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Abstract

Content order is critical in natural language generation (NLG) for emphasizing

the focus of a generated text passage. In this paper, we propose a novel MR

(meaning representation)-to-text method that controls the order of the MR values

in a generated text passage based on the given order constraints. We develop a

refined MR-text dataset with additional value order annotations to train our

order-controllable MR-to-text model. We also use it to train a text-to-MR model

to check whether the generated text passage correctly reflects the original MR.

Furthermore, we augment the dataset with synthetic MR-text pairs to mitigate

the discrepancy in the number of non-empty attributes between the training and

test conditions and use it to train another order-controllable MR-to-text model.

Our proposed methods demonstrate better NLG performance than the baseline

methods without order constraints in automatic and subjective evaluations. In

particular, the augmented dataset effectively reduces the number of deletion,

insertion, and substitution errors in the generated text passages.
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1. Introduction

1.1 Background

Natural Language Generation (NLG) [16, 27] is a technology that automatically

generates sentences in the language used by humans in everyday life from certain

inputs. With the recent development of Artificial Intelligence (AI) technology,

there is a growing demand for machines that can communicate with humans

through natural language, and that is why NLG is one of the most important

technologies in this field.

The main inputs to NLG are sentences and data. Applications for sentence

input include, for example, machine translation that converts sentences in one

language into sentences in another language [38, 64, 100], dialogue response gener-

ation that uses the history of previous dialogue as input [44], summarization that

summarizes longer sentences into shorter sentences [12, 22], question and answer

generation that generates examples of questions and answers from instructions

for a certain product or service [17], and style transfer that converts sentences

spoken by a person into sentences as if spoken by a certain character [40].

On the other hand, many applications for data input, called data-to-text, have

been developed that input data [27]. The first commercial systems was weather

forecasts from weather data [29], but there are many other systems including

soccer reports [86, 9], virtual newspapers from sensor data [61] and news re-

ports on current affairs [53], text addressing environmental concerns [79, 95, 91],

summaries of patient information in clinical contexts [37, 33, 68, 26, 5], interac-

tive information about cultural artefacts [65, 81], text intended to persuade [6],

text intended to motivate behaviour modification [74], the generation of weather

summary text from sensor-observed information such as temperature, weather,

wind speed, etc., at a specific location [4], the generation of tourist information

from sensor information such as congestion and bus operation information at a

tourist spot [46] (Figure 1), the generation of summaries of sports matches [97].

Captioning image [80] and sound data [60] is another example of NLG.

Since Kukich [48] proposed a data-to-text method for generating stock reports

from a daily stock quote database, many data-to-text methods have been studied.

The first approach for data-to-text was template-based methods [73, 58, 99, 96]
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It is very crowed at Kinkaku-ji Temple now.

wearable device

The next bus will be arrived in around 5 minutes.

data-to-text

Figure 1. Example of systems with data-to-text

(described in Section 2.1.1). The disadvantage of templates is that they are

labor-intensive if constructed by hand. In addition, all templates for numerous

linguistic variations must be prepared in advance.

Statistical approaches have been developed to tackle the issue. The most well-

known approaches are language model-based methods (described in Section 2.1.2)

that obtain statistical knowledge from large corpora. For example, one of the

earliest approaches of Langkilde-Geary et al. [49] relies on statistical knowledge

in the form of N-grams. However, their system was still hand-crafted. Recent

advances in the computing environment have led to a growing body of research

on deep neural networks (DNNs), which handle large amounts of data. In partic-

ular, several data-to-text studies have been published since Sutskever et al. [83]

provided the potential of DNN.

Among the various formats of input data in data-to-text, such as concepts,

tables, knowledge graphs and RDF, this study deals with meaning representations

(MR) that consist of a set of pairs of a short text passage and corresponding MR

with some attribute-value pairs as shown in Table 1, because the structure of MR

is simple and the most tractable format.

Here, let us now consider the relationship between data and text. Not nec-

essarily only one sentence corresponds to certain data, but it can correspond to

various sentences with similar meanings. For example, if the input data for the

report of a football game is {player: “James”, score for team: “2nd”, time:

“45 minutes”}, one possible corresponding sentence is “James scored his team’s

second goal in the 45th minute.” “The second goal for James’ team was scored by

2



him in the 45th minute.” and “In the 45th minute, James found the back of the

net for his team’s second goal.” can be some other examples. Those sentences

do not have exactly the same meaning but have different nuances and, therefore,

need to be used according to the situation and context in which they are used.

Therefore, in data-to-text, controlling how sentences are generated is essential.

This paper examines an MR-to-text method that controls the order of contents

in which data appears in sentences since the order is crucial for data-to-text that

emphasizes important words or phrases in the generated sentence. Here, we

explain two examples of the importance of controlling the content order.

Table 1. Example of E2E dataset

MR

Attribute Value

name Wildwood

eatType restaurant

food Italian

priceRange (empty)

customer rating (empty)

area riverside

familyFriendly no

near Raja Indian Cuisine

Text
Wildwood is a restaurant that serves Italian food located near Raja Indian

Cuisine in the area of riverside. Unfortunately, it is not kid friendly.

(1) Preserving the order to avoid changing the focus of a text pas-

sage: Suppose we replace the value “Italian” of the food with “French” in Ta-

ble 1. In this case, the ideal text passage becomes “Wildwood is a restaurant that

serves French food located near Raja Indian Cuisine in the area of riverside. Un-

fortunately, it is not kid friendly.” In this passage, the word “Italian” is changed

to “French,” although the content order is unchanged. In the reference text pas-

sage and the ideal text passage, the “no” of the familyFriendly attribute is

emphasized by placing an independent sentence at the end of the text passage:

“Unfortunately, it is not kid friendly.” However, if we cannot control the order

of a data-to-text system, it may generate a text passage with an unintended or-

der: “Wildwood is a restaurant that is not family friendly. It serves French food

located near Raja Indian Cuisine in the riverside.” This text passage does not

3



emphasize the “no” of the familyFriendly attribute because of the location of

the phrase “that is not family friendly” in the middle of the sentence.

(2) Controlling the order to change the focus of a text passage:

Suppose we emphasize the value “riverside” of the area attribute and “Raja

Indian Cuisine” of the near attribute in Table 1. In this case, these values

should appear at the beginning of the passage: “In the riverside area near Raja

Indian Cuisine, you can visit a restaurant called Wildwood where Italian food is

served. It is not family-friendly.”

Although some previous research on MR-to-text with order control exists [52,

82, 57, 55, 98, 76], no research can control order with high precision and gen-

erate high-quality sentences due to problems such as poor sentence generation

performance, poor order control performance, or lack of evaluation experiments.

1.2 Contributions of This Dissertation

In this study, we propose a new method for converting MR to text that can man-

age the sequence of MR values in the generated text passage based on the provided

order constraints. We developed an improved MR-text dataset with extra order

annotations to train our model, which can control the order of MR-to-text. This

dataset also trains a model that converts text to MR to verify if the text passage

generated accurately represents the original MR. Additionally, we augment the

dataset with artificial MR-text pairs to lessen the difference in the count of non-

empty attributes between the training and testing conditions and use it to train

another model that can control the order of MR-to-text. Our proposed methods

show superior NLG performance compared to the baseline methods without or-

der restrictions in automatic and subjective evaluations. Notably, the augmented

dataset effectively decreases the number of deletion, insertion, and substitution

errors in the generated text passages.

1.3 Outline

The structure of the remaining chapters of this dissertation is as follows. Chap-

ter 2 looks at what data-to-text technologies have been developed so far. Various

efforts to address the content order-controllability issue are also introduced, which

4



is the subject of this thesis. Furthermore, some metrics for automatic evaluation

are introduced. Chapter 3 introduces a new dataset that we developed and used

for this study. Chapter 4 proposes a method to control content order using the

dataset described in Chapter 3. Chapter 5 summarises the remaining issues and

future works.
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2. Controllable Data-to-Text

2.1 Data-to-Text

Data-to-text is a technology to generate natural language sentences from data

input. There are two main methods for data-to-text: template-based method

and language model-based method.

2.1.1 Template-based Method

As shown in Figure 2, there is a method for generating sentences by creating

templates from a large corpus collected in advance and selecting the appropriate

template to embed information according to the data (entity) to be conveyed.

For example, Yamazaki et al. [99] proposed a method for automatic template

generation and selection to generate text for a cooking recipe. In this method, it

is possible to generate highly accurate sentences that are close in textual aspect

to sentences in the original corpus. However, since this method selects templates

by matching with entities, it is challenging to handle entity patterns that are not

included in the corpus. Therefore, to handle a variety of entities, it is necessary to

collect a variety of corpora in advance. In addition, since the endings and verbs

may change depending on the entity’s value, it is necessary to prepare various

templates to accommodate them in advance. Wiseman et al. [96] proposed a neu-

ral generation system using a hidden semi-Markov model decoder, which learns

latent, discrete templates jointly with learning to generate. However, the gener-

ated templates cannot express any patterns of attributes that are not included in

training data. Furthermore, the performance of the method is worse than that

of a method which uses a language model-based text generation model.

2.1.2 Language Model-based Method

Statistical sentence generation methods use language models [102] (Figure 3). A

language model is learned from a large corpus, and sentences are generated by

selecting words based on the probability of occurrence obtained from the model

and linking them. For example, methods based on the N-gram model

P (wt) = P (wt|w(t−1−(N−1):t−1)), (1)

6



The next bus bounds for Kyoto Station will be arrived in 5 minutes.
Kinkakuji Temple is very crowded as of 5pm.

:

corpus

The next <transportation> bounds for <destination> will be arrived in <arrival time>.
<place> is <congestion> as of <current time>.

:

template

place=The Kyoto Imperial Place
congestion=sparse
current time=1pm

Kyoto Imperial Palace is sparse as of 1pm.

matching

sentence generation
entity

candidates

generated sentence

Figure 2. Example of template-based method

<sos> Thislanguage model

This is

is a

pen

.

a

pen

language model

language model

language model

language model

<sos>

This<sos>

isThis<sos>

ais<sos>

<eos>pen language modelaThis<sos> .

output sentence: This is a pen.

This

is

Figure 3. Example of language model-based method
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in which the probability of occurrence of a word wt depends only on the previous

N words. On the other hand, the neural language model is trained as probabilistic

classifiers to predict the probability distribution for all words t in all vocabulary

V as:

P (wt) = P (wt|context)∀t ∈ V. (2)

Typically, context can be expressed as preceding k words:

P (wt) = P (wt|wt−k, ..., wt−1). (3)

2.1.3 Sequence-to-Sequence Method

The language model is often constructed as an encoder-decoder model [11] as

shown in Figure 4. The encoder converts the input sequence (x) into a vector

(C), and the decoder uses the vector to generate sentences (w) as:

P (w|x; θ) =
M∏
t=1

p(wt|w1, w2, ..., wt−1,x), (4)

wt = Decoder(w1, w2, ..., wt−1, C), (5)

C = Encoder(x), (6)

where θ is the parameter of the model.

input Encoder
encoded 
vector

Decoder output

Figure 4. Encoder-Decoder Model

Now consider data-to-text, where data is the input. In this case, the data nec-

essary to generate a sentence is converted into a vector by the encoder, and the

information is converted into a sentence by the decoder. If the input data format

is Meaning Representation (MR), one possible composing method of input is a

sequence of attribute-value pairs as shown in Figure 5. In this case, both the in-

put and output are sequence. So, this strategy is called sequence-to-sequence [84].

Nowadays, many encoder-decoder systems utilize the sequence-to-sequence strat-

egy [19, 84].

As sequence-to-sequence models, LSTM (Long Short-Term Memory) [34] and

Transformer [92] are widely used these days.
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<sos> Cocco

Cocco is

is an

Italian

pub

an

Italian

<sos>

Cocco<sos>

isCocco<sos>

anisCocco<sos>

.ItaliananisCocco<sos> pub

output sentence: Cocco is an Italian pub.

eatType Encoder
encoded 
vector

pub food Italian name Cocco

Decoder

Decoder

Decoder

Decoder

Decoder

Decoder

<eos>ItaliananisCocco<sos> pub Decoder.

Figure 5. Example of encoder-to-decoder model for data-to-text
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LSTM Recurrent neural networks (RNNs) are excellent networks for handling

variable-length series. The RNN model uses the hidden state vector of the previ-

ous time (ht−1) and the input vector of the current time (xt) to update the hidden

state vector of the current time (ht), as shown in Figure 6. As shown in Figure 7,

the RNN layer consists of a matrix sum-of-products operation and an activation

function. As the activation function, Hyperbolic tangent (tanh) is often used.

RNN RNN RNN RNN

Figure 6. Example of RNN

mat
mul

mat
mul

tanh

Figure 7. RNN architecture

However, RNNs have the vanishing gradient problem and exploding gradient

problem, where the error gradient converges to zero or diverges to infinity as it

propagates through the computational graph during backpropagation, making it

impossible to train the model. To simplify the discussion, assume that the follow-

ing equation is processed in the RNN module, ignoring the activation function.

ht = Wxxt +Whht−1 + b. (7)

Here, let us consider the gradient of the error propagation from the output hM

10



at time M to the output h1 at time 1.

dhM

dx1

=
dhM

dhM−1

· dhM−1

dhM−2

· · · · · dh2

dh1

· dh1

dx1

(8)

= (Wh ·Wh · · · · ·Wh ·Wx)
T (9)

= (WM−1
h Wx)

T , (10)

where T indicates transposition. Thus, it converges to 0 (vanishing gradient) or

±∞ (exploding gradient) depending on the singular value of the matrix Wh.

