ways: (a) the adversary wakes up
the agent at some round, or (b) an active agent visits the node with the agent.

11

At least one agent starting by (a) always follows an algorithm. All agents move
to an adjacent node in synchronous rounds. In each round, every agent ai ∈MA

executes the three following operations:

Look Agent ai discerns its state, the degree d(v) of its current node u, and the
port number pinu when entering node u (if u is the starting node, it notices
this fact). In the presence of multiple agents at node u, ai also identifies the
IDs and the states of all agents (including those in the terminate state) at
node u. We define Ai ⊆ MA as a set of agents at node u, always including
ai.

Compute Agent ai applies function δ with N and the information obtained in
the last Look operation. Inputs for δ concretely include N , ai.id, its state,
degree d(u), port number pinu , and the IDs and the states of all agents in
Ai. This function determines its next state, its decision to stay or depart,
and the outgoing port number poutu if departing.

Move Agent ai either stays at node u until the start of the next round or departs
from node u through port number poutu , reaching its destination node before
the next round begins.

Note that if two agents traverse the same edge simultaneously in different
directions, the agents do not notice this fact.

1.3 Byzantine agents

Set MA includes f weakly Byzantine agents. Weakly Byzantine agents behave
unpredictably, except for changing their original IDs. When several agents are
at the same node as Byzantine agents, each of them perceives identical states of
the Byzantine agents in the Look operation. We denote good agents as all agents
that are not weakly Byzantine agents and represent the number of good agents as
g = k − f . Neither the actual number f of Byzantine agents nor the upper bound
on f is given to good agents.

12

2. Problem

The gathering problem requires that all good agents reach their terminal state
at a single node. In this dissertation, we categorize the gathering problem into
two types based on the timing of agents entering their terminal state. The first
type is the gathering problem with non-simultaneous termination, where agents
can reach the terminal state in different rounds. The second type is the gathering
problem with simultaneous termination, which requires all agents to enter their
terminal state in the same round. To evaluate the time complexity, we count the
number of rounds from the start of the earliest good agent to the point where
all good agents enter their terminal state. This counting aims to establish the
worst-case time complexity, considering all possible input scenarios.

13

Part III

Preliminaries
In this part, we give existing procedures used as building blocks to design our
algorithms proposed in Parts IV and V.

1. Exploration Procedure

The exploration procedure EX enables an agent to visit every node in a connected
graph comprising at most N nodes, starting from any node, if agents know N .
This procedure stems from a corollary of the result of Reingold [31] and works
according to universal exploration sequences (UXS). The total number of moves
of EX is O(N5 logN), which we denote as tEX. We describe the t-th round in this
procedure as EX(t) for any integer t ≥ 0. According to Corollary 5.5 from [31],
the space complexity needed for an agent to execute EX is O(logN) bits.

2. Extended Label

Consider the binary representation of an agent id ai.id as b1b2⋯bℓ, where
ℓ = ⌊log ai.id⌋ + 1. We define the extended label of ai as ai.id∗ =

10b1b1b2b2⋯bℓbℓ10b1b1b2b2⋯bℓbℓ⋯. We have the following lemma for this extended
label.

Lemma 1 (Theorem 2.1 of [9]). Assuming that two distinct agents ai and aj, let
their extended labels ai.id∗ = x1x2⋯ and aj.id∗, respectively. It holds that xk ≠ yk

for some k ≤ 2⌊log(min(ai.id, aj.id))⌋ + 6.

3. Rendezvous Procedure

The rendezvous procedure REN(label) enables two distinct agents to meet at a sin-
gle node in any connected graph comprising n nodes, where label is a nature num-
ber given as input. This procedure is due to Ta-Shma et al.[32]. This procedure

14

determines the next behavior of an agent using label . Concretely, during the pro-
cedure, an agent alternates between exploring and waiting periods based on label .
In the exploring period, the agent explores the network using UXS, and in the
waiting period, it stays at the current node for a duration based on label . Meeting
the two agents occurs when one agent is exploring while the other waits. The
execution time of REN(label), denoted as tREN(label), is Õ(n5 log(label)), where Õ

hides a poly-logarithmic factor in n. We observe that for two distinct inputs label1
and label2, it holds that tREN(label1) > tREN(label2) if it holds that label1 > label2.
We have the following lemma for this procedure.

Lemma 2 (Theorems 2.3 and 3.2 of Ta-Shma and Zwick [32]). Consider
two distinct agents ai and aj using natural numbers label i and label j, respec-
tively. If ai starts REN(label i) in round ri, aj starts REN(label j) in round
rj, and label i ≠ label j holds, then they meet at a single node before round
max(ri, rj) + tREN(min(label i, label j)). Moreover, ai and aj visit every node by
round ri + tREN(label i) and round rj + tREN(label j), respectively.

We describe the t-th round in this procedure as REN(label)(t) for any integer
t ≥ 0. We denote the space complexity needed to execute this procedure as
MSREN(N, label), which is polynomial in n and label.

4. Parallel Consensus Algorithm in Byzantine Syn-
chronous Message-Passing Systems

Our algorithm proposed in Part V employs the parallel consensus algorithm [17]
for Byzantine consensus message-passing systems by simulating its mechanism
for use in agent systems. This section provides an overview of the model and the
characteristics of the consensus algorithm, and outlines the prerequisites for its
implementation in agent systems.

4.1 Model

The message-passing distributed system, where processors exchange information
via transmission, is represented as an undirected complete graph consisting of m

15

nodes. Each node in this system is assigned a unique ID. The system comprises
at most b Byzantine nodes, which behave unpredictably except for changing their
own IDs. We refer to nodes that are not Byzantine as good nodes. At the start
of a process, each node knows only its own ID, and does not know m, b, or
the IDs of other nodes. This system operates synchronously, namely, each node
repeats synchronous phases. During a phase p, each good node conducts a local
computation, transmits messages to selected nodes, and receives messages set to
it in the same phase. A good node v has two options for message delivery: (1)
broadcasting a message msg to all nodes, or (2) sending msg directly to a specific
node whose ID is known to node v. Node v can send distinct messages to different
nodes in a single phase if it knows their IDs. Each message is tagged with the
sender ID, enabling the recipient to identify the sender. Byzantine nodes are
unrestricted in their actions, except they cannot misrepresent their IDs to nodes
that they directly communicate with.

4.2 Parallel Byzantine Consensus Problem

Each good node v possesses a set Sv consisting of kv input pairs (idiv, xi
v) for

1 ≤ i ≤ kv, where idiv is an ID, and xi
v is the input value. Given that every good

node v starts with Sv as its initial data, the parallel Byzantine consensus problem
requires each node to output a set of pairs adhering to the following conditions:

Validity 1 The output set of a good node must include (id, x) if every good
node has (id, x) as an input pair and x ≠ �.

Validity 2 The output set of any good node must exclude (id, x) if it is absent
as an input pair in all good nodes.

Agreement If the output set of one good node contains (id, x), then (id, x)
must also be included in the output sets of all other good nodes.

Termination Each good node is required to produce a set of pairs just once,
within finite phases.

This set of four conditions is called the PBC property. We say an algorithm
satisfies the PBC property if the algorithm satisfies this condition set. The PBC

16

property permits scenarios where (id, x), included in the input sets of only some
but not all good nodes, might not appear in the output set of any good node.

4.3 Parallel Byzantine Consensus

Our algorithm proposed in Part V uses the parallel Byzantine consensus algorithm
[17]. We denote PCONS(S) as this algorithm for an input set S. We have the
following lemma for PCONS(S).

Lemma 3 ([17]). If a system contains more than 3b nodes and each good node
v starts PCONS(Sv) at the same time with its input set Sv, then the execution
adheres to the PBC property. In such a scenario, every good node outputs a set
in O(b) phases and the time to output varies by at most one phase across all good
nodes.

For any integer p ≥ 0, We describe the action in the p-th phase of this pro-
cedure as PCONS(S)(p). We denote the space complexity needed to execute this
procedure as MSPCONS(S), which is polynomial in the length of the maximum
ID among messages, the maximum length among messages, and the number of
types of messages across the network.

4.4 Requirement for Simulation

To simulate PCONS, our algorithm proposed in Part V requires forming a group
comprising many agents at least equal to the number of nodes needed for PCONS
execution. Additionally, the proposed algorithm requires sending and broadcast-
ing messages within a phase via an agent. Specifically, the algorithm needs to
satisfy the following requirements:

Requirement (1) If an agent ai in a group generates a message msg during
a phase p, then all other good agents in the group must receive msg and
identify ai.id before starting their local computation in the next phase p+1.

Requirement (2) Any agent, during a phase p, must disregard messages of a
phase other than p.

Requirement (3) The group must consist of no fewer than 3f + 1 agents.

17

Part IV

Gathering despite O(
√
k) Byzantine

Agents

1. Introduction

In this part, we consider both gathering problems with non-simultaneous termi-
nation and simultaneous termination in synchronous environments with O(

√
k)

Byzantine agents.
In this setting, the fastest existing algorithm is one proposed by Dieudonné

et al. [11]. This algorithm tolerates any number of weakly Byzantine agents and
achieves the gathering with simultaneous termination if agents know n; however,
its time complexity is O(n4 ⋅Λgood ⋅X(n)) rounds, which is not insignificant, where
Λgood is the length of the largest ID among good agents, and X(n) is the time
required to visit all nodes of any n-nodes graph. Miller et al. [25] and Tsuchida
et al. [34] proposed faster algorithms with the additional assumptions that agents
can see the status of other nodes and nodes are equipped with authenticated
whiteboards, respectively; however, these assumptions are strong.

We reduce the time complexity by assuming that Byzantine agents constitute
few numbers. It is unlikely that many agents are subject to faults in practice; thus,
this assumption is reasonable. We propose two faster algorithms if the network
includes 4f 2 + 8f + 4 good agents for f Byzantine agents and agents know N .
The first algorithm achieves the gathering with non-simultaneous termination in
O((f +Λgood) ⋅X(N)) rounds. The second algorithm achieves the gathering with
simultaneous termination in O((f +Λall) ⋅X(N)) rounds, where Λall is the length
of the largest ID among agents. If n is given to agents and Λall = O(Λgood) rounds,
the second algorithm significantly reduces the time complexity compared to that
[11].

18

2. Byzantine Gathering Algorithm with Non-
Simultaneous Termination

This section shows an algorithm for the gathering problem with non-simultaneous
termination by assuming that the network includes 4f 2+9f +4 agents, that is, at
least (4f + 4)(f + 1) good agents. Recall that agents know N , but do not know
n, k, or f .

2.1 Overview

The proposed algorithm aims for all good agents to gather at a single node.
This objective is achieved through three stages: CollectID, MakeGroup,
and Gather stages. In the CollectID stage, agents collect IDs of all good
agents throughout this stage and estimate the number of Byzantine agents at
the end of this stage. In the MakeGroup stage, agents make a reliable group
comprising at least 4f +4 agents. In the Gather stage, all good agents meet at a
single node. Each stage comprises multiple phases, and each phase encompasses
at least lenp ≥ tEX rounds. The exact value of lenp will be detailed later, but it
should be noted that the length of each phase is sufficient for an agent to explore
the network by EX. To simplify the explanation, we first assume that agents know
f and awake at the same round. Under this assumption, all good agents start
each phase at the same round.

In the CollectID stage, agents collect IDs of all good agents. To do this,
in the x-th phase of the CollectID stage, each agent ai reads the x-th bit of
ai.id∗ to decide its next behavior. Specifically, if the bit is 1, ai executes EX in the
phase. If the bit is 0, ai waits in the phase. Agent ai has variable ai.L to store a
set of collected IDs. If ai finds another agent aj at the same node, either while
exploring or waiting, it records aj.id in ai.L. Agent ai executes this procedure
until the (2⌊log(ai.id)⌋ + 6)-th phase, and then finishes the CollectID stage.
From Lemma 1, this stage ensures that ai meets the other good agents; thus, ai
has the IDs of all good agents when completing this stage.

In the MakeGroup stage, agents make a reliable group comprising at least
4f + 4 agents. To do this, agents with small IDs keep waiting, while the other
agents search for the agents with small IDs. Specifically, if the f + 1 smallest IDs

19

in ai.L contains ai.id, ai keeps waiting throughout this stage. Conversely, if these
smallest IDs do not contain ai.id, ai stores the smallest ID in ai.L to variable
ai.target, and searches for the agent with ID ai.target, say atarget, by executing EX
in a phase. If ai meets atarget at some node, it ends the search and waits there. If
ai does not meet atarget even after completing EX, it regards atarget as a Byzantine
agent; then, ai stores the second smallest ID in ai.L to ai.target and searches
for the agent with ID ai.target in the next phase. This search continues until ai
meets a target agent. Given the presence of f Byzantine agents, the good agent
with the smallest ID, say amin, always keeps waiting during the MakeGroup
stage. Thus, when agents search for amin, they can meet amin. Consequently, the
number of agents sought by good agents is limited to at most f + 1 (including
amin and f Byzantine agents). With the presence of at least (4f + 4)(f + 1)
good agents, the pigeonhole principle ensures that even if these good agents are
evenly distributed to f + 1 nodes, at least 4f + 4 agents meet at some node. In
other words, agents can make a reliable group. The ID of the found target agent
becomes the ID of this reliable group. For Gather stage, this reliable group is
divided into two groups: an exploring group and a waiting group, each comprising
at least 2f + 2 agents.

In the Gather stage, agents achieve the gathering after at least one reliable
group is created. The Gather stage consists of two phases. In the first phase,
agents collect group IDs of all reliable groups. More concretely, while agents in a
waiting group keep waiting, the others (in an exploring group or not in a reliable
group) explore the network by EX. Upon meeting a reliable group, an agent ai

records the group ID. It should be noted that both an exploring group and a
waiting group contain at least 2f + 2 agents each when it is created. This means
each group contains at least f + 2 good agents. Therefore, when an agent meets
a group including at least f + 2 agents with the same group ID, the agent can
understand that this group contains at least two good agents; hence, the group
is trustworthy. As we explain later, the algorithm makes each group include at
least two good agents because the agent must use estimated values of f and the
estimated values of f differ by at most one among good agents. In the second
phase, agents move to the node with the waiting group of the smallest group ID.
In other words, while agents in the waiting group of the smallest group ID keep

20

waiting, other agents search for the group by EX.
However, implementing the above behavior presents three problems.
The first problem arises from the fact that agents not in a reliable group cannot

immediately know the formation of a reliable group. This uncertainty leaves the
agents unclear about the time to transition into the Gather stage. To address
this, we make agents execute the MakeGroup stage and the Gather stage
alternately. We design the two stages to satisfy the following conditions: (1) If a
reliable group is created in the MakeGroup stage, agents achieve the gathering
in the Gather stage; (2) Otherwise, the behaviors in the Gather stage do not
affect the MakeGroup stage.

The second problem is that agents do not know f . To solve this problem,
agents estimate the number of Byzantine agents, say f̃ , at the end of the Col-
lectID stage. The agents base this estimation on the fact that their ID sets
include IDs of all good agents, at least (4f + 4)(f + 1) good agents exist, and the
number of Byzantine agents is at most f . Specifically, good agents determines f̃
such that it satisfies k ≥ (4f̃ + 4)(f̃ + 1) and f ≤ f̃ . This approach ensures the
formation of at least one reliable group. However, their f̃ differs by at most one
because some good agents may meet some Byzantine agents but the others may
not in the CollectID stage. To counter this variance, we design a technique for
creating a reliable group such that both an exploring group and a waiting group
include at least f̃ ′ + 1 good agents, where f̃ ′ is the largest value of f̃ among all
good agents.

The third problem is that some agents may be dormant. To solve this problem,
we make agents first explore the network by EX to wake up dormant agents. This
ensures that all good agents start within tEX rounds. However, a new problem
arises as agents, having awakened at different times, are likely to be in different
phases at some round. To resolve this, we adjust the duration of each phase to
guarantee that all the good agents execute the same phase at the same time for
sufficient rounds.

2.2 Details

Algorithm 1 is the pseudocode of the proposed algorithm. The proposed al-
gorithm realizes the gathering using three stages: The CollectID stage makes

21

Algorithm 1: ByzantineGathering(N) for an agent ai whose ID is
b1b2⋯bℓ, where ℓ = ⌊log(ai.id)⌋ + 1

1 ai.state← CorrectID
2 ai.L← {ai.id}, ai.BL← ∅, ai.GL← ∅
3 ai.gid← NULL
4 ai.EndCI← False
5 ai.x← 1
77 Explore the network by EX
8 while True do
9 if ai.EndCI = False then

10 Execute ai.x-th phase of the CollectID stage
11 else
12 Execute the MakeGroup stage
13 ai.x← ai.x + 1
14 Execute the Gather stage

agents collect IDs of all good agents and estimate the number of Byzantine agents,
the MakeGroup stage creates a reliable group, and the Gather stage gathers
all good agents.

The overall flow of the algorithm is shown in Fig. 1. After starting the algo-
rithm, agent ai first explores the network with EX to wake up all dormant agents
(line 7 of Algorithm 1). By this behavior, after the first good agent wakes up,
all good agents wake up within tEX rounds. After that, ai executes phases of
the CollectID, MakeGroup, and Gather stages. Here we define one phase
as lenp = 3tEX + 1 rounds. Since all good agents wake up within tEX rounds, the
(tEX + 1)-th to 2tEX-th rounds of the x-th phase of good agent ai overlap with the
first 3tEX rounds of the x-th phases of all other good agents. Hence, we have the
following observation.

Observation 1. Let ai and aj be good agents. Assume that ai explores the network
with EX from the (tEX + 1)-th round to the 2tEX-th round of its x-th phase, and aj

waits during the first 3tEX rounds of its x-th phase. In this case, ai meets aj during
the exploration.

After the initial exploration, ai alternately executes one phase of the Col-
lectID stage and two phases of the Gather stage (lines 10 and 14). Because
ai cannot calculate the value of f̃ until it finishes the CollectID stage, ai takes
no action in the Gather stage. After ai finishes the CollectID stage, it alter-

22

Figure 1. Stage flow of Algorithm ByzantineGathering.

nately executes one phase of the MakeGroup stage (instead of the CollectID
stage) and two phases of the Gather stage (lines 12 and 14). The Gather stage
interrupts the CollectID and MakeGroup stages, but, as described later, the
behaviors of the Gather stage do not affect the behaviors of the CollectID
and MakeGroup stages if no reliable group exists. Therefore, we do not con-
sider the behaviors of the Gather stage until a reliable group is created in the
MakeGroup stage.

An example execution of the algorithm by some good agents ai, aj, and ak is
shown in Fig. 2. Capitals C, M, and G represent one phase of the CollectID
stage, one phase of the MakeGroup stage, and two phases of the Gather
stage, respectively. Recall that agents need to execute multiple phases of the
CollectID stage (resp., the MakeGroup stage) to achieve the purpose of the
CollectID stage (resp., the MakeGroup stage) and that agents alternately
execute one phase of the CollectID stage (resp., the MakeGroup stage) and
two phases of the Gather stage. Let r1 be the round when a reliable group
with ai is created, and r2 be the round when ak finished the CollectID stage.
Agents ai and aj terminate at the end of the Gather stage immediately after
round r1 since they have finished the CollectID stage and a reliable group
exists in the network. On the other hand, agent ak cannot determine whether a

23

Figure 2. Example execution of the algorithm by good agents ai, aj, and ak.

reliable group exists at the same node since it has not finished the CollectID
stage. Thus, agent ak keeps executing. Afterward, agent ak terminates at the
end of the Gather stage immediately after round r2 because a reliable group
already exists in the network and ak meets the reliable group by the end of the
Gather stage.

Table 3 summarizes the variables used in the algorithm. Agent ai stores
the current state of ai in variable ai.state. Initially, ai.state = CorrectID holds.
Initially, ai stores False in variable ai.EndCI because it has not finished the
CollectID stage. Also, ai stores the number of rounds from the beginning in
variable ai.count. By variable ai.count, ai determines which round of a phase it
executes, and so, when ai waits, it can obtain how many rounds it has waited for.
Agent ai increments ai.count for every round, but this behavior is omitted from
the following description.

2.2.1 CollectID stage

Algorithm 2 is the pseudocode of the CollectID stage. In the CollectID
stage, agents collect IDs of all good agents. The CollectID stage of ai consists
of 2⌊log(ai.id)⌋ + 6 phases. Note that the lengths of CollectID stages differ
among agents. Agent ai uses variable ai.L to store a set of IDs, and initially, it
records ai.id in ai.L (line 2 of Algorithm 1). Agent ai determines the behavior of
the x-th phase depending on the x-th bit of ai.id∗. If the x-th bit is 0, ai waits
for 3tEX rounds in the x-th phase (lines 1 and 2 of Algorithm 2). If the x-th bit

24

Table 3. Variables of agent ai.
Variable Explanation

state The current state of an agent. This variable takes one of the following values:

• CorrectID (has not yet finished the CollectID stage)

• SearchAgent (works as a search agent in the MakeGroup stage)

• TargetAgent (works as a target agent in the MakeGroup stage)

• ExploringGroup (belongs to an exploring group in the Gather stage)

• WaitingGroup (belongs to a waiting group in the Gather stage)

EndCI The variable that indicates whether an agent has finished the CollectID stage
count The number of rounds from the beginning
x The number of phases in the CollectID or MakeGroup stage
f̃ The estimated number of Byzantine agents
L A set of agent IDs collected in the CollectID stage
BL A set of agent IDs that the search agent regards as Byzantine agents

target Search agents: The ID the agent searches for.
Target agents: Its own ID

F The consensus of f̃ among agents at the same node
gid The group ID of the reliable group that the agent belongs to
GL A set of group IDs collected in the Gather stage

is 1, ai waits for tEX rounds, explores the network by EX, and then waits for tEX

rounds in the x-th phase (lines 4–7). During these behaviors, if ai finds another
agent aj at the same node, it records aj.id in ai.L (lines 3 and 8). Note that,
from Lemma 1 and Observation 1, ai meets all good agents and records IDs of
all good agents during the CollectID stage.

In the last round of the last phase of the CollectID stage, ai estimates the
number of Byzantine agents f̃ as ai.f̃ ←max{y ∣ (4y+4)(y+1) ≤ ∣ai.L∣} (line 11).
As we prove later, ai.f̃ ≥ f holds in Lemmas 5 and 6, and ∣ai.f̃ − aj.f̃ ∣ ≤ 1 holds
for any good agent aj. Also, ai stores True in ai.EndCI (line 13).

2.2.2 MakeGroup stage

Algorithm 3 is the pseudocode of the MakeGroup stage. In the pseudo code,
for simplicity we use and operation, which means that an agent executes the
operations before and after the and operation at the same time.

In the MakeGroup stage, agents create a reliable group. To store a group

25

Algorithm 2: The ai.x-th phase of CollectID stage for an agent ai
1 if the ai.x-th bit of ai.id∗ is 0 then
2 Wait for 3tEX rounds at the current node
3 ai.L← ai.L ∪ {IDs of agents ai met while waiting}
4 else
5 Wait for tEX rounds at the current node
6 Explore the network by EX
7 Wait for tEX rounds at the current node
8 ai.L← ai.L ∪ {IDs of agents ai met while exploring}
9 // The (3tEX + 1)-th round

10 if ai.x = 2⌊log(ai.id)⌋ + 6 then
11 ai.f̃ ←max{y ∣ (4y + 4)(y + 1) ≤ ∣ai.L∣}
12 ai.x← 1
13 ai.EndCI← True
14 Wait for one round

ID of the reliable group, agent ai has variable ai.gid. Initially ai.gid is NULL,
and, when ai becomes a member of a reliable group, it assigns its group ID to
ai.gid. Let f̃min be the smallest value of f̃ among all good agents at the time
when all good agents finish the CollectID stage. We define a reliable group
formally to present the MakeGroup stage clearly.

Definition 1 (Reliable group). A set of agents R is a reliable group with group
ID gid if and only if R includes at least 3f̃min + 4 good agents and ai.gid = gid
holds for any ai ∈ R

At the beginning of the MakeGroup stage, if the smallest ai.f̃ +1 IDs in ai.L

contain ai.id, agent ai becomes a target agent (line 3 of Algorithm 3). Otherwise,
ai becomes a search agent (line 5). Hereinafter, the good agent with the smallest
ID is denoted by amin. As we prove later, amin always becomes a target agent.

If ai is a target agent, it executes ai.target ← ai.id (line 8) and waits for
one phase at the current node (line 9). While waiting, ai executes procedure
consensus() to create a reliable group if possible (line 11). We will explain the
details of consensus() later.

Let us consider the case where ai is a search agent. Here, to ensure making
a reliable group, ai stores IDs of agents that ai regards as Byzantine agents in
the blacklist ai.BL (initially ai.BL is empty). In the first round of each phase,
ai chooses the agent with the smallest ID, excluding Byzantine agents in ai.BL

26

Algorithm 3: MakeGroup stage for an agent ai
1 if ai.x = 1 then
2 if the smallest ai.f̃ + 1 IDs in ai.L contain ai.id then
3 ai.state← TargetAgent
4 else
5 ai.state← SearchAgent

6 if ai.state = TargetAgent then
7 //ai is a target agent
8 ai.target← ai.id
9 Wait for one phase at the current node

10 and
11 While waiting, execute consensus() every round
12 else
13 //ai is a search agent
14 ai.target←min(ai.L ∖ ai.BL)
15 Wait for tEX rounds at the current node
16 Search for an agent atarget with ID ai.target by EX
17 and
18 if ai meets atarget while searching then
19 Stop EX
20 Wait until the end of the phase
21 and
22 While waiting, execute consensus() every round
23 and
24 if ai finds atarget Byzantine while waiting then
25 // This is true if, during the (tEX + 1)-th round to the 2tEX-th round,

atarget moved to another node or atarget.target ≠ atarget.id holds
26 ai.BL← ai.BL ∪ {ai.target}

27 else
28 // ai does not meet atarget and hence atarget is Byzantine
29 ai.BL← ai.BL ∪ {ai.target}
30 Wait until the end of the phase

(line 14). After that, ai waits for tEX rounds and then searches for the agent with
ID ai.target, say atarget, by executing EX (lines 15 and 16). If ai finds atarget at the
same node during the exploration, ai ends EX and waits at the node until the end
of the phase (lines 19 and 15). We can show that, if atarget is good, atarget keeps
waiting as a target agent, and consequently, ai finds atarget and waits with atarget.
Hence, if one of the following conditions holds, ai regards atarget as a Byzantine
agent: (1) ai did not find atarget during the exploration (lines 27–29), or (2) after
ai found atarget, during the (tEX + 1)-th round to the 2tEX-th round, atarget moved
to another node or atarget.target ≠ atarget.id holds (lines 24–26). In this case, ai

27

Algorithm 4: consensus() for an agent ai (Compute the consensus of
f̃ and create a reliable group if possible)
1 if ai.gid = NULL and the number of agents in the MakeGroup stage at the current

node is at least 4 ⋅ ai.f̃ then
2 ai.F ← the most frequent value of f̃ of agents at the same node (if more than one

most frequent value exists, choose the smallest one)
3 Let GC be a set of agents at the same node whose target is ai.target and who

execute the MakeGroup stage
4 if ∣GC ∣ ≥ 4 ⋅ ai.F + 4 and there exists atarget with

atarget.target = atarget.id = ai.target then
5 ai.gid← atarget.id
6 if the 2 ⋅ ai.F + 2 smallest IDs in GC contain ai.id then
7 ai.state← ExploringGroup
8 else
9 ai.state←WaitingGroup

adds atarget.id to ai.BL, and never searches for atarget in the later phases of the
MakeGroup stage (lines 26 and 29). If ai did not find atarget, it waits until the
end of the phase (line 30).

To determine whether agents can create a reliable group, search agents (resp.,
target agents) execute procedure consensus() in Algorithm 4 after they find
their target agent (resp., from the beginning). In procedure consensus(), agent
ai first calculates the consensus ai.F of the estimated number of Byzantine agents
as follows. If the number of agents in the MakeGroup stage at the current node
is at least 4 ⋅ai.f̃ , agent ai checks values of f̃ of all agents at the current node and
assigns the most frequent value to ai.F (line 2 of Algorithm 4). At this time, if
multiple values are the most frequent, ai chooses the smallest one.

