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Abstract

In computer vision, applying complex information processing to images has
become common. However, in the real world, various optical phenomena exist,
such as refraction, attenuation, and mutual reflection of light. Cameras project
this information onto a two-dimensional image, losing much information about
optical phenomena in a three-dimensional scene during the transformation pro-
cess. Therefore, it is essential to focus on not only the image itself but also the
optical phenomena in the image generation process. This approach, known as
physics-based vision, centers around the concept of light transport from the light
source to the object and its capture by the camera. The purpose of this paper is
to explore new solution techniques that incorporate the idea of light transport for
computer vision applications. Specifically, two applications have been pioneered.
The first focuses on light transport derived from the direct component of light,
leveraging geometric considerations to measure light from objects in a specific
region and applying this to efficient image processing for touch sensing. The
second focuses on the scattering component of the light transport. By solving
the inverse problem of the Kubelka-Munk model, which models the scattering
of light in the particle layer, we can estimate how long the light transport was
scattered in the particle layer. This was applied to the analysis of pigments in
an ancient mural painting on a heterogeneous substrate. These applications are
challenging problems to solve by simply applying image processing algorithms to
images captured by RGB cameras, and a solution that incorporates the concept

of optical transport would advance the frontiers of computer vision.

*Doctoral Dissertation, Graduate School of Information Science,
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1 Introduction

Computer vision is a field of study that explores how computers can understand
images. Various algorithms have been established to enable computers to perceive
the real world as our vision does.

A critical aspect of computer vision is the acknowledgment that while the real
world is three-dimensional, our vision and cameras project it into two dimen-
sions. For example, in the real world, light undergoes various optical phenomena
such as refraction, Mie scattering, Rayleigh scattering, mirror reflection, diffuse
reflection, Fresnel reflection, and interreflection. However, when captured by a
camera and integrated into two-dimensional information, these optical processes
are lost, reducing to mere signal values of pixel brightness. This projection pro-
cess inevitably reduces some information from the real world. Therefore, more

than merely applying advanced information processing to images is needed.

Rayleigh scattering
Mie scattering
Specular reflection
Fresnel reflection

Diffuse reflection

Figure 1.1: Some of the diverse optical phenomena in the scene.
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Figure 1.2: This thesis proposes computer vision applications considering light

transport.

In response to this, the concept of Physics-based vision, driven by Shafer [2],
Kanade [3], Ikeuchi [4, 5], Narasimhan [6, 7], and others, aims to recognize the
real world with richer parameters by designing algorithms that consider real-
world optical phenomena. In this context, the behavior of Light Transport —
how light path from a source reflects off objects and reaches optical measuring
instruments — becomes a vital concept.

Computer vision tasks can be broadly categorized into three stages: measure-
ment, analysis, and application (Figure 1.2). The measurement phase involves
capturing images, considering the physical properties of light and camera optics.
Analysis entails interpreting these captured images to derive meaningful infor-
mation while the application uses this information for various practical purposes.

This paper aims to explore new solution techniques, incorporating the idea of
optical transport for computer vision applications. In particular, we focus on the
optical path length of light transport. Optical path lengths can be considered
on the macro-scale of objects on the order of tens of centimeters and the micro-
scale of objects on the order of millimeters to address broad real-world problems
effectively, and we will consider both of these scales. On the macro scale, our
research zeroes in on object-position detection. Given its ubiquity and intuitive-
ness in human-computer interaction, We chose finger detection for touch sensing
as our case study. For the latter scale, we focus on particle layer analysis, and in

particular, we select pigment distribution analysis of cultural properties, which is



an active field.

Conventional finger detection for touch sensing is often performed using camera
images or special infrared devices. When computer vision processing is applied to
camera images, the camera generally measures the entire scene that fits within its
angle of view, and the finger must be detected from an image that contains much
extra information. In contrast, we achieved finger detection for touch sensing with
more straightforward computer processing by measuring only the light transport
reflected in a specific area where a touching finger may be present. Then, we
applied a projector-camera system that efficiently measured only the "direct light”
reflected from a specific area of optical path length.

Pigment distribution analysis refers to the study of which pigments are applied
and at what thickness. Since it is difficult to measure the thickness of the particle
layer directly, the thickness of the pigment is estimated from the measured data.
Since the light incident on the particle layer causes wavelength-dependent scatter-
ing and absorption, the thickness of the pigment can be analyzed by estimating
the optical path length that caused the scattering out of the light transport. This
is a practical approach for cultural properties that are often difficult to measure
from a conservation standpoint because it allows analysis based on previously
measured data. We focused on the Kubelka-Munk model, which models light
scattering in the particle layer. We solved the ill-posed inverse problem of this
physical model to obtain the thickness of the pigment.

In other words, referring to Figure 1.2, finger detection for touch sensing, which
handles macro-scale optical path lengths, focuses on the measurement part, and it
is important how to measure the desired light transport efficiently. In the case of
pigment distribution analysis, which deals with micro-scale optical path lengths,
emphasis is placed on the analysis part, and it is essential to be able to recover
the light transport in the scene from the measurement data. It is challenging
to solve these problems simply by applying general image processing algorithms
to images taken by an RGB camera, and a solution that incorporates the light
transport concept will advance the frontier of computer vision.

The structure of this dissertation is organized as follows: Chapter 2 reviews
the essential physical phenomena in light transport and aspects of light transport

acquisition, positioning the research within this framework.



Chapter 3 delves into the study of finger detection for touch sensing by mea-
suring light transport from a specific distance. The chapter details developing
and implementing a projector-camera system to efficiently measure direct light
reflection from a specific area. The chapter also discusses the implementation
algorithm of this system for touch sensing and demonstrates how this approach
simplifies the process of locating spatial objects using basic image processing tech-
niques.

Chapter 4 transitions to applications focusing on the analytical aspects of
scattered-light transport. It centers on the Kubelka-Munk model, a pivotal tool
in modeling light scattering in particle layers. The chapter outlines the innova-
tive approach to solving the inverse problem associated with this model, leading
to groundbreaking methods for analyzing pigment distribution in ancient tomb
murals.

Finally, Chapter 5 concludes the dissertation and discusses future research

directions.



2 Theory of Light Transport

2.1 Physical Phenomena in Light Transport

Light transport — the path that light takes from being emitted or reflected by
objects in a scene to its arrival at a camera’s sensor — involves a variety of
optical phenomena. This section reviews them in general. Please note that the
explanations here focus on how light travels in straight lines and interacts with
different surfaces and mediums. This review will omit discussions on the wave-
like properties of light, such as diffraction and interference, which involve more

complex aspects of light behavior.

A. Reflection

When light emitted from a source reaches the surface of an object, part or all of
it is reflected at the surface. Reflection is commonly categorized into two primary
types: diffuse reflection and specular reflection.

Diffuse reflection occurs when light strikes a rough surface, scattering it in
multiple directions. An ideal diffuse reflection, known as Lambertian reflection,
distributes light uniformly in all directions. Specular reflection occurs when light
hits a smooth surface. The surface reflects the light in a single direction while
maintaining the equality of the angle of incidence and the angle of reflection.

Object surfaces exhibit both properties of diffuse and specular reflections. The
dominant type of reflection influences the characteristic appearance of the object.
Generally, object color analysis and shape measurements such as photometric
stereo [8] ignore specular reflection components and assume only diffuse reflection
components. The specular reflection component, known for its higher intensity
and strong directionality compared to the diffuse component, presents significant

challenges in both measurement and analysis. Therefore, studies have focused on



removing the effects of specular reflection when diffuse reflection is dominant [9,
10, 11]. Conversely, in situations where specular reflections are dominant, such
as metals, special measurement techniques are often established to account for
directional reflections [12, 13, 14, 15].

The consideration of light reflection in Computer Vision (CV) applications
presents a multitude of diverse approaches. For instance, in the realm of industrial
quality inspection, the analysis of light reflection is employed to assess the quality
of products [16, 17]. Furthermore, environmental recognition in robotics heavily
relies on understanding light reflection. Robots use this information to navigate,
interact with their surroundings, and perform tasks more precisely and safely.
Another significant application is found in the digitalization of cultural heritage.
The shape and color of cultural heritage are digitized based on the reflection data
of objects.

From this point onwards, this thesis assumes objects primarily exhibit diffuse

reflection.

B. Attenuation and Scattering

Light attenuation is the process by which light diminishes in intensity as it passes
through mediums like air, water, or glass. For example, in a foggy environment,
the light is weakened by scattering and absorption by fog particles. As a result,
the light appears less bright, and the scene is less visible than in a fog-free environ-
ment. Because light attenuation, wildly scattering, complicates light transport,
it has often been a challenge in CV.

The fog mentioned earlier is a typical example of forward scattering, where
light or waves scatter in a direction close to that of the incident light after col-
liding with particles. This causes the visibility to become hazy and blurs the
outlines of objects. On the other hand, there is also a phenomenon known as
backward scattering, which can be observed in layers of particles such as paint.
Light that does not cause specular reflection on the surface of an object pene-
trates inside. Within, the light undergoes wavelength-dependent absorption and
scattering, resulting in diffusely reflected light with different characteristics from
the incident light. In addition, translucent objects, such as skin and marble,

experience internal sub-surface scattering [18, 19].



Examples of CV applications that take into account light attenuation include
eliminating the effects of lousy weather [20, 21, 22|, underwater imaging [23, 24,
25], and the design of media coatings [26, 27, 28].