LSTM (Long Short-Term Memory) [34] is a type of RNN that has been pro-

posed as a solution to the vanishing/exploding gradient problem of RNNs; LSTM

is characterised by having a dedicated memory cell ct, which stores LSTM infor-

mation from the past up to time t. Here, ct is only used inside the LSTM, and

the only external output is ht, as shown in Figure 8.

tanh

tanh 𝜎𝜎 𝜎

Figure 8. LSTM architecture

The LSTM includes the following three gates: forget gate (ft), input gate

(it), and output gate (ot). The output ht is calculated as follows. The value of

the memory cell ct is first scaled to the range [−1, 1] using the tanh function

(tanh(ct)). Next, the output gate (ot) determines whether the contents of the

memory cell should be output or not as a value in the range [0, 1] using a sigmoid

function based on the input xt and the previous output ht−1 as:

ot = σ(Woxxt +Wohht−1 + bo), (11)

11



where σ indicates the sigmoid function. Then, the scaled value is multiplied by

the value of the output gate:

ht = ot ⊙ tanh(ct), (12)

where ⊙ indicates the Adamar product. The memory cell values are updated as

follows:

ct = ft ⊙ ct−1 + it ⊙ gt, (13)

where the new candidate value for the memory cell gt is calculated from the input

xt and the previous output ht−1 as:

gt = tanh(Wxxt +Whht−1 + b). (14)

Next, it is determined whether the obtained candidate value gt can be added to

the memory cell as a value of [0, 1] by a sigmoid function using the input gate as:

it = σ(Wixxt +Wihht−1 + bi), (15)

then the obtained value is multiplied by gt (it ⊙ gt in Eqn (13)) and added to

the memory cell. At that time, it is also determined whether the contents of the

memory cell can be forgotten, as a value in the range [0, 1] by the forget gate (ft)

as:

ft = σ(Wfxxt +Wfhht−1 + bf ), (16)

then multiplied by the value of the memory cell (ft ⊙ ct−1 in Eqn (13)).

In LSTM, error propagation is mainly considered using the memory cell equa-

tion (Eqn (13)). Consider the gradient of error propagation from the memory

CM at time M to the new memory cell g1 at time 1.

dCM

dg1
≃ dCM

dCM−1

· dCM−1

dCM−2

· · · · · dC2

dC1

· dC1

dg1
(17)

= diag(fM ⊙ fM−1 ⊙ · · · ⊙ f2 ⊙ i1) (18)

As shown in this equation, gradient disappearance will not occur if learning can be

done so that for each element of the forget gate, the value is 1 when propagation

is required and 0 when it is not required.

Figure 9 shows an example of an encoder-decoder model using LSTM. The

encoder outputs a vector of hidden layers at the last time; the decoder takes the

12



Decoder

Encoder

embedding

LSTM

linear

sigmoid

encoded 
vector

embedding

LSTM

embedding

LSTM

embedding

LSTM

embedding

LSTM

embedding

LSTM

linear

sigmoid

embedding

LSTM

linear

sigmoid

embedding

LSTM

linear

sigmoid

embedding

LSTM

linear

sigmoid

<sos>

<eos>

Figure 9. Encoder-Decoder model using LSTM

encoder output vector and the special symbol token (e.g., ⟨sos⟩) indicating the

start of sentence generation as input at the first time, and the previous output

is used as the input at subsequent times. Subsequently, the decoder repeats the

generation process using the output tokens as input to the next LSTM layer.

It terminates the process when the special symbol token (e.g., ⟨eos⟩) indicating
the end of sentence generation is output. Here, the output hidden state vector

of the LSTM encoder generated at each time only inherits information from the

past and does not use information from the future. Therefore, a better balanced

hidden state vector can be generated by processing in both directions, from the

past to the future and from the future to the past, as shown in Figure 10. This

method is called Bi-directional LSTM.

embedding embedding embedding embedding

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

Figure 10. Bi-directional LSTM
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Attention In the encoder-decoder model using LSTM described so far, the

length of the encoder output vector is fixed regardless of the input data length.

Thus, when the input data is long, it may not be possible to embed data features

well. Therefore, changing the length of the vectors generated according to the

input data length is desirable. To address this problem, attention mechanism [3]

was developed. The output of the encoder at each time point is stored as a key

vector ki and a value vector vi, as shown in Figure 11. Typically, these vectors

are vectors for which the linear module is applied to the LSTM output. A score

function obtains a score for each time using the query vector (q) based on the

LSTM output vector at the decoder and the key vector at each time (ki) in the

encoder, as shown in Figure 12. The score is then multiplied by the value of the

softmax process and the value vector vi. The weighted average of these is used

as the feature vector at the decoder. The most commonly used score function is

scaled dot product [92]:

f(q, k) =
qTk√
dk

, (19)

where dk is the number of dimensions of the vector k.

Encoded vector

Decoder

Encoder

embedding

LSTM
w/ attention

sigmoid

embedding

LSTM

embedding

LSTM

embedding

LSTM

embedding

LSTM

embedding

LSTM
w/ attention

sigmoid

embedding

LSTM
w/ attention

sigmoid

embedding

LSTM
w/ attention

sigmoid

embedding

LSTM
w/ attention

sigmoid

)
linear linear linear linear linear

) ) )

Figure 11. LSTM with attention

Transformer Transformer is a neural network model consisting of attention

modules without convolution or recursion (Figure 13). In particular, it is charac-

terized by using a relevance score between tokens, called self-attention, calculated

using only the tokens contained in a single sequence.

Unlike the attention mechanism described earlier, the self-attention mecha-

nism directs attention to its series. This mechanism is used for feature extraction
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query

value

key

score score score score

softmax

Figure 12. Attention mechanism

of the series. As shown in Figure 14, a score calculation is performed on all to-

kens, with each token as a query. Self-attention has the advantage over CNNs

and RNNs in that it is easier to take into account the features of distant tokens.

On the other hand, it has the disadvantage that the computational complexity

of attention is proportional to the square of the series length.

The Transformer consists of the following four modules.

1. multi-head attention The Transformer architecture has three types of

attention modules: (1) self-attention in the encoder, (2) self-attention in the de-

coder, and (3) attention between the encoder and decoder, called cross-attention.

Each attention extracts multiple features by using multiple projections, called

multi heads.

MultiHead(Q,K, V ) = Concat(head1, · · · , headH)W
O, (20)

headh = Attention(QWQ
h , KWK

h , V W V
h ), (21)

where WQ
h ∈ Rdmodel×dh , WK

h ∈ Rdmodel×dh , W V
h ∈ Rdmodel×dh , WO ∈ RHdh×dmodel ,

dmodel is the number of dimension of the embedding vector, and H is the number

of heads, respectively.

2. position-wise feed-forward networks The following equation ex-

plains the architecture of the position-wise feed-forward networks contained in

15



Figure 13. The Transformer - model architecture in [92]
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score score score
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score
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Figure 14. Self-attention mechanism

the encoder and decoder:

FFN(xt) = ReLU(xtW1 + b1)W2 + b2, (22)

where W1 ∈ Rdmodel×dff , b1 ∈ R1 × dff, W2 ∈ Rdff×dmodel , WO ∈ RHdh×dmodel ,

b2 ∈ R1 × dmodel, ReLU indicates the rectified linear unit [62], and dff indicates

the number of intermediate layer dimensions in the feed-forward networks, re-

spectively. It has been found that performance can be improved by increasing

the dimensions in the intermediate layer dff above the original dimensions dmodel.

3. residual connection and layer normalization Residual connection

and layer normalization are applied to all attention and feed-forward networks,

as shown in Figure 13.

x
(l+1)
t = LayerNorm(x

(l)
t + f(x

(l)
t )), (23)

LayerNorm(xt) =
g

σt

⊙ (xt − µt) + b, (24)

µt =
1

dmodel

Σdmodel
i=1 xt,i, (25)

σt =

√
1

dmodel

Σdmodel
i=1 (xt, i− µt)2, (26)
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where l indicates the index of the layer. Layer normalization has the effect of

preventing vector values from becoming extremely large.

4. positional encoding Since the attention itself does not consider order-

ing information, the same value may be obtained even if the order of the tokens

is swapped. Therefore, position encoding, which expresses position information,

is added to the embedded vector.

PE(t,2i) = sin (t/100002i/dmodel), (27)

PE(t,2i+1) = cos (t/100002i/dmodel), (28)

where 0 ≤ i < dmodel/2. An improved version of position encoding is to optimise

using training data instead of fixed embedding by trigonometric functions [14].

Another approach is to add a bias to the self-attention score according to the rel-

ative distance between tokens rather than a vector corresponding to the absolute

distance between tokens [78].

2.1.4 Delexicalization

Wildwood is a restaurant that serves Italian food located near Raja Indian cuisine.
A coffee shop in the city centre area called Blue Spice.
There is an average rated pub called Zizzi in the citycentre.

<NAME> is a restaurant that serves Italian food located near Raja Indian cuisine.
A coffee shop in the city centre area called <NAME>.
There is an average rated pub called <NAME> in the city centre.

Figure 15. Examples of delexicalization

In some cases, the values of specific data attributes constantly appear in the

generated text as they are. In that case, the idea of template generation can

be used. Instead of directly generating the data value, a symbol indicating that

it is the attribute is generated and then replaced with the original value. This

method is called delexicalization (Figure 15). This technique significantly reduces

generation errors, as only symbols are to be estimated, regardless of the size of
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the value variation. Furthermore, dealing with values not included in the training

data (out of vocabulary (OOV)) is easy.

2.2 Controllable Data-to-Text

For multiple data inputs, data-to-text should take care of the input order. Usu-

ally, a data-to-text method consists of two processing modules: content plan-

ning [70, 43, 52, 16, 57, 82, 98, 28, 89, 36, 77, 30, 101, 50, 39, 55, 32, 31, 23, 59],

which determines the order in which the data will be converted into sentences,

and surface realization, which generates sentences from the results of content

planning (Figure 16 (A)). As explained in the previous section, surface realiza-

tion is mainly achieved using a language model, so that we will consider content

planning here. Content planning is a module that reorders multiple data sets

into the most appropriate order statistically determined from the training data.

However, the order obtained by content planning is retained internally and passed

to surface realization without being disclosed to the outside of the NLG model

(Figure 16 (B)). For example, Kasner et al. [43] proposed a method that generates

a text passage from resource description framework (RDF) triples in a zero-shot

setting. RDF triples are converted using a template to a set of sentences, which

are ordered to maximize their coherency by sentence ordering. However, this

method automatically determines the sentence order without directly controlling

the order using explicit constraints. Therefore, in order to have order control-

lability, the results of content planning must be accessible from the outside and

must be able to be modified (Figure 16 (C) or (D)).

In recent years, several papers have been published addressing the data-to-

text content order problem. Leng et al. [52] proposed a data-to-text method that

controls sentence splits, entity order, and text length. They controlled the entity

order by aligning the input data with the reference text. However, their method’s

performance in such standard automatic measures as BLEU [67], ROUGE L [54],

and METEOR [13] was lower than their baselines. Su et al. [82] proposed a data-

to-text method that first predicts the suitable order of attributes from the data

input and then generates output sentences from both the data input and the pre-

dicted order. Their method explicitly outputs ordering information as a content

plan so that the order can be edited arbitrarily. Their human evaluation showed
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Figure 16. Content planning and surface realization
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that the generated sentences accurately reflected the ordering information if the

order was unedited. However, when the order was randomly shuffled, the ac-

curacy was worse than without shuffling. Luo et al. [57] proposed a few-shot

table-to-text generation method using a pre-trained language generation model.

To generate sentences, the prompt “summarize the following table:” followed by

the order of attributes that appear in the generated sentence and the input data

are given to a pre-trained generation model. However, their human evaluation

showed that the word order’s accuracy was 84%, which is insufficient. Lin et

al. [55] proposed a graph-based grouping planner. After the input data is en-

coded, it is picked up and grouped as data to be assigned to each sentence to

be generated. The relationship among these groups is inferred to determine the

order of the data in each sentence and the order of the groups. Although this

method shows high performance for order estimation, it does not consider the

possibility of freely controlling the order later since the order is learned so that

the sentence is correctly reproduced in the training data. Xu et al. [98] proposed

a method with explicit sentence planning, input ordering, and aggregation. In

their method, a sentence planning module generates a graph of the input data.

The module learns to align some input data with the target text using a hidden

Markov model (HMM). For alignment, the target text is analyzed and trans-

formed into sub-sentences containing subject, predicate, and object triples. As

mentioned above, their method explicitly estimates the sentence plan, allowing

the user to edit the order manually. However, their performance when the order

changes still needs to be evaluated. Sasazawa et al. [76] proposed a method to

control not only the content order but also the position of the content in the gen-

erated sentence. They use a relative position such as 0-10%, 10-20%, ..., 90-100%.

In their methods, text length, keywords (data value), and keyword positions are

encoded using an encoder. Then, the encoded vectors are decoded using a de-

coder. They reported that the accuracy of the position is 84% if the relative

position is 0-10%. However, if the position is set to 30% or more, the accuracy is

below 50%, which is far from practical.

Another controlled text generation method is constrained decoding, used in

machine translation [35, 2, 69]. In this method, the words or phrases to be

included in the translation are specified in advance, and only candidates con-
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taining the specified words or phrases remain among the multiple candidate

decoding results obtained by beam search. The application of this method to

order-controllable data-to-text is as follows.

1. Determine the data values and order of appearance to be reflected in the

generated text.

2. Set the output probability of tokens for values that should not yet be gen-

erated in the decoder to zero.

3. Output the token with the highest output probability.

4. Repeat steps 2 and 3 until all tokens corresponding to all values are output,

and the special symbol token “⟨eos⟩” is finally output.