After that, ai determines whether the agent can create a reliable group. Agent
ai observes states of all agents at the same node, and regards the set of agents
whose target is ai.target and who execute the MakeGroup stage as the group
candidate (line 3). If the group candidate contains at least 4 ⋅ ai.F + 4 agents
and there exists atarget with atarget.target = atarget.id = ai.target, ai recognizes that
the group candidate includes 3f̃min + 4 good agents since ai.F ≥ f̃min ≥ f holds
(Lemmas 5 and 9) (line 4). In that case, ai is ready to make a reliable group.
Agent ai regards the group candidate as a reliable group and stores atarget.id in
variable ai.gid as the group ID of the reliable group (line 5). Note that, as we

28

prove later, all other good agents in the reliable group also understand that they
are in the reliable group and assign atarget.id to their variable gid at the same
round. Therefore, when ai assigns a group ID gid to ai.gid, a reliable group with
gid is indeed created. If ai meets another agent aj, ai can identify whether aj is
a member of a reliable group by observing variable aj.gid. When a reliable group
is created, the group is divided into two groups, an exploring group and a waiting
group, for the Gather stage as follows. If the 2 ⋅ ai.F + 2 smallest IDs among
agents in ai’s reliable group contain ai.id, ai belongs to an exploring group (line 7);
otherwise, it belongs to a waiting group (line 9). Note that each of an exploring
group and a waiting group contains at least 2 ⋅ai.F +2 ≥ 2f̃min+2 agents. Because
f̃ of every good agent that finished the CollectID stage satisfies f̃ ≤ f̃min + 1,
all good agents understand that these groups contain at least one good agent
(Lemma 6). Hence, these groups are trustworthy.

Once ai has determined that a reliable group is created, it never calculates ai.F
and checks the condition to create a reliable group again in subsequent rounds
of this phase. Note that some good agent aj with aj.target = atarget.id may visit
the current node after ai creates a reliable group. In this case, aj can become a
member of the reliable group (i.e., aj.gid← atarget.id = ai.gid). This just increases
the size of the reliable group and does not harm the algorithm.

2.2.3 Gather stage

Algorithm 5 is the pseudocode of the Gather stage. In the Gather stage, agents
achieve the gathering if at least one reliable group exists in the network. Note
that two phases of the Gather stage interrupt phases of the CollectID and
MakeGroup stages. However, while executing the Gather stage, agents never
update variables used in the CollectID and MakeGroup stages. Also, recall
that the behaviors of the CollectID and MakeGroup stages do not depend on
the initial positions of agents in each phase. Hence, the behaviors of the Gather
stage do not affect the behaviors of the CollectID and MakeGroup stages.
If agents have not finished the CollectID stage, they wait for two phases (lines
1 and 2 of Algorithm 5). In the following, we describe the behaviors of agents
that have finished the CollectID stage.

If agents have finished the CollectID stage, they try to achieve the gathering

29

Algorithm 5: Gather stage for an agent ai
1 if ai.EndCI = False then
2 Wait for two phases at the current node
3 else
4 // The first phase
5 if ai.state =WaitingGroup then
6 Wait for one phase at the current node
7 and
8 While waiting, whenever ai meets aj with aj .gid ≠ NULL, execute

ai.GL← ai.GL ∪ {(aj .gid, aj .id)}
9 else

10 Wait for tEX rounds at the current node
11 Explore the network by EX
12 and
13 While exploring, whenever ai meets aj with aj .gid ≠ NULL, execute

ai.GL← ai.GL ∪ {(aj .gid, aj .id)}
14 Wait for tEX + 1 rounds at the current node
15 // The second phase
16 //MemberID(gid) = {id ∣ (gid, id) ∈ ai.GL}
17 //ReliableGID() = {gid ∣ ∣MemberID(gid)∣ ≥ ai.f̃ + 1}
18 if ReliableGID() = ∅ then
19 Wait for one phase at the current node
20 else if ai.state =WaitingGroup and ai.gid =min(ReliableGID()) then
21 Wait for 3tEX rounds at the current node
22 Terminate the algorithm
23 else
24 Wait for tEX rounds at the current node
25 By executing EX, search for the node with a reliable waiting group whose

group ID is min(ReliableGID())
26 Wait at the node until the last round of the phase
27 Terminate the algorithm at the last round of the phase

in two phases of the Gather stage. In the first phase of the two phases, agents
collect group IDs of all reliable groups (lines 4–14). To do this, agents in waiting
groups keep waiting for the phase, and other agents (agents in exploring groups
and agents not in reliable groups) explore the network during the (tEX + 1)-th
round to the 2tEX-th round. During this behavior, when an agent finds a waiting
or exploring group, it records the group ID. After that, in the second phase, they
gather at the node where the reliable group with the smallest group ID exists
(lines 15–27).

Here, we explain how agents find exploring or waiting groups. Since agents
enter the Gather stage at different rounds, agents in a reliable group do not

30

move together. This implies that agent ai meets agents in a reliable group at
different rounds. For this reason, whenever agent ai meets aj with aj.gid ≠ NULL
(i.e., aj says it is in a reliable group), ai adds a pair (aj.gid, aj.id) in a set ai.GL.
Then, at the beginning of the second phase, ai checks ai.GL and computes group
IDs of reliable groups. More concretely, ai determines that gid is a group ID of
a reliable group if there exist at least ai.f̃ + 1 different IDs id1, id2, . . . such that
(gid, idk) ∈ ai.GL for any k, that is, the number of agents that conveyed gid as their
group IDs is at least ai.f̃ + 1. In the rest of this paragraph, we explain why this
threshold ai.f̃ + 1 allows agent ai to recognize a reliable group correctly. Assume
that agent ai finds the exploring or waiting group of a reliable group. Recall
that the exploring or waiting group initially contains at least 2f̃min + 2 agents.
From this fact, even if f ≤ f̃min of them are Byzantine, at least f̃min + 2 good
agents convey their group ID to ai. Consequently, when ai finds the group, ai can
determine that at least one good agent exists in this group because ∣ai.f̃−f̃min∣ ≤ 1

holds (as shown in Lemmas 6 and 9). Therefore, if ai finds an exploring or waiting
group (i.e., agents with the same gid) composed of at least ai.f̃ + 1 agents, ai can
correctly recognize the group as an exploring or waiting group of a reliable group.

In the following, we explain the detailed behavior of agent ai in the two
continuous phases of the Gather stage.

In the first phase, to collect all group IDs, agents in waiting groups keep
waiting, and other agents (agents in exploring groups and agents not in reliable
groups) explore the network. To be more precise, if agent ai belongs to a waiting
group, ai collects pairs of a group ID and an agent ID in variable ai.GL by waiting
and observing visiting agents. That is, ai waits for one phase, and if ai finds agent
aj with aj.gid ≠ NULL while waiting, it adds (aj.gid, aj.id) to ai.GL (lines 6–8).
If agent ai belongs to a exploring group or does not belong to a reliable group, ai
collects pairs of a group ID and an agent ID in variable ai.GL by exploring the
network. That is, ai waits for tEX rounds, explores the network, and then waits
for tEX +1 rounds. If ai finds agent aj with aj.gid ≠ NULL during the exploration,
it adds (aj.gid, aj.id) to ai.GL (lines 10–14).

In the second phase, all agents gather at the node where the reliable group
with the smallest group ID exists. Initially, ai calculates the set ReliableGID()
of group IDs of all reliable groups as follows: (1) ai makes, for each group ID

31

gid in ai.GL, a list of agent IDs that conveyed gid as its group ID (i.e., Mem-
berID(gid) = {id ∣ (gid, id) ∈ ai.GL}), and (2) ai checks up group IDs such
that at least ai.f̃ + 1 agents conveyed the group ID (i.e., ReliableGID() = {gid ∣
∣MemberID(gid)∣ ≥ ai.f̃ + 1}). Note that, if ai belongs to a exploring (resp., wait-
ing) group, ai.gid ∈ ReliableGID() holds because ai meets members of its own
waiting (resp., exploring) group during the first phase. If ai belongs to a waiting
group and satisfies ai.gid =min(ReliableGID()), it waits for 3tEX rounds and termi-
nates the algorithm (lines 20–22). Otherwise, ai waits for tEX rounds and searches
for the node with the waiting group whose group ID is min(ReliableGID()) by
executing EX (lines 23–25). After that, ai waits until the last round of this phase
and terminates the algorithm at the node (lines 26–27).

2.3 Correctness and Complexity

In this subsection, we prove the correctness and complexity of the proposed al-
gorithm.

Lemma 4. Let ai be a good agent. When ai finishes the CollectID stage, ai.L
contains IDs of all good agents.

Proof. By Lemma 1 and Observation 1, ai meets all good agents before the end
of the CollectID stage, and records their IDs in ai.L. Therefore, ai.L contains
IDs of all good agents at the end of the CollectID stage.

Lemma 5. After good agent ai finishes the CollectID stage, ai.f̃ ≥ f and
k ≥ (4ai.f̃ + 4)(ai.f̃ + 1) hold.

Proof. By Lemma 4, ai contains IDs of all good agents in ai.L at the end of
CollectID stage, and so ∣ai.L∣ ≥ (4f + 4)(f + 1) holds. Therefore, we have
ai.f̃ =max{y ∣ (4y+4)(y+1) ≤ ∣ai.L∣} ≥max{y ∣ (4y+4)(y+1) ≤ (4f+4)(f+1)} = f .
Also, by the algorithm, we clearly have k ≥ (4ai.f̃ + 4)(ai.f̃ + 1).

Lemma 6. After good agents ai and aj finish the CollectID stage, ∣ai.f̃−aj.f̃ ∣ ≤
1 holds.

Proof. We prove this lemma by contradiction. Without loss of generality, we
assume ai.f̃ = p and aj.f̃ ≥ p + 2. We have (4(p + 1) + 4)((p + 1) + 1) > ∣ai.L∣

32

by ai.f̃ < p + 1, and we have (4(p + 2) + 4)((p + 2) + 1) ≤ ∣aj.L∣ by aj.f̃ ≥ p + 2.
Therefore, since p ≥ f holds by Lemma 5, ∣aj.L∣ − ∣ai.L∣ > 8p + 20 > f holds. On
the other hand, since ai.L and aj.L include IDs of all good agents by Lemma 4,
we have ∣aj.L∣ − ∣ai.L∣ ≤ f , which contradicts the assumption.

Let f̃max be the largest value of f̃ among all good agents at the time when all
good agents finish the CollectID stage.

Lemma 7. The followings hold in the MakeGroup stage: (1) amin is a target
agent, and (2) the number of good target agents is at most f̃max + 1.

Proof. First, we prove proposition (1). By Lemma 5, amin.f̃ ≥ f holds; thus, the
amin.f̃ + 1 (≥ f + 1) smallest IDs in amin.L contain amin.id. Therefore, amin is a
target agent.

Next, we prove proposition (2) by contradiction. Let us assume that propo-
sition (2) does not hold. That is, at least f̃max + 2 good agents become target
agents. Let amax be the agent with the largest ID among the good target agents.
Since amax.L contains IDs of other f̃max + 1 good agents that have smaller IDs
than amax, amax does not become a target agent. This is a contradiction. Hence,
the lemma holds.

Lemma 8. Let ai be a good agent. Variable ai.BL does not contain any ID of
good agents.

Proof. We prove by induction. Recall that ai adds ai.target to ai.BL in a phase
of the MakeGroup stage only when one of the following conditions holds. Let
atarget be the agent such that ai.target = atarget.id holds.

1. Agent ai did not find atarget during the phase (line 29 of Alg. 3).

2. After ai found atarget, during the (tEX + 1)-th round to the 2tEX-th round of
the phase, atarget moved to another node or atarget.target ≠ atarget.id holds
(line 26 of Alg. 3).

For the base case, we consider the first phase of the MakeGroup stage of
ai. By Lemma 4, ai.L contains IDs of all good agents. Since ai.BL is empty at
the beginning of the first phase, ai.target (= min(ai.L)) is amin.id or an ID of a

33

Byzantine agent. But, here, it is sufficient to consider only the former case. Since
amin has the smallest ID among good agents, the duration of the CollectID
stage is the shortest among good agents. Hence, amin starts the MakeGroup
stage before ai starts the (tEX+1)-th round of the first phase of the MakeGroup
stage. Since amin is a target agent by Lemma 7, amin continues to wait during
the MakeGroup stage. This implies that the above conditions to update ai.BL
are not satisfied. Hence, ai does not update ai.BL, and the lemma holds in the
first phase.

For the induction, assume that ai.BL does not contain IDs of good agents at
the end of the t-th phase of the MakeGroup stage of ai. We consider the (t+1)-
th phase of the MakeGroup stage of ai. Since ai.BL does not contain IDs of the
good agents at the beginning of the (t+1)-th phase, ai.target =min(ai.L∖ai.BL)
is amin.id or an ID of a Byzantine agent. By the same discussion as in the first
phase, we can prove that IDs of good agents are not added to ai.BL in the (t+1)-
th phase. Therefore, this lemma holds in the (t+ 1)-th phase. Hence, the lemma
holds.

In the following lemmas, we show the property of a reliable group.

Lemma 9. When good agent ai executes ai.F ← f̃ ′ in consensus(), there exists
good agent aj with aj.f̃ = f̃ ′

Proof. Assume that ai executes ai.F ← f̃ ′ at node v in round r. By the algorithm,
in round r, there exist at least 4 ⋅ai.f̃ agents executing the MakeGroup stage at
node v. Since ai.f̃ ≥ f holds by Lemma 5, there exist at least 4⋅ai.f̃−f ≥ 4f−f = 3f
good agents executing the MakeGroup stage at v in round r. Also, since
variable f̃ of good agents takes at most two possible values by Lemma 6, at least
⌈3f/2⌉ > f good agents at v have the same value of f̃ . Therefore, in round r,
ai stores the value of variable f̃ of some good agent in ai.F . Hence, the lemma
holds.

Lemma 10. If good agent ai executes ai.gid← gid (line 5 of Algorithm 4) at node
v in round r, (1) a reliable group with group ID gid is created in round r, and
(2) an exploring and waiting group of the reliable group is created in round r and
each of them contains at least f̃min + 2 good agents.

34

Proof. Assume that good agent ai executes ai.gid ← gid at v in round r. Let
A′ be a set of agents such that, iff aj ∈ A′ holds, aj stays at v in round r and
aj.target = ai.target holds.

Firstly, we prove that A′ satisfies the following conditions.

• Set A′ contains at least 4 ⋅ ai.F + 4 agents.

• Any good agent aj in A′ executes aj.gid← gid at node v in round r.

Since ai executes ai.gid ← gid, A′ contains at least 4 ⋅ ai.F + 4 agents. Also, A′

contains agent atarget with atarget.id = ai.target. Fix an agent aj ∈ A′. By Lemmas
6 and 9, aj.f̃ ≤ ai.F + 1 holds, and hence, 4 ⋅ ai.F + 4 ≥ 4 ⋅ aj.f̃ holds. This implies
that the number of agents at v satisfies the condition that aj calculates aj.F

(line 1 of Algorithm 4). Since the situation of v is the same for both ai and aj,
aj.F = ai.F holds. In addition, aj also observes agents in A′; then, aj executes
aj.gid← gid at v in round r.

Secondly, we prove (1). By Lemmas 5, 6 and 9, A′ contains at least 4 ⋅ ai.F +
4 − f ≥ 4f̃min + 4 − f ≥ 4f̃min + 4 − f̃min = 3f̃min + 4 good agents. Also, for any
ai ∈ A′, ai.gid = gid holds. Therefore, A′ is a reliable group with group ID gid
from Definition 1.

Lastly, we prove (2). Each agent aj ∈ A′ (including ai) also decides an explor-
ing or wating group of the reliable group with group ID gid at node v in round r.
Since A′ contains at least 4 ⋅ai.F + 4 ≥ 4f̃min + 4 agents, each of the exploring and
waiting groups contains at least 2f̃min+2 agents. Therefore, each of the exploring
and waiting groups contains at least 2f̃min + 2 − f ≥ f̃min + 2 good agents.

In the following two lemmas, we prove that a reliable group is created before
all good agents finish the (f + 1)-th phase of the MakeGroup stage. Let alast

be the good agent that finishes the CollectID stage last, and let phasex be the
x-th phase of the MakeGroup stage of alast. Since all agents wake up within tEX

rounds and each phase consists of 3tEX + 1 rounds, any good agent ai has exactly
one phase phaseix that overlaps phasex for at least 2tEX + 1 rounds. For simplicity,
when agent ai behaves in phaseix, we say that ai behaves in the x-th phase (of the
MakeGroup stage) of alast.

35

Lemma 11. Let Byz1,Byz2, . . . ,Byzf ′ (Byzl.id < Byzl+1.id for 1 ≤ l ≤ f ′ − 1)
be Byzantine agents whose IDs are smaller than amin. Assume that, when alast

finishes the f ′-th phase of the MakeGroup stage, a reliable group does not
exist. Then, in the (f ′ + 1)-th phase of the MakeGroup stage of alast, at most
(4f̃max + 2)f ′ good agents assign bid ∈ {Byz1.id,Byz2.id, . . . , Byzf ′ .id} to their
variable target.

Proof. Assume that a reliable group does not exist when alast finishes the f ′-th
phase of the MakeGroup stage. Under this assumption, we prove by induction
that, in the (x + 1)-th phase of the MakeGroup stage (1 ≤ x ≤ f ′) of alast,
at most (4f̃max + 2)x good agents assign bid ∈ {Byz1.id,Byz2.id, . . . ,Byzx.id} to
their variable target. Hereinafter, the x-th phase of the MakeGroup stage of
alast is simply called the x-th phase.

For the base case, we consider the case of x = 1. Let A1 be a set of good agents
that assign Byz1.id to their variable target in the second phase. For contradiction,
assume ∣A1∣ > 4f̃max + 2. Since good agents monotonically increase target, agents
in A1 also assign Byz1.id to target in the first phase. Also, since the agents do not
regard Byz1 as a Byzantine agent in the first phase, they find Byz1 in the first
phase and, after that, Byz1 does not move and Byz1.target = Byz1.id holds until
the 2tEX-th round of the first phase. In addition, they start the first phase within
at most tEX round and wait during the (2tEX + 1)-th round to the (3tEX + 1)-th
round of the first phase. This implies that all agents in A1 exist at the same node
as Byz1 before the 2tEX-th round of the first phase, and at that time the number
of agents at the node is at least ∣A1 ∪ {Byz1}∣ ≥ 4f̃max + 4. Furthermore, since
those agents have stored Byz1.id in their target, they assign Byz1.id to their gid
(execute line 5 of Algorithm 4). By Lemma 10, since a reliable group is created
by the algorithm, this contradicts the assumption. Therefore, ∣A1∣ ≤ 4f̃max + 2

holds.
For induction step, assume that, in the (x + 1)-th phase (1 ≤ x < f ′), at most

(4f̃max + 2)x good agents assign bid ∈ {Byz1.id,Byz2.id, . . . ,Byzx.id} to their
target. Let Ax be a set of good agents that assign bid ∈ {Byz1.id,Byz2.id, . . . ,

Byzx+1.id} to target in the (x + 2)-th phase. For contradiction, assume ∣Ax∣ >

(4f̃max + 2)(x + 1). Let Bx be a set of good agents that assign Byzx+1.id to
target in the (x + 1)-th phase, and let Cx be a set of good agents that assign

36

bid ∈ {Byz1.id,Byz2.id, . . . ,Byzx.id} to target in the (x+1)-th phase. Since good
agents monotonically increase target, Ax ⊆ Bx∪Cx holds. Since ∣Cx∣ ≤ (4f̃max+2)x

holds by the assumption of induction, ∣Bx ∩ Ax∣ ≥ ∣Ax∣ − ∣Cx∣ > 4f̃max + 2 holds.
Since good agents in Bx ∩Ax do not regard Byzx+1 as a Byzantine agent in the
(x + 1)-th phase, they find Byzx+1, and, after that, Byzx+1 does not move and
Byzx+1.target = Byzx+1.id holds until the 2tEX-th round of the (x + 1)-th phase.
Similarly to the base case, this implies that all agents in Bx ∩ Ax exist at the
same node as Byzx+1, and at that time, the number of agents at the node is at
least 4f̃max + 4. Furthermore, since those agents have stored Byzx+1.id in their
target, they assign Byzx+1.id to their gid (execute line 5 of Algorithm 4). By
Lemma 10, since a reliable group is created by the algorithm, this contradicts the
assumption. Therefore, ∣Ax∣ ≤ (4f̃max + 2)(x + 1) holds.

Hence, the lemma holds.

Lemma 12. Before alast finishes the (f + 1)-th phase of the MakeGroup stage,
a reliable group is created.

Proof. Let f ′(≤ f) be the number of Byzantine agents whose IDs are smaller
than amin.id. By Lemma 11, if a reliable group is not created before alast finishes
the f ′-th phase of the MakeGroup stage, at most (4f̃max + 2)f ′ good agents
assign an ID of a Byzantine agent with a smaller ID than amin to target in the
(f ′ + 1)-th phase of alast. Also, by Lemma 7, the number of good target agents
is at most f̃max + 1. This implies that, in the (f ′ + 1)-th phase of alast, at least
(k − f) − (f̃max + 1) − (4f̃max + 2)f ′ good search agents assign amin.id to target
(because amin.id is not in variable BL of agents by Lemma 8). Since they can
successfully find amin, by Lemma 5, at least (k − f) − (f̃max + 1) − (4f̃max + 2)f ′ ≥

(4f̃max+4)(f̃max+1)− f̃max−(f̃max+1)−(4f̃max+2)f̃max = 4f̃max+3 search agents
stay with target agent amin before the 2tEX-th rounds of the (f ′ + 1)-th phase of
alast. This implies that at least 4f̃max + 4 agents with target = amin.id exist at
the node with amin. Therefore, they assign amin.id to their gid (execute line 5
of Algorithm 4). By Lemma 10, a reliable group is created. Hence, the lemma
holds.

The following two lemmas show that agents can achieve the gathering if at
least one reliable group is created and they finish the CollectID stage. Let

37

aini be the good agent that wakes up earliest. Since all agents wake up within
tEX rounds, if aini starts two consecutive phases of the Gather stage in round r,
all good agents start two consecutive phases of the Gather stage before round
r + tEX. We define Rel(r) as a set of reliable groups that exist in round r + tEX.
If Rel(r) is not empty, we define gidmin(r) as the smallest group ID of reliable
groups in Rel(r), Gmin(r) as the group with group ID gidmin(r), and vmin(r) as
the node where Gmin(r) is created.

Lemma 13. Consider the following situation: (1) aini starts two consecutive
phases of the Gather stage in round r, (2) ai (possibly aini) starts two con-
secutive phases of the Gather stage in round r′ such that r ≤ r′ ≤ r + tEX holds,
and (3) ai has completed the CollectID stage before round r′. Let Listi be the
output of ReliableGID() for ai in the two consecutive phases. Then, Listi is a set
of all group IDs of Rel(r).

Proof. By the algorithm, since all good agents wake up within tEX rounds, all
good agents start two consecutive phases of the Gather stage during rounds r

to r + tEX and hence, no new reliable group is created during rounds r + tEX to
r + 2tEX.

If ai belongs to a waiting group, it waits during rounds r′(≤ r+tEX) to r′+3tEX(≥

r+3tEX). Since all good agents in exploring groups of Rel(r) explore the network
during rounds r + tEX to r + 3tEX, all of them meet ai. Therefore, for each good
agent a in a exploring group of Rel(r), ai.GL contains (a.gid, a.id).

If ai does not belong to a waiting group, it explores the network during rounds
r′ + tEX(≥ r + tEX) to r′ + 2tEX(≤ r + 3tEX). Since all good agents in waiting groups
of Rel(r) wait during rounds r + tEX to r + 3tEX, all of them meet ai. Therefore,
for each good agent a in a waiting group of Rel(r), ai.GL contains (a.gid, a.id).

Let G be an arbitrary group in Rel(r). By Lemma 10, each of the exploring
group and the waiting group of G contains at least f̃min + 2 good agents. By
Lemma 6, since ai.f̃ +1 ≤ f̃max+1 ≤ f̃min+2 holds, ai.GL contains at least ai.f̃ +1
pairs for group G. Hence, Listi contains all group IDs of Rel(r). In addition,
since there exist only f < ai.f̃ + 1 Byzantine agents, Listi does not contain a fake
group ID that was conveyed by Byzantine agents. Hence, Listi is a set of all
group IDs of Rel(r).

38

Lemma 14. Let r be the first round such that (a) aini starts two consecutive
phases of the Gather stage in round r and (b) there exists a reliable group in
round r + tEX. Assume that ai (possibly aini) starts two consecutive phases of
the Gather stage in round r′ such that r ≤ r′ ≤ r + tEX. Then, the following
propositions hold: (1) If ai has finished the CollectID stage before round r′,
it terminates the algorithm at vmin(r) during the two consecutive phases of the
Gather stage after round r′. (2) If ai has not finished the CollectID stage
in round r′, it terminates the algorithm at vmin(r) in the first two consecutive
phases of the Gather stage after it finishes the CollectID stage.

Proof. First, we prove proposition (1). We focus on the first two consecu-
tive phases of the Gather stage after round r′. From Lemma 13, ai obtains
the set of all group IDs of Rel(r) as the output of ReliableGID() and hence,
min(ReliableGID()) is gidmin(r). Hence, if ai belongs to a waiting group of
Gmin(r), it terminates at its current node vmin(r) at the (3tEX + 1)-th round
of the second phase after round r′. Otherwise, ai searches for the waiting group
of Gmin(r) in the second phase after round r′. More concretely, ai explores the
network during the (tEX + 1)-th round to the 2tEX-th round in the second phase.
Recall that agents in a waiting group of Gmin(r) wait for 3tEX rounds before ter-
minating at vmin(r) in their second phases, and the difference of starting times of
the phases is at most tEX. Hence, ai meets agents in a waiting group of Gmin(r)

at vmin(r) during the exploration, and then, it terminates at vmin(r).
Next, we prove proposition (2). Consider the case that ai is the first agent

that finishes the CollectID stage after r′. Assume that, in round r′′, ai fin-
ishes the CollectID stage. Since all agents that have finished the CollectID
stage before round r′ have terminated from proposition (1), no agent executes
the MakeGroup stage between r′ and r′′, and so the set of reliable groups is
Rel(r). Since all agents that belong to groups in Rel(r) have terminated from
proposition (1), ai meets all of them in the first phase of the Gather stage af-
ter round r′′. Hence, in the second phase, gidmin(r) =min(ReliableGID()) holds,
and consequently ai terminates the algorithm at vmin(r) during the second phase.
Consider the case that ai is not the first agent that finishes the CollectID stage
after r′. Similarly to the above case, no agent executes the MakeGroup stage
after r′, and consequently the set of reliable groups is still Rel(r). Hence, we can

39

prove this case similarly to the above case.

Finally, we prove the complexity of the proposed algorithm.

Theorem 1. Let n be the number of nodes, k be the number of agents, f be the
number of weakly Byzantine agents, Λgood be the largest ID among good agents,
and Λall be the largest ID among agents. If the upper bound N of n is given to
agents and 4f 2 + 9f + 4 ≤ k holds, the proposed algorithm solves the gathering
problem with non-simultaneous termination in at most tEX + 3(2⌊log(Λgood)⌋ + f +

7)(3tEX + 1) rounds using O(k ⋅ log(Λall) + logX(N)) +MSREN(N,Λgood) bits of
agent memory.