C. Refraction

Refraction is a phenomenon where the direction of light changes as it passes
through different media, such as from air to water. A typical example of this
phenomenon is the apparent bending of a straw when placed in water. This
bending effect is due to the change in the light’s direction, or refraction, which
varies depending on the refractive index of the medium. The refractive index is
a measure of how much a medium can bend light.

Refraction is also an essential principle in the context of cameras. The lenses in
a camera utilize refraction to gather and focus light. As light passes through the
curved lens of optical glass, its path is bent due to refraction. This bending of light
by the lens allows the camera to capture a focused image of the scene. Different
lenses have varying refractive properties, which photographers and videographers
use to control how images are captured, including the focus, depth of field, and
field of view.

In addition to refraction, when light encounters the boundary between two
media with different refractive indices, Fresnel reflection occurs [29]. This type of
reflection is particularly noticeable on transparent materials like glass and water
surfaces. For instance, the reflections seen on the surface of a body of water or a
glass window are examples of Fresnel reflection. This phenomenon arises due to
the partial reflection of light at the boundary, which is influenced by factors such
as the angle of incidence and the contrast in refractive indices of the two media.

Examples of applications that take into account light refraction include the
removal of glass reflection [30, 31], correction of distortion in wide-angle lenses [32,

33], and estimation of the celestial body’s apparent position [34, 35].

D. Luminescence and Radiation

In some scenes, objects and organisms emit light energy, contributing to the

broader concept of radiation. This includes thermal radiation, where all objects



emit heat, predominantly in the far-infrared spectrum, vital for applications like
thermal imaging.

Bioluminescence and chemiluminescence are examples of light emission in na-
ture and chemical processes, respectively. Bioluminescence occurs in deep-sea
organisms, fireflies, and fungi, producing light through internal chemical reac-
tions. Chemiluminescence is similar but occurs in various non-biological chemical
reactions.

Phosphorescence is a captivating phenomenon in which materials absorb energy
and re-emit it as light over time. It is intriguing that these materials continue to
glow even after the energy source is removed due to their slower energy release.

Fluorescence is critical in CV, especially in medical imaging. It happens when
substances absorb specific light wavelengths and re-emit light at longer wave-
lengths as they return to a stable state. This is used in cancer diagnostics, where
irradiating cancer cells with specific light makes their proteins fluoresce, aiding

in distinguishing them from healthy tissue [36, 37].

2.2 Light Transport Acquisition

E. Active and Passive

Two primary measurement techniques are employed in image generation and anal-
ysis: active measurement and passive measurement.

Active measurement involves an integrated control of illumination within the
measurement system. This technique captures reflected or altered light to form
images. A typical example of active measurement is the use of structured light
with projectors [38] or laser pulses in LiDAR (Light Detection and Ranging)
systems [39]. This approach is beneficial in scenarios where precise depth infor-
mation and detailed surface characteristics are required, as in 3D mapping and
autonomous vehicle navigation.

Passive measurement utilizes external light sources and captures the light re-
flected from objects to form images. This method is similar to how the human eye
operates, relying on ambient or existing light conditions without emitting con-

trolled light from the measurement system. Standard cameras and most visual



imaging systems employ passive measurement techniques. Passive measurement
is the preferred method in conditions where maintaining the subject’s natural
state is crucial or where active illumination could be intrusive.

Active measurement has a profound connection with the aspect of geometry
in CV. Active measurement effectively enhances objects’ geometric information,
such as distance, shape, and surface characteristics. Meanwhile, an understanding
of geometry aids in interpreting active measurement data, enabling more effective
data collection. Passive measurement is more closely related to photometry than
to geometry. Passive measurement allows for capturing the natural behavior of
light, which is beneficial for understanding the characteristics of object surfaces

and applications like color restoration and optical properties.

F. Direct and Global

In addition to the classification based on the reflection from the object’s surface,
there are other ways to categorize reflections. In any given scene, multiple objects
usually exist, and light interactions between objects occur. This results in two
primary types of light transport: direct components and global components.

Light transport of direct components refers to the component of light that
travels from the light source and reflects off the target object directly. This
component is crucial as it defines characteristics for the primary illumination and
visual of an object.

On the other hand, light transport of global components originates from the
light that reflects off various surfaces within the scene, acting as indirect light
sources. This light component creates subtle nuances in illumination, contribut-
ing to the realism and depth of the scene. However, global light complicates
scene understanding due to its multifaceted interactions and varied paths before
reaching the viewer or camera.

Given the complexity introduced by global light, studies focus on isolating the
direct light component [40, 41, 1].

Also, in the study of light behavior, there are two primary perspectives: a local
approach, which focuses on the behavior of light near object surfaces, and a global
approach, which considers the entire scene comprehensively. The local approach,

known as local illumination, models the behavior of light at the specific points



where it directly strikes objects from a light source. This method primarily deals
with the direct interaction of light with surfaces, often simplifying or ignoring
the complex interplay of light with the rest of the environment. On the other
hand, global illumination takes a holistic view of the scene, incorporating both
direct and indirect lighting in its modeling. Indirect lighting includes light that
has reflected off other surfaces or has been diffused, contributing to more nu-
anced and realistic scene representations. Although global illumination is crucial
for achieving realistic scene analysis and reproduction, it demands considerable

computational resources.

G. Geometry and Photometry

CV considering light transport can be broadly divided into two main aspects:
geometry and photometry. Each aspect plays a pivotal role in capturing and
analyzing images, influencing the development of various technologies and appli-
cations within the field.

Geometry in CV primarily focuses on the geometric characteristics of cam-
eras, light sources, and objects when generating images. This involves under-
standing and modeling objects’ spatial relationships and orientations in a three-
dimensional space. The geometric aspect is crucial for object recognition, scene
reconstruction, and stereoscopic imaging tasks. It helps determine objects’ posi-
tion, shape, and size within an environment, facilitating an understanding of the
scene structure and the interaction of different elements within it.

Photometry in CV centers on image generation’s optical properties, such as
brightness and reflection characteristics. This aspect deals with how light inter-
acts with objects and the environment to create an image’s visual appearance.
The photometric analysis includes understanding the distribution of light and
color within an image, the way surfaces reflect light (diffuse and specular reflec-
tions), and how these properties affect the perception of the image. Photometry
is essential for enhancing image quality, color correction, and understanding the

illumination of scenes.
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2.3 Overview

In general, the above should be considered when thinking about light transport,
and depending on which optical phenomena to focus on and which aspects to pay
attention to, there is a wide range of applications.

Chapter 3 will focus on reflected light, particularly in light transport in specific
direct components. This chapter will focus on geometries that include active
lighting.

Chapter 4 deals with applications regarding scattered light, exceptionally light
transport in the particle layer below the object’s surface. This chapter assumes

a collimated light source, i.e., passive lighting, and focuses on photometry.
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3 Application of Light Transport

in Direct Component

This chapter explores applications considering light transport in macro-scale op-
tical path lengths on the order of tens of centimeters. In the study of macro-scale
optical pathlengths, special devices such as ToF cameras and LiDARs are often
used to acquire the spatial position of objects, and critical applications in com-
puter vision include automated driving technology [42] and NLoS, which recovers
hidden objects that are not visible from cameras [43]. Focusing on spatial position
detection, we consider finger detection for touch sensing, the most intuitive and
common form of human-computer interaction, with a standard camera instead of
the above special devices. Among touch sensing, we consider touch sensing for
a projected image, which does not have a sensing mechanism on the touch plane
itself (Figure 3.1).

Previous research in touch sensing with the camera focused on extracting
fingertip positions from camera images through object segmentation methods.
Nonetheless, touch sensing with cameras encounters two primary challenges. The
first is the interference of the projected image with finger localization in the cam-
era image. When the finger touches the projected screen, the overlapping pro-
jected image can alter its apparent color and contour. The second challenge is
simultaneous touch detection and fingertip localization from a single camera im-
age, as typical cameras reduce a three-dimensional scene to a two-dimensional
plane.

The key observation here is that in scenes where a person is touching the screen
with their finger, elements other than the touching finger are not necessary in-
formation for touch sensing (Figure 3.2). In applications where the optical path

length of optical transmission is considered, the global light is usually measured
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Our device

Figure 3.1: Application of touch sensing.

simultaneously. If the optical path length of the indirect light coincides with
the optical path length of the space of the purpose, an error is introduced in
the estimation. Therefore, instead of conventionally capturing the entire scene
with a camera, we try to acquire only the light transports of direct components
originating from a specific region necessary for touch sensing to eliminate excess
information and make touch sensing more feasible with a simpler algorithm. Con-
trolling the space also eliminates indirect light when obtaining the desired optical
path length.

In order to obtain the light transport of direct components in a specific area,
active lighting (described in Chapter 2), which controls the light source, is essen-

tial. We mainly focus on a research segment to explore how to efficiently transmit
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Projected content

Hand except finger

Hand(not touch) Finger (touches)

Figure 3.2: There is a lot of information that is not needed to detect a finger.

light from the source to the scene or effectively measure the light that travels from
the scene to the camera. Notably, research focuses on controlling the light source
and the camera to measure only the reflected light in a specific space, thereby
maximizing energy efficiency, called disparity gating [44].