However, the relationship between the data values and the generated text tokens

must be predefined for this method to be applied to data-to-text. For instance, in

the example shown in Table 1, the relationship between data values for the name

and near attributes and text tokens corresponding to the values is unique because

their values are directly represented in the text. If all the data consists of only

these two attributes, the ordering control using this method is possible. On the

other hand, for the value “no” for the family friendly attribute, it is challeng-

ing to uniquely determine in advance which part of the text corresponds to that

value. For example, it could be three words: “not kid friendly” or one sentence:

“Unfortunately, it is not kid friendly.” Many other possible texts correspond to

the value, such as “It is not family-friendly” or “is for adults only.” In order to

apply this method to order-controllable data-to-text, it is necessary to clarify all

these relationships in advance. This is equivalent to creating a dictionary of all

texts corresponding to the data input in advance, which is extremely difficult.

Therefore, it is difficult to say that this method can be applied to any data.

2.3 Metrics for Automatic Evaluation

As metrics for automatic evaluation of the generated sentences, word-overlap

metrics [20] such as BLEU [67], NIST [15], METEOR [13], ROUGE L [54], and

CIDEr [93] are commonly used. These metrics have strengths and weaknesses
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and focus on different aspects of the generated text. However, no single metric

can perfectly capture all aspects of text quality, such as relevance, fluency, and

grammatical correctness. Thus, we usually use a combination of these metrics to

evaluate the generated sentence.

We can also evaluate the generated sentences’ fluency using pre-trained lan-

guage models such as perplexity and masked language model scoring.

2.3.1 Word-Overlap Metrics

BLEU BLEU (Bilingual Evaluation Understudy) [67] is a metric obtained as

the harmonic mean of the N-gram (n ∈ 1, ..., 4) precision of the system output

concerning the human-produced reference sentences. If the length of the gener-

ated sentence is shorter than the reference sentence, it is lowered by a brevity

penalty. The N-gram precision is the proportion of N-grams in the generated sen-

tence that matches any reference sentence. Repeated N-gram matches are clipped

to the maximum number of times the N-gram occurs in any single reference.

NIST NIST [15] is an extension of BLEU that also considers the informative-

ness of the N-grams, giving higher scores to less frequent N-grams (i.e., more

informative) in the reference corpus.

METEOR METEOR (Metric for Evaluation of Translation with Explicit OR-

dering) [13] gauges the quality of machine translation by aligning the system

output with individual human references. It measures both precision and recall

of unigrams, and uses fuzzy matching based on stemming and WordNet syn-

onyms, in addition to exact word matches. METEOR computes matches against

multiple references separately and uses the best-matching one.

ROUGE L ROUGE (Recall-Oriented Understudy for Gisting Evaluation) L [54]

is based on the longest common subsequences (LCS) between the system output

and the human references, where a common subsequence requires the exact words

in the same order but allows additional, non-covered words in the middle of either

sequence. The final ROUGE L score is an F-measure based on maximum pre-

cision and maximum recall achieved over any human reference, where precision
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and recall are computed as the length of the LCS divided by the length of the

system output and the reference, respectively.

CIDEr CIDEr (Consensus-based Image Description Evaluation) [93] was pri-

marily designed for generated image captions but also applies to NLG. CIDEr

is computed as the average cosine similarity between the system output and the

reference sentences on the level of N-grams (n ∈ 1, ..., 4). The importance of the

individual N-grams is given by the Term Frequency Inverse Document Frequency

(TF-IDF) measure, which weighs an N-gram’s frequency in a particular instance

against its overall frequency in the whole dataset.

2.3.2 Pre-Trained Language Model-based Metrics

Perplexity with GPT Perplexity is a metric derived from information theory

used to evaluate the performance of probabilistic or statistical models. In natural

language processing, perplexity is a common evaluation metric for language mod-

els. Mathematically, the perplexity (PPL) of a discrete probability distribution

p is defined as:

PPL(p) = 2H(p), (29)

where H(p) represents the entropy (in bits) of the distribution:

H(p) = −
∑
x

p(x) log2 p(x). (30)

In the context of language models, perplexity is defined as:

PPL(W ) = exp(− 1

|W |

|W |∑
i

log p(wi)), (31)

where W denotes the sequence of input text tokens and wi is the i-th token of

W . Here, − 1
|W |

∑|W |
i log p(wi) is interpreted as cross-entropy, and perplexity can

be calculated using a cross-entropy loss.

Perplexity can be calculated using a pre-trained language model such as Ope-

nAI GPT-2 [71]. It can also be used to evaluate the quality of sentences given a

pre-trained language model and a sequence of generated text [42]. The computed

perplexity value could, to some extent, reflect the quality of the input sequence,
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assuming that the pre-trained language model encapsulates language knowledge

and behaves appropriately.

Masked Language Model Scoring Language models such as GPT-2 [71] are

pre-trained to maximize the conditional probability of predicting the next word

from the word output so far. However, this formulation does not suit masked

language models such as BERT [14] and RoBERTa [56] because these models

are pre-learning models by predicting words bi-directionally. Therefore, pseudo-

log-likelihood(PLL) scores [75] have been proposed to calculate the naturalness

of sentences in these masked language models. The scores are calculated as

the sum of the log-likelihoods of the conditional probabilities when each word

is masked and predicted, unlike the scores of regular language models, which

consider probabilities in order from the front.

logPMLM(W ) =

|W |∑
t=1

logPMLM(wt|W\t), (32)

where wt is a token and

W\t := (w1, . . . , wt−1, wt+1, w|W |). (33)

2.4 Issues

As described in Section 2.2, many studies have addressed content ordering control,

the target of this paper, in the context of “content planning.” However, most

studies estimate the ordering to be internal and not freely controllable by the user.

Moreover, some methods allow explicit ordering control, but their performance

needs to be improved.
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3. E2E Refined Dataset

3.1 Introduction

Data-to-text is one of the main tasks of natural language generation (NLG) from

a structured input such as tables, knowledge graphs, and resource description

frameworks (RDFs). Meaning representation (MR)-to-text is one of the data-to-

text tasks where MR consists of a set of pairs of a short text passage and a corre-

sponding MR with some attribute-value pairs as shown in Table 1. There are sev-

eral well-known corpora of MR-to-text, Weather (generating weather reports from

meteorological data) [4], RotoWire (generating summaries of sports matches from

game statistics) [97], WikiBio (generating biography fromWikipedia infobox) [50]

and so on. The E2E dataset [63] in a restaurant recommendation domain used in

the E2E NLG Challenge [20] is one of the most popular datasets for MR-to-text.

However, this dataset was developed by crowdsourcing and suffers from errors in

MR-text pairs that affect the performance of MR-to-text models. In this chapter,

we aim to refine the E2E dataset by resolving errors and giving extra annotations.

We fix errors in MR-text correspondences and remove inappropriate data samples

from the dataset. We also provide additional annotations: MR order, Number of

sentences, and Sentence indexes to control the generated text more precisely. In

particular, MR order is the most important information for this paper’s subject.

We have developed this refined dataset to create an error-free MR-to-text dataset

containing this information. We demonstrate that the refined dataset, called E2E

Refined Dataset [88], improves MR-to-text performance.

3.2 E2E Dataset

The E2E dataset is made up of pairs consisting of a British English sentence and

a corresponding MR with eight attributes: name, eatType, food, priceRange,

customer rating, area, familyFriendly, and near, as shown in Table 1. How-

ever, some MR-text pairs contain deletion, insertion, and substitution errors. For

example, in the text part of Table 2, the value “English” for the food attribute is

missing, the value “city centre” for the area attribute is wrongly added, and the

value “moderate” for the priceRange attribute is wrongly replaced with “cheap”.
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Table 2. Example of MR errors in the E2E dataset: Bold indicates deletion

error, Underline indicates insertion error, and Italic indicates substitution error.

MR

name The Punter

eatType coffee shop

food English

priceRange moderate

customer rating 1 out of 5

area (empty)

familyFriendly yes

near Café Sicilia

Text
The Punter is a cheap family friendly coffee shop located in City Centre

near Café Sicilia. 1 out of 5 customer rating.

To properly control the content of a sentence in MR-to-text, it is necessary

to exclude such incorrect data from the dataset. Although there have been some

updates on the E2E dataset to resolve errors, including the cleaned [18] and

enriched versions [24], these updated datasets still contain deletion, insertion, and

substitution errors. In fact, we found a certain number of errors, which are shown

in Table 3. To address this, we fixed errors in the MR-text correspondences and

removed inappropriate data samples. We also refined the E2E dataset by manual

annotations of the MR values to provide further constraints given by the text

part.

The resulting E2E refined dataset consists of 40,560 examples for training,

4,489 for validation, and 4,555 for testing. Table 4 shows an example from it.

3.3 Text Refinement

The E2E dataset contains errors and discrepancies in the language used. We

improved the quality of the text parts of the dataset by rectifying errors and

standardizing expressions as follows.
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Table 3. Number of MR labelling errors in each dataset (Original: E2E

dataset[63], Cleaned: Cleaned dataset [18], Enriched: Enriched dataset [24]).

Error type Dataset Training Validation Test

Deletion

Original 10,931 1,096 1,315

Cleaned 23 1 1

Enriched 1,262 145 89

Insertion

Original 10,028 263 16

Cleaned 4,475 471 745

Enriched 25,570 2,724 3,082

Substitution

Original 9,290 794 945

Cleaned 5,795 616 666

Enriched 4,172 413 395

3.3.1 Error Correction

We refined various types of errors in the original E2E dataset. We focused on the

following four error categories.

Irregular MR Values An MR should only contain one value or be left empty

for each attribute. However, some MR data contains two values for the name

and near attributes. To ensure accuracy, we removed any irrelevant data from

the dataset. (e.g. The Cotto ranges between twenty and twenty-five pounds

with a high customer rating. The Portland Arms serves Italian food near the

riverside. → (removed))

Overlaps We removed duplicated phrases within a sentence. (e.g. The Golden

Curry served English food, is adult only, is in the city centre, is adult only,

has a customer rating of 5 out of 5 and is near the Café Rouge. → THE GOLDEN

CURRY served English food, is adult only, is in the city centre, has a customer

rating of 5 out of 5 and is near the CAFÉ ROUGE.)

Indefinite Articles We fixed any errors in the usage of the indefinite articles

“a” and “an.” (e.g. For an child friendly, average coffee shop serving fast food

28



Table 4. Example of the E2E refined dataset: Original sample of the E2E dataset

is shown in Table 1.

MR

Attribute Value Order
Sentence

index

name
NAME

1 1
(THE WRESTLERS)

eatType restaurant 3 1

food Italian 4 1

priceRange moderate 2 1

customer rating (empty) 0 0

area city centre 5 2

familyFriendly yes 7 3

near

NEAR

6 2(RAJA INDIAN

CUISINE)

# sentences 3

Text

THE WRESTLERS is a moderately priced restaurant that

serves Italian food. It is located in the city centre near RAJA

INDIAN CUISINE. Great place to bring your family.

Text
NAME is a moderately priced restaurant that serves Italian

food. It is located in the city centre near NEAR.

(delexicalized) Great place to bring your family.
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try The Eagle, riverside near Burger King. → For a child friendly, average coffee

shop serving fast food try THE EAGLE, riverside near Burger King.)

Typos We identified and fixed more than 3,700 typographical errors in the MR

values and sentences. (e.g. A kid friendly Strada has moderate price range and

customer rating of 1 of of 5. → A kid friendly STRADA has moderate price

range and customer rating of 1 of 5.)

3.3.2 Normalization

We normalized the text in the following six types of aspects.

British English Since the E2E dataset is based on British English, we substi-

tuted such words with American spellings as “center”, “flavor”, “organize”, and

“traveling” with “centre”, “flavour”, “organise”, and “travelling.” (e.g. Alimen-

tum providing fast food less than £20 price range. It is located in city center.

→ ALIMENTUM providing fast food less than £20 price range. It is located in

city centre.)

Prices priceRange is categorized into “cheap”, “moderate”, “expensive”, “lower

than £20”, “£20-25”, and “more than £30” as shown in Table 5. In that case,

“£23” should be labelled as “£20-25”. However, to eliminate confusion, we used

the label “£20-25” for all prices falling within that range, including values like

“£23”, “£22”, “£24”, and “from £20 to £25”. This approach was also taken for

the labels “lower than £20” and “more than £30”. (e.g. If you’re looking for

pub grub or Indian food, you could try The Plough. No you can’t take your kids

there but the prices are reasonable about £24 for a meal. You’ll find it near to

Café Rouge. → If you’re looking for pub grub or Indian food, you could try THE

PLOUGH. No you can’t take your kids there but the prices are reasonable about

£20-25 for a meal. You’ll find it near to CAFÉ ROUGE.)

Currency Expressions For ease of use, we standardized the currency unit

as “£20” instead of using variations such as “20 pounds”, “20gbp”, “20lb”, “20

quid” and so on. (e.g. Close to Yippee Noodle Bar in the city centre a French
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Table 5. All variations of MR values in the E2E refined dataset.

Attribute # variations MR values (delexicalized)

Name 1 NAME

eatType 4 (empty), coffee shop, pub, restaurant

food 11 (empty), American, Canadian, Chinese, En-

glish, fast food, French, Indian, Italian,

Japanese, Thai

priceRange 7 (empty), £20-25, cheap, expensive, less than
£20, moderate, more than £30

customer rating 7 (empty), 1 out of 5, 3 out of 5, 5 out of 5,

average, high, low

area 3 (empty), city centre, riverside

familyFriendly 3 (empty), no, yes

near 2 (empty), NEAR

restaurant, Alimentum, has low ratings but the price is less than 20lb. → Close to

YIPPEE NOODLE BAR in the city centre a French restaurant, ALIMENTUM,

has low ratings but the price is less than £20.)

Symbols We normalized such symbols as periods, commas, white spaces, etc.

(e.g. Browns Cambridge sells Indian food, and is kids friendly,, it is in riverside

area near The Sorrento → BROWNS CAMBRIDGE sells Indian food, and is

kids friendly, it is in riverside area near THE SORRENTO.)