Proof. Let alast be the good agent that finishes the CollectID stage last. Since
alast wakes up within tEX rounds (after the first agent wakes up) and executes at
most 2⌊log(Λgood)⌋+6 phases of the CollectID stage, alast finishes the Collec-
tID stage in tEX+(2⌊log(Λgood)⌋+6)⋅3(3tEX+1) = tEX+3(2⌊log(Λgood)⌋+6)(3tEX+1)

rounds. By Lemma 12, a reliable group is created before alast finishes the (f +1)-
th phase of the MakeGroup stage. By Lemma 14, if at least one reliable group is
created and all good agents finish the CollectID stage, agents achieve the gath-
ering during the next two phases of the Gather stage. Therefore, agents achieve
the gathering in at most tEX + 3(2⌊log(Λgood)⌋ + 6)(3tEX + 1) + (f + 1) ⋅ 3(3tEX + 1) =

tEX + 3(2⌊log(Λgood)⌋ + f + 7)(3tEX + 1) rounds.
Next, we analyze the space complexity required for an agent ai to execute

ByzantineGathering. We first consider the amount of memory space required
for ai to keep every variable.

Case Variable state and EndCI: Agent ai stores a constant number of pa-
rameters to ai.state and ai.EndCI; thus, the amounts of memory space of these
variables are O(1) bits.

Case Variable count: The above discussion gives at most tEX+3(2⌊log(Λgood)⌋+

f +7)(3tEX+1) as the upper bound of ai.count; thus, the amount of memory space
of the variable is O(log(f +Λgood)X(N)) = O(log(f +Λgood) + log(X(N))) bits.

Case Variable x: Agent ai stores 2⌊log(ai.id)⌋ + 6 to ai.x and the maximum
ID among good agents is Λgood; thus, the amount of memory space of the variable
is O(log(Λgood)) bits.

40

Case Variables f̃ and F : Lemmas 5, 6, and 9 shows at most f +1 as the upper
bounds of ai.f̃ and ai.F : thus, the amounts of memory space of these variables
are O(log(f)) bits.

Case Variables L and GL: Agent ai stores only IDs of agents it has met;
therefore, it stores at most k agents IDs to ai.L and ai.GL. The maximum
ID among IDs stored by ai is Λall; thus, the mounts of memory space of these
variables are O(k log(Λall)) bits.

Case Variable BL: Lemma 8 shows that ai stores at most f agent IDs to
ai.BL and the maximum ID among IDs stored by ai is Λall; thus, the amount of
memory space of the variable is O(f log(Λall)) bits.

Case Variables target and gid: Agent ai stores only one ID to ai.target and
ai.gid and the upper bounds on these variables are Λgood; thus, the amounts of
memory space of these variables are O(log(Λgood)) bits.

The amount of memory space required for ai to keep every variable is
O(k log(Λall) + log(X(N))) bits. As mentioned in Section 1, the amount of
memory space of the exploration procedure is O(log(N). Thus, the space com-
plexity required for an agent to execute ByzantineGathering is O(k log(Λall) +

log(X(N))) bits.

3. Byzantine Gathering Algorithm with Simulta-
neous Termination

In this section, we propose an algorithm for the gathering problem with simul-
taneous termination by modifying the algorithm in the previous section. The
underlying assumption is the same as that of the previous section. In the follow-
ing, we refer to the proposed algorithm in the previous section as the previous
algorithm. In the previous algorithm, all good agents gather at a single node
but can terminate at different rounds. Therefore, the purpose of this section is
to change the termination condition of the previous algorithm so that all good
agents terminate at the same round.

By Lemma 14, after all good agents finish the CollectID stage and at least
one reliable group is created, all good agents gather at a single node during the
next two consecutive phases of the Gather stage. Hence, after good agents

41

move to the gathering node in the Gather stage, they can terminate at the
same round if they wait until all good agents finish the CollectID stage (and
the next Gather stage). To do this, we can use the fact that, when good agent
ai finishes the CollectID stage, ai.L contains IDs of all good agents. That is,
max(ai.L) is the upper bound of IDs of good agents and hence, ai can compute
the upper bound of rounds required for all good agents to finish the CollectID
stage. However, for two good agents ai and aj, max(ai.L) can be different from
max(aj.L) because it is possible that either ai or aj meets a Byzantine agent
with an ID larger than the largest ID among good agents. Also, if agents share
their variable L and take the maximum ID, Byzantine agents may share a very
large ID such that no agent has the ID. To overcome this problem, each agent
ai selects the largest ID among IDs that ai.F + 1 agents have in their variable L,
and computes when to terminate. Note that, in order that all good agents agree
on the largest ID, they should have the same value of F . For this reason, each
agent ai updates ai.F similarly to the MakeGroup stage after it completes the
previous algorithm. Since all good agents in a reliable group exist at a single
node, ai can correctly update ai.F .

Lastly, to terminate at the same round, good agents make a consensus on
termination. To do this, each agent ai prepares a flag ai.f lagt (initially, ai.f lagt ←
False). Agent ai executes ai.f lagt ← True if it is ready to terminate, i.e., it
understands that all good agents gather at the current node. After ai completes
the previous algorithm, it also checks flagt of all agents at the current node every
round. If flagt of at least ai.F + 1 agents are true, ai terminates the algorithm
because at least one good agent understands that all good agents gather at the
current node. Since all good agents stay at the same node and make the decision
based on the same information, they can terminate at the same round.

In the rest of this section, we describe the detailed behavior of ai in the algo-
rithm. First, ai executes the previous algorithm until just before it terminates,
but it does not terminate. Let round ri be the round immediately after ai com-
pletes the previous algorithm. After round ri, ai waits at the gathering node of
the previous algorithm, say v, and always checks whether it can terminate. More
concretely, ai executes the following operations every round after round ri.

1. Agent ai updates ai.F in the same way as in the MakeGroup stage of the

42

previous algorithm, that is, ai assigns the most frequent value of f̃ to ai.F .
If multiple values are the most frequent, ai chooses the smallest one.

2. Agent ai checks flagt of agents at v, and, if flagt of at least ai.F +1 agents
are true, ai terminates the algorithm.

3. Agent ai checks variable L of agents at v and computes the maximum ID
among agents. That is, letting Lg be a set of IDs that at least ai.F + 1

agents at v have in their variable L, ai executes ai.idmax ←max(Lg).

4. Agent ai checks whether all good agents gather at v. If all good agents
have completed the CollectID stage before round ri, all good agents
gather at v before round ri + tEX because all agents wake up within tEX

rounds. Consider the case that some good agent has not yet completed
the CollectID stage in round ri. Since a reliable group has already been
created, if the agent with ID ai.idmax has finished the CollectID stage
and its next two phases of the Gather stage, ai understands that all good
agents gather at v. Note that the agent with ID ai.idmax completes the
CollectID stage and its next two phases of the Gather stage in at most
T = tEX + tEX + 3(2⌊log(ai.idmax)⌋ + 6)(3tEX + 1) rounds after ai starts the
algorithm. For this reason, ai sets ai.f lagt ← True if (a) tEX rounds have
elapsed after round ri and (b) T rounds have elapsed after it started the
algorithm.

Theorem 2. Let n be the number of nodes, k be the number of agents, f be the
number of Byzantine agents, and Λall be the largest ID among all agents. If the
upper bound N of n is given to agents and 4f 2 + 9f + 4 ≤ k holds, the proposed
algorithm solves the gathering problem with simultaneous termination in at most
3tEX +3(2⌊log(Λall)⌋+f +7)(3tEX +1)+1 rounds using O(k log(Λall)+ log(X(N)))

bits of agent memory.

Proof. Let aini be the agent that starts the algorithm earliest. Let r be the first
round such that (a) aini starts two consecutive phases of the Gather stage in
round r and (b) there exists a reliable group in round r + tEX, and let Rel(r) be a
set of reliable groups that exist in round r + tEX. Let Gmin(r) be the group with
the smallest group ID in Rel(r), and let vmin(r) be the node where Gmin(r) is

43

created. From Lemma 14, each good agent exists at vmin(r) when it completes
the previous algorithm.

Let af be the agent that executes flagt ← True earliest, and assume that af

executes af .f lagt ← True in round r∗.
First, we prove that all good agents complete the previous algorithm before

round r∗. Assume that af completes the previous algorithm in round rf . If
all good agents complete the CollectID stage before round rf , all good agents
gather at v before round rf +tEX. Since r∗ ≥ rf +tEX holds, all good agents complete
the previous algorithm before round r∗. Consider the case that some good agent
has not yet completed the CollectID stage in round rf . Since all agents wake
up within tEX rounds and agents do not move during the last tEX rounds of the
previous algorithm, good agents in a reliable group in Rel(r) exist at vmin(r)

after round rf . Hence, at least 4 ⋅ af .F + 4 − f ≥ 3f good agents exist at vmin(r)

after round rf . Hence, similarly to Lemma 9, af assigns f̃ of some good agent to
af .F after round rf . This implies that af assigns an ID of some agent to af .idmax.
Note that the assigned ID is at least Λgood, where Λgood is the largest ID among
all good agents. Hence, since af executes flagt ← True only when T rounds
have elapsed from the beginning, all good agents complete the CollectID stage
and the next two consecutive phases of the Gather stage in round r∗. Since a
reliable group has already been created, all good agents complete the previous
algorithm before round r∗.

Next, we prove that all good agents terminate at vmin(r) at the same round.
From the above discussion, all good agents wait at vmin(r) in round r∗. Since all
good agents obtain the same information at vmin(r), they decide the same value
on F . Hence, they can terminate at the same round immediately after at least
F + 1 agents execute flagt ← True.

Next, we prove that good agents terminate in at most 3tEX + 3(2⌊log(Λall)⌋

+f + 7) (3tEX + 1) + 1 rounds. Similarly to Theorem 1, all good agents complete
the previous algorithm and gather at vmin(r) in at most T1 = tEX+3(2⌊log(Λgood)⌋+

f + 7)(3tEX + 1) rounds. In addition, since idmax is an ID of some agent, good
agents wait until at most T2 = 2tEX+3(2⌊log(Λall)⌋+6)(3tEX+1) rounds have passed.
Note that good agents execute flagt ← True if (a) tEX rounds have passed after
they completed the previous algorithm and (b) T (≤ T2) rounds have passed after

44

the beginning of the algorithm. Hence, good agents execute flagt ← True in at
most T3 = max{T1 + tEX, T2} ≤ 2tEX + 3(2⌊log(Λall)⌋ + f + 7)(3tEX + 1) rounds after
they start the algorithm. Since all good agents start the algorithm within tEX

rounds and they terminate after at least F +1 agents execute flagt ← True, they
terminate in at most tEX +T3 +1 = 3tEX +3(2⌊log(Λall)⌋+f +7)(3tEX +1)+1 rounds
after the first good agent wakes up.

Finally, we analyze the space complexity required for an agent ai to execute
the proposed algorithm. The proposed algorithm uses all variables and build-
ing blocks of the previous algorithm; hence, the space complexity is at least
O(k log(Λall) + log(X(N))) bits by Theorem 1. In the proposed algorithm, ai

additionally uses variables flagt, Lg, idmax, count, ri, and T ; thus, we analyze the
amount of the memory space of these variables.

Case Variable flagt: Agent ai stores a context number of parameters to this
variable; thus, the amount of memory space of this variable is O(1) bits.

Case Variable Lg: Agent ai stores IDs that at least ai.F + 1 agents at the
gathered node include in their variable L. By Lemmas 5 and 9, ai.F ≥ f holds;
therefore, at least one good agent has these IDs in its variable L. A good agent
stores only the IDs of agents it has met to L and the maximum ID in its L is at
most Λall. Thus, the amount of memory space of this variable is O(kΛall) bits.

Case Variable idmax: Agent ai stores one ID from ai.Lg to ai.idmax and the
upper bound on idmax is Λall from above discussion; thus, the amount of memory
space of this variable is O(Λall) bits.

Case Variable count: The discussion on time complexity gives at most tEX +

T3 + 1 = 3tEX + 3(2⌊log(Λall)⌋ + f + 7)(3tEX + 1) + 1 as the upper bound of ai.count;
thus, the amount of memory space of the variable is O(log(f + Λall)X(N)) =

O(log(f +Λall) + log(X(N))) bits.
Case Variables ri and T : Theorem 1 gives O(log(f +Λgood)+ log(X(N))) bits

as the upper bound of ai.ri. The discussion on ai.count gives O(log(f + Λall) +

log(X(N))) bits as the upper bound of ai.T .
Thus, the space complexity required for an agent to execute the proposed

algorithm is O(k log(Λall) + log(X(N))) bits.

45

4. Summary

In this part, we proposed gathering algorithms with different termination charac-
teristics in the presence of O(

√
k) Byzantine agents. These algorithms reduced

the time complexity by assuming that the network includes many agents. More
specifically, if N is given to agents, and at least (4f + 4)(f + 1) exist in the
network, the first algorithm achieves the gathering with non-simultaneous ter-
mination in O((f + Λgood) ⋅ X(N)) rounds, and the second algorithm achieves
the gathering with simultaneous termination in O((f +Λall) ⋅X(N)) rounds. In
these algorithms, several good agents first create a reliable group such that good
agents can trust the behavior of the group to suppress the influence of Byzantine
agents. Subsequently, the reliable group collects the other good agents, and all
good agents gather at a single node. To create a reliable group, good agents with
the smallest ID in the collected IDs wait and other good agents search for the
waiting agents.

46

Part V

Gathering despite O(k) Byzantine
Agents

1. Introduction

In this part, we consider both gathering problems with non-simultaneous ter-
mination and simultaneous termination in synchronous environments with O(k)

Byzantine agents.
Dieudonné et al. [11] researched to clarify the minimum number of good agents

required to solve the gathering problem with simultaneous termination. As a re-
sult, they proposed an algorithm tolerating any number of Byzantine agents;
however, its time complexity is O(n4 ⋅Λgood ⋅X(n)) rounds, which is not insignif-
icant, where Λgood is the length of the largest ID among good agents, and X(n)

is the time required to visit all nodes of any n-nodes graph. The study in the
previous part assumes that the network includes a few Byzantine agents and in-
vestigates whether this assumption could shorten the time required to solve these
problems. As a result, we propose the gathering algorithm with simultaneous
termination in O((f + Λall) ⋅X(N)) rounds, which is the fastest in the context,
where Λall is the length of the largest ID among agents; however, this algorithm
requires at least 4f 2 + 8f + 4 good agents, which is not a small number. In sum-
mary, the first algorithm requires a small number of good agents, but has high
time complexity, while the second algorithm has low time complexity, but can
only o(k) number of Byzantine agents. Thus, no existing algorithms have both
low time complexity and a small number of good agents.

We propose two gathering algorithms with different termination characteris-
tics and low time complexity in the presence of Ω(f) good agents. If agents know
N and the network includes at least 8f + 7 agents, the first algorithm achieves
the gathering with non-simultaneous termination in O(f ⋅ Λgood ⋅X(N)) rounds
and the second algorithm achieves the gathering with simultaneous termination
in O(f ⋅ Λall ⋅ X(N)) rounds. If n is given to agents, the second algorithm is

47

faster than that [11] and requires fewer good agents than the one in the previ-
ous part. To solve the gathering problems under these assumptions, we propose
herein a new technique of simulating a consensus algorithm [17] for synchronous
Byzantine message-passing systems on agent systems, in which one agent simu-
lates one process of the message-passing system. Byzantine consensus is solvable
on a synchronous distributed system with at least 3b + 1 processes, where b is
the number of Byzantine processes [28, 21]. However, it is difficult for all agents
to simulate synchronous rounds of Byzantine message-passing systems and start
the consensus algorithm at the same time. We instead construct a group of at
least 3f + 1 agents that simulate the algorithm. The proposed technique is a
universal technique for simulating an algorithm for message-passing systems on
agent systems.

2. Byzantine Gathering Algorithm with Non-
Simultaneous Termination

In this section, we first present an overview of the proposed algorithm. Next,
we provide the details of the proposed algorithm, including the explanation of
a sub-algorithm to design the proposed algorithm. Throughout the paper, we
assume k = g +f ≥ 8f +7, which implies that there are at least 7f +7 good agents
in the network. Recall that agents know N , but do not know n, k, or f .

2.1 Overview

We present herein an overview of the proposed Byzantine gathering algorithm.
The underlying idea of the algorithm is made of the three following steps:

(1) Each agent ai starts the rendezvous procedure REN(ai.id).

(2) When ai meets another agent aj with a smaller ID, ai stops REN(ai.id) and
accompanies aj.

(3) When ai executes REN(ai.id) for tREN(ai.id) rounds without stopping, ai and
its accompanied agents transition into a terminal state.

48

If no Byzantine agents exist (non-Byzantine environment), all agents gather at
the node where the agent amin with the smallest ID exists, and then transition into
the terminal state at the same node at the same time. However, if a Byzantine
agent exists (Byzantine environment), that idea fails. Let us consider the case
where amin is a Byzantine agent. If amin meets only a part of good agents in Step
(1), good agents are divided into two or more groups, and good agents transition
into the terminal state at different nodes.

The existing approach by Dieudonné et al. [11], which is tolerant to Byzantine
environments, has an agent perform steps (1) and (2). If an agent detects rogue
agents behaving as Byzantine at the same node, it does the above, except for
the rogue agents. Agents eventually record all IDs of the rogue agents, and this
approach guarantees that all good agents meet at the same node. However, it
is difficult to terminate agents at the same node at the same time. The authors
addressed this problem by using a mechanism that ensures matching IDs for
exclusion among good agents at the same node, but the algorithm they proposed
takes much time.

We solve this problem in a manner different from the abovementioned ap-
proach. To counteract the influence of Byzantine agents, the proposed algorithm
has agents form a reliable group, which has a special ID, called a group ID,
and is composed of at least 2f + 1 agents (i.e., this group includes f + 1 good
agents). When an agent meets the reliable group, the agent can trust the group
because it understands that at least one good agent belongs to the group. Thus,
the proposed algorithm achieves the gathering in the Byzantine environment by
modifying the above idea as follows:

(1’) After at least one reliable group is created, each reliable group RG with
a group ID gid starts REN(gid), and each agent ai not in the group starts
REN(ai.id).

(2’) When ai or RG meets another reliable group RG′ with a smaller group ID,
it stops its own rendezvous procedure and accompanies RG′.

(3’) When RG executes REN(gid) for tREN(gid) rounds without stopping, RG and
its accompanied agents transition into a terminal state.

49

Consequently, all good agents eventually accompany the reliable group with the
smallest group ID and achieve the gathering.

The proposed algorithm creates a reliable group by making agents execute the
following steps:

(a) Each agent collects IDs of at least 3f + 1 good agents and regards them as a
group candidate.

(b) Agents in the group candidate make a common ID set based on their IDs.

(c) These agents form a reliable group by gathering at the same node based on
the common ID set.

A common ID set is used to efficiently form a reliable group. To make the common
ID set, a group candidate simulates a parallel consensus algorithm PCONS. Once
agents in the group candidate make a common ID set, each of them decides on
a target ID in the order based on the common ID set and tries to gather one by
one at the same node as the agent with the target ID. The algorithm ensures that
good agents eventually gather at the same node and create a reliable group.

The gathering algorithm proposed in Part IV employs another strategy for
creating a reliable group by collecting IDs. In this algorithm, each good agent
searches for one of the agents with the smallest f + 1 IDs of the collected IDs to
gather at the nodes with the agents. This strategy allows good agents to gather
at most f + 1 different nodes and requires at least Ω(f 2) good agents to create
a reliable group. By contrast, the proposed algorithm uses the strategy such
that Ω(f) good agents make a common ID set and synchronously search for a
target agent one by one to gather at a node with the target agent. Therefore,
the algorithm requires Ω(f) good agents, and the key to reduction is the reliable
group creation procedure using the consensus algorithm.

2.2 Algorithms

In this section, we give two algorithms, namely, MakeReliableGroup and
ByzantineGathering. First, we explain Algorithm MakeReliableGroup to
create a reliable group. Next, we propose Algorithm ByzantineGathering

50

that solves the gathering problem with non-simultaneous termination using
MakeReliableGroup.

2.2.1 Idea of the Algorithm to Create a Reliable Group

Algorithm MakeReliableGroup ensures that at least 2f + 1 agents gather at the
same node and form a reliable group. To do this, as mentioned in Section 2.1,
MakeReliableGroup makes agents in the same group candidate create a common
ID set and search for agents with target IDs.

In MakeReliableGroup, the agents proceed in five stages: WakeUp, Col-
lectID, MakeCandidate, AgreeID, and MakeGroup. Each stage has one
or more cycles comprising one or more rounds. The length (the number of rounds)
of the first cycle is a given number Tini > tEX, and an agent doubles the length
every cycle like 2Tini,4Tini, . . . until the MakeCandidate stage is finished and
does not update the length from the AgreeID stage.

In the WakeUp stage, agents wake all dormant agents up. This guarantees
that all good agents wake up within tEX rounds. We say two agents start cycles or
stages almost simultaneously if they start the cycles or stages within tEX rounds.

In the CollectID stage, agents collect IDs, including those of all good
agents. Each agent ai meets the other good agents using the rendezvous pro-
cedure when the length of the current cycle is long enough to meet them.

In the MakeCandidate stage, agents create a group candidate. Each agent
meets the other agents to confirm that a sufficient number of agents have en-
tered the MakeCandidate stage to transition into the next stage. Agents that
transition into the next stage almost simultaneously form a group candidate with
each other, guaranteeing that at least 3f + 1 good agents exist in some group
candidate.

In the AgreeID stage, agents collect the IDs of all good agents in the same
group candidate. After that, agents in the same group candidate obtain two
common ID sets, one from the ID sets collected in the CollectID stage and
another from the ID sets collected in the AgreeID stage. Both ID sets are used
to efficiently form a reliable group in the next stage. Due to Byzantine agents,
agents in the same group candidate may have different ID sets; thus, we use
the parallel consensus algorithm PCONS to obtain a common ID set. Algorithm

51

Algorithm 6: MakeReliableGroup
1 ai.numRound← ai.numRound + 1
2 if ai.stage =WakeUp then
3 Execute WakeUpStage

4 else if ai.stage = CollectID then
5 // While executing CollectIDStage, ai executes ai.lenCycle← 2 ⋅ ai.lenCycle.
6 Execute CollectIDStage

7 else if ai.stage =MakeCandidate then
8 // While executing MakeCandidateStage, ai executes ai.lenCycle← 2 ⋅ai.lenCycle.
9 Execute MakeCandidateStage

10 else if ai.stage = AgreeID then
11 // While executing AgreeIDStage, ai executes ai.numCycle← ai.numCycle + 1
12 Execute AgreeIDStage

13 else if ai.stage =MakeGroup then
14 // While executing MakeGroupStage, ai executes ai.numCycle← ai.numCycle + 1
15 Execute MakeGroupStage

PCONS is for a synchronous message-passing system where, in each phase, each
node executes a local computation, sends messages to some nodes, and receives
the messages sent. We simulate the behavior of one phase with one cycle. In
each simulation cycle, when an agent meets another agent in the same group
candidate, they exchange messages in the corresponding phase. The length of
a cycle in the AgreeID stage is long enough for any two good agents to meet;
hence, good agents can simulate one phase of PCONS with one cycle.

In the MakeGroup stage, the agents in a group candidate create a reliable
group. Good agents in a group candidate search for target agents one by one in
the order based on a common ID set until a sufficient number of agents gather at
the same node with a target agent. This algorithm guarantees that at least one
group candidate successfully creates a reliable group.

2.2.2 Details of the Algorithm for Creating a Reliable Group

Algorithm 6 shows the behavior of each round of Algorithm MakeReliableGroup
and executes one of Algorithms 7–12 depending on the current stage. In
MakeReliableGroup, the procedure WAIT() means that an agent stays at the cur-
rent node for one round. We use function extendId(id, bool) = 2 ⋅ id + bool, where
id is an agent ID, and bool is a binary integer (0 or 1). In MakeReliableGroup,
when ai executes the rendezvous procedure with ID idi, ai uses extendId(idi,0)

52

Table 4. Variables of agent ai (Part 1).
Variable Initial value Explanation
lenCycle Tini(> tEX) Length of the current cycle

stage WakeUp Current stage of ai. This variable takes one of the follow-
ing values: WakeUp, CollectID, MakeCandidate, AgreeID,
and MakeGroup

numRound 0 The number of rounds from the beginning of the
WakeUp stage or the beginning of the current cycle

ready False True if and only if ai has met Condition (1) or (2) of
Algorithm 9

R ∅ A set of IDs of agents such that ai knows they satisfy
ready = True

Sp {ai.id} A set of agent IDs that ai has collected in the CollectID
stage

endMakeCandidate False True if and only if ai can transition into the AgreeID
stage

Pp ∅ A set of IDs of agents such that ai knows they belong to
the same group candidate as ai

as the input of the rendezvous procedure. Tables 4 and 5 summarizes variables
in MakeReliableGroup. Agent ai doubles ai.lenCycle at the end of each cycle if
ai.stage ∈ {CollectID,MakeCandidate}.

We focus on the progress of stages and cycles of good agents. The overall flow
of MakeReliableGroup is shown in Fig. 3. In this figure, symbols W, C, M, and
A represent the cycles of the WakeUp stage, CollectID stage, MakeCandi-
date stage, and AgreeID stage, respectively. Note that the scale is different
for the upper and lower figures. An agent executes the WakeUp, CollectID,
MakeCandidate, AgreeID, and MakeGroup stages in this order. Every
good agent operates at the WakeUp stage for tEX rounds. The behavior of the
WakeUp stage guarantees that all good agents start the CollectID stage al-
most simultaneously. In the CollectID and MakeCandidate stages, all good
agents double their length in the last round of each cycle. Hence, all good agents
in the CollectID or MakeCandidate stage start their cycles almost simul-
taneously and have the same cycle length. The following observation formally
shows this fact. We denote the γ-th cycle of an agent ai by cγi . The length of
cycle cγi is the value of ai.lenCycle at the beginning of cycle cγi and is represented
as ∣cγi ∣. Variables cγi [j] and cγi [last] represent the j-th round and the last round
of cycle cγi , respectively.

53

Table 5. Variables of agent ai (Part 2).
Variable Initial value Explanation
numCycle 0 The number of cycles from the beginning of the AgreeID

stage
Sc ∅ An output of PCONS(Sp)

Pc ∅ An output of PCONS(Pp) used as a common ID set, with
elements ordered in an increasing order

D ∅ A set of a combination (id,numRR), where id is an
ID of an agent that has met all conditions of Function
satisfyCRG at the current node, and numRR is the num-
ber of rounds for the agent with id to finish its current
cycle

numRemainRound ∞ The number of rounds remaining before all good agents
in a reliable group finish a cycle at the same time

guidepostId ∞ The ID for agents in the same group candidate to move
together in the MakeGroup stage

BL ∅ A set of IDs of agents that behave inappropriately during
the reliable group formation

gid ∞ The group ID of the reliable group to which ai belongs

Observation 2. Let ai and aj be two different good agents in the CollectID
or MakeCandidate stage. Agents ai and aj start their cycles cγi and cγj almost
simultaneously, and ∣cγi ∣ = ∣c

γ
j ∣ holds.

In the AgreeID and MakeGroup stages, good agents do not update the length
of their cycles. Good agents may transition into the AgreeID stage at different
cycles. Therefore, each good agent may update the length of its cycle by a dif-
ferent number of times; thus, good agents in the AgreeID or the MakeGroup
stage may have different cycle lengths.

Algorithm MakeReliableGroup does not guarantee that two different agents
ai and aj start their cycle at the same time. Thus, even in the case where ai and
aj execute cycles cγi and cγj , respectively, they may execute different cycles during
the first and last tEX rounds of their cycles. Therefore, in MakeReliableGroup, ai
cooperates with aj only during a cycle excluding the first and last tEX rounds of
cycle cγi . We call this period a core period of a cycle.

WakeUp Stage Algorithm 7 is the pseudo-code of the WakeUp stage. This
stage aims to wake all dormant agents up. To do this, agent ai explores the
network using EX. Agent ai then updates its variables at the beginning of the last

54

C M MC
𝑇!"! 8 ⋅ 𝑇!"!4 ⋅ 𝑇!"!2 ⋅ 𝑇!"!