In particular, our study focused on a setup of disparity gating that aligns a
synchronized projector-camera in a vertical configuration; Slope Disparity Gat-
ing [45]. Slope Disparity Gating is a system that controls various parameters
such as imaging distance, the thickness of the imaging volume, and the tilt of
the imaging plane by altering the camera’s hardware parameters. This system
allows for the selective imaging of specific areas within a scene while excluding

and disregarding other areas.
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3.1 Disparity Gating with Projector-camera

System

3.1.1 Acquisition of Efficient Light Transport

Disparity gating is a concept in computer vision that focuses on capturing images
from specific light transport [44]. Imagine you have a camera that can take
pictures not of everything it sees but only of objects at a certain distance. This
is what gated imaging achieves, like having a selective focus that can ignore
unwanted background or foreground clutter. This idea is used in scenes with
backscatter, such as in foggy or dusty environments [46, 47, 1], or for excluding
indirect light and focusing solely on direct light transport [40, 48, 49]. Disparity
gating generally uses laser light for active lighting. In this chapter, we focus on
gated imaging using a projector-camera system.

To understand the projector-camera system for disparity gating, we first look
at the stereo vision for triangulating (Figure 3.3a). It is difficult to know the
geometric characteristics of the scene with a single camera. Therefore, stereo
vision involves using two cameras, similar to our two eyes, to perceive a 3D scene.
The relative position of the two cameras delimit the area in which an object is
located (epipolar geometry), and is mainly used to determine the spatial position
of an object. However, this passive sensing technique depends on the ambient
light source.

If replacing one of these cameras with a projector (active light source); this is
the basis of a projector-camera system (Figure 3.3b). Knowing the exact spatial
relationship between the camera and the light source and controlling the light to
a specific location facilitates selectively capturing light that travels a particular
path from the source to the camera.

O’'Toole et al. [1] devised a disparity gating technique based on a projector-
camera system, where the camera and laser scanning projector are aligned hori-
zontally and synchronized. As illustrated in Fig 3.4, in the method conceived by
O’Toole et al., the laser scanning projector does not project the entire image at
once but sequentially emits light along horizontal lines. Similarly, the camera’s

rolling shutter does not expose the entire sensor simultaneously but exposes one
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Camera 1 Camera 2 Camera Active light source

a) Stereo vision b) Projector-camera system
(a) X y

Figure 3.3: Understanding projector-camera systems from the stereo camera.

Direct light and
indirect light in this line
(Epipolar light)

(b) Non-epipolar imaging

Figure 3.4: Separation of direct light and global light with the projector-camera
system by O’toole et al. [1].

row at a time for photography. Aligning the camera and projector in parallel
simplifies the epipolar geometry, allowing this synchronization to be efficiently
executed.

The imaging obtained through this horizontal projection and capture comprises
direct reflections from objects on the line of projector light and minimal indirect
light components occurring on this line (called epipolar light), effectively elimi-
nating the scene’s indirect light. By effectively synchronizing the movements of
the projector and camera, O'Toole et al.demonstrated the live selectively cap-
turing mostly direct-light component (epipolar imaging in Fig 3.4(a)) and global
light component(non-epipolar imaging in Fig 3.4(b)).

16



3.1.2 Slope Disparity Gating

Slope Disparity Gating [45] refined the O’Toole method for a novel disparity
gating that captures only the reflected light emanating from objects within a
precisely defined region of specific depth, tilt, and thickness. Crucially, this ad-
vancement was facilitated by leveraging the hardware parameters to accurately
specify the targeted region’s geometric characteristics. Their research elucidated
that the region of focus is characterized as a sloped, near-planar surface.
[ustrated in Figure 3.5 is an overview of Slope Disparity Gating. As depicted,
this technology is adept at isolating and capturing only the objects located at
the intersection (highlighted in red) of the scanning planes of a laser-scanning
projector (indicated in yellow) and a rolling shutter camera (illustrated in blue).
Furthermore, these scanning lines perform repeated sweeping motions vertically,
with the intersecting lines collectively forming a plane (the surface represented in
red, termed the imaging plane). This plane’s depth and tilt can be meticulously
adjusted by modulating the synchronous timing and scanning velocities of both
the projector and the camera, as shown in Figure 3.6. Specifically, the depth of
the imaging plane changes due to the difference in synchronization timing between
the camera and the projector, the tilt changes by changing the pixel clock of the
camera, and the thickness changes by changing the exposure time of the camera.
Among the many attributes of Slope Disparity Gating is its capacity for real-
time optical capture of the designated region and its inherent robustness against
global light interference. Ueda et al. [45] demonstrated applications of privacy
protection through real-time image masking (Figure 3.6) and clear imaging in
scattering media like fog. Chandran et al. [44] extend the application to include
such as light transport-based green screen compositing, and light transport prob-

ing techniques like novel disparity-dependent relighting.

3.2 Application Overview

We considered that the projector in touch sensing to the projection image could
also be used as a light source device in active lighting of SDG.
To delineate the area of light transport measurement with SDG, we meticu-

lously calibrated the camera parameters, including delay, pixel clock, and expo-
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Laser scanning projector
Camera scanline

Projector scanline

Rolling shutter CMOS camera Imaging plane

Figure 3.5: The concept of Slope Disparity Gating which allows a single plane in
3D space to be captured by the camera.

sure time. Specifically, as illustrated in Figure 3.7, we targeted a region just
above the screen plane—co-planar and several centimeters thick—constituting
the zone of interactive interest. We adopted the calibration method proposed by
Ueda et al. [45] to ascertain the optimal values for the delay, pixel clock, and
exposure time.

This calibration enables the camera to detect fingertips upon contact with
the plane, obviating the need for complex image recognition techniques to track
such interactions. Furthermore, as our capturing region excludes the projected
screen area, surface texture or roughness does not compromise touch sensing.
Our system necessitates a nearly planar surface devoid of clutter or objects that
might intrude into the optically captured region above the surface.

A distinct divergence between Slope Disparity Gating and our system lies in
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Figure 3.6: Slope Disparity Gating [45] can control the imaging area by adjusting

parameters.

the projector’s functional role. Within the SDG framework, the projector serves
purely as a programmable illumination source. Conversely, the projector fulfills
a dual role in our touch-input sensing paradigm: it operates as a programmable
light source and an interface display unit.

One notable feature of our system is that the projector can simultaneously
present different visuals to the human eye and the camera. The users can natu-
rally see the projector’s projected image, whereas the camera captures only the
region slightly above the screen for touch sensing. In other words, the projector
simultaneously takes the role of a display-interface device for users and the role

of the light source for the camera to illuminate the touch-sensing area selectively.

3.2.1 Algorithm

The algorithm 1 delineates the system flowchart. Initially, employing the prin-
ciple of Slope Disparity Gating, we measure the light transport from a specified
area slightly above the touch surface, as illustrated in Figure 3.7. The algorithm
integrates both touch detection and fingertip localization. The subsequent seg-
ments of this section detail how touch detection and fingertip localization are
accomplished through straightforward image processing techniques.

Our imaging approach is designed to capture only direct light from a limited
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Algorithm 1 Touch Detection and Localization
Start
Capture image using SDG
if Finger touch detected then

Calculate coordinates on-camera image

Apply homography transformation
Register touch event

else
No touch event

end if

End

area. Conversely, if no object within the imaging area could reflect the light,
the light will remain unmeasured, and the image will appear black. We envisage
an ideal scenario where no occluding objects obstruct the surface, rendering it a
free space accessible exclusively by fingers. Theoretically, only finger parts reflect
the projector’s light in such a scenario, manifesting non-zero brightness in the
captured image. Thus, the presence of any luminance value in the image indicates
the existence of a finger, while a zero luminance value signifies its absence.

However, when capturing with SDG, some pixels in the space where the object
does not exist may have small pixel values due to the influence of ambient light.
This ambient light is relatively weak because it is cut off significantly by the
SDG mechanism and because the exposure time of the photographing system is
extremely short. A threshold was applied to the image to remove the effect of the
tiny pixel values. Note that this threshold depends on the exposure time, gain,
and environment light. After applying the threshold, our system calculates the
total luminance value of the image and carries out touch detection. If the total
luminance value is non-zero, the finger touches touched; if it is zero, the image is
not touched.

The center of luminance gravity in the entire image represents the finger posi-
tion. As shown in Equation 3.1, we can represent the position of a finger in the
camera image as the coordinates of the center of gravity (x.,y.) of the image,

which is weighted by the pixel values m; ; at the coordinates (4, j) of the camera

20



image.
Y mi;i, )
i!j
E myj
i?j

Given that our touch-sensing methodology relies on camera imagery, it is im-

(Te, Ye) = (3.1)

perative to translate the fingertip coordinates on the screen into coordinates de-
rived from the captured image. Assuming a flat screen, we employ a homography
matrix for this coordinate transformation. Let C' = (z.y.1)" and H denote the
homogeneous coordinate of the finger as captured by the camera and the homog-
raphy matrix, respectively. Then, the fingertip coordinates in the screen system

C" = (z4ys1)" can be expressed as per Equation 3.2.

T Te
ys | =H | v (3.2)
1 1

To deduce the homography matrix, we collect N(> 4) corresponding points be-
tween the camera and screen coordinates. We project N points covering the pro-
jection area uniformly, then instruct the user to touch these points sequentially.
Subsequently, we estimate the corresponding finger position from the captured
image. This process facilitates the collection of coordinate pairs {C,,, C! }_, for
homography matrix estimation. The image utilized in our method captures the
region slightly above the touch surface; hence, the derived coordinates do not
precisely indicate the fingertip position. This homographic transformation also
serves to correct the fingertip position.

The image processing employed, as exemplified in Equations 3.1 and 3.2, is
intentionally simplistic. This simplicity is feasible since fingertip segmentation
is unnecessary —the fingertip is directly sensed by its intersection with the red

region.