Quotation Marks We used single quotation marks instead of double quota-

tions. (e.g. A highly rated coffee shop “The Punter” serving English food priced

between £20 - £25 and is child friendly. → A highly rated coffee shop ‘THE

PUNTER’ serving English food priced between £20-25 and is child friendly.)

Capital Letters We fixed the capitalization errors in proper nouns and words

that begin sentences. (e.g. a coffee shop Zizzi located by the riverside has a high

price range with an average customer rating. they are children friendly → A

coffee shop ZIZZI located by the riverside has a high price range with an average
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customer rating. They are children friendly.)

3.4 MR Refinement

The MRs in the original E2E dataset include labelling errors. We refined the

MR labels as described in Section 3.4.1. We provided additional annotations

for further controllable generation study regarding flexible content planning, as

described in Section 3.4.2.

3.4.1 Labelling

Throughout the E2E dataset, we corrected MR labelling errors manually. Ad-

ditionally, we replaced the value “high” with “expensive” for the priceRange

attribute. Moreover, we added new labels for the food attribute, including

“American”, “Canadian”, “Indian”, and “Thai”. Table 5 lists all the refined

labels.

3.4.2 Additional Annotations

MR Order We marked the order of the MR values mentioned in the corre-

sponding sentences, as shown in Table 4. In case of an empty MR value, we

represented the order with a “0”.

Number of Sentences In Table 4, we indicated the number of sentences

present in the text. We identified the number of sentences by looking for pe-

riods (“.”) and question marks (“?”). As per the example given in the table, the

text portion contains three periods, so we assigned the number of sentences as

“3”.

Sentence Indexes We also provided annotations for the appearance of each

MR value in the corresponding sentences as shown in Table 4. For instance, the

values of eatType, area, and familyFriendly are found in the first, second, and

third sentences, respectively. In cases where an MR value is empty, we set the

index to “0”.
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3.5 MR-Text Pair Refinement

To further enhance the dataset, we refined the MR-text pairs by eliminating

repetitions and utilizing a strategy to convey certain values effectively in both

the MR and text.

3.5.1 Deduplication

We excluded approximately 1,500 MR-text pairs from the dataset as a result of

the deduplication process.

3.5.2 Delexicalization

Since all of the name and near values appear as-is in the sentences, we replaced

such values in the text and MR values with “NAME” and “NEAR” to standardize

the data. We stored the values in uppercase to preserve the original information,

although the standardized forms are still useful for training MR-to-text models.

3.6 Experiments

We investigated the effect of the refinement by the following experiments.

3.6.1 Dataset

We used the original E2E dataset and the E2E refined dataset. Here, we cap-

italized only the first letter of each word of name and near values and did not

replace the value “high” with “expensive” for the priceRange attribute for the

E2E refined dataset, for a fair comparison. We did not use additional annotations

(described in Section 3.4.2) either.

3.6.2 Method

We used TGEN1 [19], based on an LSTM-based sequence-to-sequence model with

an attention mechanism. TGEN was used as the baseline for the E2E NLG

Challenge [20]. The detail of this method is described in Section 4.4.1. We

1https://github.com/UFAL-DSG/tgen
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trained two models using the training sets of both the original E2E dataset and

the E2E refined dataset, respectively.

3.6.3 Metrics

To assess the performance of both models, we utilized several evaluation metrics;

BLEU [67], NIST [15], METEOR [13], ROUGE L [54], and CIDEr [93] (described

in Section 2.3.1). These metrics can be obtained through the E2E challenge

metrics script2. The evaluation was conducted on the test set of the E2E refined

dataset.

3.6.4 Results

Table 6 shows the scores. The model’s performance trained using the E2E refined

dataset outperformed that of the model using the original dataset, except for

ROUGE L. These results suggest that the refined dataset contains more accurate

label information, which ultimately led to improved performance.

Table 6. Results of automatic evaluations

Dataset BLEU(↑) NIST(↑) METEOR(↑) ROUGE L(↑) CIDEr(↑)
E2E original 0.5462 7.6209 0.4103 0.6561 2.2448

E2E refined 0.5581 7.8378 0.4252 0.6488 2.3865

3.7 Limitations

Although we modified the E2E dataset for the development of MR-to-text models,

the following limitations remain:

• As mentioned in Section 3.3.1, we removed the data that had irregular MR

values. However, multiple values may be allowed under different formula-

tions of MR-to-text problems for more complex situations.

• We currently ignore referring expressions, although they should be allowed

generally.

2https://github.com/tuetschek/e2e-metrics
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• We regard attributes other than name as modifiers of a name. However, an

attribute sometimes modifies near. Our current formulation ignores such

relationships.

3.8 Conclusion

In this chapter, we described our E2E refined dataset. We reduced errors in the

dataset by correcting mistakes and normalizing some expressions to make the

sentences simpler. Additionally, we refined the annotation of the MR values by

annotating the MR order, the number of sentences, and the sentence indexes as

additional information. Our experimental results showed that this refined dataset

led to improved performance of NLG. The dataset and data conversion programs

in Python are available here3. We hope that this dataset will be useful for future

research in related fields.

3https://github.com/KSKTYM/E2E-refined-dataset
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4. Content Order-Controllable MR-to-text

4.1 Introduction

In this chapter, we propose an MR-to-text (MR2T) method that controls the

order of the MR values in generated text passages with additional value order

annotations using the E2E refined dataset described in Chapter 3. First, we train

an order-constrained MR2T model with a text-to-MR (T2MR) model. Then, we

augment the MR-text dataset to obtain a better-balanced distribution in terms of

the number of non-empty attributes by synthesizing the attribute-value pairs that

do not appear in the dataset. We investigate the performance of an MR2T model

trained using the augmented dataset by automatic and subjective evaluations

and show that it can control the order of the MR values with high accuracy [87].

Our code is available at here4.

4.2 Dataset

The E2E dataset [63] used in the E2E NLG Challenge [21] is widely utilized in

MR2T studies. It consists of a set of pairs of a British English text passage and

a corresponding MR with the following eight attributes in a restaurant recom-

mendation domain: name, eatType, food, priceRange, customer rating, area,

familyFriendly, and near. However, some of its MR-text pairs suffer from the

following errors:

• deletion: some attribute-value pairs are not mentioned in the text;

• insertion: some empty attributes are mentioned incorrectly with unin-

tended values;

• substitution: some MR values are replaced by wrong ones.

Such errors must be fixed to properly control a text passage’s content by

MR2T. Although updates have rectified some of these errors [18, 24], the updated

datasets still include such errors. We refined the E2E dataset with additional

error fixes by manual annotations of the MR values and made it public as the

4https://github.com/KSKTYM/content order-controllable mr-to-text
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E2E refined dataset [88]. It also includes the order of the MR values in the

corresponding text passage (Table 7). We used the E2E refined dataset in this

work to train the MR2T models.

Table 7. Example of E2E refined dataset

MR

Attribute Value Order

name
NAME

1
(WILDWOOD)

eatType restaurant 2

food Italian 3

priceRange (empty) 0

customer rating (empty) 0

area riverside 5

familyFriendly no 6

near
NEAR

4
(RANA INDIAN CUISINE)

Text

NAME(WILDWOOD) is a restaurant that serves Italian food located

near NEAR(RAJA INDIAN CUISINE) in the area of riverside. Unfor-

tunately, it is not kid friendly.

4.3 Data Augmentation

The number of training instances with non-empty attributes is shown in the

second column of Table 8. For example, the number of training instances with

eight non-empty attributes is only 1,190; that with five non-empty attributes is

12,442. Such an imbalanced training data distribution causes poor performance

for instances with many non-empty attributes, as shown later in the experimental

results.

Data augmentation is a promising approach for mitigating such data imbal-

ance. Existing studies on data augmentation for NLG use text generation and

text analysis models. Kedzie et al. [45] used noise injection sampling. First, they

synthesized the under-represented MR in the training data. Second, they con-

verted the MR to a text passage using their MR2T model by injecting Gaussian

noise into the decoder hidden states. Then they obtained an MR using their
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Table 8. Number of training data in terms of non-empty attributes: NEA denotes

non-empty attributes.
# NEA Original data Augmented data Merged data

1 55 0 55

2 393 7 400

3 2,910 926 3,836

4 8,119 4,323 12,442

5 12,442 0 12,442

6 10,058 2,384 12,442

7 5,393 7,049 12,442

8 1,190 11,252 12,442

Total 40,560 25,941 66,501

Table 9. Number of every possible combination of MR values and MR orders and

obtained samples: NEA denotes non-empty attributes.
# NEA MR value MR order MR value&order Obtained samples

1 1 1 1 0

2 30 2 60 11

3 355 6 2,130 1,167

4 2,142 24 51,408 30,949

5 7,096 120 851,520 112,139

6 12,912 720 9,296,640 206,353

7 11,952 5,040 60,238,080 191,212

8 4,320 40,320 174,182,400 69,120

Total 38,808 - 244,622,239 610,955
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MR parser. Finally, a pair of the obtained MR and the generated text passage

was accepted as augmented data. Unfortunately, noise injection sampling made

insertion and deletion errors in the generated text passage.

Chai et al. [7] proposed a feedback-aware self-training method for their con-

ditional text generation. First, they generated a text passage whose condition

is different from the original. Then a classifier predicted the condition from the

generated text passage. A condition-passage pair was used as augmented data if

the input and predicted conditions matched.

We applied an idea that resembles Chai’s approach to augment the training

data with synthetic examples generated in the following steps.

Step 1 Generate every possible combination of MR values and orders. The

number of MR value patterns is calculated from the variation of the MR values

(Table 5). The number of MR order patterns is a factorial of their non-empty

attributes. Since the number of generated combinations is enormous (244.6 mil-

lion), we randomly sampled them to 16 patterns for an MR order, removed the

MRs included in the original dataset to avoid data leakage, and obtained 610,955

MR combinations (Table 9).

Step 2 Convert the MRs obtained in Step 1 to text passages by the MR2T

model trained using the original training data. The model’s details are explained

in Section 4.4.4.

Step 3 Convert the text passages obtained in Step 2 to MRs using the T2MR

model trained using the original training data. The T2MR model is also explained

in Section 4.4.4.

Step 4 Augment the training data with the pairs of an MR and a text passage

as synthetic MR-text pairs when the result of Step 3 matches the MR generated

in Step 1. Here our motivation is to balance the data distribution. We sampled

the pairs for a total of 12,442 (the maximum number in the original training data

with five non-empty attributes) for each non-empty attribute (Table 8). Finally,

we obtained 66,501 MR-text pairs as the augmented training data.
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4.4 Method

Next we explain the MR2T methods used in this work: TGEN [19], JUG [90],

Transformer-based MR2T, and the T2MR methods based on Transformer.

4.4.1 TGEN

As our baseline, we use TGEN [19], based on an LSTM-based sequence-to-

sequence model with an attention mechanism. The system takes in dialogue

acts (DA) as input, representing a trio of “DA type, slot, value” for each at-

tribute. The “DA type” is always set to “inform” because the E2E dataset only

contains one action. The MR2T generator, equipped with an attention mech-

anism, uses an LSTM (Long Short-Term Memory) network in its encoder to

transform an input sequence x = {x1, . . . , xn}, where each xi represents an input

token, into a series of encoder outputs and hidden states h = {h1, . . . , hn}, where
ht = LSTM(xt, ht−1) is a non-linear function represented by the LSTM cell. The

decoder then uses these hidden states to generate a sequence y = {y1, . . . , ym}
with another LSTM-based RNN.

Figure 17. Sequence-to-sequence generator of TGEN [19]

When TGEN generates output sentences using beam search, it employs a

classifier to rerank the top n outputs from the beam search. It penalizes those

that either lack necessary information or include irrelevant ones. This classifier

encodes the generated sentence, and the final hidden state of the encoder is used

to compute the output 1-hot vector. The input DA is also transformed into a

1-hot vector. The reranker then computes the Hamming distance between these

two vectors, which measures the number of positions at which the corresponding

values are different.
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Figure 18. The reranker used in TGEN [19]

We used the distributed programs5 “as-is”. TGEN is also used as the baseline

for the E2E NLG Challenge [21]. Note that TGEN does not constrain the order

of the MR values in its text generation.

4.4.2 JUG

As another baseline, we use JUG [90], based on an LSTM-based generative model

for joint natural language understanding (NLU) and generation, which couples

NLU and NLG through a shared latent variable. In simpler terms, the input MR

data x and the sentences generated y are associated with the same abstract latent

vector z, representing the shared information between the input and output.

Here, NLU is equivalent to T2MR, and NLG corresponds to MR2T.

x y

z

x y

z

x y

z

x y

z

(a) generation (b) inference (c) NLG (d) NLU

Figure 19. Generation and inference process in JUG, and how NLU and NLG

are achieved [90]. x and y denotes MR and sentences respectively; z represents

the shared latent vector for x and y.

During generation, this abstract latent vector guides the standard conditional

5https://github.com/UFAL-DSG/tgen (distributed under the Apache License 2.0)
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generation of either NLG or NLU (shown in Figure 19 (a)). The abstract vector

can be inferred from either the MR data or the sentences (shown in Figure 19 (b)).

Therefore, for NLG, the abstract latent vector should be inferred from the MR

data. Then, the generated sentence is derived from both the MR data and the

abstract latent vector (shown in Figure 19 (c)). The chosen posterior distribution

q(z|x) is Gaussian. The task of inferring z is then reframed as computing the

mean µ and standard deviation σ of the Gaussian distribution, which represents

the central tendency and dispersion of the distribution, respectively, using an

NLG encoder. As the encoder, a bi-directional LSTM is used, which computes

a list of hidden vectors H, each representing the concatenation of forward and

backward LSTM states. These hidden vectors are average-pooled and passed

through two feed-forward neural networks to compute the µx,z and σx,z vectors

of the posterior q(z|x).