C C MC

C C CC

： ：

W

W

W

2!"# ⋅ 𝑇$%$
2! ⋅ 𝑇$%$2! ⋅ 𝑇$%$2! ⋅ 𝑇$%$

2!&# ⋅ 𝑇$%$2! ⋅ 𝑇$%$
2!"# ⋅ 𝑇$%$：

M A A A

M A A A

C or M C or M C or M

𝑎$

𝑎'

𝑎ℓ

Figure 3. Stage flow of Algorithm MakeReliableGroup (Upper: Starting this
algorithm, Lower: Starting AgreeID stage).

round of exploring. Agent ai visits all nodes by the end of this stage; hence, at
least all dormant good agents start the algorithm. This stage guarantees that at
least all good agents start the CollectID stage almost simultaneously.

CollectID Stage Algorithm 8 is the pseudo-code of the CollectID stage.
This stage aims to collect the IDs of all good agents. Recall that Ai is a set of
agents, including ai, that stay at the current node of ai at the beginning of a
round.

Agent ai collects IDs of agents with ready = True at the beginning of a round
during a core period of a cycle. Agent ai uses variable R to record these IDs.
We will explain the details of variables ready and R in the description of the
MakeCandidate stage.

If ai.lenCycle < 6 ⋅ (tREN(extendId(ai.id,0)) + 1) holds, ai stays at the
current node for the current cycle. Otherwise, if ai.lenCycle ≥ 6 ⋅

(tREN(extendId(ai.id,0)) + 1) holds, ai collects IDs, including those of all good
agents using REN(extendId(ai.id,0)) and stores the collected IDs in ai.Sp. In

55

Algorithm 7: WakeUpStage
1 if ai.numRound < tEX then
2 Execute EX(ai.numRound)
3 else
4 ai.numRound← 0
5 ai.stage← CollectID
6 Execute EX(tEX)

Algorithm 8: CollectIDStage
1 if tEX ≤ ai.numRound ≤ ai.lenCycle − tEX then
2 ai.R ← ai.R ∪ {aj .id ∣ aj ∈ Ai ∧ aj .ready = True}
3 if ai.lenCycle < 6 ⋅ (tREN(extendId(ai.id,0)) + 1) then
4 if ai.numRound = ai.lenCycle then
5 ai.numRound← 0
6 ai.lenCycle← 2 ⋅ ai.lenCycle
7 Execute WAIT()

8 else /* ai.lenCycle ≥ 6 ⋅ (tREN(extendId(ai.id,0)) + 1) */
9 ai.Sp ← ai.Sp ∪ {aj .id ∣ aj ∈ Ai}

10 if ai.numRound < ai.lenCycle then
11 Execute REN(extendId(ai.id,0))(ai.numRound)
12 else
13 ai.numRound← 0
14 ai.lenCycle← 2 ⋅ ai.lenCycle
15 ai.stage←MakeCandidate
16 Execute WAIT()

both cases, ai updates its variables at the beginning of the last round of a cycle.
If ai has started REN(extendId(ai.id,0)) at the beginning of the current cycle, ai
executes ai.stage ← MakeCandidate and waits for one round in the last round of
the current cycle.

MakeCandidate Stage Algorithm 9 is the pseudo-code of the MakeCan-
didate stage. This stage aims to create a group candidate comprising at least
3f + 1 good agents. To describe this stage clearly, we define the group candidate
as follows:

Definition 2 (Group candidate). A set GC of good agents is a group candidate
if and only if GC is a maximal set of good agents that start the AgreeID stage
almost simultaneously.

56

Algorithm 9: MakeCandidateStage
1 Function inferIdsAfterMC(ai.Sp, ai.lenCycle) = {id ∈ ai.Sp ∣ ai.lenCycle ≥

12 ⋅ (tREN(extendId(id,0)) + 1)}: Assuming that ai executes a cycle cγi as the current
cycle, this returns IDs of agents, from ai.Sp, each aj of which starts the
MakeCandidate stage by a cycle cγj .

2 if tEX ≤ ai.numRound ≤ ai.lenCycle − tEX then
3 ai.R ← ai.R ∪ {aj .id ∣ aj ∈ Ai ∧ aj .ready = True}
4 if ai.numRound = 1 ∧ (either (1) or (2) holds) ∧ ai.ready = False then
5 // (1) ∣inferIdsAfterMC(ai.Sp, ai.lenCycle)∣ ≥ (7/8)∣ai.Sp∣

6 // (2) ∣ai.R∣ ≥ (1/2)∣ai.Sp∣

7 ai.ready← True
8 ai.R ← ai.R ∪ {ai.id}

9 if ai.numRound = 1 ∧ ∣ai.R∣ ≥ (3/4)∣ai.Sp∣ then
10 ai.endMakeCandidate← True
11 if ai.numRound < ai.lenCycle then
12 Execute REN(extendId(ai.id,0))(ai.numRound)
13 else
14 ai.numRound← 0
15 ai.lenCycle← 2 ⋅ ai.lenCycle
16 if ai.endMakeCandidate = True then
17 ai.stage← AgreeID
18 Execute WAIT()

By Observation 2, for another good agent aj in the MakeCandidate stage,
ai and aj start their cycles of the MakeCandidate stage almost simultane-
ously. Therefore, if ai and aj start the AgreeID stage in cycles cγi and cγj for
a positive integer γ, respectively, they satisfy the group candidate requirement.
Consequently, if at least 3f + 1 good agents start the AgreeID stage almost
simultaneously, MakeReliableGroup achieves the purpose of this stage.

We explain the detail of the MakeCandidate stage hereinafter. Agent ai

executes REN(extendId(ai.id,0)) during a cycle, except for the last round to meet
all good agents. Agent ai then waits for one round to update its variables in
the last round of a cycle. In parallel with the above executions, ai executes the
following:

As with the CollectID stage, ai collects IDs of agents with ready = True at
the beginning of a round during a core period of a cycle.

At the beginning of the first round of a cycle, if ai satisfies either of the two
following conditions, ai stores True in ai.ready to claim that a sufficient number
of agents satisfy a condition to finish the MakeCandidate stage.

57

Algorithm 10: AgreeIDStage
1 Function detectGC(Ai, ai.lenCycle) = {aj .id ∣ aj ∈ Ai ∧ aj .lenCycle =

ai.lenCycle ∧ aj .stage = AgreeID}: This returns IDs of agents in the same group
candidate as ai at the current node.

2 if ai.numCycle = 0 then
3 ai.Pp ← ai.Pp ∪ detectGC(Ai, ai.lenCycle)
4 else
5 Execute PCONS(ai.Sp)(ai.numCycle)
6 Execute PCONS(ai.Pp)(ai.numCycle)
7 if ai.numRound < ai.lenCycle then
8 Execute REN(extendId(ai.id,0))(ai.numRound)
9 else

10 ai.numRound← 0
11 ai.numCycle← ai.numCycle + 1
12 if PCONS(ai.Sp) and PCONS(ai.Pp) are finished then
13 ai.Sc ← the output of PCONS(ai.Sp)

14 ai.Pc ← the output of PCONS(ai.Pp)

15 ai.stage←MakeGroup
16 Execute WAIT()

Ready-Condition (1) Variable ai.Sp contains at least (7/8)∣ai.Sp∣ IDs of agents
that have started the MakeCandidate stage.

Ready-Condition (2) Agent ai witnessed at least (1/2)∣ai.Sp∣ agents with
ready = True from the beginning of MakeReliableGroup.

To verify Ready-Condition (1), ai checks whether or not the result of a function
inferIdsAfterMC(ai.Sp, ai.lenCycle) contains at least (7/8)∣ai.Sp∣ IDs. To verify
Ready-Condition (2), ai checks whether or not ai.R includes at least (1/2)∣ai.Sp∣

IDs. After checking Ready-Conditions (1) and (2), if ai.R contains at least
(3/4)∣ai.Sp∣ IDs, ai stores True in ai.endMakeCandidate. It means that ai starts
the AgreeID stage from the next cycle.

Agent ai updates its variables at the beginning of the last round of a cycle. If
ai.endMakeCandidate = True holds, ai stores AgreeID in ai.stage.

By the behavior of this stage, we have the following observation:

Observation 3. Two different good agents in a group candidate always start their
cycles almost simultaneously.

58

AgreeID Stage Algorithm 10 is the pseudo-code of the AgreeID stage. This
stage aims to obtain two common ID sets among good agents in a group candidate
by using the consensus algorithm PCONS. One contains IDs of all good agents in
the same group candidate, but not IDs of the other good agents, while the other
contains IDs of all good agents. Agents in the group candidate use these common
ID sets to form a reliable group in the MakeGroup stage. The former common
ID set is used to efficiently form a reliable group formation. To make the former
common ID set, agents collect IDs of good agents in the same group candidate
and make a consensus on the collected IDs.

We will explain the details of the AgreeID stage hereinafter. Agent ai exe-
cutes REN(extendId(ai.id,0)) during a cycle, except for the last round to meet all
good agents. Agent ai then waits for one round to update its variables in the last
round of a cycle. In parallel with the above executions, ai executes the following:

If ai executes the first cycle of this stage, ai collects agent IDs in the same
group candidate, say GC, and stores these IDs in Pp. To collect these IDs, ai uses
a function detectGC(Ai, ai.lenCycle).

If ai executes the second or later cycle of this stage, ai makes a consensus on
two ID sets ai.Pp and ai.Sp using PCONS(ai.Pp) and PCONS(ai.Sp) to obtain two
common ID sets with good agents in GC. As mentioned in Section 2.2.1, agents
simulate one phase of the message-passing model by executing REN for one cycle.
In Algorithm 10, ai executes PCONS(S)(p) during a cycle cγi , except for the last
round of this cycle. More concretely, ai makes a message msg of a phase p in
round cγi [1]. Agent ai then sends msg for other agents in GC between rounds
cγi [2] and cγi [last − 1]. When ai receives the messages sent by an agent aℓ at the
current node between rounds cγi [2] and cγi [last − 1], ai records the messages and
aℓ.id only if ai.lenCycle = aℓ.lenCycle and ai.numCycle = aℓ.numCycle hold.

At the beginning of the last round of a cycle, ai updates its variables and
confirms the status of PCONS(ai.Pp) and PCONS(ai.Sp). If both the consensus
instances have finished, ai stores the outputs in ai.Sc and ai.Pc and executes
ai.stage←MakeGroup.

MakeGroup Stage Algorithm 12 is the pseudo-code of the MakeGroup
stage. In this stage, the agents in a group candidate form a reliable group at the

59

Algorithm 11: Functions of the MakeGroup stage of agent ai.
1 Function target(ai.Pc, ai.numCycle) = ai.Pc[ai.numCycle mod ∣ai.Pc∣]: This returns

the (ai.numCycle mod ∣ai.Pc∣)-th smallest element in ai.Pc.
2 Function satisfyCRG(aj , ai.lenCycle, ai.Sc) = (∣aj .Sc∣ ≥ (7/8)∣aj .Sp∣ ∧ aj .lenCycle =

ai.lenCycle ∧ aj .Sc = ai.Sc ∧ aj .stage =MakeGroup ∧ aj .numRound ≤
(1/2) ⋅ ai.lenCycle ∧ aj .numRemainRound = ∞): This returns whether aj is in a
sufficient state to become a member of the same reliable group as ai.

3 Function median({x2 ∣ (x1, x2) ∈ ai.D}): This returns the median of
{x2 ∣ (x1, x2) ∈ ai.D} if ∣{x2 ∣ (x1, x2) ∈ ai.D}∣ is odd, and otherwise returns the
rounded-up arithmetic mean of two middle values.

4 Function detectByzantine(Ai,{x1 ∣ (x1, x2) ∈ ai.D}) = {aj .id ∈ {x1 ∣ (x1, x2) ∈ ai.D} ∣
aj ∉ Ai ∨ aj .numRemainRound = ∞}: This returns IDs of agents, from
{x1 ∣ (x1, x2) ∈ ai.D}, each aj of which does not exist at the current node or
initializes its variables.

same node in round rfg, which exists within tEX rounds right after the first good
agent in the reliable group finishes a cycle of the MakeGroup stage. The agents
also do not create multiple reliable groups with the same group ID. Algorithm
11 summarizes functions in this stage. An agent ai has variable gid to keep the
group ID of the reliable group to which ai belongs.

In Algorithm ByzantineGathering, agents do not know f . Thus, when an
agent ai determines whether or not a reliable group exists at the current node, ai
uses (1/7)∣ai.Sp∣ instead of f for its decision. However, ∣ai.Sp∣ may differ from the
other good agents because every good agent has possibly met a different number
of Byzantine agents in the CollectID stage. To recognize a reliable group, even
if a good agent has any Sp, we define a reliable group as follows:

Definition 3 (Reliable group). A set RG of agents is a reliable group if and only
if it is a maximal set such that it contains at least k/7 good agents, and every
pair of distinct good agents ai, aj ∈ RG has the same group ID (ai.gid = aj.gid).

This stage ensures that at least k/7 good agents with the same cycle length
simultaneously form a reliable group. All the good agents of the reliable group
then have the same group ID. Hence, if the good agents of the reliable group
start rendezvous procedures with their group ID for a duration corresponding to
the cycle length, starting from the next round after the creation of the reliable
group, they are always located at the same node during this period.

First, we give the behavior of this stage of an agent ai in a high-level way. Let
GC be a group candidate of ai. As long as ai has not gathered at a single node

60

Algorithm 12: MakeGroupStage
1 if ai.numRemainRound = ∞∧ ai.numRound ≤ (1/2) ⋅ ai.lenCycle then
2 if ∃aj ∈ Ai[aj .id = target(ai.Pc, ai.numCycle)] then
3 ai.D ← {(aj .id, aj .lenCycle − aj .numRound) ∣ aj ∈

Ai ∧ satisfyCRG(aj , ai.lenCycle, ai.Sc) = True}
4 if ∣ai.Sc∣ ≥ (7/8)∣ai.Sp∣ ∧ ∣ai.D∣ ≥ (3/8)∣ai.Sc∣ ∧median({x2 ∣ (x1, x2) ∈ ai.D}) ≥

(1/2) ⋅ ai.lenCycle then
5 ai.numRemainRound←median({x2 ∣ (x1, x2) ∈ ai.D})
6 ai.guidepostId←min({x1 ∣ (x1, x2) ∈ ai.D})

7 Execute WAIT()

8 else
9 Execute REN(extendId(ai.id,0))(ai.numRound)

10 else
11 if ai.numRemainRound ≠ ∞ then
12 ai.numRemainRound← ai.numRemainRound − 1
13 ai.BL← ai.BL ∪ detectByzantine(Ai,{x1 ∣ (x1, x2) ∈ ai.D})
14 if ai.numRemainRound > 0 then
15 Execute REN(extendId(ai.guidepostId,0))(ai.numRound)
16 else
17 ai.numRound← 0
18 ai.gid←min({x1 ∣ (x1, x2) ∈ ai.D} ∖ ai.BL)
19 Execute WAIT()

20 else
21 if ai.numRound < ai.lenCycle then
22 Execute REN(extendId(ai.id,0))(ai.numRound)
23 else
24 ai.numRound← 0
25 ai.numCycle← ai.numCycle + 1
26 Execute WAIT()

with enough agents to form a reliable group in the first half of a cycle, called
the first-subcycle, ai behaves in the first-subcycle for agents in GC to gather at
a single node and executes REN(extendId(ai.id,0)) in the second half of a cycle,
called the second-subcycle, to meet the other good agents. Henceforth, we simply
call enough agents to form a reliable group, called “sufficient agents.” Once ai

gathers with sufficient agents at a single node in the first-subcycle, ai acts with
the gathered agents in the rest of this cycle to meet the other good agents and
simultaneously form a reliable group. The behavior of meeting the other good
agents is necessary in guaranteeing that an agent meets all good agents in the
CollectID stage and all reliable groups.

61

To gather with sufficient agents in the first-subcycle, ai decides a target ID by
using variables ai.Pc and ai.numCycle. If ai.id is not the target ID, ai searches for
the agent with the target ID, say atarget, using REN(extendId(ai.id,0)); otherwise,
ai stays at the current node. We denote the node with atarget as vtarget. If ai

does not gather with sufficient agents at vtarget by the end of the first-subcycle,
ai abstains from the group creation and executes REN(extendId(ai.id,0)) in this
cycle to meet the other good agents. It then decides a new target ID and executes
the group creation using the new target ID in the next cycle; otherwise, along
with the gathered agents, ai determines the round rfg to simultaneously form a
reliable group with the gathered agents. To decide round rfg, ai shares with the
gathered agents the remaining round to finish the current cycle and computes the
median of the remaining rounds. Here, for some gathered agents, round rfg may
not be the last round of their current cycle. Thus, only in the cycle that agents
decide round rfg do the gathered agents regard round rfg as the last round of
their current cycle.

After deciding on round rfg, ai explores the network with the gathered agents
until round rfg to meet the other good agents. To do this, ai executes a rendezvous
procedure with the smallest ID among the gathered agents. We represent this
ID as idmin. While executing the rendezvous procedure with idmin, the gathered
agents monitor each other to notice that a part of them has left and behaved
improperly. When reaching round rfg, ai becomes a member of a reliable group
along with the agents that have behaved correctly. It then determines the smallest
ID among IDs of members of the reliable group as a group ID. The group ID is
selected among IDs of agents that start the rendezvous procedure with idmin

together; thus, this behavior guarantees that the group ID is unique.
We will now explain the details of this stage of agent ai. First, we describe

the behavior of the first-subcycle for ai to gather with sufficient agents. At the
beginning of a first-subcycle round, ai checks whether or not ai satisfies either of
the two following conditions at the current node.

Target-Condition (1) Agent ai has a target ID.

Target-Condition (2) Agent ai meets atarget at the current node.

Agent ai adopts target(ai.Pc, ai.numCycle) as a target ID. Recall that ai counts

62

the number of cycles from the start of the AgreeID stage by ai.numCycle. By
Observation 3, all good agents in GC always start their cycles almost simultane-
ously; thus, all good agents in GC have experienced the same number of cycles
and have the same numCycle during a core period of a cycle. Furthermore, if GC
contains at least 3f + 1 good agents, all good agents in GC have the same Pc.
Hence, target(ai.Pc, ai.numCycle) guarantees that all good agents in GC decide
the same target ID.

If ai satisfies either Target-Condition (1) or (2), ai checks whether there are
sufficient agents at the current node, and then ai stays at the current node as
long as ai satisfies either Target-Condition (1) or (2); otherwise, ai executes
REN(extendId(ai.id,0)) until ai meets atarget. To check whether there are suf-
ficient agents, ai verifies whether each agent aj at the current node is in a suf-
ficient state to become a member of the same reliable group as ai in the cur-
rent cycle by checking the variables of aj. To check the state of aj, ai uses
satisfyCRG(aj, ai.lenCycle, ai.Sc). If satisfyCRG(aj, ai.lenCycle, ai.Sc) = True
holds, ai determines that aj is in a sufficient state to become a member of the
same reliable group as ai and stores (aj.id, aj.lenCycle − aj.numRound) in ai.D.
Note that element aj.lenCycle−aj.numRound is the remaining round to finish the
current cycle of aj.

After updating ai.D, ai checks whether ai satisfies the three following condi-
tions:

NumRR-Condition (1) Variable ai.Sc contains at least (7/8)∣ai.Sp∣ IDs.

NumRR-Condition (2) Variable ai.D contains at least (3/8)∣ai.Sc∣ tuples.

NumRR-Condition (3) The median of {x2 ∣ (x1, x2) ∈ ai.D} is at least (1/2) ⋅
ai.lenCycle.

If ai does not satisfy any of NumRR-Conditions (1)–(3) by the last round of
the first-subcycle, ai executes REN(extendId(ai.id,0)) during the second-subcycle,
except for the last round to meet all good agents in the CollectID stage and
all reliable groups. Agent ai then waits for one round in the last round of the
second-subcycle. In this case, ai is not involved in a reliable group formation in
the current cycle.

63

If ai satisfies all of NumRR-Conditions (1)–(3) by the last round of the
first-subcycle, ai decides that there are sufficient agents and determines round
rfg along with the agents in {x1 ∣ (x1, x2) ∈ ai.D}. To determine round
rfg, ai stores the median of {x2 ∣ (x1, x2) ∈ ai.D} in ai.numRemainRound.
At the same time, ai stores the smallest ID of {x1 ∣ (x1, x2) ∈ ai.D} in
ai.guidepostId to move with the agents in {x1 ∣ (x1, x2) ∈ ai.D}. From the next
round when ai updates ai.numRemainRound and ai.guidepostId, ai decreases
the value of ai.numRemainRound by one in each subsequent round. To meet
all good agents in the CollectID stage and all reliable groups, ai executes
REN(extendId(ai.guidepostId,0)) as long as ai.numRemainRound = 0 does not
hold. In parallel with these executions, ai monitors agents in {x1 ∣ (x1, x2) ∈ ai.D}

to expose the Byzantine agents in {x1 ∣ (x1, x2) ∈ ai.D}. To detect the Byzantine
agents, ai uses a function detectByzantine(Ai,{x1 ∣ (x1, x2) ∈ ai.D}) that de-
tects the absence of aj or the initialization of aj.numRemainRound for an agent
aj in {x1 ∣ (x1, x2) ∈ ai.D}. After Byzantine agents store an ID in guidepostId
with some good agents, say GAearly, they must take either of the following ac-
tions to store a different ID in guidepostId with good agents, say GAlater, that
will update guidepostId later: (1) to meet GAlater, the Byzantine agents leave
GAearly, or (2) to store the different ID in guidepostId with GAlater, the Byzantine
agents initialize numRemainRound when they are with GAearly. However, these
actions are clearly a dishonest behavior. Thus, ai exposes Byzantine agents in
{x1 ∣ (x1, x2) ∈ ai.D} by detecting these actions for agents in {x1 ∣ (x1, x2) ∈ ai.D}.
Agent ai stores detectByzantine(Ai,{x1 ∣ (x1, x2) ∈ ai.D}, ai.lenCycle) in ai.BL.
If ai.numRemainRound = 0 holds, ai updates ai.numRound, stores the smallest
ID among IDs in {x1 ∣ (x1, x2) ∈ ai.D} ∖ ai.BL in ai.gid, and waits for one round
at the current node.

2.2.3 Idea of the Algorithm to Gather

In Algorithm ByzantineGathering, all agents execute MakeReliableGroup, and
then some agents eventually form a reliable group. Subsequently, good agents
in the reliable group collect all good agents using REN with its group ID. To
do this, if an agent not in the reliable group meets the reliable group, it forces
MakeReliableGroup to terminate and accompanies the reliable group. If agents

64

Algorithm 13: ByzantineGathering(N) for agent ai
1 if ai.stage ∈ {WakeUp, CollectID} then
2 Execute MakeReliableGroup

3 else /* ai.stage ∈ {MakeCandidate, AgreeID, MakeGroup} */
4 ai.Sgid ← {x ∣ ∃Arg ⊂ Ai[∣Arg ∣ ≥ (1/7)∣ai.Sp∣ ∧ ∀aj ∈ Arg ∶ aj .gid = x ∧ aj .gid ≠ ∅]}
5 if ai.Sgid ≠ ∅ then
6 ai.minGID←min(ai.Sgid)

7 if ai.Sgid ≠ ∅ ∧ ai.gid > ai.minGID then
8 ai.Srg ← {id ∣ ∃aj ∈ Ai[aj .gid = ai.minGID ∧ aj .id = id]}
9 Execute FOLLOW(ai.Srg)

10 else if ai.gid ≠ ∞ then
11 ai.numRound← ai.numRound + 1
12 if ai.numRound = ai.lenCycle then
13 Execute TERMINATE()

14 Execute REN(extendId(ai.gid,1))(ai.numRound)
15 else
16 Execute MakeReliableGroup

in the reliable group meet another reliable group, they accompany the reliable
group with the smaller group ID. This algorithm guarantees that all good agents
gather at the node, including the reliable group with the smallest group ID, and
transition into a terminal state.

2.2.4 Details of the Algorithm to Gather

Algorithm 13 shows the behavior of each round of Algorithm
ByzantineGathering. This algorithm aims to make all good agents tran-
sition into a terminal state using a reliable group. Agent ai refers to the variables
in MakeReliableGroup. In Algorithm 13, we introduce two procedures, that is,
TERMINATE() and FOLLOW(S), for an ID set S. Procedure TERMINATE() means
that an agent transitions into a terminal state. Procedure FOLLOW(S) means that
an agent ai executes the two following actions: (1) When the majority of agents
in S move to some node, ai also moves to the node. (2) When the majority of
agents in S execute TERMINATE() or have entered a terminal state, ai executes
TERMINATE().

Note that an agent employs a different ID when executing the rendezvous
procedure as a member of a reliable group. More concretely, an agent uses an
ID extended by 1 for the rendezvous procedure. Recall that an agent uses an

65

：

Terminate
𝑅𝐺!"#

𝑅𝐺"

𝑎$%

𝑎&%

E

E

Figure 4. Gathering flow of Algorithm ByzantineGathering.

ID extended by 0 for the rendezvous procedure in MakeReliableGroup. Thus,
agents execute the rendezvous procedure with different extended IDs.

We show the gathering flow with reliable groups in Fig. 4. In this figure, sym-
bol E denotes the execution of a rendezvous procedure with a group ID. The right
arrow indicates that agents in a reliable group execute MakeReliableGroup until
the point specified by the arrowhead. The up arrow signifies that agents in a reli-
able group and those not in any reliable group meet a reliable group with a smaller
group ID than their group ID and a reliable group, respectively. A good agent aj
in any reliable group collects the other good agents using REN(extendId(aj.gid,1)).
The execution period is determined by aj.lenCycle, that is, the length of a cycle
after starting the AgreeID stage. The reliable group RGmin has the smallest
group ID among reliable groups; thus, RGmin does not meet a reliable group with
a smaller group ID. Group RGmin executes collecting good agents to the end and
transitions into a terminal state. By contrast, when another reliable group RGi

meets a reliable group with a smaller group ID, RGi stops collecting good agents
and accompanies it. Group RGi then eventually meets and accompanies RGmin

and concurrently transitions into a terminal state when RGmin transitions into a
terminal state. Consider a good agent afc that does not belong to any reliable
group and finishes the CollectID stage and a good agent aec that does not
belong to any reliable group and is in the CollectID stage. Similar to RGi,
afc stops executing MakeReliableGroup and accompanies a reliable group with

66

a smaller group ID when afc meets it. Agent afc then concurrently transitions
into a terminal state when RGmin transitions into a terminal state. In contrast,
aec continues to execute MakeReliableGroup, even if it meets a reliable group.
After starting the MakeCandidate stage, aec then visits the node with RGmin

using REN and transitions into a terminal state.
We explain ByzantineGathering hereinafter. Agent ai executes

MakeReliableGroup in conjunction with ByzantineGathering. If ai is in the
WakeUp or CollectID stage, ai continues MakeReliableGroup. If ai is in the
MakeCandidate, AgreeID, or MakeGroup stage, ai determines whether a
reliable group exists at the current node at the beginning of the current round. If
ai witnesses (1/7)∣ai.Sp∣ agents with the same gid (≠ ∞), ai recognizes the reliable
group and stores their gid in ai.Sgid. After that, ai stores the smallest group ID
among ai.Sgid in ai.minGID.

When the node with ai contains a reliable group with a group ID smaller
than ai.gid, ai follows the group by using FOLLOW(ai.Srg). More concretely, ai

finds agents whose gid are equal to ai.minGID and stores the IDs of these agents
in ai.Srg. Agent ai then follows the action of the majority of agents in ai.Srg

using FOLLOW(ai.Srg).
When ai belongs to a reliable group with the smallest group ID among

ai.Sgid, ai executes REN(extendId(ai.gid,1)) for ai.lenCycle rounds to meet all
good agents. If ai meets a reliable group with a group ID smaller than ai.gid, it
follows the reliable group. Note that agents in a reliable group use extended IDs
different from those not in a reliable group for the rendezvous procedure; hence,
they can meet during the execution of the rendezvous procedure. If ai does
not meet a reliable group with a group ID smaller than ai.gid and finishes the
execution of REN(extendId(ai.gid,1)), ai transitions into a terminal state using
TERMINATE().

If ai does not satisfy the abovementioned conditions, that is, a reliable group
does not exist at the current node, ai executes MakeReliableGroup for one round.