3.2.2 Positioning and Contribution in Touch Sensing

This section examines how our mechanism can be positioned in touch-sensing

research. Touch operation has been actively studied as a means of interaction
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Figure 3.7: Imaging of a selected region.

due to its intuitive nature. We first discuss various technologies that enable touch

sensing and compare them with our proposed solution.

H. Direct Sensing

The most common method of touch sensing is detecting force on the touch sur-
face itself. Capacitive touchscreens, widely used in daily life, especially in smart-
phones, have been actively studied in the work of Lee et al. [50], MTMR [51],
and Smartskin [52]. In addition to capacitance, vibrational sensing has been ef-
fectively used to detect touch. Skinput [53] employs an armband sensor to detect
vibrations transmitted through the body, allowing users to manipulate images
projected onto their skin by touch.

Other methods to add sensing functions to the touch surface include using grids
of wired [54] or acoustic sensors [55]. However, these devices have fixed screen
sizes and are unsuitable for dynamic resizing. Moreover, large displays with these
sensors remain expensive and physically challenging to install.

In contrast, our method requires no specialized surface electronics and can scale
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to large display sizes effortlessly.

I. Finger Input Devices

Another approach involves mounting special sensors on the object or finger used
for input. This is effective when mounting sensors on the touch surface itself is
difficult. Escritoire [56] utilizes an ultrasonic pen to enable touch control of a
projector image. Sensetable [57] employs a physical, mouse-like device with an
embedded electromagnetic sensor for interacting with the projector image.

However, research has recently increasingly focused on enabling intuitive hand
operation rather than using an input device attached to the screen. For tasks not
requiring fine strokes, like drawing, bare-handed operation offers more flexibility
and natural interaction for the user. 3DTouch [58] utilizes finger-wearable devices
with an optical laser sensor and a 9-DOF inertial measurement unit. Shiet al. [59]
attached an accelerometer to the tip of a fingernail and employed deep learning
to recognize vibration patterns for touch operation.

Similarly to these works, our system also enables intuitive hand operation with
our virtual display.

J. Passive Camera Sensing

Another research thrust utilizes passive sensing with camera images, allowing for
the implementation of cost-effective systems. Letessier and Bérard [60] detected
fingertips on display using a single camera image, although their method did not
determine whether a finger actually touched the surface. Since a single camera
cannot provide depth information, some studies have employed multiple cameras
to perform stereo matching [61, 62]. Alternatively, Marshall et al.proposed using
the color changes of the fingernail when touching [63] as a discriminator to sense
depth from a single camera image. However, many of these studies require robust
differentiation between fingers and the projected image on the display and can

be confounded by visual clutter in the virtual scene.
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K. Active Sensing

A final avenue of research in touch sensing employs active sensing with active
light sources. Many active sensing methods utilize an additional infrared light
source to perform fingertip depth sensing without interfering with the projected
content. Such depth information is highly effective for touch sensing, as demon-
strated by Wilson and Benko [64], DIRECT [65], Omnitouch [66], and Dante
Vision [67]. The use of LiDAR as an infrared light source has been explored
in projects like LaserWall [68], SurfaceSight [69], and the Short-Throw Interac-
tive Display Engine [70]. As an exceptional study not reliant on infrared light
sources, Touchscreen Everywhere [71] utilized specially structured illumination
from a projector. Our method employs visible light from a projected image to
achieve active sensing.

We summarize the comparison between existing and our methods in Table 3.1.
Our approach enables touch sensing with a single camera, eliminating the need for
additional infrared devices. This advantageously positions our method as cost-
effective. Minimal processing of the projected image is required, as the region
of interest is selectively captured optically, resulting in low computational costs.
Furthermore, since our method does not rely on machine learning, no training
data is needed. It is also unnecessary to attach any devices to the finger or
to require specialized display electronics for the surface itself. All these features
collectively render our system an effective solution for implementing touch sensing
on projected screens.

Our contributions to touch sensing are manifold. The hardware setup is simple,
comprising a projector, camera, and microcontroller, without additional cameras,
depth sensors, or light sources. The projector serves a dual purpose: it projects
images onto the surface. It acts as the light source for imaging the area just above
the screen in synchronization with the camera.

An advantage of our method is privacy preservation, as it captures only light
from the space above the projected surface, ensuring that privacy-sensitive details
outside the region of interest, such as human faces, are not recorded.

A salient feature of our system is the projector’s ability to concurrently present
distinct visuals to the human eye and the camera. While users perceive the image

projected by the projector conventionally, the camera is exclusively attuned to the
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Table 3.1: Comparison of our method with several existing methods with respect

to various desirable properties for a touch sensing system.

Method Additional infrared Camera device Special Learning data Unique Unique
light source projection input device input plane
Capacitive touchscreen [50] [51] not needed not used not needed not needed not needed required
Skinput [53] not needed not used not needed not needed not needed required
DiamondTouch [54] not needed not used not needed not needed not needed required
Escritoire [56] not needed not used multiple project | not needed required not needed
Sensetable [68] not needed not used not needed not needed required required
Ready, Steady, Touch! [59] not needed not used not needed required required not needed
Katz et al. [61] not needed multiple camera not needed not needed not needed not needed
TouchLight [62] required multiple camera not needed not needed not needed required
Touchscreen Everywhere [71] not needed single camera | Structured light | not needed not needed not needed
Pressing the Flesh [63] not needed single camera not needed not needed not needed not needed
Wilson et al. [62] required multiple kinect not needed not needed not needed not needed
DIRECT [65] required kinect not needed not needed not needed not needed
Omnitouch [66] required kinect not needed not needed not needed not needed
Dante vision [67] required thermal & kinect not needed not needed not needed not needed
SurfaceSight [69] required not used(LiDAR) not needed required not needed not needed
Our method not needed single camera not needed not needed not needed not needed

region just above the screen to facilitate touch sensing. In essence, the projector
performs dual functions: it acts as a display interface for user interaction and a
light source for the camera, selectively illuminating the touch-sensing area.
Also, our system geometrically determines if a finger has touched the screen
surface from a single camera image. It captures only the region slightly above the

screen, making it robust against visual interference from the projected image.

3.2.3 Advantages in Hand Detection

To verify the robustness of this touch sensing system to video, we examine the
case in which the projected contents include hands-image. When preparing the
image to be projected from the projector, we used a realistic image, including a
hand quote from unsplash, a stock photography service. As a typical example of
hand detection, we used Handtrack [72].

We captured a scene where a user interacts with projected content, including
fake hands, to test Handtrack’ s hand recognition. Handtrack detected the pro-
jected fake hand but could not detect the actual hand, as shown in Figure 3.8(b).
This result shows the brittleness of Handtrack in distinguishing between real and
fake hands.

In contrast, our method eliminates the projected content optically, as shown
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in Figure 3.8(c). Therefore, compared to conventional methods using general

camera imaging, our system can make touch-sensing performance robust to the

projected scene content.

()

Figure 3.8: Robustness to scene content in our study: (a) the scene that finger
touches a projected image of many synthetic hands, (b) the result of
hand detection by HandTrack [72] (detecting only fake hand), (c) the
image taken with the selective capturing technique in our system, (d)

visualization of the detected finger in the original image.
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Figure 3.9: Slope disparity gating hardware prototype with raster-scanning pro-
jector aligned with the rolling-shutter camera along with synchroniza-

tion electronics via an Arduino.

3.3 Experiments

3.3.1 Capturing Setup

This research delineates a prototype touch-sensing system, as depicted in Fig-
ure 3.9. The system incorporates a Sony MP-CL1A laser scanning projector,
which boasts a resolution of 1280 x 720 and a refresh rate of 60Hz. Comple-
menting the projector, an IDS UI-3250CP-C-HQ RGB camera is employed. This
camera is distinctive in its support for both rolling and global shutter modes;
However, the rolling shutter mode is specifically utilized to apply slope disparity
gating. The camera’ s resolution stands at 1600 x 1200. A pivotal aspect of the
hardware design is the spatial arrangement: the projector and camera are situated
in proximity to each other to optimize spatial compactness. This configuration
is achieved by securely mounting both devices onto a 3D-printed platform, which
is then supported by a tripod.

Given the stationary nature of the relationship between the screen and the
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system apparatus, manual adjustments were made to the aperture, shutter speed,
and focus (The setting screen is as Fig 3.10). The aperture is fully opened to
enhance the brightness of the pixel values corresponding to the finger, a necessary
adaptation since Slope Disparity Gating, by its nature of rejecting ambient light
and capturing only photons from the region of interest, tends to produce darker
images. In this specific setup, the F-number is set to 1.6. It is pertinent to note
that a fully open aperture results in a shallow depth of field. Considering that the
target capture area is slightly above the projected screen, the camera is focused
explicitly on the screen itself.

Synchronization between the camera and the projector is achieved through an
Arduino, which is programmed to receive and analyze signals emanating from the
MEMS mirror of the projector. This setup ensures the alignment of the camera’s
rolling shutter with these signals. The methodology for this synchronization
draws upon the seminal work of Kubo et al. [49]. On the software front, the
camera and projector are interfaced with a laptop, which runs C# code designed

to implement the touch-sensing algorithm.

3.3.2 Touch Event

To demonstrate the efficacy of our prototype in realizing touch sensing, we config-
ured a simple interactive system. This system operates such that when a finger
touches the desk surface, which doubles as the projected screen (as shown in
Figure 3.12a), a program displays the calculated touch position as a red circle.