H = Bi-LSTM(x) (34)

h̄ = Pooling(H) (35)

µx,z = Wµh̄+ bµ (36)

σx,z = Wσh̄+ bσ, (37)

where W and b denote neural network weights and bias. The latent vector z can

then be sampled from the approximated posterior using the re-parameterization

trick:

ϵ ∼ N (0, I) (38)

z = µx,z + σx,zϵ (39)

To generate sentence y based on latent variable z and MR data x, an LSTM

decoder that relies on both z and x via an attention mechanism is used. At each

time step, the decoder calculates:

gy
i = LSTM(gy

i−1,yi−1) (40)

ci = attention(gy
i ,H) (41)

p(yi) = softmax(Wv[ci ⊕ gy
i ⊕ z] + bv (42)

where ⊕ signifies concatenation, yi−1 is the word vector of input token; gy
i is the

corresponding decoder hidden state and p(yi) is the output token distribution at

time step i.
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According to [90], the BLEU score for the original E2E dataset was better

than that of TGEN. We use the distributed programs6 “as-is”. This method does

not constrain the order of the MR values in its text generation either.

4.4.3 Transformer without Order Constraints

We use Transformer [92] for MR2T, configured as shown in Figure 20. The

Transformer-based MR2T model takes a sequence of MR values as its input to-

kens and generates output tokens one by one. For example, it takes [“⟨sos⟩”,
“NAME”, “restaurant”, “Italian”, “riverside”, “no”, “NEAR”, and “⟨eos⟩”] as
the input tokens when the MR shown in Table 7 is used. Here each MR value

is treated as one token without further tokenization into subwords. “⟨sos⟩” and

“⟨eos⟩” are special symbol tokens that express a sequence’s start and its end.

“⟨unk⟩” is another special symbol token that express unknown tokens in the

dataset. The MR-value tokens are given in a fixed order from name to near, and

empty values are excluded from the input. Note that since all the MR values

are unique (Table 5), the input tokens do not need to include MR attributes.

For the positional values, we use [0, 1, ..., n + 1] (where n equals the number of

non-empty attributes) as the input vector. These values are embedded with a

trainable embedding.

For T2MR, we use Transformer with the same structure as that for MR2T. It

takes a sequence of text tokens as input and predicts the MR values one by

one in the fixed order of the attributes. We use the word tokenizer mod-

ule in the Python NLTK library for the text tokenization. For example, it

takes [“⟨sos⟩”, “NAME”, “is”, “a”, “restaurant”, ..., “kid”, “friendly”, “.”,

and “⟨eos⟩”] as input to induce the corresponding MR value sequence as out-

put: [“⟨sos⟩”, “NAME”, “restaurant”, “Italian”, “riverside”, “no”, “NEAR”,

and “⟨eos⟩”].
For the inferences, MR2T runs greedily to generate a text passage, and T2MR

predicts its MR values. If the T2MR result matches the original MR, the gen-

erated text passage is deemed reliable. If the MRs are not identical, MR2T

generates text passages using beam search (width = 5) and applies T2MR to

check whether the result is reliable and chooses the reliable one with the best

6https://github.com/andy194673/Joint-NLU-NLG
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Figure 20. Transformer model

4.4.4 Transformer with Order Constraints

We propose another Transformer-based MR2T model that takes the content order

constraints. For example, it takes [“⟨sos⟩”, “NAME”, “restaurant”, “Italian”,

“NEAR”, “riverside”, “no”, and “⟨eos⟩”] as input, where MR-value tokens ap-

pear in the corresponding order with their mentions in the text passage. The

order-constrained T2MR model also has identical Transformer architecture, al-

though it is trained to predict the MR values in the order of their mentions in

the input text. We train these models with the original and augmented training
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datasets.

4.4.5 Transformer with Order Constraints in Decoder

We propose another Transformer-based MR2T model for order control. This

method inputs the order control condition to the decoder, whereas the method

in Section 4.4.4 inputs it to the encoder. In other words, the input tokens to

the encoder are the same as the method described in Section 4.4.3, which does

not input the order condition. MR order tokens are given before the special

symbol token “⟨sos⟩” for the input tokens to the decoder. For example, it takes

[“1”, “2”, “3”, “5”, “6”, “4”, and “⟨sos⟩”] as the input tokens when the MR

shown in Table 7 is used. The MR-order tokens are given in a fixed order from

name to near, and “0” is excluded from the input. This allows order control to be

performed by the decoder. We train this model with the original training dataset.

4.5 Experiments

We investigated the effect of the order constraints in MR2T by the following

experiments.

4.5.1 Data

We used the E2E refined dataset with 40,560 MR-text pairs for training and

4,555 pairs for evaluation. We also used the augmented training data (66,501

MR-text pairs) to train the Transformer with an order constraints model. To

investigate the MR2T performance with different MR orders, we augmented the

test data by reordering the MR values and used them as inputs. We sampled

four different orders for the test data with three or more non-empty attributes

and the alternative MR value order for those with two non-empty attributes and

obtained 21,140 additional test instances. We then used four random seeds for the

test data augmentation and obtained four sets of augmented test data (21,140×4

sets). Hereafter, we call them the reordered test data. Here all of the name and

near values are delexicalized for all models described in Section 4.4, because

they appear as-is in the text passages. The values are restored after generating

sentences by MR2T models.
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Note that all MR values in the E2E refined dataset used in this experiment

(see Table 5) are included in the training data. Hence, no unknown MR values are

input during the validation and evaluation of the models in this experiment. In

addition, the models are designed for only the eight types of attributes described

in Section 3.2. Therefore, if attributes or MR values not included in the training

data are to be input to the models, another training data containing them must

be prepared, and the models must be retrained.

4.5.2 Model Configuration

We set the embedding vector size to 256, the feed-forward network vector size

to 512, the head number to 8, and the layer number to 3. For training, we

used the following settings: a batch size of 128, a learning rate of 0.0005, 100

epochs, a dropout rate of 0.1, and a clip norm of 1.0. The model was optimized

using Adam [47]. We used one NVIDIA GeForce RTX 3090 GPU. It took about

33 minutes to train the MR2T model with the original training data and 53

minutes to train it with the augmented training data. We chose the best model

that resulted in minimum loss on the validation data in the E2E refined dataset

among those 100 trained models at the end of the training epochs. The loss

was saturated in ten epochs by the MR2T model without order constraints, nine

epochs by that with the order constraints using the original training data, and

ten epochs by that using the augmented training data. For TGEN and JUG, we

used the distributed programs “as-is”.

4.5.3 Metrics

We evaluated the MR2T performance by BLEU [67], NIST [15], METEOR [13],

ROUGE L [54], and CIDEr [93], all of which can be obtained using the E2E

challenge metrics script7 (described in Section 2.3.1). To calculate these metrics,

we prepared the following two types of references for the test instances:

• Order-independent references : those corresponding to the given MR without

order constraints (the average number of reference text passages: 6.67);

7https://github.com/tuetschek/e2e-metrics
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• Order-dependent references : those corresponding to the given MR with

order constraints (the average number of reference text passages: 1.21).

We also evaluated the performance by checking whether the original MR to

MR2T and the predicted MR from T2MR are identical. We named this method

MRcheck. Since the T2MR performance is highly accurate, as shown in Table 10,

we believe it can be used to evaluate MR2T. We used the order-constrained T2MR

model trained with the augmented training data for MRcheck.

Furthermore, we evaluated the fluency of the generated sentences by perplex-

ity with GPT-28 and pseudo-log-likelihood (PLL) scores with BERT9 described

in Section 2.3.2.

Table 10. Accuracy of T2MR models. Bold indicates best result. (*: trained

using augmented training data)

Method MR value&order MR value MR order

Transformer w/o order n/a 98.18 n/a

Transformer w/ order 98.62 98.95 98.84

Transformer w/ order(*) 98.79 99.25 99.06

4.5.4 Results

Table 11 shows the scores. The Transformer MR2T model without order con-

straints outperformed TGEN and JUG, indicating Transformer’s effectiveness in

this task. Our proposed order-constrained MR2T model clearly outperformed the

model without order constraints. Comparing the order-constrained MR2T model

where the order constraints are given to the encoder with the model where they

are given to the decoder, the former shows higher performance. The proposed

model trained using the augmented data also outperformed the model trained

with the original data. Although an advantage was observed even with the order-

independent references, it was much larger with the order-dependent references.

Table 12 shows the MRcheck results. The order-constrained Transformer pre-

served the MR order very accurately (99.58%) for the original test data, although

8https://huggingface.co/docs/transformers/model doc/gpt2
9https://github.com/awslabs/mlm-scoring
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Table 11. Results of automatic evaluation: Bold indicates best result for order-

independent reference, and Italic indicates best result for order-dependent ref-

erence (I: order-independent reference, D: order-dependent reference, †: order

constraints given in decoder, *: trained using augmented training data)

Method Ref. BLEU(↑) NIST(↑) METEOR(↑) ROUGE L(↑) CIDEr(↑)

TGEN
I 0.5626 7.8907 0.4278 0.6614 2.4066

D 0.3339 5.6815 0.3762 0.5262 2.0885

JUG
I 0.5733 7.6896 0.4337 0.6488 2.3972

D 0.3505 5.6242 0.3871 0.5201 2.0580

Transformer I 0.5840 7.8227 0.4384 0.6659 2.5141

w/o order D 0.3600 5.7151 0.3910 0.5344 2.1753

Transformer I 0.6280 8.6083 0.4595 0.7551 2.7783

w/ order D 0.4836 7.0947 0.4356 0.7422 3.3062

Transformer I 0.6232 8.6180 0.4562 0.7489 2.7571

w/ order(†) D 0.4771 7.1033 0.4318 0.7352 3.2709

Transformer I 0.6335 8.6198 0.4624 0.7575 2.7855

w/ order(*) D 0.4914 7.0941 0.4393 0.7453 3.3383

the baselines failed to do so (6.74%, 5.93%, and 7.42%). Even though the ac-

curacy of the reordered test data (88.07%) was worse than that for the original

test data (99.58%), the performance of the proposed model trained using the

augmented training data was almost perfect (99.95%).

Comparing the order-constrained MR2T model where the order constraints

are given to the encoder with the model where they are given to the decoder, the

former shows higher performance as listed in Table 11 and Table 12. In particular,

the performance of MRcheck accuracy for the MR order of the latter model is

substantially degraded. These results suggest that when order constraints are

input to the decoder, the vectors generated by the encoder need to correspond to

all order constraint variations, which increases the information to be embedded

and results in lower performance.

Furthermore, we found more MRcheck errors in the test instances with a

larger number of non-empty attributes (Table 13): for example, 12 and 1,055.8

errors for the instances with eight non-empty attributes for the original and re-

ordered test data. However, the amount of proposed model training using the
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Table 12. MRcheck results of accuracy: Bold indicates best result for original test

data, and Italic indicates best result for reordered test data (†: order constraints
given in decoder, *: trained using augmented training data)

Method Test data MR value & order MR value MR order

TGEN original 6.74 99.41 6.74

JUG original 5.93 98.24 5.93

Transformer w/o order original 7.42 100.0 7.42

Transformer w/ order
original 99.58 99.96 99.58

reordered 88.03 96.74 88.07

Transformer w/ order(†)
original 94.64 99.58 94.67

reordered 56.10 94.87 56.14

Transformer w/ order(*)
original 100.0 100.0 100.0

reordered 99.95 99.98 99.95

augmented data significantly improved from 1,055.8 to 5.5. The numbers of dele-

tion/insertion/substitution errors were also reduced, from 583.5 to 2.8 for deletion

errors in the MR values, from 1.8 to 0.0 for insertion errors in the MR values,

from 109.8 to 2.5 for substitution errors in the MR values, and from 1,842.5 to 4.8

for substitution errors in the MR order. These results suggest the effectiveness

of our data augmentation method.

Table 14 shows the perplexity results: while TGEN has a high perplexity of

107.08, JUG and Transformer without order constraints have low values of 81.10

and 80.87, suggesting that they generate relatively fluent sentences. On the other

hand, the values for the order-constraints Transformer models are above 90, sug-

gesting that it is slightly less fluent than the methods without order constraints.

However, the perplexity of the reference data is as high as 116.91, and it is nec-

essary to confirm this by human evaluation.

The PLL scores are also shown in Table 14. Similar to the results for perplex-

ity, indicating that the scores for TGEN, JUG and Transformer without order

constraints are better than those for the order-constraints Transformer models.

On the other hand, the score for reference data is low at -88.16, suggesting that

the reference data contains sentences that lack naturalness.
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Table 13. MRcheck errors of Transformer w/ order models (O: trained using

original training data, A: trained using augmented training data) (vd: deletion

errors in MR values, vi: insertion error in MR values, vs: substitution error in MR

values, os: substitution error in MR order). NEA denotes non-empty attributes.

# NEA

Original test data Reordered test data

number of data
number of errors

number of data
number of errors

O A O A

1 0 0 0 0 0.0 0.0

2 1 0 0 0 0.0 0.0

3 92 0 0 4 0.0 0.0

4 311 2 0 546 30.0 1.0

5 631 0 0 2,990 203.5 0.5

6 1,114 0 0 5,570 427.8 2.0

7 1,422 5 0 7,110 814.0 1.0

8 984 12 0 4,920 1,055.8 5.5

Total 4,555 19 0 21,140 2,531.0 10.0

vd: 2 vd: 0 vd: 583.5 vd: 2.8

vi: 0 vi: 0 vi: 1.8 vi: 0.0

vs: 0 vs: 0 vs: 109.8 vs: 2.5

os: 17 os: 0 os: 1,842.5 os: 4.8

Table 14. Results of perplexity with GPT-2 and Pseudo-log-likelihood (PLL)

with BERT: Bold indicates best result for original test data (†: order constraints
given in decoder, *: trained using augmented training data)

Method Perplexity(↓) PLL(↑)
reference 116.91 -88.16

TGEN 107.08 -74.91

JUG 81.10 -75.83

Transformer w/o order 80.87 -76.61

Transformer w/ order 95.33 -79.48

Transformer w/ order(†) 99.45 -79.23

Transformer w/ order(*) 91.57 -79.20
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4.6 Human Evaluation

We also conducted a human evaluation on the MR2T results. Here, the results

of the experiments in the previous section confirm that the model with the order

constraints input to the encoder performs better than the model with the order

constraints input to the decoder, so the latter is not used in this evaluation.