2.3 Correctness and Complexity Analysis

In this subsection, we prove the correctness and the complexity of the proposed
algorithm. First, we assume that no reliable group exists in the network and

67

prove that at least one reliable group is created in Section 2.3.1. Next, we prove
that all good agents gather and transition into a terminal state at the same node
in Section 2.3.2.

2.3.1 Creation of Reliable Groups

In this section, no reliable groups exist in the network, therefore, all agents execute
MakeReliableGroup.

We will first focus on the relationship of cycles among agents. Let ai and aj

be two different good agents. Assume that ai is in the CollectID or Make-
Candidate stage in cycle cγi . By Observation 2, if aj is in the CollectID or
MakeCandidate stage in cycle cγj , ai and aj start cycles cγi and cγj almost simul-
taneously, and ∣cγi ∣ = ∣c

γ
j ∣ holds. By contrast, the length of a cycle in the AgreeID

or MakeGroup stage depends on when the agent starts the AgreeID stage.
When ai and aj start the AgreeID stage almost simultaneously in cycles cηi and
cηj , they do not update ai.lenCycle and aj.lenCycle later; hence, ∣cϵi ∣ = ∣cϵj ∣ holds
for ε ≥ η. By contrast, when ai and aj start the AgreeID stage in cycles cηi and
cη
′

j (η < η′), respectively, only aj updates aj.lenCycle after cηj . Hence, ∣cεi ∣ ≠ ∣cε
′

j ∣

holds for ε ≥ η and ε′ ≥ η′. The following observation formally shows this fact:

Observation 4. Let ai and aj be good agents. Let cγi and cγ
′

j be a cycle of the
AgreeID or MakeGroup stage of ai and aj, respectively. If and only if ai and
aj start the AgreeID stage almost simultaneously does ∣cγi ∣ = ∣c

γ′

j ∣ hold.

We also focus on the case where aj starts the AgreeID stage not more than tEX

rounds later than ai. In this case, ai starts the AgreeID stage in a cycle cηi , and aj

starts that stage in a cycle cζj for η < ζ. Agent ai does not update ai.lenCycle from
cycle cηi ; thus, the length of a cycle after cycle cηi is ∣cηi ∣. By contrast, aj doubles the
value of aj.lenCycle in the last round of every cycle until it starts cycle cζj . Thus,
letting lenCyclei and lenCyclej be the values of ai.lenCycle and aj.lenCycle in the
AgreeID and MakeGroup stages, respectively, lenCyclej ≡ 0 (mod lenCyclei)
holds. Hence, when aj starts a cycle after cycle cζj , ai also starts a cycle almost
simultaneously.

Observation 5. Let ai be a good agent and aj be a good agent that starts the
AgreeID stage not more than tEX rounds later than ai. When aj starts a cycle

68

cγj , ai starts a cycle between rounds cγj [1] − tEX and cγj [tEX].

Next, we prove that when an agent ai executes REN(extendId(ai.id,0)) during
a cycle except for the last round, ai meets all good agents during a core period of a
cycle. If ai starts REN(extendId(ai.id,0)), it stops the procedure at the middle of
a cycle only if ai finds the agent with a target ID in the MakeGroup stage or if ai
meets a reliable group after the start of the MakeCandidate stage. For a period
prd composed of multiple rounds, we say “ai executes REN(extendId(ai.id,0))
without interruption throughout period prd” if ai executes REN(extendId(ai.id,0))
during period prd, except for the last round of α. We also call period prd, except
for the first and last tEX rounds a core period of period prd. Here, period α

represents a cycle and the execution period of a rendezvous procedure. First, we
consider the condition for two different good agents to meet.

Lemma 15. Let ai and aj be two different good agents and prdi be a period
comprising at least 3 ⋅ (tREN(extendId(ai.id,0)) + 1) rounds. Assume that ai exe-
cutes REN(extendId(ai.id,0)) without interruption throughout period prdi. Agent
ai meets aj during a core period of period prdi if aj stays during a core period of pe-
riod prdi or executes REN(extendId(aj.id,0)) or REN(extendId(aj.guidepostId,0))
for at least 3 ⋅ (tREN(extendId(aj.id,0)) + 1) rounds during period prdi.

Proof. We break down this lemma into the following cases: Case (1) Agent
aj stays during a core period of period prdi; Case (2) Agent aj executes
REN(extendId(aj.id,0)) for at least 3 ⋅ (tREN(extendId(aj.id,0))+1) rounds during
period prdi; and Case (3) Agent aj executes REN(extendId(aj.guidepostId,0))
for at least 3 ⋅ (tREN(extendId(aj.id,0)) + 1) rounds during period prdi.

In Case (1), by Lemma 2, ai visits all nodes within tREN(extendId(ai.id,0))

rounds from the tEX-th round of period prdi. Time tEX is smaller than
tREN(extendId(ai.id,0)); hence, ai meets aj during a core period of period prdi.

In Case (2), ai and aj execute REN(extendId(ai.id,0))
and REN(extendId(aj.id,0)) at the same time for at least 3 ⋅

(tREN(extendId(min(ai.id, aj.id),0)) + 1) rounds immediately following
the start REN(extendId(aj.id,0)) by aj. Time tEX is smaller than
tREN(extendId(min(ai.id, aj.id),0)); hence, by Lemma 2, ai meets aj during
a core period of period prdi.

69

In Case (3), aj executes Line 6 of Algorithm 12; thus, aj executes Line
4 of Algorithm 12 before executing Line 6 of Algorithm 12. By contrast, ai

executes REN(extendId(ai.id,0)); hence, ai does not execute Line 4 of Algorithm
12. Therefore, ai.id ∉ {x1 ∣ (x1, x2) ∈ aj.D} holds, and aj.guidepostId ≠ ai.id holds.
From the same discussion of Case (2), ai meets aj during a core period of period
prdi.

Lemma 16. Let ai be a good agent in the CollectID or MakeCandidate
stage and cγi be a cycle, such that ai starts REN(extendId(ai.id,0)) in round cγi [1].
If ai executes REN(extendId(ai.id,0)) without interruption throughout cycle cγi , ai
meets all good agents during a core period of cycle cγi .

Proof. Agent ai satisfies Line 8 of Algorithm 8 no later than round cγi [1]; hence,
∣cγi ∣ ≥ 6 ⋅ (tREN(extendId(ai.id,0)) + 1) holds. Let aj be another good agent and
cεj be the first cycle of aj such that cycle cγi includes round cεj[tEX]. An agent
updates the length of its cycle in the CollectID and MakeCandidate stages,
but not in the AgreeID and MakeGroup stages, therefore, cγi has the longest
cycle. It holds that ∣cγi ∣ ≥ ∣c

γ
j ∣. By Observations 2 and 5, ai starts cycle cγi between

rounds cεj[1] − tEX and cεj[tEX]. Agent ai also starts cycle cγ+1i between rounds
cε+α+1j [1] − tEX and cε+α+1j [tEX] for a non-negative integer α. By the behavior of
MakeReliableGroup and from the condition of Line 4 of Algorithm 12, in each cy-
cle, aj executes REN(extendId(aj.id,0)) or REN(extendId(aj.guidepostId,0)) for at
least (1/2) ⋅aj.lenCycle rounds or stays at the current node throughout the cycle.
When aj starts the rendezvous procedure in some cycle cε+βj (0 ≤ β ≤ α), aj satisfies
Line 8 of Algorithm 8; thus, ∣cε+βj ∣ ≥ 6⋅(tREN(extendId(aj.id,0))+1) holds. Time tEX
is smaller than tREN(extendId(aj.id,0)); therefore, aj stays during a core period of
cycle cγi or executes REN(extendId(aj.id,0)) or REN(extendId(aj.guidepostId,0))
for at least 3 ⋅ (tREN(extendId(aj.id,0)) + 1) rounds during cycle cγi . By Lemma
15, ai meets aj during a core period of cycle cγi .

In the CollectID stage, an agent ai executes REN(extendId(ai.id,0))
without interruption throughout a cycle whose length is at least 6 ⋅

(tREN(extendId(ai.id,0)) + 1). Agent ai meets all good agents by the end of the
cycle; thus, we have the following corollary.

70

Corollary 1. For good agent ai, if ai.stage ∈ {MakeCandidate, AgreeID,
MakeGroup} holds, ai.Sp contains the IDs of all good agents; hence, k = g + f ≥
∣ai.Sp∣ ≥ g holds.

By k ≥ 8f + 7, g ≥ 7f + 7, and Corollary 1, we have the following corollary:

Corollary 2. For good agent ai, if ai.stage ∈ {MakeCandidate, AgreeID,
MakeGroup} holds, g > (7/8)k ≥ (7/8)∣ai.Sp∣ holds.

We now consider the MakeCandidate stage. Let amax be the good agent
with the largest ID. Regarding this stage, we clarify the two following facts.

Fact (1) All good agents finish the MakeCandidate stage in some bounded
rounds.

Fact (2) At least (3/8)k good agents start the AgreeID stage almost simulta-
neously.

By g ≥ 7f + 7, Fact (2) implies that at least (3/8)k ≥ (3/8)(8f + 7) > 3f + 1 good
agents start the AgreeID stage almost simultaneously; thus, we can claim that
the behavior of the MakeCandidate stage achieves the purpose of this stage.
We prove Fact (1) with Lemma 17 to Lemma 19 and Fact (2) with Lemma 20 to
Corollary 3.

Lemma 17. Let ai be a good agent and cγmax be the first cycle of the MakeCan-
didate stage of amax. Agent ai executes ai.stage← AgreeID by round cγ+1i [last].

Proof. First, we prove that every good agent ai executes ai.ready ← True by
round cγmax[tEX]. Agent amax has the largest ID among good agents; hence, every
good agent starts the MakeCandidate stage before amax executes the Make-
Candidate stage for tEX rounds. We consider two cases here. The first case is
where a good agent ai is in the MakeCandidate stage at the beginning of round
cγmax[tEX]. Agent amax satisfies Line 8 of Algorithm 8 before cycle cγmax; hence,
amax.lenCycle ≥ 12 ⋅ (tREN(extendId(amax.id,0)) + 1) holds in cycle cγmax. By Ob-
servation 2, ∣cγi ∣ = ∣c

γ
max∣ holds. Agent amax has the largest ID among good agents;

therefore, for a good agent aj, ai.lenCycle ≥ 12 ⋅ (tREN(extendId(amax.id,0)) + 1) ≥

12 ⋅ (tREN(extendId(aj.id,0)) + 1) holds in cycle cγi . Variable ai.Sp contains IDs

71

of all good agents by Corollary 1; thus, ai.Sp contains at least g IDs no larger
than amax.id. It holds that g > (7/8)∣ai.Sp∣ by Corollary 2; therefore, ai satis-
fies Line 5 of Algorithm 9 by round cγi [1]. By Observation 2, ai and amax start
cycles cγi and cγmax almost simultaneously. Thus, ai executes ai.ready ← True by
round cγmax[tEX]. The second case is where ai finishes the MakeCandidate stage
before round cγmax[tEX]. In this case, ai satisfies Line 9 of Algorithm 9, that is,
∣ai.R∣ ≥ (3/4)∣ai.Sp∣ holds. Therefore, ai satisfies Line 6 of Algorithm 9, and ai

executes ai.ready← True before round cγmax[tEX] at the latest.
Next, we prove that every good agent ai executes ai.stage← AgreeID by round

cγ+1i [last]. Consider the situation that ai has not yet executed ai.stage← AgreeID
at the beginning of round cγi [1]. From the previous discussion, all good agents
execute ready← True by round cγmax[tEX]. Agents ai and amax start cycles cγi and
cγmax almost simultaneously; thus, all good agents execute ready← True by round
cγi [tEX]. By Lemma 16, ai meets all good agents during a core period of cycle cγi ;
therefore, ai has met all good agents with ready = True at the end of cycle cγi .
Variable ai.R contains at least g IDs at the beginning of cycle cγ+1i . It holds that
g > (7/8)∣ai.Sp∣ by Corollary 2; thus, ai satisfies Line 9 of Algorithm 9 in round
cγ+1i [1]. Agent ai executes ai.stage← AgreeID by round cγ+1i [last].

In the following lemma, we calculate the maximum value of lenCycle of a good
agent.

Lemma 18. For any good agent ai, ai.lenCycle is less than 96 ⋅

(tREN(extendId(amax.id,0)) + 1).

Proof. Let cγmax be the first cycle of the MakeCandidate stage of amax. Every
good agent ai updates ai.lenCycle only in the last round of every cycle of the
CollectID and MakeCandidate stages. By Lemma 17, ai executes ai.stage←
AgreeID by round cγ+1i [last]. Thus, every good agent, at the latest, starts the
AgreeID stage at most two cycles after cycle cγi . At the beginning of cycle
cγmax, amax.lenCycle < 24 ⋅ (tREN(extendId(amax.id,0)) + 1) holds. By Observation
2, ∣cγi ∣ = ∣c

γ
max∣ holds. Thus, ai.lenCycle < 96 ⋅ (tREN(extendId(amax.id,0))+1) holds

at the end of cycle cγ+1i .

Lemma 19. All good agents finish the CollectID stage within
96 ⋅ (tREN(extendId(amax.id,0)) + 1) − Tini rounds right after starting

72

MakeReliableGroup. Furthermore, all good agents finish the MakeCan-
didate stage within 96 ⋅ (tREN(extendId(amax.id,0)) + 1) − Tini rounds right after
starting MakeReliableGroup.

Proof. Lemma 18 implies that, for any good agent, lenCycle = 2α ⋅ Tini <

48(tREN(extendId(amax.id,0)) + 1) holds in the last cycle of the MakeCandi-
date stage for some integer α. Thus, the number of elapsed rounds to fin-
ish the MakeCandidate stage is less than Tini + 2 ⋅ Tini + ⋯ + 2α ⋅ Tini <

96 ⋅ (tREN(amax.id) + 1) − Tini.

From now on, we will prove that at least (3/8)k good agents start the
AgreeID stage almost simultaneously. We will first focus on the situation where
the first good agent becomes ready to transition into the AgreeID stage.

Lemma 20. Let aini be the first good agent that executes ready ← True. Agent
aini executes aini.ready← True by satisfying Line 5 of Algorithm 9.

Proof. Let cγini be the cycle in which aini executes aini.ready ← True. At the
beginning of cycle cγini, ∣aini.R∣ ≤ f holds because only Byzantine agents can
execute ready ← True before cycle cγini. It holds that ∣aini.R∣ ≤ f < (1/7)g ≤

(1/7)∣aini.Sp∣; therefore, Line 6 of Algorithm 9 is not satisfied, while Line 5 of
Algorithm 9 is satisfied.

By Lemma 20, at least one good agent ai executes ai.ready ← True by sat-
isfying Line 5 of Algorithm 9. In the following lemma, let cγi be the first cycle
in which ai executes ai.ready ← True. We investigate the number of good agents
executing the MakeCandidate stage by round cγi [tEX].

Lemma 21. Let aini be the first good agent that executes ready← True and cγini be
the cycle, in which aini executes it. Let ai be a good agent in the MakeCandi-
date stage in round cγini[tEX]. At least (3/4)k good agents start the MakeCan-
didate stage by round cγi [tEX].

Proof. Let fini be the number of IDs of Byzantine agents in aini.Sp. By Corol-
lary 1, aini.Sp contains the IDs of all good agents at the beginning of cycle
cγini; hence, ∣aini.Sp∣ = g + fini holds. By Observation 2, all good agents in
the MakeCandidate stage start their γ-th cycles almost simultaneously, and

73

the cycle lengths are identical. By Lemma 20, aini executes aini.ready ← True
in round cγini[1] by satisfying Line 5 of Algorithm 9. This implies that at
least (7/8)∣aini.Sp∣ agents in aini.Sp start the MakeCandidate stage by round
cγi [tEX]. Thus, at least (7/8)∣aini.Sp∣ − fini good agents start the MakeCan-
didate stage by round cγi [tEX]. By f ≥ fini, k ≥ 8f + 7, and g ≥ 7f + 7,
(7/8)∣aini.Sp∣ − fini = (7/8)(g + fini) − fini = (1/8)(7g − fini) ≥ (1/8)(7g − f) =

(1/8)(6g + g − f) ≥ (1/8)(6g + 7f + 7 − f) > (3/4)(g + f) = (3/4)k holds.

In the following lemma, we check R of good agents that execute the Make-
Candidate stage when a good agent executes endMakeCandidate← True.

Lemma 22. Let aini be the first good agent that executes endMakeCandidate ←
True and cγini be the cycle, in which aini executes aini.endMakeCandidate← True.
Let ai be a good agent in the MakeCandidate stage in round cγini[tEX]. At the
beginning of cycle cγi , ai.R contains at least (1/2)∣ai.Sp∣ IDs of good agents.

Proof. At the beginning of cycle cγini, aini.R contains at least (3/4)∣aini.Sp∣ IDs of
agents. Thus, aini.R contains at least (3/4)∣aini.Sp∣−f IDs of good agents. It holds
that k ≥ ∣aini.Sp∣ ≥ g by Corollary 1; thus, (3/4)∣aini.Sp∣ − f ≥ (3/4)g − f holds. By
g ≥ 7f +7, (3/4)g−f = (1/8)(4g+2g−8f) > (1/8)(4g+14f −8f) = (1/8)(4g+6f) ≥
(1/2)(g + f) holds. By the behavior of the CollectID and MakeCandidate
stages, since an agent collects the IDs of agents with ready = True during a core
period of a cycle, aini has met at least (1/2)(g+f) good agents with ready = True
at the end of round cγ−1ini [last − tEX]. Here, let aj be such a good agent. Agent
aj is in the MakeCandidate stage in round cγ−1j [tEX]. By Observation 2, aini,
ai, and aj start cycles cγ−1ini , cγ−1i , and cγ−1j almost simultaneously. By Lemma 16,
ai meets all good agents between rounds cγ−1i [tEX + 1] and cγ−1i [last − tEX]; hence,
ai meets aj by round cγ−1i [last − tEX]. By k ≥ ∣ai.Sp∣ ≥ g, ai.R contains at least
(1/2)(g + f) ≥ (1/2)∣ai.Sp∣ IDs of good agents at the beginning of cycle cγi .

By Lemma 17, every good agent starts the AgreeID stage by the tEX-th round
of the first cycle of the AgreeID stage of amax. In the following lemma, we show
that several good agents start the AgreeID stage almost simultaneously.

Lemma 23. Let aini be the first good agent that starts the AgreeID stage and
cγini be a cycle, in which aini starts the AgreeID stage. At least (3/4)k good

74

agents start the AgreeID stage between rounds cγini[1]−tEX and cγini[tEX] or rounds
cγ+1ini [1] − tEX and cγ+1ini [tEX].

Proof. First, we prove that at least (3/4)k good agents have started the Make-
Candidate stage at the beginning of round cγ−1ini [tEX]. By the behavior of the
MakeCandidate stage, if aini starts the AgreeID stage in cycle cγini, aini exe-
cutes aini.endMakeCandidate← True in round cγ−1ini [1]. In other words, aini meets
at least (3/4)∣aini.Sp∣ agents with ready = True by round cγ−2ini [last−tEX]. By Corol-
lary 1 and g ≥ 7f + 7, (3/4)∣aini.Sp∣ ≥ (3/4)g ≥ (3/4)(7f + 7) > f holds. Thus, at
least one good agent has executed ready← True at the end of round cγ−2ini [last−tEX].
By Lemma 20, the first good agent that executes ready ← True satisfies Line 5
of Algorithm 9. Therefore, by Lemma 21, at least (3/4)k good agents start the
MakeCandidate stage by round cγ−1ini [tEX].

Next, we prove this lemma. Let Aem be a set of good agents in the MakeCan-
didate stage in round cγ−1ini [tEX]. From previous discussion, ∣Aem∣ ≥ (3/4)k holds.
Set Aem is divided into the following two sets A1 and A2: A1 is a set of agents that
start the AgreeID stage between rounds cγini[1] − tEX and cγini[tEX]. Consider an
arbitrary agent aem in Aem. Agent aini executes aini.endMakeCandidate← True in
cycle cγ−1ini ; hence, by Lemma 22, aem.R contains at least (1/2)∣aem.Sp∣ IDs of good
agents at the beginning of cycle cγ−1em . Therefore, aem satisfies Line 6 of Algorithm
9 and executes aem.ready ← True in round cγ−1em [1]. Consider an agent ai in A2.
By Lemma 16, ai meets all good agents in Aem during a core period of cycle cγ−1i .
It holds that aem.ready = True at the beginning of round cγ−1em [tEX]; therefore, ai.R
contains at least ∣Aem∣ ≥ (3/4)k IDs at the beginning of cycle cγi . Thus, ai satisfies
Line 9 of Algorithm 9 in round cγi [1] and executes ai.stage ← AgreeID in round
cγi [last]. Agents in A1 start the AgreeID stage between rounds cγini[1] − tEX and
cγini[tEX], and agents in A2 start that between rounds cγ+1ini [1]−tEX and cγ+1ini [tEX].

By Lemma 23, we have the following corollary:

Corollary 3. At least (3/8)k good agents start the AgreeID stage almost simul-
taneously.

We now consider the AgreeID stage. We check Pp of good agents and the
execution of PCONS for both Sp and Pp.

75

Lemma 24. Let GC be a group candidate, ai be a good agent in GC, and cγi be a
cycle of the AgreeID stage of ai. If ai executes REN(extendId(ai.id,0)) without
interruption throughout cycle cγi , ai meets all good agents in GC during a core
period of cycle cγi .

Proof. Let aj be another good agent in GC. By Observation 3, ai and aj always
start cycles cγi and cγj almost simultaneously. By Observation 4, ∣cγi ∣ = ∣c

γ
j ∣ holds.

By the behavior of MakeReliableGroup, aj executes REN(extendId(aj.id,0))
or REN(extendId(aj.guidepostId,0)) for at least (1/2) ⋅ ∣cγj ∣ rounds during cy-
cle cγj . Agents ai and aj finish the MakeCandidate stage; therefore, ∣cγi ∣ ≥
12 ⋅ (tREN(extendId(ai.id,0))+1) and ∣cγj ∣ ≥ 12 ⋅ (tREN(extendId(aj.id,0))+1) holds.
Agent aj executes REN(extendId(aj.id,0)) or REN(extendId(aj.guidepostId,0)) for
at least 6 ⋅ (tREN(extendId(aj.id,0))+ 1) rounds during cycle cγi . By Lemma 15, ai
meets aj during a core period of cycle cγi .

During the first cycle of the AgreeID stage, an agent collects IDs of good
agents in the same group candidate, but not of the other good agents. From
Lemma 24, we have the following corollary:

Corollary 4. Let ai be a good agent in the AgreeID stage and GC be a group
candidate of ai. At the beginning of the second cycle of the AgreeID stage, ai.Pp

contains IDs of all good agents in GC, but not of the other good agents.

Lemma 25. Let GC be a group candidate, ai be a good agent in GC, and cγi be
the first cycle of the AgreeID stage of ai. If at least (3/8)k good agents belong
to GC, all good agents in GC start the MakeGroup stage in O(f ⋅ ∣cγi ∣) rounds
right after round cγi [1]. Furthermore, the executions of both PCONS(ai.Sp) and
PCONS(ai.Pp) satisfy the PBC property.

Proof. First, we show that all good agents in GC can simulate PCONS. To do this,
Algorithm MakeReliableGroup satisfies all requirements in Section 4.4. Let cεi be
a cycle of the AgreeID stage of ai after cycle cγi and aj be another good agent in
GC. By the behavior of MakeReliableGroup, ai makes a message msgi of a phase
p in round cεi [1] and sends msg for the other agents in GC between rounds cεi [2]

and cεi [last − 1]. When ai receives a message msgj sent by aj at the current node
between rounds cεi [2] and cεi [last−1], ai records msgj and aj.id only if ai.lenCycle =

76

aj.lenCycle and ai.numCycle = aj.numCycle hold. By Observations 3 and 4,
ai and aj have the same cycle length and start cycles almost simultaneously.
Thus, ai.lenCycle = aj.lenCycle and ai.numCycle = aj.numCycle hold during a
core period of cycle cεi . By Lemma 24, ai and aj meet during a core period of
cycle cεi . Therefore, without loss of generality, ai records msgj and aj.id before
another good agent in GC executes a local computation in the next phase p + 1.
By contrast, ai may meet aj that executes a different cycle than ai between
rounds cεi [1] and cεi [tEX] and between rounds cεi [last− tEX + 1] and cεi [last]. In this
case, aj sends a message msg′j of a phase p′ ≠ p to ai. However, at this time,
ai.lenCycle = aj.lenCycle and ai.numCycle = aj.numCycle do not hold. Thus, ai
ignores msg′j. By k ≥ 8f +7, (3/8)k ≥ (3/8)(8f +7) = 3f +21/8 > 3f holds. Hence,
MakeReliableGroup satisfies all requirements in Section 4.4.

We now prove this lemma. From the discussion of the previous paragraph,
all good agents in GC can simulate PCONS. Thus, by Lemma 3, the executions
of both PCONS(ai.Sp) and PCONS(ai.Pp) satisfy the PBC property, and ai finishes
both PCONS(ai.Sp) and PCONS(ai.Pp) in O(f) cycles after cycle cγi . Agent ai then
executes ai.stage←MakeGroup in the last round of the cycle in which ai finishes
both PCONS(ai.Sp) and PCONS(ai.Pp). An agent does not update the cycle length
in the AgreeID stage. All good agents in GC have the same cycle length and
start their cycles almost simultaneously. Hence, all good agents in GC start the
MakeGroup stage in O(f ⋅ ∣cγi ∣) rounds right after round cγi [1].

By Corollary 4, for a good agent ai, at the beginning of the second cycle of the
AgreeID stage, ai.Pp contains the IDs of all good agents in a group candidate of
ai, but not of the other good agents. By Lemma 25, the execution of PCONS(ai.Pp)

satisfies the PBC property; hence, by Validities 1 and 2 of the PBC property, ai.Pc

contains the IDs of all good agents in the group candidate of ai, but not of the
other good agents. From this discussion, Lemma 25, and Corollary 1, we have
the following corollary:

Corollary 5. Let GC be a group candidate, ai be a good agent in GC, and cγi be
the first cycle of ai that all good agents in GC are in the MakeGroup stage at
the beginning of round cγi [tEX]. If at least (3/8)k good agents belong to GC, all
good agents in GC have the same Pc and Sc at the beginning of round cγi [tEX].
For each good agent ai in GC, ∣ai.Sc∣ ≥ g and ∣ai.Pc∣ ≥ (3/8)k hold. Furthermore,

77

ai.Sc contains the IDs of all good agents, and ai.Pc contains the IDs of all good
agents in GC, but not of the other good agents.

Next, we consider the MakeGroup stage. In the following two lemmas, we
prove that when there exists at least one group candidate comprising at least
(3/8)k good agents, at least one reliable group is created.

Lemma 26. Let GC be a group candidate, aini be the first good agent in GC
that starts the MakeGroup stage, and cγini be the first cycle of aini that all good
agents in GC are in the MakeGroup stage at the beginning of round cγini[tEX].
If at least (3/8)k good agents belong to GC, some good agent ai in GC executes
Lines 5 and 6 of Algorithm 12 within (f + 1) ⋅ ∣cγi ∣ rounds right after round cγi [1].

Proof. If ai has executed Lines 5 and 6 of Algorithm 12 before cycle cγi , this
lemma clearly holds. Therefore, we consider the case where ai has not executed
Lines 5 and 6 of Algorithm 12 before cycle cγi .

First, let aj be a good agent in GC. We prove that aj decides on at least one
ID of a good agent in GC as a target ID within (f + 1) cycles after cycle cγj . By
Corollary 5, if at least (3/8)k good agents belong to GC, ∣aj.Pc∣ ≥ (3/8)k holds
at the beginning of round cγj [tEX]. Since (3/8)k ≥ (3/8)(8f + 7) > f + 1 holds by
k ≥ 8f +7 and aj increments aj.numCycle by one in the last round of every cycle,
aj uses different f + 1 IDs in aj.Pc as the target IDs during f + 1 cycles starting
from cycle cγj . Hence, the IDs include one ID of a good agent in aj.Pc.