Touch-sensing accuracy is verified by determining whether the red circle cor-
responds to the actual touch position. As depicted in Figure 3.12b, the center
of luminance gravity calculation accurately indicates the finger’s contact point.
The finger’s coordinates on the camera image, as obtained in Figure 3.12b, are
transformed to the coordinates on the projected image using homography trans-
formation. These coordinates are then displayed as a red circle on the projected
image. Figure 3.12c¢ shows the red circle, marking the touch position, projected
precisely onto the fingertip. This demonstrates that our touch-sensing system
can successfully identify the touch position of the fingertip.

To evaluate the accuracy of our touch-sensing system, we devised a task where

the user is required to touch the center of a crosshair located at known coor-
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dinates. The task involved a target image featuring 11 crosshairs, each with a
line width of 5 pixels, displayed on a 1280 x 720 pixel canvas. This canvas size
matches the resolution of our projector, as illustrated in Figure 3.13. Users were
instructed to touch the intersection point of each of the 11 crosshairs using their
bare hands.

In each trial, we determined the discrepancy between the actual position of the
crosshairs and the calculated touch position of the finger, aggregating the results
across 110 cumulative touch trials. The findings revealed an average horizontal
error of 16.8 pixels, directed towards the side where the user stood, and an average
vertical error of 4.2 pixels towards the projector’s side. It’s important to note
that these errors are measured in the coordinates of the crosshair image. When
translated to the scale of the entire projected image, as shown in Figure 3.14,
it becomes evident that the size of the finger’s pad contributes to this error. In
essence, the error range observed in our method is within a margin that users

would typically find acceptable.

3.3.3 Stress Testing

In our experiments, we assessed the impact of negative factors, such as low light
conditions and camera defocus, on the touch-sensing performance.

We first measured the difference in touch sensing accuracy under two lighting
conditions: 710 lux, which simulates standard daily lighting, and 5 lux, repre-
senting near-darkness. The results showed an average horizontal error of 0 pixels
toward the side where the user stood and an average vertical error of 4.8 pixels
under low-light conditions. This demonstrates that our device maintains robust
performance irrespective of lighting variations.

Conversely, we observed a significant decrease in touch-sensing accuracy when
the camera was out of focus. This decline can be attributed to the difficulty
in controlling the captured area’s thickness due to the shallower depth of field.
Additionally, when the camera is out of focus, it tends to capture parts of the hand
beyond the fingertip, adversely affecting the calculation of touch coordinates.

The system also affects the color of the projector image. If the image is com-
pletely black, almost no light intensity hits the finger from the projector, and

touch sensing cannot be performed in this case. This is partly dependent on de-

29



vices such as the brightness of the projector output and camera sensitivity, but
when the ambient light threshold is set with a luminance value of 20 in this setup,
the color of the projector image is at the boundary where the illuminance of the
projected screen is around 100 lux. It has been shown that the image projection

is limited in this case.

3.3.4 Usefulness Considerations

Support for pinch-in and other multi-finger operations and double-tapping is
needed to increase the convenience of touch-operated applications.

The current method of finding the luminance center of gravity cannot handle
operations with multiple fingers, so an algorithm that detects clusters of lumi-
nance values in a closed region and finds the luminance center of gravity for each
is needed. Such an implementation is a future work.

For the double-tap method, we confirmed that if the measurement area of the
light transport is ideally set up, each touch can be detected with two double-
taps within one second. However, there is a limitation when the thickness of the
measurement area is large because the finger may enter the measurement area

even if the finger is lifted off the plane between double taps.

3.4 Discussion

In this research, we have successfully developed a touch-sensing system utilizing
slope disparity gating to capture direct light in a selected area. A critical aspect of
our study involves the selective capturing of a region slightly above the projected
screen, which is crucial for effective sensing. To achieve this, we synchronized a
projector with a rolling-shutter camera, explicitly targeting the desired region for
capture. By deliberately avoiding the capture of the screen surface initially, we
have devised a touch-sensing mechanism that remains unaffected by the visual
content projected on the screen. Furthermore, by eliminating the capture of
scenes irrelevant to sense, we have developed a touch-sensing algorithm capable
of performing both touch detection and fingertip localization from a singular
camera image. Our method employs straightforward image processing techniques

and uses the projector as a source of active illumination for touch sensing and as
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a medium for displaying user content, thereby negating the necessity for multiple
cameras and additional infrared devices.

There are several limitations inherent to our proposed approach. The sys-
tem only facilitates simultaneous sensing on multiple planes by altering hardware
parameters, which limits its applicability in dynamic tracking applications. Addi-
tionally, our single-camera setup cannot surmount issues of occlusion. Therefore,
the projector’s projection position and angle must be diagonally down in front of
the user so that the user’s body does not cause occlusion. The system requires
initial calibration to align with the surface of interest. If the depth of field of the
camera is too shallow or if the camera is not focused on the intended surface,
controlling the thickness of the capture area becomes challenging, leading to di-
minished accuracy. In our experiments, false positives did not occur when the
imaging area was correctly set in an environment devoid of objects other than
fingers on the screen. However, the presence of other objects, such as a cup placed
on the projected screen, may lead to false positives. Practically, our system is
best suited for surfaces free of clutter or occluding objects, ensuring complete

visibility for the user.
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Figure 3.10: Setting screen for parameters for Slope Disparity Gating.
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(a) (b) (©) (d)

Figure 3.11: A comparison between a normal capturing system and the Slope
Disparity Gating (SDG) system, in which a finger is close to the
projected screen. (a) finger touches the projected screen. (b) the
finger is hovering. (c) the exact same scene as (a), but captured
with SDG. (d) the exact same scene as (b), but captured with SDG.
In the (a) and (b) cases, both images look like the finger is touching,
but in the (¢) and (d) cases, grounding can be determined by whether

or not the finger is in the picture.

(b)

Figure 3.12: Touch sensing implementation: (a) Adjusting the angle of the hard-
ware to project the image onto the desk surface, (b) calculating the
luminance center of gravity of the SDG image when a finger touches
the surface, (c) calculating the touch position by applying the ho-

mography transformation shown as a red circle.
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Figure 3.13: Target image of crosshairs projected for touch accuracy evaluation.

® - range of error

(2) (b) (©)

Figure 3.14: Adapting the error range to the crosshair image.
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4 Application of Light Transport

in Scattered Component

This chapter explores applications considering light transport in micro-scale op-
tical path lengths on the order of millimeters. An example of a microscopic light
path length is an object such as a translucent object or a particle layer that
complicates light transport due to internal scattering. This can cause distortions
in the measurement of light transport path lengths or determine the object’s
properties.

This thesis focuses on pigments, which are representative examples of particle
layers. In cultural property science, studies are conducted to determine pigment
distribution, which pigments are applied, and how thick they are. Since it is
difficult to physically measure the distribution, especially concerning thickness,
the photometric aspect of scattering by pigment particles is used as a clue to
estimate the light transport.

One approach that can be useful in this case is to solve the inverse problem
of the physical model. Using a physical model that describes the behavior of
the light transport, i.e., a physical model that connects the parameters in the
scene to the measured luminance values, it is possible to estimate the physical
phenomenon by solving an inverse problem from the measurements. In this case,
the thickness of the pigment can be analyzed by estimating the optical path
length of the light transport that caused the scattering.

We focused on the Kubelka-Munk theory [73] as a physical model, which deals
with optical properties of coatings such as pigment layers and is mainly applied
to color reproduction and opacity of coatings. We focused on the fact that the
Kubelka-Munk theory has two parameters: the scattering coefficient, which is

specific to pigments, and the pigment thickness (strictly speaking, the optical
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path length).

Solving the inverse problem of the Kubelka-Munk model is an ill-posed prob-
lem when determining pigment distribution, i.e., pigment type and thickness. In
addition, the Kubelka-Munk model is pixel-by-pixel and does not consider spatial
continuity. Therefore, we have incorporated deep learning of neural representa-
tions that consider spatial continuity as a solution method.

As a specific application, we have explored pigment distribution in tumulus
murals because this study solves the ill-posed problem. The substrates of tumulus
murals are rock, and the patterns make the inversion of the Kubelka-Munk model
particularly challenging. To the best of our knowledge, this is the first time we

have tackled pigment distribution in the substrate in such a heterogeneous.

4.1 Scattering and Absorption in Particle Layer

When light passes through particle matter, there are two main phenomena: scat-
tering and absorption.

Light scattering occurs when light interacts with material, resulting in the
deviation of light waves from their original path. This phenomenon occurs when
light encounters small particles or irregularities within a material. The size,
shape, and refractive index of the particles significantly influence the nature of
scattering.

« Rayleigh Scattering: This type of scattering happens when the particles
are much smaller than the wavelength of light [74]. Tt is responsible for the

sky’s blue color and the sunsets’ red hues.

o Mie Scattering: Mie scattering occurs when the size of the particles is
comparable to or slightly larger than the wavelength of light. It plays a

crucial role in phenomena like the whiteness of clouds [75].

e Geometrical Optics Scattering: When the particles are significantly
larger than the wavelength of light, scattering follows the rules of geomet-
rical optics [76].
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In this study, the particle size is sufficiently larger than the wavelength because
the target is the pigment in the mural paintings of ancient tombs. In other words,
geometric scattering is the target.