Native English-speaking crowdworkers10 rated the naturalness, the adequacy [1],

and the focus of the generated text packages of 150 selected examples from the

original test data. The 150 examples were randomly selected after conditioning

the attribute distribution that appeared first in the text package to be approxi-

mately uniform, as shown in Table 15. Three workers evaluated each text passage.

To avoid any misunderstanding that the values of attributes name and near are

emphasized because they are shown in uppercase, we capitalized only the first

letter of each word of those attributes. We gave the instructions shown in Fig-

ures 22, 23, and 24 in Appendix B and showed a pair of the MR and the text

passages from each of the 150 examples (Figures 25, 26, and 27 in Appendix B)

to the evaluators who evaluated them.

Table 15. Number of samples in terms of attributes that first appear in text

passage

First attribute Training data Validation data Test data
Selected data for

human evaluation

name 25,783 2,787 2,727 19

eatType 1,608 260 299 19

food 2,573 137 197 18

priceRange 2,426 165 230 19

customer rating 1,389 167 83 18

area 2,773 407 363 19

familyFriendly 2,000 258 267 19

near 2,008 308 389 19

Total 40,560 4,489 4,555 150

10We utilized Prolific (https://www.prolific.co/) and paid each worker thirteen pounds

per hour.
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Naturalness The evaluators gave scores on a 6-point Likert scale (higher is

better) on the following four questions:

1. Is the sentence natural?

2. Is the sentence grammatical?

3. Is the sentence comprehensible?

4. Is the sentence acceptable as English, even if it is not natural / grammatical

/ comprehensible?

Adequacy The evaluators answered the following two questions with either

“yes” or “no”:

1. Does the generated sentence meet all the MR values?

2. Does the generated sentence meet all the MR values and the MR orders?

Focus In this experiment, we assumed that the emphasized attribute-value pair

appears first in the text passage [85]. The evaluators answered the following

question with either “yes” or “no”:

• Is [(attribute) value] the focused attribute-pair in the sentence?

Here “[(attribute) value]” is the attribute-value pair which appears first in each

text passage.

The results are shown in Tables 16 and 17. The naturalness scores of the three

baselines are comparable: TGEN, JUG, and Transformer w/o order. On the other

hand, the scores for our proposed methods with order constraints and reference

are slightly lower than those of the baselines, because it is natural for restaurant

recommendation sentences to start with a name attribute, and sentences starting

with other attributes lose some naturalness. Table 15 shows that the text passages

in more than half of the E2E refined dataset start with the name attribute. This

distribution causes the value of the name attribute to always appears first in the

generated text passages of the baseline methods. Tables 18 and 19 also list the

five examples with the lowest naturalness scores, and the generated text passages
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with lower scores in terms of naturalness tend to start with attributes other

than name. However, looking at the acceptable scores in Table 16, there is no

significant difference between the baseline methods and our proposed methods,

and although the order control has slightly lost some naturalness, our proposed

methods can generate good English without any problems. Table 20 shows an

example of the generated text passages for an MR. The reference text’s style is

rather free, whereas the others resemble templates. This situation might explain

why the reference scores are worse than the others.

Table 16. Results for human evaluation in naturalness with 95% confidence in-

terval. Bold indicates best result. *: trained using augmented training data.

Method
Naturalness

Grammatical Comprehensible Natural Acceptable

Reference 4.12±0.13 4.96±0.10 3.91±0.13 5.15±0.09

TGEN 4.76±0.10 5.24±0.08 4.86±0.09 5.35±0.08

JUG 4.78±0.10 5.28±0.07 4.77±0.10 5.36±0.07

Transformer w/o order 4.80±0.10 5.27±0.07 4.86±0.09 5.36±0.08

Transformer w/ order 4.44±0.12 5.10±0.09 4.36±0.12 5.26±0.09

Transformer w/ order(*) 4.47±0.12 5.08±0.09 4.36±0.12 5.27±0.09

Table 17. Results for human evaluation in adequacy, and focus. Bold indicates

best result. *: trained using augmented training data.

Method
Adequacy

Focus
MR value MR value & order

Reference 89.11 88.89 86.22

TGEN 92.22 4.22 56.44

JUG 94.44 4.00 53.78

Transformer w/o order 95.56 5.56 55.33

Transformer w/ order 94.67 92.89 91.33

Transformer w/ order(*) 94.89 92.44 90.67

For adequacy, we found that the generated text passages of the proposed

methods appropriately met almost all the MR values and orders. A comparison

of the adequacy results with those of MRcheck (Table 12) identifies a clear corre-
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lation, suggesting that MRcheck works as an effective automatic measure of the

reliability of synthetic data.

For focus, the scores of our proposed methods significantly outperformed those

of the baselines. A comparison of the adequacy and focus results shows a clear

correlation. This means that correct control of the content order also allows for

correct control of the emphasized attribute-value pair in the generated sentences.

4.7 Conclusion

We proposed an MR-to-text method that controls the order of the MR values

in generated text passages using MR order constraints. Our proposed method

worked effectively and precisely controlled the content order in automatic evalu-

ations. Data augmentation also effectively improved the performance using the

MR2T and T2MR models to balance the data distribution in terms of non-empty

attributes. The human evaluation results suggest that our proposed methods can

focus attribute-value pairs for correct emphasis by controlling the content order.

Even though the proposed methods suffered slightly less naturalness compared

with the baselines, they generated proper English sentences without any problem.

Future work will control such other aspects as the text structure and the output

length and apply such methods to other MR-to-text datasets.
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Table 18. Examples with five lowest scores for human evaluations (G: Grammat-

ical; C: Comprehensible).

Metrics Score Method Text

G

1.33 TGEN NAME is a children friendly pub in the city centre

near NEAR. It is in the high price range.

1.33 Reference 5 out of 5 for this pub, although no facilities for

children. It is close to NEAR, called NAME near

to the riverside has a price list of more than £30
serves Japanese cuisine.

1.67 Reference There is a children friendly English restaurant in

the riverside area. It is high price range. It is called

NAME, and is located near NEAR.

1.67 Transformer

w/ order

Moderately priced NAME is a non kid friendly

restaurant located in the city centre, near NEAR.

It serves Chinese food.

1.67 Transformer

w/ order

There is a 5 out of 5 pub that is not children friendly

near NEAR called NAME in the riverside area.

The price range is more than £30 and Japanese

food.

C

3.00 Transformer

w/ order

Near NEAR is a restaurant that is family friendly

in the riverside area called NAME. It serves Italian

food and is cheap.

3.00 Reference A kids friendly Japanese pub along the riverside is

called NAME and is next to NEAR.

3.33 Reference Near NEAR their is a restaurant that is family

friendly along the riverside named NAME which

serves Italian food on a cheap price range.

3.33 TGEN NAME is a children friendly pub in the city centre

near NEAR. It is in the high price range.

3.33 Reference Located near NEAR in the riverside area is an eat

type pub called NAME is a children friendly that

serves Japanese food and has a price range more

than £30.
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Table 19. Examples with five lowest scores for human evaluations (N: Natural;

A: Acceptable; *: trained using augmented training data).

Metrics Score Method Text

N

1.33 TGEN NAME is a children friendly pub in the city centre

near NEAR. It is in the high price range.

1.33 Reference 5 out of 5 for this pub, although no facilities for

children. It is close to NEAR, called NAME near

to the riverside has a price list of more than £30
serves Japanese cuisine.

1.67 Reference 3 out of 5 star restaurant style restaurant NAME

offers child friendly atmosphere near NEAR.

2.00 Reference If you are looking for a high quality, family-friendly

dining experience in the heart of city centre, NAME

is for you. This pub I near NEAR and serves fast-

food like it’s gourmet.

2.00 Reference Near NEAR by riverside is a pub that is yes family

friendly with a low customer rating called NAME

and the prices are less than £20.

A

3.67 Reference Located near NEAR in the riverside area is an eat

type pub called NAME is a children friendly that

serves Japanese food and has a price range more

than £30.
3.67 Transformer

w/o order

NAME is a Japanese pub in riverside near NEAR.

It is children friendly and has a high customer rat-

ing.

3.67 Transformer

w/ order(*)

Moderately priced NAME is a non kid friendly

restaurant located in the city centre. It serves Chi-

nese food and is near NEAR.

3.67 TGEN NAME is a children friendly Japanese pub in the

city centre near NEAR with a high price range and

a customer rating of 5 out of 5.

3.67 Reference 5 out of 5 rated child friendly NAME, serves

Japanese food in a pub at higher than normal

prices. Located in the city centre near NEAR.
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Table 20. One example for an MR(name: NAME (order=3), eatType: restaurant

(order=2), customer rating: 3 out of 5 (order=1), familyFriendly: yes (or-

der=4), and near: NEAR (order=5)) where TGEN and JUG have good scores

and reference has bad scores for human evaluation (G: grammatical; C: compre-

hensible; N: natural; A: acceptable; *: trained using augmented training data).

Method Text
Score

G C N A

Reference 3 out of 5 star restaurant style restaurant

NAME offers child friendly atmosphere

near NEAR.

1.67 4.67 1.67 5.33

TGEN NAME is a three star family friendly

restaurant located near NEAR.

6.00 5.67 6.00 6.00

JUG NAME is a family friendly restaurant with

a customer rating of 3 out of 5. It is lo-

cated near NEAR.

6.00 5.67 6.00 6.00

Transformer

w/o order

NAME is a family friendly restaurant lo-

cated near NEAR. It has a customer rat-

ing of 3 out of 5.

6.00 5.67 5.67 6.00

Transformer

w/ order

There is a 3 star restaurant NAME that

is family friendly located near NEAR.

4.00 5.33 4.33 5.67

Transformer

w/ order(*)

There is a three star restaurant NAME

that is family friendly located near NEAR.

5.00 5.67 4.00 6.00
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5. Conclusion

5.1 Conclusion

In this paper, we studied an MR-to-text method that enables content order con-

trol. Since this method is based on supervised learning, it requires a dataset that

correctly describes the order in which MR data appear in sentences. In Chap-

ter 3, we developed the E2E refined dataset by correcting many errors in the

original E2E dataset. We also added additional annotations, such as ordering

information. It was confirmed that this error reduction improved the accuracy of

sentence generation. However, its refinement took work and effort, as it had to

be done manually. Therefore, applying this refinement method to other datasets

would take much work.

In Chapter 4, we used the dataset to develop an MR-to-text method that

can control the order of the MR values in a generated text passage based on

the given order constraints. Here, it was found that the proposed method using

Transformer can generate better sentences than the existing method using LSTM.

For controlling the order, it was also found that the control can be achieved

with very high accuracy by using a model that simultaneously provides the order

constraints in addition to data values as input. Furthermore, it was found that

more accurate control is possible if the order constraints are passed to the encoder

rather than the decoder. It was also found that the issues caused by the imbalance

of the dataset described in Chapter 3, in particular the low accuracy of the order

control in instances with many non-empty attributes, can be solved by training

on automatically augmented data using both the MR2T model, which generates

sentences from MRs, and the T2MR model, which infers MRs from sentences.

However, subjective evaluation experiments confirmed that sentences generated

using order control are acceptable as English but lose their naturalness slightly.

Actually, in the same experiment, it was confirmed from the evaluation results of

the reference data constructed in a different order from the general one were low

in terms of naturalness. Therefore, it seems that the order control method does

not cause the loss of naturalness, but further studies are needed to produce more

natural sentences.
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5.2 Future Works

Data-to-text methods should not always generate one type of text from a single

piece of data but should generate different types of text depending on various

factors, such as who is reading the generated text, what particular emphasis

is placed on the message, what kind of interaction has taken place so far, and

so on. This paper has described a method that can freely control the order of

input contents with high performance. However, issues still need to be addressed

regarding control by factors other than order, the naturalness of the generated

sentences, and the variety of the dataset used. In addition, although this method

uses a model learned from a single dataset, the use of large language models

learned from a large amount of text data, which is becoming mainstream these

days, should also be considered.

5.2.1 Control by Factors Other Than Order

Although controlling the content order was the topic of this study, other control

elements such as sentence length and number of sentences can also be possible

parameters of controllability. As an example, consider a model where, in addi-

tion to the order constraints, the number of sentences and the sentence indexes

annotated in Section 3.4.2 are given to the encoder as the other constraints. For

example, it takes [“⟨sos⟩”, “3”, “NAME”, “moderate”, “restaurant”, “Italian”,

“⟨sep⟩”, “city centre”, “NEAR”, “⟨sep⟩”, “yes”, and “⟨eos⟩”] as input to the en-

coder, when the MR shown in Table 4 is used. That is, the number of sentences

(“3”) is given immediately after “⟨sos⟩” and the special symbol token “⟨sep⟩”
is inserted into the token whose sentence index changes. The model architecture

and the experimental conditions are the same as described in Section 4.4.4 and

Section 4.5. As the results listed in Table 21 and 22, controlling by three types of

information - order, number of sentences, and sentence indexes (Transformer w/

3 constraints(♣)) - is more accurate than controlling by order alone (Transformer

w/ order).