We now prove that all good agents in GC calculate the same result of
target(Pc,numCycle) = Pc[numCycle mod ∣Pc∣] during a core period of cycle cγ

′

i

for any integer γ′ ≥ γ. All good agents in GC start a cycle almost simultaneously
by Observation 3; therefore, all good agents in GC have the same numCycle dur-
ing a core period of cycle cγ

′

i . By Corollary 5, all good agents in GC have the
same Pc at the beginning of round cγi [tEX]. Hence, all good agents in GC calculate
the same result of target(Pc,numCycle) = Pc[numCycle mod ∣Pc∣] during a core
period of cycle cγ

′

i .
Based on the above, all good agents in GC set the ID of the same good agent

in GC as the target ID during a core period of cycle cαi for some α satisfying
γ ≤ α ≤ γ + f .

Next, let cεi be the first cycle of ai that all good agents set the ID of the same
good agent in GC as a target ID during a core period of this cycle. We prove that

78

all good agents in GC gather at a single node by round cεi [(1/2) ⋅ ∣c
ε
i ∣− tEX]. Let agt

be the good agent with the target ID during a core period of cycle cεi , agm be the
good agent with the largest ID of good agents in GC, and ags be a good agent in
GC ∖ {agt}. By the behavior of the MakeGroup stage, agt stays at the current
node during the first-subcycle of cycle cεgt, and agents other than agt search for agt
during the first-subcycle of their cycles. Agent agm finishes the MakeCandidate
stage, and all good agents in GC have the same cycle length by Observation 4;
thus, for a good agent aj in GC, ∣cεj ∣ ≥ 12 ⋅ (tREN(extendId(agm.id,0)) + 1) holds.
By Observation 3, all good agents in GC start their cycle almost simultaneously.
Thus, agt stays during a core period of the first-subcycle of cycle cεgs. By Lemma
15, ags meets agt during a core period of the first-subcycle of cycle cεgs, that is, by
round cεi [(1/2) ⋅ ∣c

ε
i ∣ − tEX].

We prove this lemma by contradiction. We assume that no good agent in GC
executes Lines 5 and 6 of Algorithm 12 by the end of cycle cγ+fi . In this case, all
good agents in GC gather at a single node in the round that exists during a core
period of the first-subcycle of cycle cβi for some β satisfying γ ≤ β ≤ γ + f . Let rg
be such a round.

First, we show that, for every good agent aj in GC, ai stores
(aj.id, aj.lenCycle − aj.numRound) in ai.D in round rg. Agent aj is in the
MakeGroup stage. All good agents in GC start a cycle almost simultaneously,
and round rg exists during a core period of the first-subcycle of cycle cβi ; hence,
ai and aj are in the first-subcycle in round rg. By Observation 4, ai.lenCycle =
aj.lenCycle holds. By Corollary 5, ai.Sc = aj.Sc and ∣ai.Sc∣ ≥ g hold. It holds that
g > (7/8)k ≥ (7/8)∣ai.Sp∣ by Corollary 2; therefore, ∣ai.Sc∣ ≥ g ≥ (7/8)∣ai.Sp∣ holds.
By the contradiction assumption, ai.numRemainRound = aj.numRemainRound =
∞ holds. Hence, ai stores (aj.id, aj.lenCycle−aj.numRound) in ai.D in round rg.

Next, let Drr = {x2 ∣ (x1, x2) ∈ ai.D}. We show that, for every good agent aj

in GC, when ai stores (aj.id, aj.lenCycle−aj.numRound) in ai.D, median(Drr) ≥

(1/2)⋅ai.lenCycle holds. The number of good agents in GC is at least (3/8)k; thus,
∣Drr∣ ≥ (3/8)k holds. By k ≥ 8f + 7, (3/8)k ≥ (3/8)(8f + 7) > 2f + 2 holds. Thus,
there exists at least one value of lenCycle−numRound of some good agent in GC
among the smallest f + 1 values. Similarly, there also exists at least one value of
lenCycle−numRound of a different good agent in GC among the largest f+1 values

79

of Drr. Therefore, median(Drr) exists between the minimum and maximum
values of lenCycle − numRound of good agents in GC. Agent aj is in the first-
subcycle, and ai.lenCycle = aj.lenCycle holds; thus, aj.lenCycle − aj.numRound ≥
(1/2) ⋅ ai.lenCycle holds. It holds that median(Drr) ≥ (1/2) ⋅ ai.lenCycle.

Finally, we lead to a contradiction. Variable ai.Sc comprises at least
(7/8)∣ai.Sp∣ IDs. The number of good agents in GC is at least (3/8)k; thus, ∣ai.D∣ ≥
(3/8)k ≥ (3/8)∣ai.Sc∣ holds. The median of Drr is at least (1/2) ⋅ ai.lenCycle.
Therefore, in round rg, ai satisfies Line 4 of Algorithm 12 and executes Lines 5
and 6 of Algorithm 12. This is a contradiction.

Lemma 27. Let ai be a good agent. When ai executes Lines 5 and 6 of Algo-
rithm 12, at least k/7 good agents have the same D as ai.D and store the same
value as ai.numRemainRound in their numRemainRound and the same ID as
ai.guidepostId in their guidepostId. Moreover, when ai executes Line 5 of Algo-
rithm 12, the stored value exists between the minimum and maximum values of
lenCycle − numRound of good agents in a group candidate of ai.

Proof. First, we prove that ai.D contains at least k/7 IDs of good agents. By
the behavior of MakeReliableGroup, ai satisfies Line 4 of Algorithm 12. Since
k ≥ ∣ai.Sp∣ ≥ g holds by Corollary 1, ∣ai.Sc∣ ≥ (7/8)∣ai.Sp∣ ≥ (7/8)g holds. Therefore,
∣ai.D∣ ≥ (3/8)∣ai.Sc∣ ≥ (3/8)(7/8)g = (21/64)g holds. There exist f Byzantine
agents in the network; thus, at least (21/64)g − f of them are good agents. By
g ≥ 7f+7, (21/64)g−f > (15/49)g−f = (1/7)g+(8/49)g−f > (1/7)g+(8/49)7f−f =
(1/7)(g + f) holds. Variable ai.D includes at least k/7 IDs of good agents.

We now prove the first proposition. Let aj be a good agent in {x1 ∣ (x1, x2) ∈

ai.D} ∖ {ai.id}. Agent ai stores (aj.id, aj.lenCycle − aj.numRound) in ai.D by
satisfying Line 3 of Algorithm 12. In other words, aj exists at the node with
ai, and ∣aj.Sc∣ ≥ (7/8)∣aj.Sp∣, ai.lenCycle = aj.lenCycle, ai.Sc = aj.Sc, aj.stage =
MakeGroup, aj.numRound ≤ (1/2) ⋅ ai.lenCycle, and aj.numRemainRound = ∞
hold. Agents ai and aj observe the same states of agents at the current node when
ai executes Line 3 of Algorithm 12. Thus, ai.D = aj.D holds. It is established that
∣ai.D∣ ≥ (3/8)∣ai.Sc∣, ai.D = aj.D, and ∣ai.Sc∣ = ∣aj.Sc∣; hence, ∣aj.D∣ ≥ (3/8)∣aj.Sc∣

holds. Since ai satisfies Line 4 of Algorithm 12, median({x2 ∣ (x1, x2) ∈ ai.D}) is
larger than (1/2) ⋅ ai.lenCycle. Because ai.D = aj.D and ai.lenCycle = aj.lenCycle

80

holds, median({x2 ∣ (x1, x2) ∈ aj.D}) is also larger than (1/2)⋅aj.lenCycle. There-
fore, aj satisfies Line 4 of Algorithm 12 and executes Lines 5 and 6 of Algorithm
12.

Finally, we prove the second proposition. Let GC be a group candidate of
ai, and set Drr = {x2 ∣ (x1, x2) ∈ ai.D} when ai executes Line 5 of Algorithm 12.
From Line 4 of Algorithm 12, Drr ≥ (3/8)∣aj.Sc∣ holds. It holds that ∣ai.Sc∣ ≥ g by
Corollary 5; thus, Drr ≥ (3/8)g holds. By g ≥ 7f + 7, Drr ≥ (3/8)(7f + 7) > 2f + 2

holds. Thus, there exists at least one value of lenCycle−numRound of some good
agents in GC among the smallest f + 1 values. Similarly, at least one value of
lenCycle−numRound of a different good agent exists in GC among the largest f+1
values of Drr. Hence, median(Drr) exists between the minimum and maximum
values of lenCycle − numRound of good agents in GC.

Lemma 28. Let ai be a good agent that executes Lines 5 and 6 of Algorithm 12
and GC′ be a set of good agents in ai.D. Agent ai does not store an ID of a good
agent in ai.BL. When ai stores an ID in ai.BL, the other good agents in GC′ also
store the ID in their BL.

Proof. By the behavior of the MakeGroup stage, let r be the round
that ai executes Lines 5 and 6 of Algorithm 12. Agent ai executes
REN(extendId(ai.guidepostId,0)) for ai.numRemainRound rounds from round
r + 1. By Lemma 27, all good agents in GC′ store the same ID as
ai.guidepostId in their guidepostId and the same value as ai.numRemainRound in
ai.numRemainRound in round r. They executes REN(extendId(ai.guidepostId,0))
for ai.numRemainRound rounds from round r+1. Thus, all good agents are at the
same node while executing the rendezvous procedure with their guidepostId. By
the behavior of MakeReliableGroup, an agent in the MakeGroup stage does not
initialize its numRemainRound. Hence, the result of detectByzantine(Ai, ai.D)

does not include the ID of any good agent in GC′. All good agents in GC′ witness
the same state of the current node from round r + 1; thus, this lemma holds.

Finally, we prove the complexity of MakeReliableGroup.

Theorem 3. Let n be the number of nodes, k be the number of agents, g be the
number of good agents, f be the number of weakly Byzantine agents, and amax be
a good agent with the largest ID among good agents. If the upper bound N of n

81

is given to agents, and k ≥ 8f + 7 holds, Algorithm 6 makes good agents create
at least one reliable group in O(f ⋅ tREN(extendId(amax.id),0)) rounds. All good
agents in each reliable group have also formed the reliable group at the same time.
Two reliable groups with the same group ID are not created within the tEX rounds
right after the first reliable group is created.

Proof. First, we prove the first two propositions. By Lemma 19, all good
agents finish the MakeCandidate stage in O(tREN(extendId(amax.id),0)) rounds
right after starting MakeReliableGroup. By Lemma 23 and Corollary 3, in
O(tREN(amax.id)) rounds right after starting MakeReliableGroup, it happens once
that at least (3/8)k good agents start the AgreeID stage almost simultane-
ously. Let GC be a group candidate of at least (3/8)k good agents, ai be a
good agent in GC, cζi be a cycle of ai, such that all good agents in GC start
the AgreeID stage between rounds cζi [1] − tEX and cζi [tEX], and cηi be the first
cycle of ai, such that all good agents in GC are in the MakeGroup stage at
the beginning of round cηi [tEX]. By Lemma 25, all good agents in GC start the
MakeGroup stage in O(f ⋅ ∣cζi ∣) rounds right after round cζi [1]. By Lemma
26, ai executes Lines 5 and 6 of Algorithm 12 within (f + 1) ⋅ ∣cηi ∣ rounds right
after round cηi [1]. The value of ai.numRemainRound exists between the min-
imum and maximum values among lenCycle − numRound of the good agents
in GC. By Lemma 27, when ai executes Lines 5 and 6 of Algorithm 12, at
least k/7 good agents have the same D as ai.D and store the same ID as
ai.guidepostId in their guidepostId and the same value as ai.numRemainRound
in their numRemainRound. By the behavior of the MakeGroup stage, let r be
the round that ai executes Lines 5 and 6 of Algorithm 12. Agent ai executes
REN(extendId(ai.guidepostId,0)) for ai.numRemainRound rounds from round
r + 1. Thus, at least k/7 good agents execute REN(extendId(ai.guidepostId,0))
for ai.numRemainRound rounds from round r + 1. By Lemma 28, when some
good agents in GC execute REN(extendId(guidepostId,0)), they do not store
each other’s ID in BL and always have the same BL. Therefore, at least k/7

good agents finish the execution of REN(extendId(ai.guidepostId,0)) and store
the same group ID in their gid at the same time within (f + 1) ⋅ ∣cηi ∣ + tEX

rounds right after round cηi [1]. The maximum length of the cycles is at most
96 ⋅ (tREN(extendId(amax.id,0))+1) by Lemma 18; thus, a reliable group is created

82

in 96 ⋅ (tREN(extendId(amax.id,0)) + 1) ⋅ O(f) + 96 ⋅ (tREN(extendId(amax.id,0)) +

1)(f + 1) + tEX = O(f ⋅ tREN(extendId(amax.id,0))) rounds right after start-
ing cycle cζi . Round cζi [1] is in O(tREN(extendId(amax.id,0))) rounds right
after starting MakeReliableGroup; therefore, a reliable group is created
in O(tREN(extendId(amax.id,0))) + O(f ⋅ tREN(extendId(amax.id,0))) = O(f ⋅

tREN(extendId(amax.id,0))) after starting MakeReliableGroup.
Finally, we prove the last proposition by contradiction. Let rini be the first

round when a reliable group is created, ai be a good agent in a reliable group
created within tEX rounds from round rini, and aj be a good agent in another
reliable group created within the tEX rounds from round rini. Assume that ai and
aj set the same group ID gid′ as a group ID. Let aℓ be an agent with gid′, and sets
Did

i = {x1 ∣ (x1, x2) ∈ ai.D} and BLi = ai.BL (resp. sets Did
j = {x1 ∣ (x1, x2) ∈ aj.D}

and BLj = aj.BL) when ai (resp. aj) executes Line 18 of Algorithm 12, that
is, it becomes a member of a reliable group. By the contradiction assumption,
min(Did

i ∖BLi) =min(Did
j ∖BLj) = gid′ holds; thus, gid′ ∈Did

i , gid′ ∈Did
j , gid′ ∉ BLi,

and gid′ ∉ BLj hold. By contrast, for gid′ ∈ Did
i and gid′ ∈ Did

j to hold, ai,
aj, and aℓ must exist at the same node when ai and aj update their D or aj

(resp. ai) stores gid′ in aj.D (resp. ai.D) after ai (resp. aj) stores gid′ in
ai.D (resp. aj.D). First, we consider the case where ai, aj, and aℓ exist at
the same node when ai and aj update their D. Agents ai and aj belong to
different reliable groups; hence, ai and aj do not update their D at the same
nodes in the same rounds unless ai.lenCycle ≠ aj.lenCycle. In the case where
ai.lenCycle ≠ aj.lenCycle holds, either ai.lenCycle ≠ aℓ.lenCycle or aj.lenCycle ≠
aℓ.lenCycle holds, and either gid′ ∉ Did

i or gid′ ∉ Did
j holds. Next, without loss

of generality, we consider the case where aj stores gid′ in aj.D after ai stores
gid′ in ai.D. In this case, aj finishes the MakeCandidate stage; therefore,
aj.lenCycle ≥ 12 ⋅ tREN(extendId(aj.id,0)). By Line 4 of Algorithm 12, the last
update round of aj.D is at least 6⋅tREN(extendId(aj.id,0)) rounds before aj decides
a target ID. Time tEX is smaller than tREN(extendId(aj.id,0)); therefore, aj cannot
store gid′ in aj.D after ai decides a group ID. Before ai decides a group ID, aℓ
must participate in the event when aj updates aj.D. To participate in the event,
aℓ moves away from ai or initializes aℓ.numRemainRound, allowing ai to store
gid′ in ai.BL. Hence, either gid′ ∉ Did

i or gid′ ∉ Did
j holds, or either gid′ ∈ BLi or

83

gid′ ∈ BLj holds. Thus, this is a contradiction.

2.3.2 Gathering with Non-simultaneous Termination

Next, we prove that all good agents gather at the same node and transi-
tion into a terminal state. By the behavior of ByzantineGathering, an
agent executes MakeReliableGroup until the current node contains a reliable
group. By Theorem 3, agents create at least one reliable group after starting
ByzantineGathering. Therefore, we prove that after a reliable group is created,
all good agents gather at a single node using a reliable group and transition into
a terminal state. Hereinafter, we say “two agents or two reliable groups start
rendezvous procedures with their group IDs almost simultaneously” if they start
the rendezvous procedures within the tEX rounds. We say “an agent and a reli-
able group start a cycle and a rendezvous procedure with its group ID almost
simultaneously” if they start the cycle and the rendezvous procedure within the
tEX rounds.

First, we focus on the start round and the execution period of a rendezvous
procedure by a good agent ai in a reliable group. Let GC be a group candi-
date of ai and cγi be the cycle when ai executes REN(extendId(ai.guidepostId,0)).
Recall that ∣cγi ∣ is the value of ai.lenCycle at the beginning of cycle cγi ; thus,
round cγi [last] is round cγi [1] + ai.lenCycle − 1. We refer to the period from
round cγi [last] + 1 to cγi [last] + ai.lenCycle as an “additional cycle” and simply
write it as cγ+1i . Intuitively, cycle cγ+1i is the next cycle if ai had not executed
REN(extendId(ai.guidepostId,0)) in cycle cγi . Recall that ai may not finish cycle
cγi in round cγi [last]. Thus, the start of cycle cγ+1i is not necessarily the same as the
start of REN(extendId(ai.gid,1)). By the behavior of MakeReliableGroup, ai exe-
cutes Lines 5 and 6 of Algorithm 12 before storing a group ID in ai.gid. By Lemma
27, when ai executes Line 5 of Algorithm 12, the stored value exists between the
minimum and maximum values of lenCycle−numRound of the good agents in GC.
Thus, when ai starts REN(extendId(ai.gid,1)), the start round exists between the
earliest and latest in rounds {cγ+1j [1] ∣ aj ∈ GC}. Therefore, we can expand
the discussion of Observation 5 for the execution of REN(extendId(ai.gid,1)).
More concretely, we assume that ai starts REN(extendId(ai.gid,1)) in a round
r. Let aj be a good agent not in any reliable group in round cγ+1i [tEX] and cεj

84

be the cycle of aj that includes round cγ+1i [tEX]. We can obtain the following:
if ai.lenCycle ≤ aj.lenCycle holds in round r + tEX, cycle cεj completely includes
a core period of the execution period of REN(extendId(ai.gid,1)); otherwise, the
execution period of REN(extendId(ai.gid,1)) completely includes a core period of
cycle cεj . By the behavior of ByzantineGathering, ai does not update ai.lenCycle
after becoming a member of a reliable group. Thus, the length of the execution of
REN(extendId(ai.gid,1)) is the same as that of the last cycle in the MakeGroup
stage of ai. The following observation summarizes this discussion:

Observation 6. Let ai be a good agent in a reliable group and r be the round
that ai starts REN(extendId(ai.gid,1)). Let aj be a good agent not in any reliable
group in round r + tEX and cεj be the cycle of aj that includes round r + tEX. If
ai.lenCycle ≤ aj.lenCycle holds in round r + tEX, cycle cεj completely includes a
core period of the execution period of REN(extendId(ai.gid,1)); otherwise, the
execution period of REN(extendId(ai.gid,1)) completely includes a core period of
cycle cεj. Furthermore, the length of the execution of REN(extendId(ai.gid,1)) is
the same as that of ∣cγi ∣.

Next, we focus on the execution of a rendezvous procedure by a reliable group
RG of ai. By Definition 3, all good agents in GC have the same group ID. By The-
orem 3, RG is created at the same time. By the behavior of MakeReliableGroup,
RG is composed of good agents with a D containing each other’s ID; thus, all
good agents in RG have the same value of lenCycle. Every good agent in RG ex-
ecutes a rendezvous procedure with the same group ID for the same period until
they meet a reliable group with a smaller group ID. The following observation
formally shows this fact:

Observation 7. Let ai be a good agent in a reliable group and RG be a reli-
able group of ai. All good agents in RG execute REN(extendId(ai.gid,1)) for
ai.lenCycle rounds from the next round when RG is created as long as they do not
meet a reliable group with a smaller group ID.

We now focus on how a reliable group appears from other agents. Assume
that a good agent ai has started the MakeCandidate stage. By Definition
3, a reliable group contains at least k/7 good agents, and their group IDs are
identical. By Observation 7, all good agents in any reliable group execute a

85

𝑐!"∗ 𝑙𝑎𝑠𝑡

𝑐$"∗ 𝑙𝑎𝑠𝑡

𝑟%&% 𝑟%&% + 𝑡'(

𝑟)%& 𝑟)%&∗

𝑐$"∗ [1]

𝑐!"∗ [1]

𝑅𝐺%&%

𝑅𝐺)%&

𝑎$" ∈ 𝐴$"

𝑎!" ∈ 𝐴!"

𝑟%&%∗ 𝑟∗

𝑐!"∗ 𝑙𝑎𝑠𝑡 + 𝑡'(

Figure 5. Example of the execution of rendezvous procedures by reliable groups
RG and RGmin and cycles by good agents afc and aec.

rendezvous procedure with the same group ID for the same period from the next
round when the reliable group is created; thus, they are always at the same node.
By Corollary 1, k ≥ ∣ai.Sp∣ ≥ g holds; hence, k/7 ≥ ∣ai.Sp∣/7 ≥ g/7 holds. By
g ≥ 7f + 7, ∣ai.Sp∣/7 ≥ g/7 ≥ (1/7)(7f + 7) = f + 1 holds. Thus, when ai meets
at least (1/7)∣ai.Sp∣ agents with the same group ID, ai understands that at least
one good agent exists among them and decides that they are trustworthy. Hence,
when ai meets a reliable group, ai recognizes the group as a reliable group. By
contrast, because ∣ai.Sp∣/7 ≥ f + 1 holds, only f Byzantine agents are not enough
to form a reliable group. Thus, if a group of only f Byzantine agents exists at the
node with ai, ai does not recognize the group as a reliable group. The following
observation formally shows this fact:

Observation 8. Assume that a good agent ai has started the MakeCandidate
stage. If ai meets a reliable group, ai recognizes the group as a reliable group;
otherwise, ai does not recognize the group as a reliable group.

We next focus on good agents in the CollectID stage after a reliable group
is created. We visualize the variables defined in the rest of this paragraph in
Fig. 5. In this figure, the spacing between two vertical bars represents one cycle
or the execution of a rendezvous procedure with a group ID. Let RGini be the first
reliable group that starts a rendezvous procedure, rini be the first round of the
execution of the rendezvous procedure of RGini, and SRGini be a set of reliable

86

groups that start the rendezvous procedures almost simultaneously as RGini.
Furthermore, let RGmin be the reliable group with the smallest group ID among
SRGmin and rmin be the round, in which RGmin starts a rendezvous procedure.
By assumption of SRGmin, rmin exists between rounds rini and rini + tEX. Let Aec

be a set of good agents in the CollectID stage in round rini + tEX and Afc be
a set of good agents neither in Aec nor in any reliable group of SRGini. For a
good agent ai ∈ Aec ∪Afc, let c∗i be the cycle of ai that includes round rini + tEX.
For a good agent aj in a reliable group of SRGini, let r∗j be the round that is
tREN(extendId(aj.gid,1)) rounds after aj executes Lines 10–14 of Algorithm 13
for the first time, that is, after aj starts REN(extendId(aj.gid,1)). Let round
r∗ = max({c∗i [last] ∣ ai ∈ Aec ∪Afc} ∪ {r∗j ∣ aj be a good agent in a reliable group
of SRGini}).

Consider a case where Aec is not empty. By the behavior of
MakeReliableGroup, an agent extends the length of its cycle in the CollectID
or MakeCandidate stage, but not in the AgreeID or MakeGroup stages;
therefore, good agents in the CollectID or MakeCandidate stage have the
longest cycles. By Observation 5, cycle c∗ec of a good agent aec in Aec completely
includes a core period of cycle c∗fc of a good agent afc in Afc. By Observation 6, cy-
cle c∗ec also completely includes the execution period of REN(extendId(aj.gid,1)),
except for the first and last tEX rounds. Hence, if Aec is not empty, round r∗

exists between rounds c∗ec[last] and c∗ec[last] + tEX. From this discussion, we have
the following observation:

Observation 9. If Aec is not empty, for the cycle c∗i of a good agent in Aec, r∗

exists between rounds c∗i [last] and c∗i [last] + tEX.

Let lenCyclerg be the value of lenCycle of a good agent in RGmin when the
agent starts a rendezvous procedure with a group ID. We will now prove that
RGmin and other good agents meet and transition into terminal states together.
To do this, we must first consider the condition for a good agent in RGmin and a
good agent not in any reliable group to meet.

Lemma 29. Let ai be a good agent in RGmin and aj be a good
agent not in any reliable group. Let prd be the period, such that
ai executes REN(extendId(ai.gid,1)) without interruption, and aj executes

87

REN(extendId(aj.id,0)) or REN(extendId(aj.guidepostId,0)) without interruption
during this period. If prd ≥ tREN(extendId(min(ai.id, aj.id),0)) holds, ai and aj

meet within the tREN(extendId(min(ai.id, aj.id),0)) rounds from the first round of
the period prd.

Proof. By the characteristic of extendId, even if ai and aj use the same ID
as the input of a rendezvous procedure, the extended IDs of ai and aj are
different. From the selection method of gid, ai.id ≥ ai.gid holds. From
the selection method of guidepostId, aj.id ≥ aj.guidepostId holds. Thus, by
Lemma 2, ai meets aj within the tREN(extendId(min(ai.gid, aj.guidepostId),0)) ≤
tREN(extendId(min(ai.id, aj.id),0)) rounds from the first round of period prd.

We will now prove that RGmin and a good agent either in Afc or in a reliable
group of SRGini meet and transition into terminal states together. In the following
lemma, we prove that a good agent ai ∈ Afc and RGmin meet if both ai and RGmin

do not accompany another reliable group.

Lemma 30. Let us assume that every good agent ai in Afc executes
MakeReliableGroup until round c∗i [last], and every good agent aj in RGmin exe-
cutes REN(extendId(aj.gid,1)) for lenCyclerg rounds without interruption from
round rmin. If ai is in the MakeCandidate or the AgreeID stage, ai

and RGmin meet by round min(rmin + lenCyclerg, c∗i [last − tEX]). If ai is in the
MakeGroup stage, ai and RGmin meet by round c∗i [last − tEX].

Proof. By Observation 7, all good agents in RGmin execute
REN(extendId(aj.gid,1)) for the lenCyclerg rounds from round rmin until
they meet a reliable group with a smaller group ID. Therefore, by lemma
assumption, to prove this lemma, it is enough for ai and aj to meet by round
rmin + lenCyclerg or c∗i [last− tEX]. We consider two cases, that is, ∣c∗i ∣ ≤ lenCyclerg
and ∣c∗i ∣ > lenCyclerg.

First, we consider the case ∣c∗i ∣ ≤ lenCyclerg. By Observation 6, the execution
period of REN(extendId(aj.gid,1)) completely includes a core period of cycle c∗i .
By the behavior of MakeReliableGroup and Line 4 of Algorithm 12, ai executes
REN(extendId(ai.id,0)) or REN(extendId(ai.guidepostId,0)) without interruption
for at least (1/2)⋅∣c∗i ∣−tEX rounds from round c∗i [(1/2)⋅∣c

∗

i ∣+1] at the latest. Agent
ai finishes the CollectID stage; hence, ∣c∗i ∣ ≥ 12 ⋅ (tREN(extendId(ai.id,0)) + 1)

88

holds. Time tEX is smaller than tREN(extendId(ai.id,0)); therefore, ai exe-
cutes REN(extendId(ai.id,0)) or REN(extendId(ai.guidepostId,0)) without inter-
ruption for at least 5 ⋅ (tREN(extendId(ai.id,0)) + 1) rounds during the exe-
cution period of REN(extendId(aj.gid,1)). Therefore, by Lemma 29, ai and
aj meet within tREN(extendId(min(ai.id, aj.id),0)) rounds from the first round
of the rendezvous execution of ai that overlaps with the execution period of
REN(extendId(aj.gid,1)). That is, aj meets ai by round c∗i [last − tEX] ≤ rmin +

lenCyclerg.
Next, we consider the case ∣c∗i ∣ > lenCyclerg. By Observation 6, cycle c∗i com-

pletely includes a core period of the execution period of REN(extendId(aj.gid,1)).
By the behavior of MakeReliableGroup, we break this case down into
the two following cases: Case (1) ai executes REN(extendId(ai.id,0)) or
REN(extendId(ai.guidepostId,0)) without interruption from round rmin by
round c∗i [last − tEX]; and Case (2) ai may be interrupted while executing
REN(extendId(ai.id,0)) from round rmin by round c∗i [last − tEX]).