Light absorption is the process where a material absorbs the energy of light
and converts it into another form of energy, usually heat. Absorption depends
on the molecular and electronic structure of the material and determines the ma-
terial’s "transparency’ to specific wavelengths of light. The absorption coefficient
measures how efficiently a material absorbs light at a particular wavelength. A
higher coefficient indicates stronger absorption at that wavelength.

In real materials, scattering and absorption occur simultaneously and often
influence each other. For example, scattering by particles can elongate the path
of light, increasing the likelihood of absorption within the material. This interplay

determines the color, transparency, and reflective properties of materials.

4.2 The Kubelka-Munk Model

The Kubelka-Munk model [73] is important in explaining the light behavior of
light-scattering and light-absorbing particles. It is a proven framework in the field
of color science and optical properties of materials. It is crucial to understand
light’s interaction with layered media such as paints, coatings, and biological
tissues.

The Kubelka-Munk model is predicated on light attenuation due to scattering
and absorption within the particle layer, considering two fluxes: incident and
reflected directions. The two-flux attenuation model parameters include a scat-
tering coefficient S and an absorption coefficient K, each of which indicates the
degree to which light gets attenuated by either absorption or scattering. We
use i and j to represent the diffuse light flux in the top-to-bottom (incident)
and bottom-to-top (reflected) directions within the pigment layer, respectively
(Fig 4.1). We express the change in i and j for an infinitesimal thickness dz as

follows.

di (S + K)ide — Sjdx, (4.1)
dj = —(S+K)jdr + Sid. (4.2)
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Figure 4.1: Schematic of Kubelka-Munk model.

The differential equations can be solved by transforming and adding Equations

4.1 and 4.2.
di '
A (S—i-K)dx—S‘Z,dzc,
i 1
dj )
Y = (S K)dx+ S=da.
7 J
(4.4)-(4.3)
di  di ' )
Y% gl = oS + K)da + S + L)da.
J 7 1 J t

Here, let us define é = h and transform Equation 4.5, then

/ dh L /dw
E (S v 1 |

(4.3)

(4.4)

(4.5)

(4.6)

Consider a particle layer with thickness x = X, where the surface reflectance

is denoted as Ry,,. At x = 0, that is, for the substrate reflectance, we denote it

as R,. Further, let us define ££ = 4. Then, the final equation can be expressed

S
as
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As stated by Kubelka [77], we can obtain the scattering coefficient S and

(4.7)

absorption coefficient K for each pigment from measurements. Moreover, we can

compute R, using these coefficients by Equation 4.7.

K K\? K
Ro1s K () 1k as

Also, we can determine the reflectance Ry, of layered-surface objects:

SX (5 —Roo
ka — i(Rb - Roo) - Roo(-Rb - i)e 1 (Roo ) (49)
(Rb . Roo) o (Rb 1 )eSX(@*Roo)

R

Note that the thickness X of the pigment layer represents the relative optical

path length, and as such, it doesn’t have any units.

4.3 Application Overview

This thesis applies this physics model to a decorated ancient tumulus mural paint-
ing.

Decorated ancient tumulus, the burial mounds of ancient rulers, are recognized
by their patterned decorations that adorn the rock grave chambers. These pat-
terns offer valuable archaeological insights into the religious beliefs, art, and so-
cietal progression during that period. However, despite their significance, preser-
vation concerns often keep these tombs closed to the public. Consequently, a
critical task arises: mapping these patterns and subsequently digitizing them for
broader accessibility.

Measuring ancient tomb murals presents significant challenges due to their
large-scale and time-consuming nature. Additionally, these murals are highly
susceptible to degradation in the presence of humidity, making repeated and pro-

longed measurements a risky endeavor. Given these constraints, shifting away
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from geometry-based approaches to analysis becomes crucial. Instead of utiliz-
ing already acquired data, a photometric approach offers a more viable and less
invasive means of analyzing these precious historical artifacts.

This thesis analyzes the extent of pigment residues present in ancient tomb
murals. Due to the passage of time, these tombs are likely to have experienced
significant degradation and loss, raising concerns about the future feasibility of
archaeological research based on the original artifacts. Moreover, in the event of
disasters causing severe damage to these murals, preserving research data about
their original state becomes crucial for potential restoration efforts.

Analyzing the spatial distribution of pigments becomes essential to consider the
optical path length of the attenuated light transport, commonly referred to as
pigment mapping. When analyzing the patterns within paintings, distinguishing
the pigment from the substrate is essential. This process involves viewing the
painting as a multilayered surface object comprising pigment and substrate layers.
Two optical models have proven particularly effective: Lambert-Beer’ s law and
the Kubelka-Munk model (KM model). The latter, introducing more complex
assumptions than the former, offers a more precise approximation of this layered
structure.

Understanding the pigment distribution in tomb murals is challenging due to
the heterogeneous patterns inherent in the rock substrate. The pigments used
in these murals resemble semi-transparent optical models, similar to watercolor
paints, indicating that the influence of the substrate surface is non-negligible.
The substrate pattern’ s complexity significantly amplifies the task of pigment
separation.

This study proposes a method for pigment mapping in tomb murals, even with
heterogeneous rock patterns (Figure 1). Specifically, we analyze which pigments
are of what thickness. Our approach employs neural representation and physics-
based unsupervised learning. The inputs are the spectral reflectance data at a
specific position of a tomb mural image and its position, while the outputs are
pigment thickness, pigment class, and substrate class. For loss calculation, we
estimate the spectral reflectance from these outputs in line with the KM model
and calculate its error from the input. That enables the model to make inferences

based on the physics model.
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Figure 4.2: Performing pigment mapping using the Kubelka-Munk model and

deep learning.

4.3.1 Positioning and Contribution in Pigment Analysis

L. Pigment Analysis Using KM Model

We can divide the variables of the KM model into two categories: pigment layer
parameters and a substrate parameter. Prior studies often assumed that the
substrate parameter was either negligible or constant. For example, in the case
of opaque paintings, such as oil or acrylic paintings, the pigment layer is so thick
that it completely obscures the canvas substrate [78, 79, 80, 81, 82, 83]. The
substrate parameter is supposed to be a constant value in [84, 85] because the
substrate is often homogeneous paper (white) in the watercolors and printings.
However, when we assume a non-negligible heterogeneous substrate, the problem
becomes more complicated; we need to estimate the substrate parameter on each

pixel while analyzing pigments.

M. Other Pigment Analysis

The spider model [86] is an effective physics model for separating pigments from
the substrates. This model is primarily based on Lambert-Beer’ s law, a one-fux
model focusing on light attenuation in a singular direction, shown in Figure 2(a).
However, it is crucial to note that Lambert-Beer’ s law does not consider the
non-negligible scattering caused by pigment particles as a parameter. While the
Spider model is reliant on RGB images, hyperspectral data for pigment mapping
has been widely reported [87, 88, 89, 90, 91]. Hyperspectral data provides more
detailed spectral information, which could potentially enhance the accuracy of
pigment mapping. In recent years, with the rise of deep learning, research has

emerged that combines hyperspectral data and deep learning to perform pigment
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Figure 4.3: Unlike previous studies, this thesis conducts pigment mapping on het-

erogeneous substrates.

mapping of cultural heritage [92, 93, 94].

4.4 Neural Pigment Representation

4.4.1 Problem Setting

Pigment layer: Existing studies [95] suggest that specific types of pigments
have been identified, and the pigments used in tombs are not mixed. In most
cases, there are one to three pigment classes, with Ozuka-tumulus, which has six
colors, being the rarest. This introduces the need to undertake a two-pronged
estimation process. Firstly, we must identify which pigment is used at each
point on the mural. Secondly, we need to estimate the thickness of the pigment
application. Within the context of the KM model variables, this study aims to
classify the values of S and R, and estimate the value of X.

Substrate layer: In the spectral image of decorated ancient tumulus taken in a
narrow stone chamber, the substrate shows heterogeneous. The substrate layer,
comprised of various minerals, allows us to theoretically classify the substrate’s
spectrum based on the number of minerals in the rock. This study uses K-means
clustering on the spectral data from parts of the substrate where no pigment was
applied. This method will assist in determining the precise color of the rock at

each location on the mural.

4.4.2 Overview of MLP

Figure 4.4 provides an overview of our model. To accomplish pigment mapping on

a heterogeneous substrate, we utilize a network architecture similar to NeRF [96],
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Figure 4.4: Overview of our deep learning model: We input the position of a
reflectance image and its corresponding reflectance (Ry,, in the KM
model) into the MLP. The MLP’ s output is used to determine the
variables of the KM model. As the KM model is differentiable, we
can conduct learning by minimizing the error between the estimated

reflectance (R, ) and the input reflectance (R, ) used in the process.

wherein the network input comprises coordinates from the input image to account
for spatial continuity.

We use the 2D position of the hyperspectral image p = (x,y), which are nor-
malized to [—1,1], and the spectral reflectance at the position Ry,,(p) € R»
as the network inputs, where A represents the number of bands. Our network
generates the following outputs: the estimated thickness of the pigment layer
X € R, the probability of each pigment class C™ € 0,1],(n = 1,2,...,N), and
the probability of each substrate class B™ € [0,1],(m = 1,2,..., M). A model
that estimates optical parameters by inputting coordinates is called a neural rep-
resentation, and this model is based on this idea. Neural representation allows
the model to maintain spatial continuity in its estimation.

Please note that Zivzl C" =1 and an\le B™ = 1. For ensuring non-negative
output, we use a ReLU as the activation function for X , and for achieving maxi-
mally sparse outputs, we apply Sparsemax [97] to C™ and B™.