Here, let us consider another model for length control. Length control and

order control are independent. As the annotation of sentence length does not

exist in the E2E refined dataset, we defined it as follows:

59



Table 21. Results of automatic evaluation: Bold indicates best result for order-

independent reference, and Italic indicates best result for order-dependent ref-

erence (I: order-independent reference, D: order-dependent reference, †: order

constraints given in decoder, *: trained using augmented training data, ♠: two

constraints (order and length) given in encoder, ♣: three constraints (order,

number of sentences, and sentence indexes) given in encoder)
Method Ref. BLEU(↑) NIST(↑) METEOR(↑) ROUGE L(↑) CIDEr(↑)

TGEN
I 0.5626 7.8907 0.4278 0.6614 2.4066

D 0.3339 5.6815 0.3762 0.5262 2.0885

JUG
I 0.5733 7.6896 0.4337 0.6488 2.3972

D 0.3505 5.6242 0.3871 0.5201 2.0580

Transformer I 0.5840 7.8227 0.4384 0.6659 2.5141

w/o order D 0.3600 5.7151 0.3910 0.5344 2.1753

Transformer I 0.6280 8.6083 0.4595 0.7551 2.7783

w/ order D 0.4836 7.0947 0.4356 0.7422 3.3062

Transformer I 0.6232 8.6180 0.4562 0.7489 2.7571

w/ order(†) D 0.4771 7.1033 0.4318 0.7352 3.2709

Transformer I 0.6335 8.6198 0.4624 0.7575 2.7855

w/ order(*) D 0.4914 7.0941 0.4393 0.7453 3.3383

Transformer I 0.6278 8.6228 0.4600 0.7554 2.8116

w/ 2 constraints(♠) D 0.4882 7.1265 0.4372 0.7431 3.3948

Transformer I 0.6518 8.9362 0.4660 0.7682 2.9066

w/ 3 constraints(♣) D 0.5218 7.5579 0.4452 0.7576 3.6140
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Table 22. MRcheck results of accuracy: Bold indicates best result for original test

data, and Italic indicates best result for reordered test data, †: order constraints
given in decoder, *: trained using augmented training data, ♠: two constraints

(order and length) given in encoder, ♣: three constraints (order, number of

sentences, and sentence indexes) given in encoder)

Method
Test MR MR MR Sentence

# sentences Length
data value&order value order index

TGEN original 6.74 99.41 6.74 n/a n/a n/a

JUG original 5.93 98.24 5.93 n/a n/a n/a

Transformer w/o order original 7.42 100.0 7.42 n/a n/a n/a

Transformer w/ order
original 99.58 99.96 99.58 n/a n/a n/a

reordered 88.03 96.74 88.07 n/a n/a n/a

Transformer w/ order(†)
original 94.64 99.58 94.67 n/a n/a n/a

reordered 56.10 94.87 56.14 n/a n/a n/a

Transformer w/ order(*)
original 100.0 100.0 100.0 n/a n/a n/a

reordered 99.95 99.98 99.95 n/a n/a n/a

Transformer
original 99.50 99.58 99.54 n/a n/a 95.76

w/ 2 constraints(♠)

Transformer
original 98.97 99.65 98.88 98.97 99.65 n/a

w/ 3 constraints(♣)

• The sentence length is defined as “short”, “middle”, and “long”.

• “long”: sentences that satisfy ni > (nave) + (nmax − nave)/2,

• “short”: sentences that satisfy ni < (nave)− (nave − nmin)/2,

• “middle”: all other sentences,

where ni indicates the total number of tokens in sentence i, nave/nmax/nmin in-

dicate the average/maximum/minimum number of tokens across all sentences

in the dataset, respectively. For example, it takes [“⟨sos⟩”, “short”, “NAME”,

“moderate”, “restaurant”, “Italian”, “city centre”, “NEAR”, “yes”, and “⟨eos⟩”]
as input to the encoder, when the MR shown in Table 7 is used. That is, the sen-

tence length “short” is given immediately after “⟨sos⟩”. The model architecture

and the experimental conditions are the same as described in Section 4.4.4 and

Section 4.5. As the results listed in Table 21 and 22, controlling for two types

of information, order and length (Transformer w/ 2 constraints (♠)), produces

more accurate sentences than controlling for order alone (Transformer w/ order).
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As these examples show, if we would like to control the generation of a sentence

with some conditions, we can pass information indicating those conditions to the

encoder to control it with high accuracy.

Here, we have only mentioned existing annotations and annotations that can

be generated automatically. However, it would be challenging to annotate other

control information, such as sentence style, automatically. Therefore, it will be

necessary to develop the dataset, considering the validity of the control by that

condition and the cost required for the annotation.

5.2.2 Ensuring Naturalness

According to human evaluation in Section 4.6, there was a tendency for the

naturalness of sentences generated by reordering to decrease. This is because

restaurant introductions are composed in a certain order of contents, and changing

the order itself would decrease naturalness. On the other hand, another reason

may be that there needs to be more variety of data with various orders in the

training data set. Therefore, collecting such data may make learning a model

that generates more natural sentences possible. In addition, corpus expansion

with the help of the recent large language model should be considered.

5.2.3 Expansion to Various Datasets

In this study, the content order-controllable method was investigated using the

E2E refined dataset. Here, let us now consider what considerations would be

necessary for other datasets. As this method is trained in a supervised manner

possessing the correct labels, the labels of the order information in which each

value in the dataset appears in the sentence are essential. Therefore, as described

in Chapter 3, manual labelling work at a considerable cost would be required.

However, as with the E2E refined dataset, if the data format is an attribute-value

pair (MR) and each data value appears only once in a sentence, it can be inferred

using the following method.

Consider the T2MR model described in Section 4.4.3, in which only MR values

are inferred. Among the experimental conditions described in Section 4.5.2, we

changed the number of heads and that of layers to 1, respectively. We also changed

the input to the decoder to the fixed position values [“0”, “1”, . . ., “7”] only. In
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this case, the values of all eight attributes are obtained in a non-auto-regressive

manner. For example, if the input text to this model is “NAME is a family

friendly Chinese pub in the riverside near the NEAR,” then [“NAME”, “pub”,

“Chinese”, “”, “”, “riverside”, “yes”, “NEAR”] are obtained as a sequence of

MR value tokens of length 8. Here, the fourth and fifth tokens are empty strings,

indicating that the values for the priceRange and customer rating attributes

are empty.

Figure 21. Cross attention weight. The vertical axis indicates MR value tokens

and the horizontal axis indicates the tokens in the sentence.

Figure 21 shows the cross-attention weight between the input text tokens and

the inferred MR value tokens when the T2MR inference is performed. That is,

out of all the tokens in the text, the weight for the token most closely related

to the inferred MR value token is learnt to be the largest. Therefore, the order

in which the tokens with the highest weights appear can be regarded as the MR

order as it is. It should be noted that the “NAME” token is always included

in the text, so the attention value for the token does not seem to represent the

relationship between the text and the MR value well. Therefore, for the name

attribute, the position of the “NAME” token in the text should be considered

63



instead of using the cross attention weight. As shown in Table 23, the accuracy

of the MR order estimation for the test data is not perfect but is as high as

95.96%. This result suggests the potential for automatic estimation of the order

information.

Table 23. Accuracy of MR order estimation
dataset accuracy[%]

training 96.97

validation 95.88

test 95.96

all 96.78

However, for this method to work well, the following two conditions must be

fulfilled:

• the labels of the MR values in the dataset must be correctly annotated,

• the character string corresponding to the MR value must appear only once

in the text.

Thus, for example, if the dataset includes the following text passage “Cocco is

an Italian restaurant. Cocco is located in the riverside.”, the value “Cocco” of

the name attribute appears twice in the text, it would be difficult to apply this

method.

Now consider a dataset provided in resource description frameworks (RDFs)

rather than MR, e.g. WebNLG [25]. If the unit of information to be controlled

is only a value, assigning an order-of-occurrence label to each value in each

triple would be sufficient. For example, if the input data has only one triple

such as {subject: “Aarhus Airport”, predicate: “runwayLength”, object:

“2702.0”} and the corresponding text passage is “Aarhus Airport’s runway length

is 2702.0.”, it would be possible to control the exact order by assigning ordering

information to each subject/predicate/object.

However, if the input data has multiple triples, it would be reasonable to be

able to control them with units of triples. In this case, the relationship between

triples should be considered, and it is necessary to assign labels not only to values
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Table 24. Example of WebNLG dataset. As the order information are not in-

cluded in the dataset, added by manually.
Shape (X (X) (X (X) (X) (X)))

Shape type mixed

Size 5

predicate: {value: cityServed, order: 2}
RDF(1) subject: {value: Abilene Regional Airport, order: 2}

object: {value: Abilene, Texas, order: 3}
predicate: {value: isPartOf, order: 4}

RDF(2) subject: {value: Abilene, Texas, order: 3}
object: {value: Texas, order: 5}
predicate: {value: runwayLength, order: 1}

RDF(3) subject: {value: Abilene Regional Airport, order: 2}
object: {value: 2194.0, order: 1}
predicate: {value: country, order: 5}

RDF(4) subject: {value: Abilene, Texas, order: 3}
object: {value: United States, order: 6}
predicate: {value: isPartOf, order: 3}

RDF(5) subject: {value: Abilene, Texas, order: 3}
object: {value: Jones County, Texas, order: 4}

Text
With a runway length of 2194.0, Abilene regional airport serves Abiliene,

part of Jones Country, Texas, in the United States.
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but also to the order of appearance of the triples themselves. For example, in

the case of data listed in Table 24, order information should be assigned to the

predicate as the order of appearance of the triples themselves. The respective

order of appearance information should be assigned for each subject and object.

In case that one value is contained across multiple triples (e.g. object in RDF(1),

subject in RDF(2), subject in RDF(4) and subject in RDF(5) have the same value

“Abilen, Texas”), the same order information should be given to all of them.

Note that there is no guarantee that the automatic inference methods de-

scribed above will work correctly for data sets with such complex data structures,

so manual annotation will still likely be required. In addition, delexicalization

is only effective when the data values are guaranteed to appear only once in a

sentence, so applying it is challenging when such a relationship cannot be guaran-

teed. Furthermore, as the method studied in Chapter 4 is trained in a supervised

manner, if a new dataset is developed, the model must be re-trained using that

dataset.

5.2.4 Combination with Large Language Model

In this work, the model of our proposed method was trained only from the training

data of the E2E refined dataset. However, many large language models trained on

a large amount of text data have been published recently, and they can generate

very natural sentences. Therefore, sentence generation using those models is one

of the most important issues to be considered. For example, Chen et al. [10], Lee

et al. [51], and Chang et al. [8] have studied the combination with GPT-2 [71]

to generate more accurate sentences. Kale et al. [41] utilized T5 [72] pre-training

outperformed models based on pre-training language models such as GPT-2 and

BERT [14]. There must also be a possibility of generating sentences with correct

order control by providing appropriate prompts for models such as ChatGPT [94].

The following are conversations with Microsoft Bing 11, which uses GPT-4 [66].

The first utterance to Bing was: Suppose you are a data-to-text system. If the

input data is {name: {value: THE WATERMAN, order: 1}, eatType: {value:
pub, order: 2}, food: {value: Italian, order: 5}, priceRange: {value: less than

£20, order: 6}, customer rating: {value: null, order: 0}, area: {value: city

11https://www.bing.com/ (accessed on 14th December, 2023)
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centre, order: 3}, familyFriendly: {value: no, order: 7}, near: {value: RAJA

INDIAN CUISINE, order: 4}}, the output text should be “THE WATERMAN

pub is located in the city centre area near RAJA INDIAN CUISINE. It has Italian

food in the £20 or less price range and is not family-friendly.” Can you generate

sentences from the following input data? {name: {value: THE WATERMAN,

order: 1}, eatType: {value: restaurant, order: 2}, food: {value: Italian, order:

5}, priceRange: {value: less than £20, order: 6}, customer rating: {value: null,
order: 0}, area: {value: city centre, order: 3}, familyFriendly: {value: no, order:
7}, near: {value: RAJA INDIAN CUISINE, order: 4}}.

Here, this utterance includes instruction on how to generate sentences from

a specific input data, then ask Bing to generate sentences from another input

data whose data are slightly changed from the first data (the value of eatType

attribute is changed from “pub” to “restaurant”).

The response from Bing was: Sure, based on the input data you provided, the

generated sentence would be: “THE WATERMAN restaurant is located in the

city centre area near RAJA INDIAN CUISINE. It serves Italian food in the £20

or less price range and is not family-friendly.” The generated sentences meet all

the input MR data perfectly.

Then, the second utterance was: Great! In which case, can you generate

another sentences from the following input data? {name: {value: THE WATER-

MAN, order: 1}, eatType: {value: pub, order: 3}, food: {value: Italian, order:

4}, priceRange: {value: less than £20, order: 5}, customer rating: {value: null,
order: 0}, area: {value: city centre, order: 7}, familyFriendly: {value: no, or-

der: 2}, near: {value: RAJA INDIAN CUISINE, order: 6}}. Here, the order

constraints are changed, whereas the values are unchanged.

The response was: Sure, based on the input data you provided, the gener-

ated sentence would be: “THE WATERMAN is not family-friendly. It is a pub

that serves Italian food in the £20 or less price range. It is located near RAJA

INDIAN CUISINE in the city centre area.” The generated sentences in this

response also perfectly reflect all the input MR data.

The third utterance was: Wow! How about this? Can you generate sentences

from the following input data? {name: {value: THE WATERMAN, order: 3},
eatType: {value: restaurant, order: 2}, food: {value: null, order: 0}, priceRange:

67



{value: null, order: 0}, customer rating: {value: 3 out of 5, order: 1}, area:

{value: null, order: 0}, familyFriendly: {value: yes, order: 4}, near: {value:
RAJA INDIAN CUISINE, order: 5}}. Here, the different MR data are given as

input.