In Case (1), aj finishes the CollectID stage; thus, lenCyclerg ≥
12 ⋅ (tREN(extendId(aj.id,0)) + 1) holds. Because tEX is smaller than
tREN(extendId(aj.id,0)), aj executes REN(extendId(aj.gid,1)) without interrup-
tion for at least 10 ⋅ (tREN(extendId(aj.id,0)) + 1) rounds during cycle c∗i . By
Lemma 29, ai and aj meet within the tREN(extendId(min(ai.id, aj.id),0)) rounds
from the first round of the rendezvous execution of aj that overlaps with cycle c∗i ,
that is, by round rmin + lenCyclerg. It holds that rmin + lenCyclerg ≤ c∗i [last] + tEX,
and tEX is smaller than tREN(extendId(aj.id,0)); therefore, round c∗i [last − tEX] =
c∗i [last]+ tEX −2tEX may exist before round rmin + lenCyclerg. Thus, ai meets aj by
round min(rmin + lenCyclerg, c∗i [last − tEX]).

In Case (2), ai is in the MakeGroup stage; thus, ai is interrupted
while executing REN(extendId(ai.id,0)) during the first-subcycle. Agent ai

starts REN(extendId(ai.id,0)) or REN(extendId(ai.guidepostId,0)) from round
c∗i [(1/2) ⋅ ∣c

∗

i ∣ + 1] at the latest and executes that until round c∗i [last − tEX]. By
contrast, because an agent extends the length of its cycle by doubling that length,
(1/2) ⋅ ∣c∗i ∣ ≥ lenCyclerg and (1/2) ⋅ ∣c∗i ∣ ≡ 0(modlenCyclerg) hold. Thus, aj transi-
tions into a terminal state and stays from round c∗i [(1/2) ⋅ ∣c

∗

i ∣ + tEX] at the latest.
In other words, aj remains during a core period of the second-subcycle of cycle

89

c∗i . By Lemma 29, ai meets aj by round c∗i [last − tEX].

For an agent ai and a reliable group RG, we say “ai follows RG in round r” if
ai and RG satisfy the following condition: (1) if all good agents in RG terminate
in round r, ai also terminates in round r; and (2) if all good agents in RG move
to node v, ai also moves to node v. In the following lemma, we prove that if a
good agent finishes the CollectID stage and meets a reliable group, the good
agent follows the reliable group with the smallest group ID at the node.

Lemma 31. Assume that at least one reliable group exists at a node v in round r′.
Let RG′ be the reliable group with the smallest group ID at v in round r′ and ai

be a good agent that has started the MakeCandidate stage in round r′. Agent
ai follows RG′ in round r′.

Proof. Let C ′ be a set of all the group IDs of reliable groups at v in round
r′. By Observation 8, ai recognizes all reliable groups at v. Thus, ai executes
ai.Sgid ← C ′, and ai executes ai.minGID ← min(ai.Sgid). This implies that ai

executes ai.minGID ← min(C ′). By the assumption of this lemma, ai.Sgid ≠ ∅

and ai.gid > ai.minGID hold in round r′; thus, ai calculates ai.Srg and executes
FOLLOW(ai.Srg). Note that ai.Srg contains all good agents in RG′. By Observation
7, all good agents in RG′ make the same behavior. By Definition 3 and k ≥ 8f +7,
the number of good agents in RG′ is at least f + 1. Therefore, the majority of
agents in RG′ are good agents. Correspondingly, ai follows RG′.

In the following lemma, we prove that agents do not create a reliable group
between rounds rini + tEX and r∗.

Lemma 32. Assume that every good agent ai in RGmin executes
REN(extendId(ai.gid,1)) for the lenCyclerg rounds from round rmin without
interruption. No reliable group is created between rounds rini + tEX and r∗.

Proof. We prove this lemma by breaking it down into the following cases: agents
in Aec and agents in Afc. First, we consider an agent aec in Aec. By Observation
9, aec starts the MakeCandidate stage from round r∗ − tEX + 1 at the earliest.
From Line 8 of Algorithm 8, when aec starts the MakeCandidate stage, the
cycle length is sufficiently longer than tEX rounds. Thus, aec cannot participate

90

in the creation of a reliable group until round r∗. Next, we consider an agent afc
in Afc. By Lemma 30, afc and RGmin meet by round c∗fc[last − tEX]. By Lemma
31, if afc meets a reliable group, afc follows the reliable group. Hence, afc cannot
participate in the creation of a reliable group.

In the following lemma, we prove that good agents in RGmin are never inter-
rupted while executing REN.

Lemma 33. Every good agent ai in RGmin executes REN(extendId(ai.gid,1)) for
the lenCyclerg rounds without interruption from round rmin.

Proof. By the behavior of ByzantineGathering, ai is interrupted while executing
REN(extendId(ai.gid,1)) if it meets a reliable group with a smaller group ID.
However, by Lemma 32, no reliable group is created between rounds rini+ tEX and
r∗. In other words, since rini ≤ rmin ≤ rini + tEX and rmin + lenCyclerg ≤ r∗ hold, ai
executes REN(ai.gid) for lenCyclerg rounds without interruption.

By Observation 7 and Lemma 33, we obtain the following corollary:

Corollary 6. All good agents in RGmin transition into terminal states at the same
node at the same time in rmin + lenCyclerg.

In the following lemma, we prove that two reliable groups in SRGini meet:

Lemma 34. Let RG be a reliable group in SRGini ∖ {RGmin}. All good agents
in RG meet a reliable group with a group ID smaller than RG by round rmin +

lenCyclerg.

Proof. For contradiction, we assume that some good agents in RG have never met
a reliable group with a group ID smaller than RG by round rmin+ lenCyclerg. Let
ai be this agent and lenCyclei be the value of ai.lenCycle in the next round when
RG is created. In this case, ai executes REN(extendId(ai.gid,1)) for the lenCyclei
rounds without interruption. By Lemma 32, ai starts REN(extendId(ai.gid,1))
between rounds rini and rini + tEX. Let aj be a good agent in RGmin. By
Lemma 33, aj executes REN(extendId(aj.gid,1)) for the lenCyclerg rounds with-
out interruption from round rmin. It also holds that rini ≤ rmin ≤ rini + tEX.
Agents ai and aj finish the CollectID stage, and ai.id ≥ ai.gid and aj.id ≥

91

aj.gid holds; therefore, lenCyclei ≥ 12 ⋅ (tREN(extendId(ai.id,0)) + 1) ≥ 12 ⋅

(tREN(extendId(ai.gid,1)) + 1) and lenCyclerg ≥ 12 ⋅ (tREN(extendId(aj.id,0)) + 1) ≥
12 ⋅ (tREN(extendId(aj.gid,1)) + 1) hold. It holds that ai.gid > aj.gid; thus, ai

and aj execute REN(extendId(ai.gid,1)) and REN(extendId(aj.gid,1)) at the same
time for at least tREN(extendId(aj.gid,1)) rounds from round rmin. By Theorem
3, every reliable group in SRGini has a different group ID. Thus, by Lemma 2, ai
and aj meet within the tREN(extendId(aj.gid,1)) rounds from round rmin, that is,
by round rmin + lenCyclerg. All good agents in RGmin stay at the same node by
Observation 7, enabling ai to meet RGmin by round rmin + lenCyclerg. This is a
contradiction.

In the following lemma, we prove that RGmin and a good agent neither in
RGmin nor in Aec meet and transition into a terminal state at the same node by
round r∗.

Lemma 35. Let ai be a good agent that is in Afc and in the MakeCandidate
or AgreeID stage or a good agent in a reliable group of SRGini ∖ {RGmin}.
Let aj be a good agent that is in Afc and in the MakeGroup stage. Agent ai

meets RGmin and transitions into a terminal state together with RGmin by round
rmin+lenCyclerg. Agent aj also meets RGmin and transitions into a terminal state
together with RGmin by round max(rmin + lenCyclerg, c∗j [last − tEX]).

Proof. Let aℓ be a good agent in RGmin. By Lemma 33, all good agents in RGmin

execute REN(extendId(aℓ.gid,1)) for the lenCyclerg rounds without interruption
from round rmin. By Corollary 6, all good agents in RGmin transition into a
terminal state at the same node at the same time in rmin+ lenCyclerg. By Lemma
31, if a good agent finishes the CollectID stage and meets RGmin, the agent
follows RGmin after that. Hence, it is sufficient to prove that ai and aj meet
RGmin by round rmin+ lenCyclerg and round max(rmin+ lenCyclerg, c∗j [last− tEX]),
respectively. To do this, we break it down into the following cases: Case (1)
ai ∈ RG for a reliable group RG ∈ SRGini∖{RGmin}; Case (2) ai ∈ Afc; and Case
(3) aj.

First, we consider Case (1). By Lemma 34, ai meets a reliable group RG′

with a group ID smaller than RG by round rmin + lenCyclerg. If RG′ is RGmin, ai
meets RGmin by round rmin + lenCyclerg; otherwise, ai follows RG′ by Lemma 31.

92

Similarly, good agents in RG′ meet another reliable group RG′′ with a smaller
group ID by round rmin + lenCyclerg. Hence, ai also meets RG′′. By repeating
this discussion, ai eventually meets RGmin by round rmin + lenCyclerg.

Next, we consider cases (2) and (3). By Lemma 30, ai and aj meet RGmin

by rounds min(rmin + lenCyclerg, c∗i [last − tEX]) and c∗j [last − tEX], respectively. If
ai and aj meet a reliable group other than RGmin by round rmin + lenCyclerg,
they follow the reliable group by Lemma 31. In this case, similar to the previous
paragraph, they meet RGmin by round rmin + lenCyclerg.

We will now prove that a good agent in Aec meets RGmin and transitions into
a terminal state together with RGmin. In the following lemma, for a good agent
ai in Aec, we consider the behavior of a good agent not in Aec based on where
round rini is located in cycle c∗i .

Lemma 36. Let ai be an agent in Aec and aj be a good agent either in Afc or in
a reliable group of SRGini. If rini ≤ c∗i [(1/2) ⋅ ∣c∗i ∣ − tEX] holds, aj transitions into
a terminal state together with RGmin by round c∗i [(1/2) ⋅ ∣c

∗

i ∣ + tEX]; otherwise, aj
executes REN(extendId(aj.id,0)) or REN(extendId(aj.guidepostId,0)) for at least
tREN(extendId(aj.id,0)) rounds without interruption from round c∗i [1] to round
c∗i [(1/2) ⋅ ∣c

∗

i ∣ − tEX].

Proof. Because aj finishes the CollectID stage, aj.lenCycle ≥ 12 ⋅

(tREN(extendId(aj.id,0)) + 1). To prove this lemma, we break aj down into the
following cases: Case (1) Agent aj is a good agent in RGmin; Case (2) Agent
aj is a good agent that is in Afc and in the MakeGroup stage; and Case (3)
Agent aj is a good agent that is in Afc and in the MakeCandidate or AgreeID
stage or is a good agent in a reliable group of SRGini ∖ {RGmin}.

First, we consider the state of aj in cases (1) and (2) when ai starts cycle
c∗i . By the behavior of ByzantineGathering, an agent extends the length of
its cycle only in the CollectID and MakeCandidate stages; thus, ai has the
longest cycle in cycle c∗i . Therefore, by Observation 6, cycle c∗i completely includes
core periods of cycle c∗j and the execution period of REN(extendId(aj.gid,1)). By
Lemma 27, when aj executes Line 5 of Algorithm 12, the stored value exists be-
tween the minimum and maximum values of lenCycle − numRound of the good
agents in a group candidate of aj. Thus, when aj starts REN(extendId(aj.gid,1)),

93

the start round exists between the earliest and the latest in the first rounds
of the additional cycles of good agents in a group candidate of aj. Hence, in
Case (1) (resp. Case (2)), by Observation 5, when ai starts cycle c∗i , aj

starts REN(extendId(aj.gid,1)) (resp. cycle c∗j) or a cycle of the AgreeID or
MakeGroup stage between rounds c∗i [1] − tEX and c∗i [tEX]. Furthermore, at the
start of cycle c∗j or REN(extendId(aj.gid,1)), aj has started the MakeGroup
stage. In other words, aj has finished at least one cycle of the AgreeID. Hence,
at this time, the number of updates of aj.lenCycle is at least one less than the
number of updates of ai.lenCycle; thus, ∣c∗j ∣ ≤ (1/2)⋅∣c∗i ∣ and lenCyclerg ≤ (1/2)⋅∣c∗i ∣
hold.

Here, when aj does not start REN(extendId(aj.gid,1)) or cycle c∗j be-
tween rounds c∗i [1] − tEX and c∗i [tEX], let cγj be a cycle of the AgreeID
or MakeGroup stage that aj starts during this period. By the be-
havior of MakeReliableGroup and Line 4 of Algorithm 12, aj executes
REN(extendId(aj.id,0)) or REN(extendId(aj.guidepostId,0)) without interruption
for at least (1/2) ⋅ ∣cγj ∣ − tEX rounds from round c∗j [(1/2) ⋅ ∣c

∗

j ∣ + 1] at the latest. Cy-
cle c∗i completely includes the core periods of cycle c∗j and the execution period
of REN(extendId(aj.gid,1)); hence, cycle c∗i completely includes a core period of
cycle cγj . Thus, ∣cγj ∣ ≤ (1/2) ⋅ ∣c∗i ∣ holds.

We now prove this lemma in Case (1). First, we consider the following
case: when ai starts cycle c∗i , aj starts REN(extendId(aj.gid,1)) between rounds
c∗i [1] − tEX and c∗i [tEX]. It holds that lenCyclerg ≤ (1/2) ⋅ ∣c∗i ∣; therefore, aj tran-
sitions into a terminal state by round rmin + lenCyclerg ≤ c∗i [tEX] + lenCyclerg ≤
c∗i [(1/2) ⋅ ∣c

∗

i ∣ + tEX] by Corollary 6. Next, we consider the following case: when
ai starts cycle c∗i , aj starts cycle cγj between rounds c∗i [1] − tEX and c∗i [tEX]. Be-
cause lenCyclerg = ∣c

γ
j ∣ ≤ (1/2) ⋅ ∣c

∗

i ∣ holds, and an agent extends the length of
its cycle by doubling that length, (1/2) ⋅ ∣c∗i ∣ ≡ 0 (mod lenCyclerg) holds. If
rini ≤ c∗i [(1/2) ⋅ ∣c

∗

i ∣ − tEX] holds, the first half of cycle c∗i completely includes the
core period of the execution period of REN(extendId(aj.gid,1)). Thus, aj tran-
sitions into a terminal state by round rmin + lenCyclerg ≤ c∗i [(1/2) ⋅ ∣c∗i ∣ + tEX]. If
rini > c∗i [(1/2) ⋅ ∣c

∗

i ∣ − tEX] holds, the first half of cycle c∗i completely includes the
core period of cycle cγj , and the second half of cycle c∗i completely includes the
core period of the execution period of REN(extendId(aj.gid,1)). Because ∣cγj ∣ ≥ 12 ⋅

94

(tREN(extendId(aj.id,0))+1) holds, and tEX is smaller than tREN(extendId(aj.id,0)),
aj executes REN(extendId(aj.id,0)) or REN(extendId(aj.guidepostId,0)) without
interruption for at least (1/2) ⋅ ∣cγj ∣ − tEX ≥ 6 ⋅ (tREN(extendId(aj.id,0)) + 1) − 2tEX >
4⋅(tREN(extendId(aj.id,0))+1) rounds from round c∗i [1] to round c∗i [(1/2)⋅∣c

∗

i ∣−tEX].
We next prove this lemma in Case (2). First, we consider the following

case: rini ≤ c∗i [(1/2) ⋅ ∣c
∗

i ∣ − tEX]. By Lemma 35, aj transitions into a termi-
nal state by round max(rmin + lenCyclerg, c∗j [last − tEX]). From the discussion
of Case (1), round rmin + lenCyclerg exists by round c∗i [(1/2) ⋅ ∣c

∗

i ∣ + tEX]. Because
∣c∗j ∣ ≤ (1/2) ⋅ ∣c

∗

i ∣ holds, and an agent extends its cycle length by doubling that
length, (1/2) ⋅ ∣c∗i ∣ ≡ 0 (mod ∣c∗j ∣) holds. Thus, the first half of cycle c∗i completely
includes the core period of cycle c∗j . Therefore, c∗j [last] ≤ c∗i [(1/2) ⋅ ∣c∗i ∣+tEX] holds.
Hence, aj transitions into a terminal state by round c∗i [(1/2) ⋅ ∣c

∗

i ∣ + tEX]. Next,
we consider the following case: rini > c∗i [(1/2) ⋅ ∣c

∗

i ∣ − tEX]. In this case, the first
half of cycle c∗i completely includes a core period of cycle cγj . Because ∣cγj ∣ ≥ 12 ⋅
(tREN(extendId(aj.id,0))+1) holds, and tEX is smaller than tREN(extendId(aj.id,0)),
aj executes REN(extendId(aj.id,0)) or REN(extendId(aj.guidepostId,0)) without
interruption for at least (1/2) ⋅ ∣cγj ∣ − 2tEX > 4 ⋅ (tREN(extendId(aj.id,0)) + 1) rounds
from round c∗i [1] to round c∗i [(1/2) ⋅ ∣c

∗

i ∣ − tEX].
Finally, we prove this lemma in Case (3). First, we consider the following

case: rini ≤ c∗i [(1/2) ⋅ ∣c∗i ∣ − tEX]. By Lemma 35 and the discussion of Case (1), aj
transitions into a terminal state by round rmin + lenCyclerg ≤ c∗i [(1/2) ⋅ ∣c∗i ∣ + tEX].
Next, we consider the case rini > c∗i [(1/2) ⋅ ∣c

∗

i ∣ − tEX]. If ∣c∗i ∣ = ∣c∗j ∣ holds, aj

executes REN(extendId(aj.id,0)) without interruption for at least (1/2) ⋅ ∣c∗j ∣ −
2tEX ≥ 6 ⋅ (tREN(extendId(aj.id,0)) + 1) − 2tEX > 4 ⋅ (tREN(extendId(aj.id,0)) + 1)

rounds from round c∗i [1] to round c∗i [(1/2) ⋅ ∣c
∗

i ∣ − tEX] because tEX is smaller
than tREN(extendId(aj.id,0)); otherwise, let cεj be the cycle of aj that includes
round c∗i [tEX]. From the same discussion in Case (2), the first half of cy-
cle c∗i completely includes the core period of cycle cεj . Because ∣cγj ∣ ≥ 12 ⋅

(tREN(extendId(aj.id,0))+1) holds, and tEX is smaller than tREN(extendId(aj.id,0)),
aj executes REN(extendId(aj.id,0)) or REN(extendId(aj.guidepostId,0)) without
interruption for at least (1/2) ⋅ ∣cγj ∣ − 2tEX > 4 ⋅ (tREN(extendId(aj.id,0)) + 1) rounds
from round c∗i [1] to round c∗i [(1/2) ⋅ ∣c

∗

i ∣ − tEX].

In the following lemma, we prove that every good agent in Aec meets all good

95

agents, and all good agents in Aec gather together with RGmin and transition into
a terminal state.

Lemma 37. Let ai be an agent in Aec and cγi be the first cycle of the MakeCan-
didate stage of ai. The following propositions hold for ai: (1) agent ai meets all
good agents during cycle cγ−1i ; and (2) agent ai transitions into a terminal state
together with RGmin before round cγi [last].

Proof. By the behavior of MakeReliableGroup, ai executes
REN(extendId(ai.id,0)) without interruption throughout cycle cγ−1i . Agent
ai also satisfies Line 8 of Algorithm 8 at the beginning of cycle cγ−1i ; thus,
∣cγ−1i ∣ ≥ 6 ⋅ (tREN(extendId(ai.id,0)) + 1) holds.

We prove this lemma by induction on the order in which the agents in Aec

start the MakeCandidate stage. Let aini be the first agent in Aec that starts
the MakeCandidate stage. First, we prove this lemma for aini as the base case
of our induction. Let cεini be the first cycle of the MakeCandidate stage of aini.
To prove Proposition (1), we break it down into the following cases: Case (1)
Agent aini meets a good agent aj in Aec ∖ {aini} during cycle cε−1ini ; and Case (2)
Agent aini meets a good agent aj either in Afc or in a reliable group of SRGini.

We first prove Case (1). By Observation 2, aini and aj start cycles cε−1ini and
cε−1j almost simultaneously, and ∣cε−1ini ∣ = ∣c

ε−1
j ∣ holds. Because tEX is smaller than

tREN(extendId(aini.id, ,0)), aj stays during the core period of cycle cε−1ini or executes
REN(extendId(aj.id,0)) for at least 5 ⋅ (tREN(extendId(aini.id,0)) + 1) rounds. By
Lemma 15, aini meets aj before cε−1ini [last].

Next, we prove Case (2). Cycle cε−1ini is cycle c∗ini or a later cycle. First, we
consider the case where cycle cε−1ini is a cycle after cycle c∗ini. By Lemma 35, aj
transitions into a terminal state by round r∗. Thus, aj stays from round cε−1ini [tEX]

at the latest. By Lemma 15, aini meets aj before cε−1ini [last]. Next, we consider
the case where cycle cε−1ini is cycle c∗ini. By Lemma 36, if rini ≤ c∗i [(1/2) ⋅ ∣c∗i ∣ − tEX]
holds, aj transitions into a terminal state by round c∗i [(1/2) ⋅ ∣c

∗

i ∣ + tEX], that
is, it stays from round c∗i [(1/2) ⋅ ∣c

∗

i ∣ + tEX]. By Lemma 15, aini meets aj before
cε−1ini [last]. If rini > c∗i [(1/2)⋅ ∣c∗i ∣−tEX] holds, aj executes REN(extendId(aj.id,0)) or
REN(extendId(aj.guidepostId,0)) for at least tREN(extendId(aj.id,0) rounds with-
out interruption from rounds c∗i [1] to c∗i [(1/2) ⋅ ∣c

∗

i ∣ − tEX]. Because ∣cγ−1i ∣ ≥

6⋅(tREN(extendId(ai.id,0))+1) holds, by Lemma 29, aini meets aj before cε−1ini [last].

96

The above discussion shows that aini knows the IDs of all good agents
at the beginning of cycle cεini. Every good agent either in Afc or in a re-
liable group of SRGini transitions into a terminal state together with RGmin

by round cεini[tEX]. Therefore, by Lemma 2, aini visits all nodes within
tREN(extendId(aini.id,0)) rounds, and aini meets RGmin together with RGmin by
cεini[tEX+ tREN(extendId(aini.id,0))]. Hence, by Observation 8, aini transitions into
a terminal state together with RGmin by round cεini[tEX+tREN(extendId(aini.id,0))].

Next, let A′ec be a set of good agents in Aec that start the MakeCandidate
stage by round cγ−1i [tEX]. We assume that all agents in A′ec transition into terminal
states together with RGmin by round cγ−1i [tEX+tREN(extendId(ai.id,0))]. We prove
this lemma for ai. From the same discussion as aini, ai meets all good agents in
Aec ∖ A′ec and all good agents either in Afc or in a reliable group of SRGini by
cγ−1i [last]. Thus, we consider the meeting of ai and good agents in A′ec. Time tEX is
smaller than tREN(extendId(ai.id,0)), and ai.id is larger than IDs of agents in A′ec;
hence, ai executes REN(extendId(ai.id,0)) for at least 4 ⋅(tREN(extendId(ai.id,0))+
1) rounds from round cγ−1i [tEX + tREN(extendId(ai.id,0)) + 1]. By Lemma 15, aini
meets all good agents in A′ec by round cγ−1i [last]. From the same discussion as
aini, ai transitions into a terminal state together with RGmin by round cγi [tEX +

tREN(extendId(ai.id,0))].

Finally, we prove the correctness and the complexity of ByzantineGathering.

Theorem 4. Let n be the number of nodes, k be the number of agents, f be the
number of weakly Byzantine agents, X(n) be the number of rounds required to
explore any network composed of n nodes, Λgood be the length of the largest ID
among good agents, and Λall be the length of the largest ID among agents. If
the upper bound N of n is given to agents, and k ≥ 8f + 7 holds, Algorithm 13
solves the gathering problem in O(f ⋅ Λgood ⋅ X(N)) rounds using O(k ⋅ (Λall +

log(X(N))) +MSREN(N,2Λgood) +MSPCONS(S) bits of agent memory.

Proof. Let amax be a good agent with the largest ID among good agents. By
the behavior of ByzantineGathering, an agent executes MakeReliableGroup
until the current node includes a reliable group. By Theorem 3, a reliable
group is created in the O(f ⋅tREN(extendId(amax.id,0))) rounds right after starting

97

MakeReliableGroup. Thus, round rini is in the O(f ⋅ tREN(extendId(amax.id,0)))

rounds right after starting MakeReliableGroup.
By Lemma 35 and the definition of r∗, all good agents in Afc and any reliable

group of SRGini ∖ {RGmin} meet RGmin and transition into terminal states by
round r∗. If Aec is not empty, by Lemma 37, a good agent in Aec meets RGmin

and transitions into a terminal state together with RGmin by the last round of
the first cycle of the MakeCandidate stage of the agent.

We then analyze the time complexity of ByzantineGathering. The above
discussion reveals that the time required to achieve the gathering depends on
whether Aec is empty or not. All good agents start the MakeCandidate stage
by the round that amax operates as that stage for tEX rounds. Thus, by the
assumption of Aec, if Aec does not contain amax, no good agents are included in
Aec. We consider two cases, that is, Aec does not contain amax, and Aec contains
amax. Let ai be a good agent and lenCyclemax be the value of amax in round
rini + tEX.

In the former case, by Lemma 35, all good agents in Afc and any reli-
able group of SRGini ∖ {RGmin} transition into terminal states by max(rmin +

lenCyclerg, c∗i [last − tEX]). Because rmin ≤ rini + tEX and lenCyclerg ≤ lenCyclemax

hold, round rmin + lenCyclerg exists by round rini + tEX + lenCyclemax. More-
over, because ai starts cycle c∗i by round rini + tEX, and ∣c∗i ∣ ≤ lenCyclemax

holds, round c∗i [last − tEX] exists by round rini + tEX + lenCyclemax. It holds
that lenCyclemax < 96 ⋅ (tREN(extendId(amax.id,0)) + 1) by Lemma 18; hence,
rini + tEX + lenCyclemax ≤ rini + 96 ⋅ (tREN(extendId(amax.id,0)) + 1) + tEX holds. All
good agents achieve the gathering in O(f ⋅ tREN(extendId(amax.id,0))) + tEX + 96 ⋅

(tREN(extendId(amax.id,0)) + 1) = O(f ⋅ tREN(extendId(amax.id,0))) rounds.
In the latter case, r∗ exists between rounds c∗max[last] and c∗max[last] + tEX

by Observation 9. Agent amax also finishes the CollectID stage in the
O(tREN(extendId(amax.id,0))) rounds right after starting MakeReliableGroup by
Lemma 19. It holds that lenCyclemax < 96 ⋅ (tREN(extendId(amax.id,0))+1); there-
fore, all good agents achieve the gathering in O(tREN(extendId(amax.id,0)))+ tEX+

96 ⋅ (tREN(extendId(amax.id,0)) + 1) = O(tREN(extendId(amax.id,0))) rounds.
Time tREN(extendId(amax.id,0)) is O(X(N) log(∣2 ⋅ (amax.id) + 1∣)) = O(Λgood ⋅

X(N)). Hence, all good agents gather at the same node and transition

98

into terminal states in the O(f ⋅ Λgood ⋅ X(N)) rounds right after starting
ByzantineGathering.