Based on the above, the MLP model Fg can be defined as follows:
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Fo : (p, Rem(p)) — (X,C", B™), (4.10)

where O represents the parameters of the network.
By using this defined deep learning model Fg, we can estimate the parameters

of the pigment simultaneously accounting for the substrate.

4.4.3 Positional Encoding

According to NeRF [96], mapping inputs to a higher-dimensional space with a
high-frequency function before inputting them into the network improves the fit
for high-frequency data. We adhere to this principle by embedding p within a

high-frequency function as

PE(p) = (sin(2%7p), cos(2%7p), - - - ,sin(2L " 1rp), cos(2E " 1ap)). (4.11)

This formula enables embedding a 2-dimensional vector p into a 2 x 2L space.

For this study, we expand to 24 dimensions with L = 6.

4.4.4 Hidden Layer

We combine the two kinds of inputs into a single vector and pass this combined
vector through seven fully connected layers with ReLU activation (comprising 300
perceptrons). Additionally, we implement a skip connection linking the input p,
embedded in a 2 x 2L space, to the activation of the fourth layer, as suggested
by NeRF [96] and DeepSDF [98].

4.4.5 Loss using the Kubelka-Munk Model

We calculate our loss as the mean squared error between the estimated Ii’km and
the actual Ry, used as input, following the method by Shitomi et al. [85]. We
determine the estimated Ry, using the model outputs. During the learning step,
the model computes S, R,, and R, as a weighted sum with the probability of

each pigment C™ to maintain differentiability:
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S(C) = YN cnsn (4.12)

Ry (C) = 2521 C"R" (4.13)

Ry(B) = Y, B"R)", (4.14)

where S” € R* and R,.," € R" are the scattering coefficient and the reflectance

of n-th pigment class, and R,™ € R" is the spectral reflectance of m-th substrate
class. Substituting Eqgs. (4.12)—(4.14) to Eq. (4.9), we obtain Ry, as

Ry = KM(X, S(C), Reo(C), Ry(B)). (4.15)

The mean squared error function is

L= % > 1Rk (Fo (P, Rim(P))) = Rin(P) |3, (4.16)

PER

where R represents the set of coordinates in each batch. By back-propagating
the error through the KM model, we can calculate the gradients of the weights.

4.4.6 Pigment Mapping

In the testing phase, we define pigment mapping as the product of the pigment
class and its thickness, calculated for each region. We select the pigment class as
argmax C™. Even though the restriction of 25:1 C™ =1 leads to estimating the
pigment class in the area without pigment, this doesn’t cause any issues if the

thickness estimation correctly results in zero.

4.5 Experiments

4.5.1 Dataset and Settings

We used a spectral image of the Mezurashiduka tomb, located in western Japan.
The tomb’s visual representation combines two kinds of pigments (N = 2), red
(Bengara) and gray (Hekikaimatsu), applied over a granite-rock surface (Fig-

ure 4.6(a)). This tombs’ dataset is a collection of spectral images with 81 bands,
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ranging from 400nm to 720nm. With an image resolution of 420 x 700, we used
294,000 pixels for training. Since granite is composed mainly of six minerals, the
substrate class was set as M = 6 in this study.

In real data, it is difficult to prepare pigments identical to those used in an-
cient murals. Therefore, S and R, values for each pigment were determined by
annotating the pixels where the pigment is applied, and subsequently optimizing
using the KM model.

We used the reflectance of annotated pixels for the initial value for R.,. Also,
we used the Adam optimizer to update S and R, to minimize the discrepancy
between the measured and modeled reflectance. The optimized S and R., are
shown in Figure 4.5(a) and (b), respectively.

For substrate, R, was obtained by annotating regions without pigment, clus-
tering approximately 3,000 reflectance data points (seen in Figure 4.5(c)) using
K-means. We adopt the centroid as the reflectance of each substrate class (Fig-
ure 4.5(d)).

In training sessions, we employed the Optuna [99] hyperparameter optimization
framework. The parameters we focused on were the batch size and the learning
rate. The batch size was selected from 512, 1024, 2048, and 4096. On the other
hand, the learning rate was searched within a range from 1 x 10~ to 5x 10~*. The
number of training sessions was set to 500, with CosineAnnealingl.R, completing

one cycle every 25 iterations.

4.5.2 Results

We applied our proposed model to actual spectral data obtained from tumulus
murals, assessing its ability to estimate. For validation purposes, we referred to
the restoration sketches produced by Hakkou Kusaka, a noted Nihonga artist
(Figure 4.6(e)). Furthermore, Figure 4.6(d) and (h) represent the segmentation
of Hakkou’s reference image using the K-means method, displaying the regions
of each pigment. Commissioned by the Agency for Cultural Affairs between
1953 and 1955, Kusaka created these sketches. Although his artwork is based on
subjectivity, it is a valid benchmark against which we can evaluate the accuracy
of our model estimates.

The estimation results are included in the Figure 4.6 (b) and (f). It can be
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Algorithm 2 Optimization of Kubelka-Munk Model Parameters S and R,

Procedure UpdateLearningRate(lrg, Irg, epoch)
if (epoch + 1) mod 100 == 0 then

1
lTs%lTsxm
1

lTK<—lTK X 10

end if
Return Irg, Irg
End Procedure

Procedure OptimizeParams(specs, init_ R, init_ K, lrg, lrg, Rp)
thickness <— Constant Tensor(x)
Rpase < Constant Tensor(Ry)
ratio «— Constant Tensor of Ones(Size of specs)
for epoch <— 1 to 1000 do
K « Variable(init_K)

R, < Variable(init_ R.,)
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if is__nan(loss) then
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Break
end if
grad_K, grad_ R, < Gradient(loss, K, Ry,)
Irg, lrg < UpdateLearningRate(lrg, lry, epoch)
it K <+ it K —lrg x grad_ K
it Reo < it Ry — lrg X grad__ Ry

antis — 2xwnit . Roo Xinit K
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end for
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seen that our method captures the tendency of pigment distribution well.

Our model estimates that pigment is applied even in areas not painted on the
reference image, and there are three possible interpretations for this. The first
factor is that the model might have detected the presence of pigment that has
deteriorated and washed away over time. The second one could be a drawback
associated with the fact that our research is based on spectral information. De-
pending on the combination of the substrate and the pigment, it is possible that
a spectrum similar to another substrate class could have been reproduced. The
third factor pertains to the influence of the data used for estimation. This includes
the error during the optimization of S and R, the decreased expressiveness due
to the classification of the substrate layer, the impact of illumination variations
in the spectral image, and the noise when capturing a spectral image. It is rea-
sonable to view our estimation results as a combination of the three phenomena
mentioned.

Figure 4.7 demonstrates the outcome of applying the Difference of Gaussians
(DoG) to our estimation results. Given that red pigments are often utilized for
delineation, their corresponding values were set to accentuate the edges. Con-
versely, the grey pigments, frequently used for area-filling expressions, had their
values adjusted to encourage smoothing. These processed images illustrate the
potential for estimating mural patterns even when past reference images are not
available. Also, referring to Hakkou’s inferred figure, the results of this study

provide a clue as to how the tumulus wall paintings deteriorated.

4.5.3 Comparison with Homogeneous Substrate

The substrate of the rock on which the murals are painted is inherently heteroge-
neous. However, for the sake of comparison, we also examined the case where we
assume the substrate to be homogeneous. When treating the substrate as homo-
geneous, we adopted the average value of the substrate reflectance (the blue-line
in Figure 4.5(c)) as the substrate spectrum.

The assumption of the homogeneous substrate simplified our modeling process,
removing the necessity to classify Ry, which then becomes a constant. The results
are shown in Figure 4.6(c) and (g). Our analysis reveals that when we assume the

substrate to be constant, the estimation results exhibit more errors than when
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considering the substrate to be heterogeneous. The estimation of red pigment is
getting worse.

Furthermore, we have discovered that the results can deteriorate depending on
how the images in the dataset are cropped under the assumption of a homoge-
neous substrate. The frequency of pattern changes in the dataset is associated
with the size of the image area. Specifically, the smaller the image area, the
higher the frequency of these pattern changes, especially when cropping occurs in
regions with substantial pattern variations. Figure 4.8 shows estimation results
when cropping a 200 x 200 area from the original dataset. The assumption of a
homogeneous substrate clearly reduces the accuracy.

This is due to the fact that assuming a constant substrate reduces the ex-
pression of the model and due to physics-based estimation. Figure 4.8(b) is a
plot of the reflectance data at the coordinates indicated by the "x’ marker in the
right-middle of Figure 4.8. Despite the clear inaccuracies in pigment estimation
assuming a homogeneous substrate, the reconstructed reflectance Ry is found
to be similar to the original reflectance Ry,,. Such errors are unavoidable as long
as reflectance is the basis for estimation, but the results indicate that assuming a
heterogeneous substrate and increasing the representational capacity of the model
can partially mitigate these issues. These observations underscore the importance

of accurately capturing the substrate’s heterogeneity in our analyses.

4.6 Ablation Study

We conducted a simulation experiment to validate our pigment mapping method
on heterogeneous substrates. Due to the challenge of obtaining a sample with
a known thickness, we initially synthesized a spectral image for verification pur-

poses.