The response was: Sure, based on the input data you provided, the generated

sentence would be: “The restaurant has a customer rating of 3 out of 5. THE

WATERMAN is family-friendly and is located near RAJA INDIAN CUISINE.”

Unfortunately, the order of eatType and customer rating is permuted in the

generated sentences.

Thus, the following sentences were given as the fourth utterance: Almost!

But you made a mistake in the order among “name”, “eatType”, and “customer

rating”. Can you try again by following the given order carefully?

The response to the utterance was: I apologize for the mistake. Based on the

corrected order of the input data, the generated sentence would be: “The restau-

rant, THE WATERMAN, has a customer rating of 3 out of 5. It is family-friendly

and is located near RAJA INDIAN CUISINE.” Unfortunately, the generated sen-

tences in this response did not meet the order constraints either.

As these example conversations show, it can be possible for a pre-trained large

language model to generate correct sentences from the given input without fine-

tuning, whereas it sometimes makes mistakes. Although it is difficult to deny

that the original E2E dataset and our E2E refined dataset were used to train

the GPT-4 model, it must be said that the performance is astonishing. The

performance of such large language models has been improving at an alarming

rate recently, and it will not be long before perfect sentence generation can be

achieved without fine-tuning.
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[63] Jekaterina Novikova, Ondrej Dušek, and Verena Rieser. The e2e dataset:

New challenges for end-to-end generation. In Proceedings of the 18th An-

nucal SIGdial Meeting on Discourse and Dialogue, 2017.

[64] F. J. Och and H. Ney. A systematic comparison of various statistical align-

ment models. Computational Linguistics, 29, 2003.

[65] M. O’Donnell. Ilex: an architecture for a dynamic hypertext generation

system. Natural Language Engineering, 7, 2001.

[66] OpenAI. Gpt-4 technical report. arxiv:2303.08774, 2023.

[67] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a

method for automatic evaluation of machine translation. In Proceedings of

the 40th Annual Meeting of the Association for Computational Linguistics,

2002.

77



[68] F. Portet, E. Reiter, A. Gatt, J. R. Hunter, S. Sripada, Y. Freer, and

C. Sykes. Automatic generation of textual summaries from neonatal inten-

sive care data. Artificial Intelligence, 173, 2009.

[69] Matt Post and David Vilar. Fast lexically constrained decoding with dy-

namic beam allocation for neural machine translation. In Proceedings of

NAACL-HLT 2018, 2018.

[70] Ratish Puduppully, Li Dong, and Mirella Lapata. Data-to-text generation

with content selection and planning. In Proceedings of The Thirty-Third

AAAI Conference on Artificial Intelligence (AAAI-19), 2019.

[71] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei,

and Ilya Sutskever. Language models are unsupervised multitask

learners. OpenAI blog (download at https://insightcivic.s3.us-east-

1.amazonaws.com/language-models.pdf), 2019.

[72] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,

Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits

of transfer learning witha unified text-to-text transformer. The Journal of

Machine Learning Research, 21, 2020.

[73] E. Reiter, C. Mellish, and J. Levine. Automatic generation of technical

documentation. Artificial Intelligence, 9, 1995.

[74] E. Reiter, R. RObertson, and L. M. Osman. Lessons from a failure: Gen-

erating tailored smoking cessation letters. Artificial Intelligence, 144, 2003.

[75] Julian Salazar, Davis Liang, Toan Q. Nguyen, and Katrin Kirchhoff.

Masked language model scoring. In Proceedings of the 58th Annual Meeting

of the Association for Computational Linguistics, 2020.

[76] Yuichi Sasazawa. Controlling keywords and their positions in text genera-

tion. In Proceedings of the 16th International Natural Language Generation

Conference, 2023.

78



[77] Lei Sha, Lili Mou uand Tianyu Liu, Pascal Pupart, Sujian Li, Baobao

Chang, and Zhifang Sui. Order-planning neural text generation from struc-

tured data. In Proceedings of The Thirty-Second AAAI Conference on Ar-

tificial Intelligence (AAAI-18), 2018.

[78] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with

relative position representations. In Proceedings of NAACL 2018, 2018.

[79] A. Siddharthan, M. Green, K. van Deemter, C. Mellish, and R. van der

Wal. Blogging birds: Generating narratives about reintroduced species to

promote public engagement. In Proceedings of INLG, 2013.

[80] Matteo Stefanini, Marcella Cornia, Lorenzo Baraldi, Silvia Cascianelli,

Guiseppe Fiameni, and Rita Cucchiara. From show to tell: A survey on

deep learning-based image captioning. arxiv:2107.06912, 2021.

[81] O. Stock, M. Zancanaro, P. Busetta, C. Callaway, A. Cruger, M. Kruppa,

T. Kuflik, E. Not, and C. Rocchi. Adaptive, intelligent presentation of

information for the museum visitor in peach. User Modeling and User-

Adapted Interaction, 17, 2007.

[82] Yixuan Su, David Vandyke, Sihui Wang, Yimai Fang, and Nigel Collier.

Plan-then-generate: Controlled data-to-text generation via planning. In

Findings of the Association for Computational Linguistics: EMNLP 2021,

2021.

[83] I. Sutskever, J. Martens, and G. Hinton. Generating text with recurrent

neural networks. In Proceedings of ICML, 2011.

[84] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learn-

ing with neural networks. In Proceedings of the 27th International Confer-

ence on Neural Information Processing System, 2014.

[85] Naoaki Suzuki and Satoshi Nakamura. Representing ‘how you say’ with

‘what you say’:english corpus of focused speech and text reflecting corre-

sponding implications. In Proceedings of the 23rd Interspeech Conference,

2022.

79



[86] M. Theune, E. Klabbers, J. R. E. de Pijper, E. Krahmer, and J. Odijk.

From data to speech: a general approach. Natural Language Engineering,

7, 2001.

[87] Keisuke Toyama, Katsuhito Sudoh, and Satoshi Nakamura. Content order-

controllable mr-to-text. IEEE Access, 11, 2023.

[88] Keisuke Toyama, Katsuhito Sudoh, and Satoshi Nakamura. E2e refined

dataset. In Proceedings of the 26th International Conference on Oriental

COCOSDA, 2023.

[89] Bayu Disiawan Trisedya, Xiaojie Wang, Jianzhong Qi, Rui Zhang, and

Qingjun Cui. Grouped-attention for content-seletion and content-plan gen-

eration. In Findings of the Association for Computational Linguistics:

EMNLP 2021, 2021.

[90] Bo-Hsiang Tseng, Jianpeng Cheng, Yimai Fang, and David Vandyke. A

generative model for joint natural language understanding and generation.

In Proceedings of the 58th Annual Meeting of the Association for Compu-

tational Linguistics, 2020.

[91] R. van der Wal, N. Sharma, C. Mellish, A. Robinson, and A. Sid-

dharthan. The role of automated feedback in training and retaining bi-

ological recorders for citizen science. Conservation Biology, 30, 2016.

[92] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all

you need. In Proceedings of the 31st Conference on Neural Information

Processing Systems 2017, 2017.

[93] Ramakrishna Vedantam, C. Lawrence Zitnick, and Devi Parikh. Cider:

Consensus-based image description evaluation. In Proceedings of 2015 IEEE

conference on Computer Vision and Pattern Recognition, 2015.

[94] Yuntao Wang, Yanghe Pan, Miao Yan, Zhou Su, and Tom H. Luan.

A survey on chatgpt: Ai-generated contents, challenges, and solutions.

arxiv:2305.18339, 2023.

80



[95] L. Wanner, H. Bosch, N. Bouayad-Agha, and G. Casamayor. Getting the

environmental information across: from the web to the user. Expert Sys-

tems, 32, 2015.

[96] Sam Wiseman, Stuart Shieber, and Alexander Rush. Learning neural tem-

plates for text genration. In Proceedings of the 2018 Conference on Empir-

ical Methods in Natural Language Processing, 2018.

[97] Sam Wiseman, Stuart M. Shieber, and Alexander M. Rush. Challenges

in data-to-document genration. In Proceedings of the 2017 Conference on

Empirical Methods in Natural Language Processing, 2017.

[98] Xinnuo Xu. Agggen: Ordering and aggregating while generating. In Pro-

ceedings of the 59th Annual Meeting of the Association for Computational

Linguistics and the 11th International Joint Conference on Natural Lan-

guage Processing, 2021.

[99] Takeshi Yamazaki. Procedual text generation from a flow graph. IPSJ

Journal, 57, 2015.

[100] Shuoheng Yang, Yuxin Wang, and Xiaowen Chu. A survey of deep learning

techniques for neural machine translation. arxiv:2002.07526, 2020.

[101] Ruslan Yemakov, Nicholas Drago, and Angelo Ziletti. Biomedical data-

to-text generation via fine-tuning transformers. In Proceedings of the 14th

International Conference on Natural Language Generation (INLG), 2021.

[102] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng

Hou, Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du,

Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang, Ruiyang Ren, Yifan

Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen. A

survey of large language models. arxiv:2303.18223, 2023.

81



Appendix

A. Examples

Some examples of the experiments in Section 4.5 are shown in Tables 25, 26,

and 27. Comparing Tables 25 and 26, the Transformer models with order con-

straints accurately reflected the MR values and the MR order in the generated

text passages, although TGEN, JUG, and the Transformer models without order

constraints did not. Comparing Tables 25 and 27, the Transformer models with

order constraints properly preserved the MR order in the generated text passages,

although TGEN, JUG, and the Transformer models without order constraints did

not.

B. Instructions for Human Evaluation

The instructions for those participating in the human evaluation described in

Section 4.6 are shown in Figure 22. The instructions for adequacy and focus are

shown in Figures 23 and 24. Screenshots of the human evaluation are shown in

Figures 25, 26, and 27. These systems were designed using Google Forms.
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Table 25. One example of MR value, MR order, and generated text passages. (*:

trained using augmented training data)

MR

Attribute Value Order

name
NAME

1
(THE WATERMAN)

eatType pub 2

food Italian 5

priceRange less than £20 6

customer rating (empty) 0

area city centre 3

familyFriendly no 7

near
NEAR

4
(RAJA INDIAN CUISINE)

Text

Reference NAME pub is located in the city centre area near NEAR. It

has Italian food in the £20 or less price range and is not family-

friendly.

TGEN NAME is an Italian pub located in the city centre near NEAR.

It is not family-friendly and has a price range of less than £20.
JUG NAME is a pub in the city centre near NEAR. It serves Italian

food for less than £20. It is not family-friendly.

Transformer

w/o order

NAME is a pub that serves Italian food. It is located in the

city centre near NEAR. It is not family-friendly and has a price

range of less than £20.
Transformer

w/ order

NAME is a pub in the city centre near NEAR. It serves Italian

food for less than £20 and is not family-friendly.

Transformer

w/ order(*)

NAME is a pub in the city centre near NEAR. It serves Italian

food for less than £20 and is not family-friendly.
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Table 26. Another example of generated text passages: MR value is identical to

Table 25, although MR order is different. (*: trained using augmented training

data)

MR

Attribute Value Order

name
NAME

1
(THE WATERMAN)

eatType pub 3

food Italian 4

priceRange less than £20 5

customer rating (empty) 0

area city centre 7

familyFriendly no 2

near
NEAR

6
(RAJA INDIAN CUISINE)

Text

Reference NAME is a non family-friendly pub that serves Italian food for

less than £20. It is located near NEAR in the city centre area.

TGEN NAME is an Italian pub located in the city centre near NEAR.

It is not family-friendly and has a price range of less than £20.
JUG NAME is a pub that serves Italian food for less than £20. It is

located in the city centre near NEAR and is not family-friendly.

Transformer

w/o order

NAME is a pub that serves Italian food. It is located in the

city centre near NEAR. It is not family-friendly and has a price

range of less than £20.
Transformer

w/ order

NAME is a non family-friendly pub serving Italian food for less

than £20 near NEAR in the city centre.

Transformer

w/ order(*)

NAME is a non family-friendly pub that serves Italian food for

less than £20. It is located near NEAR in the city centre.
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Table 27. Another example of generated text passages: Except the MR value of

eatType, all MR values and MR orders are identical to Table 25. (*: trained

using augmented training data)

MR

Attribute Value Order

name
NAME

1
(THE WATERMAN)

eatType restaurant 2

food Italian 5

priceRange less than £20 6

customer rating (empty) 0

area city centre 3

familyFriendly no 7

near
NEAR

4
(RAJA INDIAN CUISINE)

Text

Reference NAME restaurant is located in the city centre area near NEAR.

It has Italian food in the £20 or less price range and is not

family-friendly.

TGEN NAME is a non family-friendly Italian restaurant in the city

centre near NEAR with a price range of less than £20.
JUG NAME is a restaurant that serves Italian food for less than

£20. It is located in the city centre near NEAR and is not

family-friendly.

Transformer

w/o order

NAME is a non family-friendly Italian restaurant located in the

city centre near NEAR. It has a price range of less than £20.
Transformer

w/ order

NAME is a restaurant in the city centre near NEAR. It serves

Italian food for less than £20 and is not family-friendly.

Transformer

w/ order(*)

NAME is a restaurant located in the city centre near NEAR. It

serves Italian food for less than £20. It is not family-friendly.
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Figure 22. Instructions for Human Evaluation
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Figure 23. Instructions for Human Evaluation for Adequacy
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Figure 24. Instructions for Human Evaluation for Focus
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Figure 25. Screenshot of Human Evaluation for Naturalness and Focus (1)

89



Figure 26. Screenshot of Human Evaluation for Naturalness and Focus (2)
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Figure 27. Screenshot of Human Evaluation for Adequacy
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