Finally, we analyze the space complexity required for an agent ai to execute
ByzantineGathering. We first consider the amount of memory space required
for ai to keep every variable.

Case Variables lenCycle, numRound, and numRemainRound: Lemma 18 gives
96 ⋅ (tREN(extendId(amax.id,0)) + 1) as the upper bound on lenCycle. The upper
bounds of numRound and numRemainRound are also equal to and less than
that on lenCycle. Thus, the amounts of memory space of these variables are
O(log(Λgood ⋅X(N))) bits.

Case Variables stage, ready, and endMakeCandidate: Agent ai stores a con-
stant number of parameters to ai.stage, ai.ready, and ai.endMakeCandidate; thus,
the amounts of memory space of these variables are O(1) bits.

Case Variables R, Sp, Pp, Sc, Pc, BL, Sgid, and Srg: For R, Sp, and Pp, ai stores
only IDs of agents it has met; therefore, it stores at most k agent IDs to ai.R,
ai.Sp, ai.Pp, ai.Sgid, and ai.Srg. By Lemma 25, PCONS(ai.Sp) and PCONS(ai.Pp)

satisfy the PBC property; thus, ai also stores at most k agent IDs to ai.Sc and
ai.Pc. By Lemma 28, an agent stores only IDs of Byzantine agents; therefore,
ai stores at most f agent IDs to ai.BL. The amounts of memory space of these
variables are O(k ⋅Λall) bits.

Case Variable numCycle: Agent ai spends O(f) cycles in the AgreeID and
MakeGroup stages by Lemmas 25 and 26; therefore, the amount of memory
space of the variable is O(log(f)) bits.

Case Variable D: Agent ai stores only IDs and the remaining rounds of
agents at the same node to ai.D; therefore, ai stores at most k tuples to ai.D.
The amount of memory space of the variable is O(k(Λall + log(Λgood ⋅X(N)))) =

O(k(Λall + log(X(N)))) bits.
Case Variables guidepostId and gid: Agent ai stores one ID on ai.guidepostId

and ai.gid. The upper bounds on these variables are the largest ID among good
agents. Thus, the amounts of memory space of these variables are O(log(Λgood))

bits.
The amount of memory space required for ai to keep every variable is

O(k(Λall + log(X(N)))) bits.

99

We next consider the amount of memory space required for ai to execute
the building blocks of the algorithm. As mentioned in Section 1, the amount
of memory space of the exploration procedure is O(logN). When ai executes
REN, ai gives at most ai.id as an input; hence, the amount of memory space
of the rendezvous procedure is MSREN(N,2Λgood). When ai executes PCONS, ai
gives a set S of agent IDs; therefore, the amount of memory space of the parallel
Byzantine consensus algorithm is MSPCONS(S). The amount of memory space
required for ai to execute the building blocks of the algorithm is O(logN) +

MSREN(N,2Λgood) +MSPCONS(S).
The above discussions demonstrate that the space complexity required

for an agent to execute ByzantineGathering is O(k(Λall + log(X(N)))) +

MSREN(N,2Λgood) +MSPCONS(S).

3. Byzantine Gathering Algorithm with Simulta-
neous Termination

This section introduces an algorithm that achieves the gathering with simultane-
ous termination. We do not need any new assumptions to achieve this. We refer
to the algorithm in the previous section as the previous algorithm. The previous
algorithm makes all good agents meet at a single node, but does not make them
transition into terminal states at the same time. Thus, the algorithm in this
section aims to make all good agents transition into the terminal states at the
same time by modifying the previous algorithm.

We will first provide an overview of the proposed algorithm. This algorithm
causes good agents to delay their transition into terminal states until round rg.
Round rg is when all good agents have started the MakeCandidate stage and
met the reliable group with the smallest group ID, say RGmin. At this point, all
good agents transition into terminal states at the same time. To do this, every
good agent in RGmin calculates the upper bound r∗g of time rg using a common
ID set, waits until r∗g , and transitions into a terminal state at the end of round r∗g .
Letting ai be a good agent that finishes the CollectID stage and exists together
with RGmin, ai follows the behavior of RGmin. When agents in RGmin stay at the
current node (resp. transition into terminal states), ai also stays at the current

100

node (resp. transitions into a terminal state). This algorithm guarantees that
round r∗g is a round after all good agents finish the CollectID stage and meet
RGmin.

Next, we will present details of the algorithm. A good agent ai executes the
previous algorithm, except for transitioning into a terminal state. Let rfr be the
round in which good agents in RGmin finish the REN execution with their group
IDs. If ai belongs to RGmin, that is, ai.Sgid ≠ ∅ ∧ ai.gid ≠ ∞∧ ai.gid = ai.minGID
holds, ai calculates the upper bound r∗g using max(ai.Sc) in round rfr. More
concretely, ai treats round rfr +1+ tEX +96 ⋅ (tREN(extendId(max(ai.Sc),0))+1) as
round r∗g . Subsequently, ai stays until round r∗g and transitions into a terminal
state in round r∗g . If ai does not belong to RGmin and finishes the CollectID
stage, that is, ai.stage ∈ {MakeCandidate, AgreeID, MakeGroup} ∧ ai.Sgid ≠

∅∧ai.gid > ai.minGID holds, ai updates Srg and executes FOLLOW(ai.Srg) in each
round after meeting a reliable group with a smaller group ID.

Theorem 5. Let n be the number of nodes, k be the number of agents, f be the
number of weakly Byzantine agents, X(n) be the number of rounds required to
explore any network composed of n nodes, Λgood be the length of the largest ID
among good agents, and Λall be the length of the largest ID among agents. If the
upper bound N of n is given to agents, and k ≥ 8f+7 holds, the proposed algorithm
solves the gathering problem with simultaneous termination in O(f ⋅Λall ⋅X(N))

rounds using O(k ⋅ (Λall + log(X(N))) +MSREN(N,2Λgood) +MSPCONS(S) bits of
agent memory.

Proof. We prove that all good agents gather at the same node before any good
agent transitions into a terminal state. They then transition into terminal states
at the same time. Let a′max be an agent with the largest ID among agents. We
consider two cases here.

First, we consider the reliable group RGmin with the smallest group ID. Let
ai be a good agent in RGmin and rpre be the round in which ai transitions into a
terminal state in the previous algorithm. By Corollary 6, all good agents in RGmin

finish the REN execution with their group ID at the same time at the same node in
round rpre. By Lemma 25 and Corollary 5, ai.Sc contains IDs of all good agents,
and all good agents in RGmin have the same Sc; hence, max(ai.Sc) ≤ a′max.id

holds, and max(ai.Sc) is the same as that of another good agent in RGmin. All

101

good agents in RGmin output the same value as r∗g . Hence, all good agents in
RGmin stay at the same node until round r∗g and transition into terminal states
at the same time at the same node in round r∗g .

Next, we consider another good agent aj. Let amax be an agent with
the largest ID among good agents. If aj finishes the CollectID stage be-
fore the first reliable group executes a rendezvous procedure with its group
ID for tEX rounds, aj meets RGmin within 96 ⋅ (tREN(extendId(amax.id,0)) +

1) rounds from round rpre + 1 by Lemmas 18 and 35; otherwise, aj meets
RGmin within 96 ⋅ (tREN(extendId(amax.id,0)) + 1) − Tini rounds right after start-
ing MakeReliableGroup by Lemmas 19 and 37. Consequently, max(rpre +

tEX + 96 ⋅ (tREN(extendId(amax.id,0)) + 1) + 1,96 ⋅ (tREN(extendId(amax.id,0)) +

1) − Tini) ≤ max(rpre + tEX + 96 ⋅ (tREN(extendId(max(ai.Sc),0)) + 1) + 1,96 ⋅

(tREN(extendId(max(ai.Sc),0)) + 1) − Tini) ≤ r∗g holds since max(ai.Sc) ≥ amax.id

holds. Therefore, all good agents meet RGmin before round r∗g . Agent aj also
knows the IDs of all good agents when aj meets RGmin after finishing the Col-
lectID stage by Corollary 1 and Lemma 19. By Observation 8, aj recognizes
RGmin as a reliable group at this time. Thus, aj follows the behavior of RGmin

after meeting RGmin. Correspondingly, aj transitions into a terminal state at the
same time as ai together with RGmin.

Based on the discussion so far, all good agents gather at the same node be-
fore any good agent transitions into a terminal state. They then transition into
terminal states at the same time.

Next, we analyze the time complexity of the proposed algorithm. By
Theorem 4, round rpre is in O(f ⋅ Λgood ⋅ X(n)) rounds right after starting
the previous algorithm, where Λgood is the length of the largest ID among
good agents. Agent ai then waits for tEX + 96 ⋅ (tREN(extendId(max(ai.Sc),0) +

1) rounds from round rpre + 1. Since max(ai.Sc) ≤ a′max.id, O(f ⋅ Λgood ⋅

X(n)) + tEX + 96 ⋅ (tREN(extendId(max(ai.Sc),0) + 1) + 1 < O(f ⋅ Λgood ⋅

X(n)) + tEX + 96 ⋅ (tREN(extendId(a′max.id,0) + 1) + 1 = O(f ⋅ Λgood ⋅ X(n)) +

O(f ⋅ tREN(extendId(a′max.id,0))) holds. Time tREN(extendId(a′max.id,0)) is
O(X(N) log(∣2 ⋅ (a′max.id) + 1∣)) = O(Λall ⋅X(N)). Hence, all good agents gather
at the same node and transition into the terminal states at the same time in
O(f ⋅Λgood ⋅X(n)) +O(f ⋅ tREN(extendId(a′max.id,0))) = O(f ⋅Λall ⋅X(n)) rounds

102

right after the first good agent wakes up.
Finally, we analyze the space complexity required for an agent ai to execute

the proposed algorithm. The proposed algorithm uses all variables and build-
ing blocks of the previous algorithm; hence, the space complexity is at least
O(k(Λall + log(X(N)))) +MSREN(N,2Λgood) +MSPCONS(S) bits by Theorem 4.
In addition, ai uses a variable varubr to keep round r∗g and a variable varrr to
hold the remaining rounds until round r∗g in the proposed algorithm; therefore,
we analyze the amount of the memory space of varubr and varrr in the rest of
this paragraph. Let aℓ be the agent with the largest ID in ai.Sc. Agent ai stores
the upper bound on the time required for aℓ to finish the CollectID stage to
varubr. The upper bound on the time is also derived from O(log(aℓ.id)⋅X(N)) by
Lemma 18. Thus, the amount of memory space of varubr is O(log(Λall ⋅X(N)))

bits. The upper bound on varrr is equal to the upper bound on varubr; there-
fore, the amount of the memory space of varrr is also O(log(Λall ⋅ X(N)))

bits. The space complexity required for ai to execute the proposed algorithm is
O(k⋅(Λall+log(X(N))))+MSREN(N,2Λgood)+MSPCONS(S)+O(log(Λall⋅X(N))) =

O(k ⋅ (Λall + log(X(N)))) +MSREN(N,2Λgood) +MSPCONS(S) bits.

4. Summary

In this part, we provided two gathering algorithms with different termination
characteristics in the presence of O(k) Byzantine agents. These algorithms have a
low time complexity and require a small number of good agents. More specifically,
if N is given to agents, and at least 8f + 7 agents exist in the network, the first
algorithm achieves the gathering with non-simultaneous termination in O(f ⋅Λgood⋅

X(N)) rounds, and the second one achieves the gathering with simultaneous
termination in O(f ⋅Λall ⋅X(N)) rounds. In these algorithms, similarly to agents
in Part IV, several good agents first create a reliable group, and then the reliable
group collects the other good agents; as a result, all good agents gather at a
single node. To create a reliable group, several good agents make a common ID
set by simulating a parallel Byzantine consensus algorithm and realize gathering
by using the common ID set.

103

Part VI

Discussion
In this section, we examine the time improvements and extensions to the proposed
algorithms. For extensions, we explore the possibility of concurrent execution
with the existing algorithm [11] and the proposed algorithms, and the solvability
in dynamic networks.

First, we mention improvements in the time complexities of the proposed
algorithms. Both proposed algorithms include the factor of the length Λall of the
largest ID among agents in their time complexity; we investigate whether this
can be changed to the length Λgood of the largest ID among good agents, similar
to the existing algorithm [11]. To state the conclusion upfront, this is challenging
because the estimation of the termination time for these algorithms is influenced
by the presence of Byzantine agents. In the existing algorithm, an agent ai

starts the rendezvous algorithm REN(ai.id). Whenever the members of the agents
acting together with ai change, ai stops the current execution of REN and starts
REN(ℓmin) using the smallest ID ℓmin among IDs of agents that are considered
trustworthy at the current node. For a sufficiently long time T calculated from
n and ℓmin, when the agents execute REN(ℓmin) for T rounds without a change
in the membership, agents can determine that all good agents gather at a single
node. Whereas, in both proposed algorithms, agents make this determination
based on the calculation of the expected arrival time of the agent with the largest
ID among the collected IDs. Thus, in the estimation of the termination time,
while the existing algorithm selects the smallest ID at the current node, the
proposed algorithms choose the largest ID in the network. This difference implies
that while the existing algorithm may select an ID that is not greater than the
smallest ID among the good agents at the current node, the proposed algorithms
may choose an ID of a Byzantine agent that is larger than the largest ID among
good agents. Therefore, to change Λall in their time complexities to Λgood, it
is necessary to remove the factor of ID length from the execution time of the
rendezvous algorithm, since the estimation of the termination time is based on
the execution time. Alternatively, it is essential to design a termination method

104

that does not depend on the largest ID among the collected IDs.
Next, we explore the possibility of concurrent execution with the existing al-

gorithm [11] and the proposed algorithms. To achieve this, we note that the
behaviors of agents in each algorithm can be composed of executing the explo-
ration procedure EX and waiting for the execution time tEX of EX. Therefore, we
can divide the execution of each algorithm into tEX rounds and execute each algo-
rithm sequentially in every tEX rounds interval. In the other words, let Algo0 be
the existing algorithm [11], Algo1 be the algorithm proposed in Part IV, and Algo2
be the algorithm proposed in Part V, we execute tEX rounds of Algo1, followed by
tEX rounds of Algo2, and then tEX rounds of Algo0, in a continuous cycle. However,
we identify two issues with this idea. The first issue is that the start node in
the j + 1-th (j ≥ 1) tEX round of algorithm Algoi (0 ≤ i ≤ 2) may differ from the
end node in the j-th tEX round of algorithm Algoi. This issue leads to a problem
where agents become separated from each other during algorithm operations that
involve moving together with other agents. The second issue is that agents may
start Algoi at different times because the start times for the algorithm among
them may differ. Due to this issue, when an agent executes Algoi for tEX rounds,
we cannot guarantee that the other agents execute Algoi during the same period.
It is not immediately apparent to address these issues, but the proposal of new
mechanisms or approaches is essential. Such efforts would facilitate the efficient
combination and use of different algorithms. We are confident that providing
these solutions would significantly contribute to developing more adaptable and
efficient agent-based systems.

Finally, we explore whether the proposed algorithms are solvable for execution
in dynamic networks. The behaviors of agents in both algorithms are based on
an exploration procedure that guarantees an agent alone visits every node in an
arbitrary graph at least once, using the number of nodes as input, and waiting for
the execution period of the exploration procedure, which can be calculated from
the number of nodes. Therefore, if there exists a similar exploration suited for
dynamic networks, we believe that the gathering in dynamic networks is solvable.
Research on exploring algorithms in dynamic networks has been extensive in
recent years [22], but, to the best of my knowledge, the exploration algorithm
with the above properties has not yet been found.

105

Part VII

Conclusion
This dissertation focuses on the gathering problem in synchronous environments
with Byzantine agents. This problem requires that all good agents, initially scat-
tered through the network, meet at a single node and declare the termination at
the same time. As an algorithm tolerates Byzantine agents, the fastest algorithm
is one proposed by Dieudonné et al. [11]. This algorithm tolerates any number
of Byzantine agents and works in O(n4 ⋅Λgood ⋅X(n)) rounds if the number n of
nodes is given to agents, where Λgood is the length of the largest ID among good
agents, and X(n) is the time required to visit all nodes of any n-nodes network;
however, its time complexity is not insignificant.

We show two efficient algorithms that solve the gathering problems in syn-
chronous environments with Byzantine agents, assuming that Byzantine agents
constitute few numbers. In Part IV, we provided the gathering algorithm in
O((f +Λall) ⋅X(N)) rounds if agents know the upper bound N on n and at least
(4f + 4)(f + 1) agents exist in the network, where Λall is the length of the largest
ID among agents. This algorithm greatly reduces the time complexity compared
to that [11]. In Part V, we proposed the gathering algorithm in O(f ⋅Λall)⋅X(N))

rounds if agents know N and at least 8f + 7 agents exist in the network. This
algorithm is faster than that [11] and requires a smaller number of good agents
than that in Part IV. By proposing these algorithms, trade-offs between the
ratio of non-Byzantine agents to Byzantine agents and the time complexity in
gathering problems in the presence of Byzantine agents are indicated.

From now on, we show the future tasks of our work. Our algorithm requires
at least 8f + 7 agents for the simulation of a Byzantine consensus algorithm to
achieve the gathering; however, we should investigate whether it is possible to
execute this simulation with fewer agents. Another future task is to investigate
the space complexity required to achieve the gathering problem in the presence of
Byzantine agents. While it is known that the minimum number of memory bits
in the gathering problem without Byzantine agents is Θ(logn) [6], algorithms for
solving the gathering problem with Byzantine agents require Ω(k ⋅Λall) memory

106

bits; presenting a significant gap. We should study whether it is possible to solve
the gathering problem in the presence of Byzantine agents using o(k ⋅Λall)memory
bits.

107

Acknowledgements

I extend my deepest appreciation to everyone who has supported me. First and
foremost, my heartfelt thanks go to Professor Michiko Inoue for her unparalleled
guidance and support during my Master’s and Doctoral studies. Her insight-
ful guidance has laid the groundwork for the composition of my thesis writing
and presentation skills. Secondly, my sincere appreciation is directed towards
Professor Shoji Kasahara for his insightful feedback and invaluable suggestions.
His expertise has greatly contributed to the refinement of my research. Heart-
felt thanks are extended to Professor Fukuhito Ooshita, who belongs to Fukui
University of Technology, for his dedicated mentorship and expert advice. He
generously provided numerous comments derived from his vast knowledge and
meticulous attention during my thesis writing, enabling me to compose a well-
considered paper. I am indebted to Associate Professor Junya Nakamura, who
belongs to Toyohashi University of Technology, for his warm encouragement and
support. He provided various comments for my thesis and presentations plus
substantial assistance with my writing environment, allowing me to concentrate
on my research. My gratitude goes out to Associate Professor Yuichi Sudo, who
belongs to Hosei University, for his financial support and research opportunities
provided by him. His support afforded me financial flexibility, and the research
opportunities he provided allowed me to gain a wealth of experience and insights.
I am thankful to Assistant Professor Ryota Eguchi for his dedicated support and
encouragement. He often visited me to engage in casual conversations, which
helped me stay mentally balanced and dedicated to my research without suc-
cumbing to stress. I convey my sincere gratitude to all my Laboratory members
for their support over the course of my five-year journey as a student. Lastly, my
deepest gratitude is reserved for my family and the friends I made during my time
at the National Institute of Technology, Ishikawa College, Toyohashi University
of Technology, and Nara Institute of Science and Technology, whose support and
care have been constants throughout my academic journey.

108

References

[1] Steve Alpern and Shmuel Gal. The theory of search games and rendezvous,
volume 55. Springer Science & Business Media, 2006.

[2] Sébastien Bouchard, Yoann Dieudonné, and Bertrand Ducourthial. Byzan-
tine gathering in networks. Distributed Computing, 29(6):435–457, 2016.

[3] Sébastien Bouchard, Yoann Dieudonné, and Anissa Lamani. Byzantine gath-
ering in polynomial time. Distributed Computing, 35(3):235–263, 2022.

[4] Sébastien Bouchard, Yoann Dieudonné, and Andrzej Pelc. Want to gather?
no need to chatter! SIAM Journal on Computing, 52(2):358–411, 2023.

[5] Jérémie Chalopin, Yoann Dieudonné, Arnaud Labourel, and Andrzej Pelc.
Rendezvous in networks in spite of delay faults. Distributed Computing,
29:187–205, 2016.

[6] Jurek Czyzowicz, Adrian Kosowski, and Andrzej Pelc. How to meet when
you forget: log-space rendezvous in arbitrary graphs. Distributed Computing,
25(2):165–178, 2012.

[7] Jurek Czyzowicz, Adrian Kosowski, and Andrzej Pelc. Time versus space
trade-offs for rendezvous in trees. Distributed Computing, 27(2):95–109, 2014.

[8] Jurek Czyzowicz, Andrzej Pelc, and Arnaud Labourel. How to meet
asynchronously (almost) everywhere. ACM Transactions on Algorithms,
8(4):37:1–37:14, 2012.

[9] Anders Dessmark, Pierre Fraigniaud, Dariusz R. Kowalski, and Andrzej Pelc.
Deterministic rendezvous in graphs. Algorithmica, 46(1):69–96, 2006.

[10] Yoann Dieudonné and Andrzej Pelc. Anonymous meeting in networks. Al-
gorithmica, 74(2):908–946, 2016.

[11] Yoann Dieudonné, Andrzej Pelc, and David Peleg. Gathering despite mis-
chief. ACM Transactions on Algorithms, 11(1):1–28, 2014.

109

[12] Yoann Dieudonné, Andrzej Pelc, and Vincent Villain. How to meet asyn-
chronously at polynomial cost. SIAM Journal on Computing, 44(3):844–867,
2015.

[13] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control.
Communications of the ACM, 17(11):643–644, 1974.

[14] Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro, editors. Distributed
Computing by Mobile Entities, volume 683 of Lecture Notes in Computer
Science. Springer Cham, 1 edition, 2019.

[15] Pierre Fraigniaud and Andrzej Pelc. Deterministic rendezvous in trees with
little memory. In Distributed Computing, 22nd International Symposium,
DISC 2008, volume 5218, pages 242–256. Springer, 2008.

[16] Pierre Fraigniaud and Andrzej Pelc. Delays induce an exponential memory
gap for rendezvous in trees. ACM Transactions on Algorithms, 9(2):17:1–
17:24, 2013.

[17] Pankaj Khanchandani and Roger Wattenhofer. Byzantine agreement with
unknown participants and failures. In 35th IEEE International Parallel and
Distributed Processing Symposium, IPDPS 2021, pages 952–961. IEEE, 2021.

[18] Michal Koucký. Universal traversal sequences with backtracking. Journal of
Computer and System Sciences, 65(4):717–726, 2002.

[19] Dariusz R. Kowalski and Adam Malinowski. How to meet in anonymous
network. Theoretical Computer Science, 399(1-2):141–156, 2008.

[20] Evangelos Kranakis, Danny Krizanc, Euripides Markou, Aris Pagourtzis,
and Felipe Ramírez. Different speeds suffice for rendezvous of two agents
on arbitrary graphs. In 43rd International Conference on Current Trends in
Theory and Practice of Computer Science, SOFSEM 2017, volume 10139,
pages 79–90. Springer, 2017.

[21] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine gener-
als problem. ACM Transactions on Programming Languages and Systems,
4(3):382–401, 1982.

110

[22] Giuseppe Antonio Di Luna. Mobile agents on dynamic graphs. In Paola Floc-
chini, Giuseppe Prencipe, and Nicola Santoro, editors, Distributed Comput-
ing by Mobile Entities, Current Research in Moving and Computing, volume
11340 of Lecture Notes in Computer Science, pages 549–584. Springer, 2019.

[23] Gianluca De Marco, Luisa Gargano, Evangelos Kranakis, Danny Krizanc,
Andrzej Pelc, and Ugo Vaccaro. Asynchronous deterministic rendezvous in
graphs. Theoretical Computer Science, 355(3):315–326, 2006.

[24] Avery Miller and Andrzej Pelc. Time versus cost tradeoffs for deterministic
rendezvous in networks. Distributed Computing, 29(1):51–64, 2016.

[25] Avery Miller and Ullash Saha. Fast byzantine gathering with visibility in
graphs. In Algorithms for Sensor Systems (ALGOSENSORS 2020), pages
140–153. Springer International Publishing, 2020.

[26] Anisur Rahaman Molla, Kaushik Mondal, and William K. Moses Jr. Fast
deterministic gathering with detection on arbitrary graphs: The power of
many robots. In IEEE International Parallel and Distributed Processing
Symposium, IPDPS 2023, pages 47–57. IEEE, 2023.

[27] Fukuhito Ooshita, Ajoy K Datta, and Toshimitsu Masuzawa. Self-stabilizing
rendezvous of synchronous mobile agents in graphs. In Stabilization, Safety,
and Security of Distributed Systems: 19th International Symposium, SSS
2017, pages 18–32. Springer, 2017.

[28] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement
in the presence of faults. Journal of the ACM, 27(2):228–234, 1980.

[29] Andrzej Pelc. Deterministic gathering with crash faults. Networks,
72(2):182–199, 2018.

[30] Andrzej Pelc. Deterministic rendezvous algorithms. In Paola Flocchini,
Giuseppe Prencipe, and Nicola Santoro, editors, Distributed Computing by
Mobile Entities, Current Research in Moving and Computing, volume 11340
of Lecture Notes in Computer Science, pages 423–454. Springer, 2019.

111

[31] Omer Reingold. Undirected connectivity in log-space. Journal of the ACM,
55(4):17:1–17:24, 2008.

[32] Amnon Ta-Shma and Uri Zwick. Deterministic rendezvous, treasure hunts,
and strongly universal exploration sequences. ACM Transactions on Algo-
rithms, 10(3):12:1–12:15, 2014.

[33] Masashi Tsuchida, Fukuhito Ooshita, and Michiko Inoue. Byzantine-tolerant
gathering of mobile agents in arbitrary networks with authenticated white-
boards. IEICE Transactions on Information and Systems, 101-D(3):602–610,
2018.

[34] Masashi Tsuchida, Fukuhito Ooshita, and Michiko Inoue. Byzantine-tolerant
gathering of mobile agents in asynchronous arbitrary networks with authen-
ticated whiteboards. IEICE Transactions on Information and Systems, 103-
D(7):1672–1682, 2020.

112

Publication list

Peer-Reviewed Journal Papers

[1] Jion Hirose, Junya Nakamura, Fukuhito Ooshita, and Michiko Inoue,
Weakly Byzantine Gathering with a Strong Team, IEICE Transaction on
Information and Systems, 105(3), 541-555, 2022.

[2] Jion Hirose, Junya Nakamura, Fukuhito Ooshita, and Michiko Inoue, Fast
gathering despite a linear number of weakly Byzantine agents, Concurrency
and Computation: Practice and Experience, 2024. (Accepted)

Peer-Reviewed Conference Papers

[1] Jion Hirose, Masashi Tsuchida, Junya Nakamura, Fukuhito Ooshita, and
Michiko Inoue, Brief Announcement : Gathering with a strong team in
weakly Byzantine environments, 27th International Colloquium on Struc-
tural Information and Communication Complexity (SIROCCO 2020), 2020.

[2] Jion Hirose, Junya Nakamura, Fukuhito Ooshita and Michiko Inoue, Gath-
ering with a strong team in weakly Byzantine environments, 22nd Inter-
national Conference on Distributed Computing and Networking (ICDCN
2021), 2021.

[3] Jion Hirose, Junya Nakamura, Fukuhito Ooshita and Michiko Inoue, Brief
Announcement : Gathering despite a linear number of weakly Byzantine
agents, 41st ACM Symposium on Principles of Distributed Computing
(PODC 2022), 2022.

[4] Jion Hirose, Junya Nakamura, Fukuhito Ooshita and Michiko Inoue, Gath-
ering despite a linear number of weakly Byzantine agents, 14th International
Workshop on Parallel and Distributed Algorithms and Applications (PDAA
2022), 2022.

113