4.6.1 Dataset and Settings

Figure 4.9(a) displays an RGB visualization of the synthesized spectral data,
encompassing 65 bands within the 430-760nm range. With an image resolution
of 200 x 200, we utilized 40,000 pixels for training. The experiment was configured

with N = 2 pigment classes and M = 3 substrate classes.
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The spectral data was synthesized based on actual measurements. For pig-
ments, we used red (Bengara) and green (Terre Verte), both frequently found in
ancient tomb paintings. We derived the S and R, values (Figure 4.9(c),(d)) or
these pigments using the method detailed in [77], which involved measuring the
reflectance of each pigment painted on both a white and a black substrate. More-
over, we determined the X value (Figure 4.9(b)) by solving the inverse problem
of the KM model from paint applied to a single-color substrate with constant
substrate parameters. This process was executed using the technique described
in [85], in which we analyzed the thickness of the pattern painted on white paper.
For the substrate, we measured the spectral reflectance of a bare rock surface.
Using k-means clustering, we identified patterns within the substrate. The spec-
tral component of each class, representing the centroid of its respective cluster
in k-means, was used as the reflectance of each class (Figure 4.9(d)). With the
obtained S, R., Ry, and X values for each region, we synthesized a spectral
image using the KM model.

For our training regimen, we used the Adam optimizer with CosineAnneal-
inglLR serving as a scheduler to adjust the learning rate. The learning rate started
at 5 x 107% and gradually decreased to 5 x 10~7 during the optimization process.
The training was conducted over 1,200 iterations, with CosineAnnealingLR com-

pleting one cycle every 25 iterations.

4.6.2 Pre-experiment

Figure 4.10 displays the estimates produced by our pigment mapping. The
pigment classification performs well, slightly underestimating the thickness but
nonetheless accurately capturing the original thickness distribution. We com-
puted the SSIM and PSNR between the ground truth and estimated values for
each pigment mapping. Our model achieved SSIM= 0.998, PSNR= 48.6 for the
red pigment, and SSIM= 0.997, PSNR= 46.9 for the green pigment.

On the other hand, when the substrate was assumed to be homogeneous (M =
1), the effects of the substrate’s pattern were reflected, causing significant errors
in the estimation. In this case, SSIM= 0.278, PSNR= 21.1 for the red pigment,
and SSIM= 0.359, PSNR= 23.1 for the green pigment.

Figure 4.11 presents the results of the substrate estimation. In Figure 4.11(c),
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we use white to denote pixels where the class has been correctly estimated and
red to denote pixels where the class has been incorrectly estimated. This model

succeeds in classifying the class correctly for all pixels.

4.6.3 Results

Our model has Ry,,(p), PE(p) as inputs to the first layer, and PE(p) as an input
to the hidden layer. We have conducted an ablation study to validate our design
choices. Table 4.1 shows each ablation design.

The accuracy was compared using SSIM and PSNR. Table 4.2 shows the result
of the ablation study. Our method performed the best score for both SSIM and
PSNR. This result shows it is essential to input both reflectance Ry,,(p) and
its position PE(p). Furthermore, by comparing Ours with Abs-2 and Abs-3, the
effectiveness of including coordinates twice has been confirmed as presented in
previous studies [96, 98].

Figure 4.12 compares the original and Abs-4 errors. Abs-4 is a pixel-by-pixel
method with no position input, and the substrate pattern tends to show up more
as an error. The position input allows spatial continuity to be considered, and
the substrate pattern’s influence can be eliminated more. These results indicate

that a model based on a neural representation is valid.

Table 4.1: Design of ablation study.

Input | Rpm(p) | PE(p) PE(p)
Layer First First Hidden
Abs-1 — v v
Abs-2 v v —
Abs-3 v — v
Abs-4 v — —
Ours v v v
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Table 4.2: Result of ablation study.

Red pigment map Green pigment map

SSIMT  PSNR7T | SSIM7?T PSNR?T
Abs-1 0.897 26.1 0.767 20.9
Abs-2 0.981 42.5 0.986 43.8
Abs-3 0.988 43.1 0.923 32.8
Abs-4 0.785 19.8 0.778 22.0
Ours 0.998 48.6 0.997 46.9

4.7 Discussion

This chapter explores applications considering light transport in micro-scale op-
tical path lengths on the order of tens of centimeters. This chapter realizes the
application of attenuated-light transport for the pigment mapping for an ancient
tomb mural. The approach focuses on the Kubelka-Munk model, which models
the attenuation of light in the particle layer to obtain the spatial distribution
of pigments. Unsupervised learning is used to simultaneously estimate pigment
class, thickness, and substrate class to account for unknown substrate patterns.
The experimental results indicate the efficacy of concurrently estimating both
the substrate and pigments without disregarding the fact that the substrate is
heterogeneous. Moreover, as the ablation study shows, by inputting coordinates
and estimation by neural representation, the model takes spatial continuity into
account and estimates with less influence on the substrate pattern.

However, this study presents several limitations and future works. While many
murals are depicted on relatively smooth rocks, some are located on rocks with
significant irregularities. Our current estimation does not account for the three-
dimensional structure of murals, potentially resulting in errors when mapping
pigments on uneven surfaces, as our future work. Furthermore, we have based
our real data on directly obtained pigment parameters from the mural. That is
under the assumption that the parameters of the pigments are enough painted
at some pixels. Addressing the spectral changes in the mural sections where the

pigments have significantly washed out or faded, or have oxidized (undergone
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chemical changes), is also part of our future work.
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Figure 4.5: Optical parameters of Mezurashizuka tomb.
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(f) Gray map (M =1)
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(g) Reference red map* (h) Reference gray map*

Figure 4.6: Estimation results for the Mezurashizuka tomb, presented under both
a heterogeneous (M = 6) and homogeneous (M = 1) assumption.
The entries marked with an (*) are derived from the restoration re-
productions carried out by Hakkou Kusaka in the 1950s. Please note
that these reproductions were a subjective task and should not be

strictly considered ground truth.
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(a) Processed red map
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(b) Processed gray map

Figure 4.7: Results of applying the Difference of Gaussian method to our pigment
mapping estimation, which was derived from Figure 4.6(b) and (f).
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Figure 4.8: Estimation results in a 200 x 200 region. We are comparing the case
where the substrate is assumed to be heterogeneous (substrate class
M = 6) and the case where it is assumed to be homogeneous (M = 1).
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Figure 4.10: Estimation results of simulation data, presented under both a het-

erogeneous (M = 3) and homogeneous (M = 1) assumption.
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Figure 4.11: Substrate estimation results of simulation data.

| boos
\ & | oo
£ —-0.05
-
3

’%""\ d /Vr.;N "
:

ER

(a) Error of Ours (b) Error of Abs-/ (c) Substrate

Figure 4.12: Comparison of pigment mapping error between Ours and Abs-4. Abs-
4 is affected by the substrate pattern.
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5 Conclusion

In this paper, we pioneer a computer vision application that takes optical trans-
port into account. We have considered light transport in two scales: macroscopic
light path length and microscopic light path length. On the former scale, in Chap-
ter 3, we adopted the application of touch sensing to projector images among ob-
ject position detection and incorporated a measurement method that eliminates
indirect light as much as possible to obtain light transport in a specific space.
In the latter scale, in Chapter 4, among the particle layer analysis, we adopted
pigment distribution estimation in heterogeneous substrates and obtained how
much of the light transport was the optical path length of the particle layer by
solving an inverse problem of the physical model.

In Chapter 3, we focused on Disparity Gating with a projector-camera system
that efficiently acquires the desired light transport. In this paper, we specifically
apply Slope disparity gating, which acquires direct light in a specific area, to touch
sensing on a virtual screen. In other words, the idea is to utilize the projector of
the projector-camera system as a visual projection interface and perform camera-
based finger position detection. In this case, since the scene contains a lot of
unnecessary information for touch sensing, capturing only the direct light from
the region necessary for touch sensing through Slope Disparity Gating is more
effective than capturing the entire scene.

In Chapter 4, we focused on the light scattering in the particle layer and uti-
lized the Kubelka-Munk model to effectively model it. By solving the inverse
problem of the Kubelka-Munk model, we were able to estimate the thickness
of the particle layer, which represents the optical path length of the attenuated
light transport. We applied this approach to estimate the spatial distribution of
pigments in ancient tomb murals. From a preservation perspective, it is more

effective to analyze existing data rather than conduct new measurements on an-
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cient tomb murals. Additionally, tomb murals are painted on heterogeneous
substrates, making the problem more complex compared to previous studies on
pigment spatial distribution in oil paintings or watercolors. In contrast, a solu-

tion based on inverse problems incorporating deep learning proved to be effective.

Future Work:

When considering macroscopic and microscopic optical path lengths, we have

chosen applications that are being actively studied in each, but the exploration
is still limited. Future work will be to expand these applications.

This thesis assumes diffuse reflection of light, but in reality, it may become
necessary to consider specular reflection components as well. For example, touch
sensing when a projector is projected onto a marble table in a kitchen is not
considered. Additionally, assumptions about minerals used in ancient tomb mu-
rals or glossy pigments are ignored. Incorporating the light transport of specular
reflection is a highly challenging task and will be considered as future work.

Furthermore, although we have been able to explore applications, there is still
room for improvement in their implementation. In Chapter 3, we can implement
faster algorithms to accommodate faster finger movements, and since measure-
ments based on infrared are less accurate, there is a need to further improve the
estimation accuracy. In Chapter 4, although we have a general understanding
of the pigment distribution in ancient tomb murals, we have not yet achieved
a perfect estimation. Future work will involve enhancing estimation accuracy
by improving deep learning models or utilizing more complex models other than
Kubelka-Munk.
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